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THE STRONG LIMITS OF RANDOM MATRIX SPECTRA FOR
SAMPLE MATRICES OF INDEPENDENT ELEMENTS!
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This paper proves almost-sure convergence of the empirical measure
of the normalized singular values of increasing rectangular submatrices of
an infinite random matrix of independent elements. The limit is the limit
as both dimensions grow large in some ratio. The matrix elements are re-
quired to have uniformly bounded central 2+45th moments, and the same
means and variances within a row. The first section (relaxing the restric-
tion on variances) proves any limit-in-distribution to be a constant measure
rather than a random measure, establishes the existence of subsequences
convergent in probability, and gives a criterion for almost-sure conver-
gence. The second section proves the almost-sure limit to exist whenever
the distribution of the row variances converges. It identifies the limitasa
nonrandom probability measure which may be evaluated as a function of
the limiting distribution of row variances and the dimension ratio. These
asymptotic formulae underlie recently developed methods of probability
plotting for principal components and have applications to multiple dis-

‘criminant ratios and other linear multivariate statistics.

0. Introduction and notation. The limiting distributions of the singular values
of rectangular random matrices have as interesting applications to multivariate
statistics as the well-known limiting distributions of eigenvalues of square sym-
metric random matrices have to nuclear physics. The latter work, primarily
connected with Wigner’s “Semicircle Law,” described in books by Mehta (1967),
Porter (1965) and Bharucha-Reid (1972) pages 86-88, has been reviewed for
statisticians in the Sixth Berkeley Symposium by Olson and Uppuluri (1973). Re-
cent papers of Ludwig Arnold (1973) and (1976) and Rudolf Wegmann (1976a)
and (1976b) treat with rigour many aspects of square symmetric and Hermitian
random matrix eigenvalues.

The singular values of rectangular multivariate sample matrices of concern
to statisticians and the “random spectra” of these matrices, the random empiri-
cal measures of their normalized singular values, do not fall under the theorems
motivated by the physics applications. It is true that the squares of the singular
values of mean-centered sample matrices are eigenvalues of square symmetric
sample covariance matrices. But elements of the square matrices are not inde-
pendent when elements of the rectangular matrices are, and so the natural as-
sumptions under the square and rectangular formulations differ. Previous sfudy
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of rectangular samples with independent elements has been confined to very
special cases. For situations where variances of all elements are equal and all
moments exist, limits of expected random spectra due to Stein have been reported
by Olson and Uppuluri (1973) and proofs of convergence of random spectra have
been announced by Mallows and Wachter (1970). This paper tackles conver-
gence of random spectra for rectangular matrices of independent elements in
the more general case where means and variances may vary from row to row
and only a bound on the moments of order 2 + d for some d > 0 is imposed.

Section 1 of this paper proves existence and stochastic degeneracy of subse-
quence limits of random spectra. Section 2 marshals this degeneracy in proofs
of formulae for limiting forms and almost-sure convergence to them. The
degeneracy of asymptotic random spectra is known to be a ticklish matter and
demands great care with the details of proofs. The complicated arguments which
follow, however, are rewarded by results believed to be the strongest known
of their kind. They have already served as the basis for methods of probability
plotting for principal components in Wachter (1975) and (1976a) and for dis-
criminant ratios and canonical correlations in Wachter (1976c¢) and (19764).

The combinatorial labour of the proofs is expended showing that the assump-
tions of independence turn any limit-in-distribution of the random spectrum
into a constant rather than a random probability measure. This degeneracy is
equivalent by Corollary 3.2 of Wachter (1974 b) to the asymptotic independence
of the singular values. A simple zero-one law proved in Wachter (1974 a) Theo-
rem 6.1 forces degeneracy of any limit-in-probability of random spectra for
matrices with merely independent columns, but problems of measurability make
that law insufficient for present purposes.

The asymptotic limit dealt with here is the limit when both p and m go to
infinity and their ratio approaches a finite, nonzero constant a, where p and m
are the row and column dimensions of the sample matrix, or the “dimension”
and “degrees of freedom,” or, following Dempster (1969) pages 6-8, the number
of variables and the number of individuals. This asymptotic situation must be
sharply distinguished from the much simpler limit where p remains fixed and m
goes to infinity alone, discussed for instance in Anderson (1963).

Most of the previous work dealing with our type of asymptotics has concen-
trated on cases of convergence to one special limit, Wigner’s Semicircle Law.
It tends to convey the misleading impression that this measure is a kind of ca-
nonical limit like the Gaussian distribution for partial sums. The great variety
of limiting measures derived in this paper shows how special and restricted the
semicircle cases are. Arnold (1973) and, as reported there, W. Schmale have
likewise identified a broad family of limits for square symmetric matrices. This
paper, though very different in substance, owes much to the spirit of that work.

Theorem 1.1 was originally proved by more complicated methods in the
auther’s Ph. D. dissertation, Cambridge, 1974. Conclusions along the lines of
Theorem 2.1 were first obtained under more stringent hypotheses jointly by
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Colin L. Mallows of Bell Telephone Laboratories and the present author, then
also at B.T.L. The key equivalence asserted in Lemma 2.4 is largely due to
Dr. Mallows. The other lemmas and proof of the theorems from them are new.

Depending upon context, Z will denote either an infinite-dimensional matrix
of real or complex random variables Z,;, or else the rectangular p by m dimen-
sional matrix which is the upper-left-hand corner of this infinite dimensional
random matrix, with elements Z,,, i =1, .-+, p; j =1, - .-, m. Z* is the con-
jugate transpose of Z.

