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Summary 
The ability of human V.3 immunoglobulins (Ig) to bind to staphylococcal protein A (SPA) via 
their Fab region is analogous to the binding of bacterial superantigens to T cell receptors. The 
present report establishes the structural basis for the interaction of SPA and V.3 Ig. We have 
studied a panel of 27 human monoclonal IgM that were derived from fetal B lymphocytes. As 
such, these IgM were expected to be encoded by unmutated germline genes. Binding to SPA 
in ELISA occurred with 15 of 15 V.3 IgM, but none of 12 IgM from the V.1, V.4, V.5, or 
V.6 families. The V. sequences of the 27 IgM were derived from 20 distinct V. elements, 
including 11 from the V.3 family. Use of D, J., and CL genes was similar among V.3 and non- 
V.3 IgM. A comparison of the corresponding V. protein sequences, and those of previously 
studied IgM, identified a probable site for SPA binding that includes V~3 residues in framework 
region 3 (FR3), and perhaps FR1 and 3' complementary determining region 2. The results thus 
demonstrate that among human IgM, specificity for SPA is encoded by at least 11 different V.3 
germline genes. Furthermore, like the T cell superantigens, SPA likely binds to residues in the 
V. framework region, outside the classical antigen-binding site of the hypervariable loops. 

S taphylococcal protein A (SPA) possesses Ig Fab-binding 
sites specific for determinants on the V region of the Ig 

H chain. These "alternative binding site(s)" of SPA are dis- 
tinct from its well-characterized IgG Fc-binding sites (1-3). 
We previously demonstrated that the ability oflg Fab to bind 
to SPA is a functional marker for Ig encoded by the largest 
human V. gene family, V.3 (4). Furthermore, SPA binding 
was seen with nearly all tested V.3 IgM, and with a large 
portion of the tested V.3 IgA, and V.3 IgG F(Ab')2 frag- 
ments (4, 5). These findings suggested that specificity for 
SPA is encoded by the germline sequences of many of the 
commonly expressed V~3 genes. The data also implied, as 
did studies of SPA-binding mouse Ig (6), that the Fab site 
to which SPA binds involves V. family-specific residues, 
most of which have been demonstrated to reside outside the 
conventional antigen-binding site (7-9). This association of 
V.3 H chains with specificity for SPA is analogous to the 
ability of certain TCR Va molecules to bind bacterial super- 
antigens (10). Therefore, we proposed that SPA, which is 
a potent polyclonal activator of human B cells, be considered 
an Ig superantigen (5). 

To further examine the structural basis for the interaction 
between V.3 Ig and SPA, we have now studied the SPA- 
binding properties and VH sequences of 27 monoclonal IgM 
derived from fetal B lymphocytes. The IgM were encoded 
by a spectrum of V. elements, all of which are probably un- 
mutated germline genes. We found that all V.3 IgM, but 

none of the other IgM, bound to SPA. Comparison of the 
IgM V~ sequences identified a surface containing residues of 
framework region 1 (FK1), 3'CDR2, and FK3, that likely 
has a role in SPA binding. The data also suggested that a 
determinant for SPA binding exists among V,3 residues 75 
to 84, in FK3. It is concluded that IgM specificity for SPA 
is encoded by at least 11 V~3 germline genes, and that SPA 
likely binds to a V~3 framework region, outside the classical 
Ag-binding site. 

Materials and Methods 
Monoclonal B Cell Lines. Mononuclear cells were isolated by 

density gradient centrifugation from second trimester fetal liver 
and spleen provided by the University of Washington Central Lab- 
oratory for Human Embryology (11). Fetal mononuclear cells were 
transformed by EBV and cloned by limiting dilution, as previously 
described (12). Studies described below were performed with 26 
lines, randomly selected from among 62 IgM-producing cell lines 
(12). Beg-2, a human heterohybridoma generated from fetal spleen 
cells, was kindly provided by Dr. Richard Watts (University Col- 
lege, London, England). 

Determinaron of lgM Concentration and L Chain Isotype. Superna- 
tants of the 27 monoclonal IgM cell lines were assayed by ELISA 
in 96-well trays coated with goat F(ab')2 anti-human F(ab')2 (Jack- 
son ImmunoResearch Laboratories, Inc., West Grove, PA). L chain 
isotype was determined by detecting bound IgM with goat F(ab')2 
anti-human K and goat F(ab')2 anti-human X, both conjugated 
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with horseradish peroxidase (Cooper Biomedical, Malvern, PA). 
IgM concentration was determined by detecting bound Ig with 
horseradish peroxidase--conjugated goat F(ab')z anti-human IgM, 
Fc.-specific (Cooper Biomedical), and comparing results with a 
standard curve prepared with purified polyelonal human IgM (Cal- 
biochem Novabioehem, La Jolla, CA). For subsequent binding 
studies, every supernatant was adjusted to >10.1 #g lgM/ml in tissue 
culture media (IMDM; Sigma Chemical Co., St. Louis, MO) that 
was supplemented with 10%o FCS, 2 mM L-glutamine, 50 U/ml 
penicillin, and HAT (Boehringer Mannheim, Indianapolis, IN). All 
supernatants were shown to be devoid of human IgG by detection 
with horseradish peroxidase-conjugated Fc-specific goat F(ab')2 
anti-human IgG. 