Given p + m < n we form the n X n square symmetric matrix

0 0 Z
0O 0 O
zZx 0 0

whose set of n eigenvalues, all real, is symmetric about the origin. We define
the singular values of Z for p, m and n to be these eigenvalues and the random
spectrum of Z to be the empirical measure of the n singular values of Z/nt.
Authors who insist that singular values be positive differ from our convention.
The distribution function corresponding to the random spectrum is a random
step function with a step of size 1/n at each singular value of Z/n}, counting
multiplicities. There is a step of size at least 1 — min (m, p)/n at zero.

A “path of dimensions” consists of two nondecreasing sequences of positive
integers p(n) and m(n) such that p(n) + m(n) < n with p(n + 1) — p(n) < 1 and
m(n 4+ 1) — m(n) < 1 and, as n — oo, p(n) — co and m(n) — co. Such a path
picks out a sequence of submatrices of Z. We keep the normalization n separate
from p and m with a view toward the applications to multiple discriminants in
Wachter (1976b). It is necessary to restrict the jumps in p(n) and m(n) for
Proposition 1.5 below.

E denotes expectation and P denotes probability.

The random spectrum is a random element in the space Prob R of probability
measures on the real line with the topology of weak convergence and the Borel
sigmafield. A sequence of measures converges in Prob R if the expectations they
assign to bounded continuous functions converge. The probability distributions
of random spectra for different # are elements of Prob (Prob R). For definite-
ness and convenience we introduce a ‘metric D for Prob R in the preamble to
Proposition 1.4 below. In terms of this metric we say that two random ma-
trices Y and Z “have the same limiting random spectra with probability one”
if for every path of dimensions their random spectra R, and S,, whether or not
they themselves converge, still satisfy D(R,, S,) — 0 as n — co with probability
one.

1. Degeneracy of limit spectra. Our object now is to prove a portmanteau
theorem on degeneracy:

THEOREM 1.1. Let Z be an infinite matrix of real or complex-valued random
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variables which satisfy foralli,j = 1,2, ---: Z,; independent; EZ,; = c, regardless
of j; E|Z;; — ¢;|*** < A* for some & > 0 and some A > 1. Let the nondecreasing
sequences p(n) and m(n) with p(n) + m(n) < n form a “path of dimensions” and let
R, be the random spectrum of the p by m dimensional upper-left submatrix of Z.
Then

(1.1.1) Any limit-in-distribution of a subsequence of R, has a degenerate (non-
random) distribution.

(1.1.2) Any fixed element in the space Prob R to which a subsequence of R,
converges in distribution is a probability measure determined by its moments.

(1.1.3) Some subsequence of any subsequence of R, does converge in probability
to such a limit F in Prob R.

(1.1.4) R, converges almost surely in Prob R as n goes to infinity through the
full sequence or a subsequence t if and only if the expectations of the positive real
random variables H(n, k) in Lemma 1.2 below converge for each k as n — co through
t. Then F = lim R, if and only if { x* dF = lim EH(n, k) for all k.

ProoF. We assume Lemmas 1.2 and 1.3 and Propositions 1.4 and 1.5 below
and proceed with the proof of the theorem from them. We begin by truncating
Z,;. Put T(j) = 3A((2 + log j)*/log j)¥° for j > 2and T(1) = T(2) = 34. T(j)
is nondecreasing and 3 (1/n)* 3 7., 1/T°%(j) is finite. It is possible to prove Theo-

.rem 1.1 with the less delicate truncation (i + j)}, but the property T*(n)/n — 0
for all k as n goes to infinity greatly eases our task. Proposition 1.4 allows us
to replace our original random matrix by a random matrix Z with independent
elements with |Z,;| < T(j), with zero means, with new variances differing from
the old by less than T-%j) and with the same limiting random spectra with
probability one. From here on we assume these conditions.

We prove Theorem 1.1 by examining the random moments { x* dR, =
(2/n) tr (ZZ*n)* of the random measure R,. By our convention on the signs
of singular values, all odd moments vanish identically, and we ignore them.
The key to Theorem 1.1 is a bound of order 1/n on the variance of § x* dR,.
Lemma 1.3 bounds this variance by (1/n)(A% + T*(n)/n)(2k)%*+*.

Foreseeing the role of arbitrary subsequences in 1.1.1, we allow ourselves
to start with any sequence ¢ of increasing integers. Define a subsequence N,,
N,, ... of ¢ by N, = inf{n in ¢: n > (1 + 2/)N,} with N, = 1. Note for
future reference that 1 < n/sup {N,: N, < n} < 1 4 2/t — 1 as n — oo through
7. Raabe’s ratio test on page 355 of Hardy (1955) keeps >, 1/N, finite. Inas-
much as 7*(n)/n — O for all k, 3372, Var ({ x* dR,, ) is finite. Hence { x* dR; —
E { x* dR,, converges almost surely to zero as  — oo for every k.

We have already essentially disposed of the randomness of our random spectra,
but we must take care to assemble facts about the moment problem relating
{ x* dR, to R, in the right order. First, any time that £ { x* dR, approach limits
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for all k as n — co through 7, these limits must be the moments of a distribution
determined by its moments. For, Lemma 1.2 obliges us with the inequality
|E § x* dR,| < (kAA)* 4 k*T*(n)/n so that

lim sup, . (1/k)(limsup, ., E § x* dR,)V* = lim sup,_,, (kAA)“*k

which equals zero. This familiar condition, as justified for instance on page 182
of Breiman (1968), guarantees uniqueness of any measure whose moments are
limits of £ { x* dR,. Given uniqueness, existence follows, since such limits would
equal the limits of moments, namely of the moments { x*dR,, for any fixed
sample point outside the null set where convergence fails.

We now know that if E { x* dR, converges as n — oo through , Ry, converges
almost surely to a constant measure /7 determined by its moments. We want to
extend convergence from the sequence N, back to the original subsequence 7.
Since we have arranged sup {N,: N, < n}/n — 1, Proposition 1.5 tells us that R,
then converges to F almost surely through 7.

To complete the proof of 1.1.4, note that the random variables H(n, 2k) whose
properties we establish in Lemma 1.2 have expectations with the same limits as
E { x™ dR, since |E § x* dR, — EH(n, 2k)| < k*T*(n)/n — 0 as n — oo.

The variables to which Lemma 1.2 is being applied are of course those based
on the matrix Z after truncation. But we can prove that EH(n, 2k) for the origi-
nal Z have the same limits if any, since we have provided in Proposition 1.4
that the variance of the old Z,; is greater but no more than T-’(j) greater than
that of the new Z,;. The difference of the EH’s is less than

(2/n) T, T(s)((k — 1)A44)+ %k

which goes to zero as n goes to infinity since 7-%(j) decreases and }; (1/n)?
227 T=°(§) is finite.

To prove 1.1.3, suppose we are handed some subsequence of increasing inte-
gers. By Lemma 1.2, EH(n, 2k) is confined to the compact interval [ —(kA4A4)*,
(kAA4)*]. For each k and so, by diagonal selection, for all k simultaneously, we
can find a subsequence ¢ for which EH(n, 2k) converge. Then R, converges
almost surely and so in probability to a constant limit F as n — oo through .

The obvious equality between any limit-in-distribution for a subsequence and
the limit of a subsequence finally proves 1.1.1 and 1.1.2. []

LeMMA 1.2. For each n and k let

H(n, 2k) = (Jn*) 5 |Z,,,] |12

oy

2[Z

. szk—132k|2

The summation ranges over all 2k-tuples s, - - - sy, (writing s, = s,,) satisfying, for
i=1,., k, 8, < pand s, £ m, such that the cardinality of the set of distinct
values of s,,_, plus the cardinality of the set of distinct values of s, equals k + 1,
and such that there is a permutation © of 1, ..., k for which each pair s

equals Sy y-15 Spriiy—a)-

21—19 Sa;
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Then § x* dR, = H(n, 2k) + H' + H", where
EH(n, 2k) < (kAA)*
EH" =0
\H'| < (k*[m)sup {|Z;*: i < p, j = m}
H’ being the sum of less than k*n*|2 terms each bounded by (2[n***) sup {|Z,,;{*}.

ProoF. We shall elucidate the somewhat murky combinatorial characteriza-
tion of H with a geometric construction below. The moment {x*dR, =
(2/n) tr (ZZ*[n)* = (2/n**) 37 X(s5) where

X)) =2y, 2,y ZonZ

8135 “agsy “agny Tape, T Zs2k—132stlszk

and the summation over s spreads over 2k separate indices s, - - - 5,,. For odd i,
s; is a row index running from 1 to p(n). For even i, 5, is a column index run-
ning from 1 to m(n). We denote the set of all such indices by ‘pm’*. Given sin
‘pm’ we define positive integers b and w. The integer b equals the number of
distinct integer values which occur among the k row subscripts s;, 5, « - - Sy_1-
The integer w equals the number of distinct integer values which occur among
the k column subscripts s,, s, - - - 5. Define H' = (2/n**!) 37 X(s) with a sum-
mation over all s such that b 4+ w < kand H” = { x*dR, — H — H'.

We first show that EX(s) vanishes if & + w > k + 2, a step which is the crux
of our proof and disposes of most of our terms. Our claim:becomes perspicuous
when for each 2k-tuple s we construct a graph to represent the pattern of inter-
locking coincident indices. Writing a line of integers from I to p and below
them a line of integers from 1 to m, we connect an integer r on the top line to
an integer ¢ on the bottom line if and only if there exists i among 1, 3,5, .-,
2k — 1 such that s, = r and s,,, = ¢ or s5,_, = ¢, in other words if and only if
the factor Z,, or Z,, occurs in the term X(s).

Notice that the graph we have constructed must be a connected graph. For,
by traversing the nodes labelled s, s;, 5 - - - Sy, s, in that order, alternating
between the top and bottom lines of nodes, we eventually visit every integer
that occurs as a subscript, and each jump from one integer to another passes
over a branch or link which éorresponds to a pair r, ¢ and a factor Z,, or Z,,.

The number of nodes touched by branches is b6 + w. ‘There are 2k factors in
all, but any factor which occurs unrepeated and without its conjugate makes
EX(s) vanish, since different elements Z,; are assumed independent and EZ;, =
EZ,; = 0. For EX(s) to be unequal to zero, an index pair r, ¢ or a factor Z,,
must occur never or at least twice, so there must be at most k distinct factors
affiliated to at most k& branches on our constructed graph. Because the graph
is connected, the maximum number of nodes it can have is k& + 1, so either
b4 w=Zk+ 1orelse EX(s) = 0. .

A connected graph with the maximum number of nodes on k branches is a
tree. A tree has no loops, so that if 5, = r and s, is the first return to r after i,
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we must have s;,, = s;,_,. There always is a first return, when we traverse
Sis Sip1 v v+ Sy 5 - -+ 5. Thus for those terms, for each factor Z,, which occurs,
the factor Z,, follows it before any new occurrence of some Z,,,. Thus those
terms have the form X(s) = |Z,,|*--- |Z,, .. [*» Recapitulating, they are the
terms with b + w = k + 1 and in general with EX(s) = 0, in other words, terms
for which the factors are matched by their conjugates, so that there is a permu-
tation = for which each pair {s,,_;, 5,,> equals Sy, 15 Spr5)_zp> and b 4+ w =
k 4+ 1. They are exactly the terms in H(n, 2k), and the terms with EX(s) = 0
and b + w = k 4 1 are exactly the terms in H".

Crude upper bounds on numbers of terms are easy. We can choose b integers
outof 1,2, ..., pin (?) ways and assign each of s, 5, - - - s5,,_, one of them in b*
ways; similarly for m and w. Recalling Stirling’s formula and p + m < n, we
find no more than n**'k* terms with & + w = k + 1. The power n*+! cancels
the divisor in n=%=* 3} X(s) to make EH(n, 2k) < (kAA)~.

Similar calculations disclose no more than k*/2 terms with» + w < k. Thanks
to the truncation, each is a product of 2k factors each bounded by sup {|Z,,|}.
Hence |H'| < (k¥/n)sup {|Z,,]}. [

LemMMA 1.3. If Z is a random matrix with independent columns, the variance of
{ x* dR,, is less than

(2k¥n)E* | x* dR, + E* | x* dR, E*(\ x* dR, — H(n, 2k)) .

Here the operator E+ applied to a sum 3, X(s) of products of elements of Z is given
by E+ 37 X(s) = X |EX{(s)|, and H(n, 2k) is as in Lemma 1.2.

If all the elements of Z are independent with zero means and |Z,,| < T(j) for
increasing T(j), the variance is less than (1/n)(A* + T*(n)/n)(2k)™**.

Proor. The bound which requires independence only of matrix columns is of
separate interest for the study of degeneracy of limiting random spectra: column
independence alone rules out random spectra with tractable moments and non-
degenerate limits.

We use the notation of Lemma 1.2 to write § x* dR, = (2/n**?) 3 X(r) for r
ranging over ‘pm’*;

Var (2 X(r)) = X EX(n)X(s) + 2. (—DEX(NEX(s)

where L = {r, s: there exist a, b such that r,, = s,,}. L includes all pairs r, s
with some column index in common. The covariance between other X(r) and
X(s) pairs vanishes, because products of elements from disjoint sets of columns
of Z are independent by assumption.

It will be easy to prove both sums over L real, and if we knew that the second
sum were also positive, we could discard it, but all we shall need is to discard
from it some obvious positive terms. We can write the second sum as a sum
over all r in ‘pm’* as follows:

I —EX(NE tr (ZZ*)" — (Z(I — D()Z*)")
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where (D(r));; = O unless there exists a: i = j = r,,, When (D(r)),; = 1. We may
assure ourselves that (Z(I — D(r))Z*)* contains all the terms in (ZZ*)* except
those terms in which an element of a column represented in X{(r) appears. The
trace of this difference of self-adjoint matrices must be real, and the same value
of the trace factor multiplies X{(r) as multiplies X(r') = X(r), where r/ =ry,_4;
thus the whole sum is real. The difference ZZ* — Z(I — D(r))Z* = ZD(r)Z*
is nonnegative definite. We can simultaneously diagonalize (ZZ*)* and (Z(I —
D(r))Z*)* to prove the trace of their difference nonnegative, following Dempster
(1969), Section 5.1, or its generalization to complex matrices. We infer that the
coefficient of every EX(r) is positive.

Since each X(r) included in H is positive by Lemma 1.2 and has b + w =
k 4+ 1, we achieve

ZL (_EX(r)EX(S)) é Zr:b+w#k+l (_EX(r) Zs:r,sin[, EX(S))

which is smaller than 37 |[EX(r)| 33 |EX(s)| with the same ranges of summation,
and so less than E*({ x* dR, — H)E* { x dR,.

Alternatively, under the stronger hypotheses of all Z;; independent with zero
means and |Z,;| < T(j) we can recall the arguments of Lemma 1.2 to count how
few s can satisfy (7, sy in L. If r has w, distinct column subscripts, there are
fewer such s than

3w (BThwk)b*

with the summation over wand b: w + b = k 4+ 1. Now |[EX(r)EX(s)| < T*(n)
and rapid calculations give 3}, —EX(r)EX(s) < k**T*(n)/2n"

We turn now to the apparently more formidable sum 33, EX(r)X(s) in which
terms X{(r) and X(s) with zero expectations themselves can join to yield nonzero
contributions. We notice that our index set

L= Z=1 U’g=1 L,

where L,, = {r, s: r,, = 5,,}. The sets L,, are not disjoint, but each term
EX(r)X(s) for r, s in L,, corresponds to a different term in the expansion of the
higher-order moment § x* dR,. In particular, define 7 in ‘pm’* by

Ly = To = Tyq = Sap 5 b= Sypqr v o = Sap-1s

‘

L = Sap = Toas Yoprr = Togg1r *** Tag—1 = Taa—1 -

We loop around the chain of indices s beginning and ending on the common
column index s,, which equals r,, and brings us onto a similar loop around the
chain of indices r back to our starting point, the common column index. We
have X(f) = X(r)X(s). The k*sets L,, give us at most k* copies of any one term
from X(f) = (n**1/2) { x* dR,. Applying the operator E* in order that missing
terms from the 4kth moment only add to the sum, we may be gratified that the
divisor n*+1 on this moment compared to the divisor (1/n*+!)* wins us the divisor
of n which appears in the bound.
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Under the stronger hypotheses that allow us to cite Lemma 1.2, ¥}, EX(r)X(s) <
(l/n)(zk)2k+2(A4k + TAk/n). D

We come now to Propositions 1.4 and 1.5, on which our proof of Theorem
1.1 depends. Proposition 1.4 covers our truncation. Proposition 1.5 covers
the generalization from subsequence limits to sequence limits. We sketch their
proofs, omitting certain technical details found in Wachter (1974a), 5.7 and
5.9. The key idea is to define a metric D for the space Prob R specially suited
to calculations with random spectra. We define the metric with reference to a
sequence of test functions 4, by the sum overi = 1,2, - ..,

D(F,G) = X |§ k; dF — § h, dG}/2 .

For our test functions we take any countable collection uniformly dense in the
set of (bounded Lipschitz) functions from R to [0, 1] satisfying |A(x) — A(y)| <
|x — y| for all x and y. That such a choice exists and does impose on Prob R
the topology of weak convergence follows from Dudley (1966) or Wachter *
(1974a), 3.6 and 3.9. ,

PROPOSITION 1.4. Let Y be an infinite random matrix with EY, = ¢, and
E|Y,; — ¢, < A Then there exists a random matrix Z whose element Z,;
depends only on Y, and satisfies EZ,, = 0, E|Z > < A*, |Z,;] < T(j) and
|EVY,; — ¢.f* — E|Z,|"| < T~°(j). Here T is any nondecreasing positive function
bounded below by 3A4 which keeps Y, (1/n)* 33%_, T~%(j) finite. Let 6,; be positive
constants and p(n), m(n) a path of dimensions determining two sequences of random
spectra R, and S, for the matrices with elements o,;Y,; and 0,; Z;;. Then

P(lim,_, D(R,,S,) =0} = 1.

Furthermore, for all b > 0 and ¢ > 0 we can find N such that for all n > N and all
o,; such that sup o,; < A,

P{D(R,,S,) < b} > 1 —c.

SKETCH OF PROOF. The last conclusion amounts to the claim that R, and §,
converge to each other uniformly in probability. This claim is in fact inde-
pendent of the choice of metric, since Prob R inherits its topology from a linear
topological space, namely, the dual space of the bounded continuous functions
with the weakstar topology.

Notice that no assumption of independence of matrix elements is required.

We call a transformation from an infinite matrix ¥ to an infinite matrix Z
“allowable” if for every path of dimensions the conclusions of the proposition
hold for their random spectra. Allowability is a transitive relation.

We first claim that transforming Y, to Y, — ¢;, which amounts to subtracting
a matrix of rank one from Y, is allowable.

If U and V are two p(n)-by-m(n) dimensional matrices and F and G are the
empirical measures of the singular values of U/nt and Z/n! respectively, then the
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inequalities of Ky Fan (1951) allow us to write
sup, |F{(— o0, x)} — G{(— o0, 1)}| < (I/n) rank (U — V).

The Lipschitz bound on the test functions defining our metric D then guarantees
that, for any constant a > 0,

D(F, G) < (1/n)(2a + 3)rank (U — V) + 2F{|x| > a} .

We refer to this result as the “rank inequality.”

Putting U;; = Y;; and V,; = Y,, — ¢;and a = nt we have D(R,, S,) < 3n~% +
2n~1 { x*dR,. Since Y, n"¥E { x*dR, < A’supo?; 3, n~t which is finite, D(R,, S,)
converges almost surely to zero. Convergence in probability uniform over the
choice of the ¢,; follows in the same fashion via Chebychev’s inequality.

At each step, besides proving allowability, we must verify that our moment
conditions on the matrix elements are preserved. The calculations are laborious
but elementary and may be found in Wachter (1974a), pages 90-95.

For the allowability of the transformation from Y to Z which sets Z,, =Y,
if |Y;;] < T(j)/2 and Z,; = O else, we need a generalization to singular values
of rectangular matrices of the eigenvalue bound for diagonal perturbations of
square matrices on page 96 of Arnold (1971). The perturbation estimate (21)
of Wielandt (1955) applied to the absolute value function and the ordered singu-
lar values, along with the Lipschitz bound on our test function, shows that any‘
two p(n) by m(n) matrices U and V with random spectra F and G satisfy

DAF, G) = (2/n*) XX Ui — Vil

We refer to this result as the “square sum” inequality. Suppose W, is the right-
hand side of this inequality when U,; = Y,;0,; and V;; = Z;;0,;. We claim that
W, converges almost surely to zero. W, is almost surely a Cauchy sequence
because the sum over n of |W, — W, _,| is almost surely finite since the sum of
E\W, — W,_,| is finite. The last fact holds and the limit of W, equals zero
because the sum of EW,/n is finite thanks to the bound E|Y;{*** < 4% and the
constraint on the double sum of 1/7%(j). Since multiplication of Y, and Z;; by
.; cannot increase the bound on W, by more than a factor of sup ¢}; we not
only have almost sure convergence of D(R,, S,), but convergence in probability
uniform over the choice of ¢,;. Thus our truncation is allowable.

The truncation may lead to nonzero means for matrix elements, but the
square sum inequality plus Kronecker’s lemma make removal of means an al-

lowable transformation, and loosen our bound on Z,; at worst from 7'(j)/2 to
(- 0

PrOPOSITION 1.5. If { and t are increasing sequences of integers such that sup {j
in {1 j < njjn—1 as n— oo through v, then the convergence of R, in ProbR
through § entails convergence in Prob R through .

g

SKETCH OF PROOF. Consider D(R,, R,) where r = sup {jin {: j < n}. Define
H to be the random spectrum of a p(n) by m(n) dimensional matrix which agrees
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when i < p(r) and j < m(r) with the matrix whose random spectrum is R, and
which has zeros elsewhere. The rank inequality adduced in the proof of 1.4
gives a bound on D(R,, H). The Lipschitz property of the test functions chosen
for our metric D gives a bound on D(H, R,). Putting the bounds together yields
D(R,, R,) £ (8 + 3a)(n — r)/2n + 4R {|x| > a}. Since by assumption R, con-
verges in Prob R as r — oo through {, {R,: 7 in {} is uniformly tight. For any
¢ > 0 we can find a value @ > 0 to make the last term less than ¢ for all r. Our
hypothesis about r/n then makes D(R,, R,) — 0 as n — oo through z. [J

2. Almost sure convergence. Now that we know what kind of object the
limiting random spectrum is—a fixed measure determined by its moments—we
can proceed to find the limits and prove convergence to them. We do so by
calculating limiting moments by enumeration of terms as functions of matrix
element variances. We obtain a broad family of alternative limits to which,
we prove, the random spectra of the matrices almost surely converge.

The chief additional assumptions over Theorem 1.1 in Theorem 2.1 are that
elements Z,; in the same row have the same variance and that the distribution
of row variances approaches a limit as the number of rows goes to infinity. A
transform of the limit F of R, of the form { (z — x)~!dF turns out to be a func-
tion of the same transform of the limiting variance distribution.

THEOREM 2.1. Let Z be an infinite random matrix satisfying Z,; independent,
EZ;; = ¢, regardless of j; E|Z,; — c;|*** < A* for some ¢ > 0 and some A > 1;
and E\Z,; — c,|* = o regardless of j.

Let R, be the random spectrum at n defined by a path of dimensions p(n), m(n)
such that p(n)/n — B and m(n)/n — p as n goes to infinity with 0 < Bjp = a < 1.

Suppose there is a probability measure K such that for all k the averages
(1/p) 227 0 converge to § 1* dK(t). Then R, converges almost surely in the weak
topology on Prob R to a fixed, nonrandom probability measure F on the interval
[—AQe + 28)t, ARy + 2p)¥]} whose distribution function F(t), continuous except
at zero, is given off zero by

F(t) = lim,_, (1/xi) {1, x(M(x — iy) — M(x + iy)) dx

where M(z) is the unique analytic function off the real axis smaller than 1/24* at
z = oo and satisfying

. M dK(1)
@1 =m T 58(17??174’
_2u—1 . dF(1)

(2.1.2) M) = S gy B

ProoF. The almost sure convergence of R, to a degenerate limit £ is by 1.1.4
equivalent to the convergence for each k of EH(n, 2k) as defined in 1.2. We
postpone until Lemma 2.2 the proof that these numbers do converge and devote
this proof to identifying the limit measure F.
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We pinpoint F by an expression involving its moments. Lemma 2.2 implies
that if m/n — p and p/n — 8 and for all k (1/p) 337 6, — § x* dK, then

| X% dF = 3, 26 (a)ut* <§ [ x dK)“m (% { xt dK)w (’f? j x dK>w”

in which the sum is taken over k-tuples a(l1) - - . a(k) of nonnegative integers
such that }] ja(j) = k and in which the coefficient ¢(a) is the number of trees
of a special type identified in 2.3. We can enumerate these trees. Suppose M
is a formal power series with arguments y, b,, b,, ... such that the coefficient
@(a) of y**15* 0 b ps® ... in M — y is the number of alternating bichro-
matic rooted plane trees with black root and a(j) black nodes of valency j and k
branches for k = 3] ja(j). It is proved in Mallows and Wachter (1972) that this
enumerator satisfies the formal relation M = y(1 4 b M + b,M* 4 b, M* 4 .. .).
This relation is the key result from which the theorem follows when we reinter-
pret M to be an analytic function rather than a formal power series.

The rest of our argument resembles a jigsaw puzzle, fitting together interlock-
ing pieces. We discover some things about M only from properties of F, for
instance that M is a transform of a positive measure. On the other hand, we
discover some things about F only from properties of M, for instance that
{ (z — x)7'dF has a Taylor expansion about infinity. It takes some prudence to
avoid ‘building a circular argument.

Regarded as a formal power series in y, M has coefficients which are poly-
nomials in b, b,, - - - determined uniquely by successive substitution for M in
the right-hand side of the relation. Any analytic function of y which satisfies
the relation in a neighborhood of zero for appropriate numerical choices of
by, b,, - - - must have the numerical values of these same coefficients in its Taylor
expansion about zero. Given values of b, smaller than a4* we find such an
analytic function in the region |y| < 1/24%1 + &). Writing A(M) = (1 + b, M +
b,M* 4- ...), we notice that #(M) is an analytic function of M bounded by 1 +
a A M|/(1 — A% M|)inside thecircle |M| = 1/(24%). Aslongas|y| < 1/24%1 + «a),
the inequality | y#(M)| < |M| holds along the contour |M| = 1/24%, so that within
this contour Rouché’s theorem (cf. Ahlfors (1966), page 152) provides for fixed
» a unique root M(y) for M — ya(M) = 0 and M(y) is an analytic function.
Inserting the coefficients from the formal power series M, we conclude that the
Taylor expansion M(y) about zero must equal its formal expansion

Y+ L Y D wjeci=i P@D"Y b7 <o by

The values b, = (8/y) | 0% dK(o) satisfy the requirement b; < a4* so we may
substitute them for the parameters in M(y). Then
dK (o)
M) =1 M, s A S
(M) =1+ ($MJa) § oo

for |M| < 1/24* < A* and putting y = p/z*, the equation defining M takes the
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form
dK{(o)
2.1.1 r=Fr X))
(2.1.0) ATy
where M(y/z%) is the unique and analytic solution inside |z] > 4(2¢ + 28)} such
that |M| < 1/24%

We now interpret the Taylor expansion of M(y/z*) about z = co in terms of
moments of F. For k = 1, twice the coefficient of 1/z%** in zM(u/zz) equals
{ x%* dF as evaluated in 2.3. For k = 0, twice the coefficient of 1/z in zM(p/zz)
is 2¢ instead of 1 = { dF. Hence

2:M(pjzz) — (2p — 1)]z = Y1g (1/2)%+1 § x* dF .

This Taylor expansion must converge on the region |z| > 42y + 2B)* where M
is analytic, and this convergence has consequences for F. It forces the limit as
k — oo of

(1244( + B § x* dF Z F{lx| > AQ2u + 2p))
to go to zero. Hence F is concentrated on the interval [ — A(2¢ + 28)t, A2 +
28)4]. It follows that
dF(x)
z—x

§

has a Taylor expansion about z = oo, which, now that it is shown to exist, must
be the expansion }; (1/z)** { x* dF, which by 1.1.2 is a series which deter-
mines F.

The values of the unique root M on {z| > A2y 4 28)* smaller than 1/24* of
equation (2.1.1) determine the unique F for which (2.1.2) holds:

Mpjzz) = 2= 1 ¢ L (aFlx) _ 2 . dF(x) _

2zz 2z ! Z— X 222
But this equation then defines values of M for other z, indeed values of M such
that M(p/zz) = M(p/zz) for all z off the real support of F. Are these values also
solutions of (2.1.1)?
Define

dK(1)

/ey — M’

W is analytic off the real axis, hence over the range of M(u/zz) for z off the real
axis. Thus W(M(pu/zz)) is analytic off the real axis. Since it agrees with 22 for
Iz|* > 24AA(p + B), it must agree with z? for all nonreal z. Hence the transform
M(p/zz) of F does satisfy (2.1.1) for all nonreal z. It is not the only solution
of (2.1.1), but it is the direct analytic continuation of the solution less than
1/(2A44) at infinity.

(2.1.1) implies that F has no atoms except at zero. For, if F had an atom of
size ¢ at +-a, then at 22 = @ + i)’, by (2.1.2), —Im (M(g/(@® + ¥»)) > q/y +
(¢ — 3)y/(a* 4- y*). On the other hand, by (2.1.1), |z|* = @' + y* < p¥/(Im M)
Since y can be arbitrarily small, a can only be zero.

W(M) = p/M + B §
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It remains only to remark that for any test function g(¢) continuous off an
F-null set (and hence for the unit step function with step anywhere but zero)

lim,_, § (1/2zi) <g AR g AR

e P t)g(t)dt: Vo) dF(r). [0

We now proceed to the proofs of the lemmas on which Theorem 2.1 is based. J

LeMMA 2.2. Under the assumptions of Theorem 2.1, the expectation of the ran-
dom variable H(n, 2k) defined in Lemma 1.2 differs by less than (1/n)k* A% from

Lo 2mjmy (@ (L Domrod) o (2 D mp o)™
mop m . p
where the summation ranges over k-tuples of nonnegative integers a(l) - - - a(k) such
that 3, ja(j) = k and ¢(a) is the number of 2k-tuples of positive integers s, - - - sy,
satisfying s,y < b, 5,, < k + 1 — b, where b = 3] a(j), and a(j) = card {r: j =
card {i: s,,_; = t}} and there exists a one-to-one map from the pairs s,;_,, $,, to the
Pairs Sy,_y, Sy, Where s, = sy,

Proor. The assumption that variances are equal within rows reduces each
term

EZ |'E\Z,,'E\Z, _, |

1°2 3°4 2k—1%2k

in H(n, 2k) to a product (o, --- 0, ) indexed only by row subscripts. This
expression depends only on which distinct integers, say r(1) - - - r(b), occur with

what multiplicities y(1) --- y(b) in turn among the s,, ;, so we split up the sum
in EH(n, 2k) into

(2/nk+1) Zb Zy Zr Zc ZsinL (asl 032 e as2k_1)2
where the summations range as follows:

(i) b over 1tok; ‘
(ii) y over all b-tuples of positive integers y(1) - - . y(b) satisfying 37 y(t) = k;

(iii) r over all b-tuples of distinct positive integers r(1) - .. r(b) all smaller
than p(n);

(iv) c over all w-tuples of distinct positive integers ¢(1) --. ¢(w) all smaller
than m(n), withw =k + 1 — b;

(v) L = {2k-tuples such that s,, , ranges over r(1) - - - 7(b) and s,, ranges over

c(1) - ¢(k + 1 — b) and pairs (s,,_,, 5,,> correspond one-to-one to {s,;_,, $,;_,>}.

The summand does not depend on L (or on ¢) and the cardinality of L is a purely
combinatorial quantity fixed by b, k, and y(1) - - - y(b), always equal to the value
it takes, for instance, when (i) = i and ¢(i) = i. We have

EH = (2/n**) 33, 33, card {L} 35, 75, o7) - - - o705

The sums over r and ¢ differ from the sums ranging over all tuples of not-neces-
sarily-distinct integers by p*m* — p! m!/(p — b)! (m — w)! terms each bounded
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by 4*. We have 3 card {L} < b*w* < ((k 4 1)/2)*. Thus EH differs by less
than k*+!4%/n from :

(z/nk+1) Zb Zy card {L}m“’ Zf O-i2y(1) v Z aizy(b) .

Plugging in a(j) for the number of factors in which y(i) = j produces the expres-
sion in the lemma. [] ‘

LEMMA 2.3. The rooted plane bichromatic trees with alternating black and white
nodes with a(j) black nodes of valency j for j = 1,2,3, ..., one of whose black
nodes is the root node, stand in one-to-one correspondence, when k = 3 ja(j) and
b= 73 a(j) and w =k + | — b with the 2k-tuples of positive integers s, - - - sy
specified in Lemma 2.2,

Proor. For each 2k-tuple of subscripts we construct a graph by the same
procedure as in Lemma 1.2. The graph is a tree because it is connected, has k
branches, and » + w = k 4 1 nodes. If we colour row subscript nodes labeled
1 to b along a top line black and we colour column subscript nodes labeled 1
to w along a bottom line white, our tree is clearly an alternating, bichromatic
tree. Traversing the tree by the route s,, s,, 5, - - - Sy, 5;, €ach of the b + w nodes
is visited. Each branch is crossed once in each direction (black to white and
white to black) thanks to the one-to-one correspondence between s,,_,, s, and
Sy—1s Sy_y- 1N OUC traverse, we are beginning at a preferred black node, s,, and
we are establishing an orientation: at each node any branches leading to nodes
farther from the root node are ordered in the order we traverse them. The pre-
ferred node makes the tree a rooted tree. The orientation makes the tree a plane
tree. The tree could be drawn so as to-inherit its orientation from the clockwise
sense of the Euclidean plane. The valency of the rth black node, the number
of branches emanating from it, equals card {i: 5, = tfori = 1,3, .-+, 2k — 1}.
The terminology accords with Chapter 6 of Riordan (1958) and with Mallows
and Wachter (1972). In this way each of our 2k-tuples corresponds to a tree
of the specified type. For example, s = (2,2, 2, 3, 2, 1, 1, 1> which indexes
the term Z,, 2y, 233200 20 2., Z,, Z,, in H(n,8) for k =4, b =2, w = 3,and a =
(1,0, 1, 0> corresponds to the tree

Conversely, from any such tree, we can recover a 2k-tuple satisfying the given
conditions, namely, the same 2k-tuple that yields the tree. Our correspondence
is a bijection. We recover the 2k-tuple by traversing the tree and putting s, equal
to the label of the ith node traversed. We begin at the black root node, pro-
ceeding from each node along the branch with the highest precedence in the
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orientation at that node among all branches not previously traversed toward
nodes farther from the root node, and, when such branches are exhausted,
returning to the unique adjacent node nearer the root node. By this rule we
never cross a branch in the same direction twice. After 2k steps we must have
passed each of the k branches in both directions. No branch to a node nearer
the root node from our position can remain to cross, so we must have returned
to the root node s,. As before, the valencies match with the parameters a(j),
and the correspondence is established. []

Theorem 2.1 in its present form covers the asymptotic distribution of sample
standard deviations of principal components. Tables of quantiles for cases where
K is concentrated on one or two points along with discussion of their use in
probability plotting occur in Wachter (1975). More formal analysis with com-
puter programs for these quantiles may be found in Wachter (1976a). The case
of general finite discrete K is treated in Wachter (1976b). Applications to plot-
ting of discriminant ratios in Wachter (1976c¢), however, call for stronger con-
clusions than those of Theorem 2.1 in the direction of uniform convergence over
matrices with different sequences of row variances. Uniformity is needed when
we let row variances themselves be random variables. We already have in hand
the tools for a good uniform assertion:

THEOREM 2.4. For any sequence o of positive numbers o, in (0, A), let K, (o) be
the empirical measure of o, - - - a,,,, and let G, () be the solution (F) to equations
(2.1.1) and (2.1.2) when K = K,{(a). Let R, (o) be the random spectrum of Z{c)
where Z,,{(cy = a,Y,; for a random matrix Y satisfying the conditions of Theorem
2.1 but with unit variances. Then R, (o) and G,(¢) converge to each other in prob-
ability uniformly over o.

PrOOF. Proposition 1.4 is formulated so that if our claim here of uniformity
holds for Z truncated at T(j) as in Proposition 1.4, it holds for the original Z.
The existence of G,{¢) is furnished us by Theorem 2.1, since the sequence
&; = 0, mod p(my Satisfies

(1) SEEs — § x* dK, (o) < 2p(n)A™[l >0  as - oo .

For each n we know that G,{(¢) is a fixed measure concentrated on [A(2y + 28)¢,
A(2p + 2B)t] determined by its moments.
We begin by estimating the probability that the differences between the mo-
ments of R, and G, stay under control.
PR k: |{ X¥*dR, (o) — | x* dG (D] > sc(k)}
< g1 (U/se(k)y{Var (§ x* dR,) + (E § x* dR, — EH(n, 2k))*
+ (EH(n, 2k) — § x* dG )} .
The three terms on the right are bounded according to Lemmas 1.3, 1.2 and 2.2
by (1/n)(A* + T*(n)/n)(2k)*** + (k*T*(n)/n)* 4 (A*k**'/n)* and sup {T*(n)/n:
n=1,2, ...} is some finite function of k. Thus we may choose c(k) to increase
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so rapidly with k that the infinite sum is less than 1/ns*. { x* dG{o) < (2AA(p +
8))¥, so the moment sequences of all measures whose odd moments vanish and
whose 2kth moments differ from § x* dG,{s) by at most ¢(k) inhabit a coordinate-
wise bounded (closed) subset of the space R™, that is to say, a subset compact
in the product topology. The map which associates a determinate moment se-
quence with the measure it determines is continuous between the topology in-
duced on these sequences by the product topology on all of R and the topology
induced on Prob R by the weakstar topology on the whole dual space of the
bounded continuous functions on R, an induced topology which is, after all,
just the familiar topology of weak convergence. Uniformity can be defined by
reference to neighborhoods of zero in the larger linear spaces; on a compact
subset the moments-to-measures map must be uniformly continuous.

The uniform continuity means that we can keep R, (o) — G,{s) in any neigh-
borhood U of zero by making the first k differences of moments small enough
for some finite k. That we can certainly achieve by making each 2kth difference
smaller than sc(k) for small enough s, and then the moments stay nicely in the
compact set as well. We deduce that for any neighborhood U of zero,

s Vo P{R, (o> — G, (o) in U} > 1 — 1/(ns*). 0
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