IgM Binding to SPA. IgM binding to SPA was determined by 
ELISA. Wells were coated with 1.5 #g SPA (Sigma Chemical 
Co.) in 150/zl bicarbonate buffered saline, pH 8.0, washed, incu- 
bated with 100 #1 supematant, and washed with borate buffered 
saline, pH 8.0, containing 0.5% Tween 20. Horseradish peroxidase- 
conjugated F(ab')z goat anti-human IgM, Fc-specific, was then 
incubated in the wells, followed by development with 2,2'-azino-di- 
[3-ethylbenzthiazoline sulfonate (6)] (ABTS) substrate (Kirkegaard- 
Perry, Gaithersburg, MD). By the same protocol, each superna- 
tant was also tested for binding to wells coated with tissue culture 
media supplemented with 10% FCS (negative control), and to wells 
coated with goat F(ab')z anti-human F(ab')2 (positive control). All 
assays were performed in duplicate. 

IgM V. Sequence Analysis. As previously described, Ig H chain 
cDNA was prepared from I/zl culture suspension, containing 1-25 
monoclonal cells, with a synthetic deoxyoligonudeotide primer cor- 
responding to the 5' region of C, (5'-GACGGAATTCTCACAG- 
GAGAC-Y) (12). The cDNA was then amplified by the PCR with 
the addition of a primer representing a consensus sequence in V. 
codons I to 8 (5'-CAGGTGCAGCTGGTGAATTCTGG-3') (12). 
PCIL product was ligated into Puc18 and sequenced by conven- 
tional methods (13, 14). Each reported sequence represents a con- 

sensus of sequences from at least two independent cDNA, each 
of which was sequenced the entire reported length. Nucleotide mis- 
matches occurred at a rate of one per 10,000 bp. 

Results 
Measurement of Binding to SPA by 27 Monoclonal IgM. A 

panel of 27 monodonal IgM, each of which was expressed 
by a B cell line derived from fetal liver or spleen, was tested 
for binding to SPA in a solid phase ELISA. All 15 IgM en- 
coded by elements from the V.3 gene family bound to SPA 
(Fig. 1). In contrast, binding to SPA was not seen with any 
of the nine IgM from the V,1 family, or the IgM from the 
V.4, V.5, or V.6 families (one each) (Fig. 1). All IgM 
bound well to the positive control, and poorly or not at all 
to the negative control (data not shown). Only the V~4 IgM 
(OD = 0.05) and the V.6 IgM (OD = 0.03) bound the 
negative control greater than 0.01 OD units. 

V,, Sequence Analysis of 27 Monoclonal IgM. The V. 
nudeotide sequence of each IgM was determined. The IgM 
were encoded by 11 different V.3 elements, six different Vsl 
elements, and one each from the V.4, V.5, and V.6 fami- 
lies (Fig. 1). All but five of the V.3 and two of the V.1 se- 
quences were identical to known germline genes (Fig. 1). 
A variety of D and J. segments was found, with a similar 
distribution among the V.3 and non-V.3 IgM (Fig. 1). The 
27 J. sequences were all ascribable to known germline genes, 
and none contained somatic mutations. IgM with the same 
V. sequences were all clonally distinct because they differed 
in their D sequences, J. sequences, or both. K and X L chains 
were equally represented among the V.3 and the non-V.3 
IgM (Fig. 1). 
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Figure 1. Binding to SPA by 27 fetally derived monoclonal 
IgM. ELISA wells were coated with SPA, washed, incubated 
with test IgM in supernatant at 0.1/zg/ml, washed, then in- 
cubated with horseradish peroxidase-conjugated goat F(ab')2 
anti-human IgM, followed by ABTS substrate. Binding levels 
are the mean of two simultaneous measurements, expressed 
in OD units. IgM are grouped by V. gene family. Genetic 
elements identify previously reported V. and J. germline 
genes to which the obtained IgM sequences are 100% iden- 
tical, and previously reported D. germline genes to which 
the obtained IgM sequences are identical over at least 6 bp. 
Novel elements were <98% identical to reported germline 
genes. The germline origin of short D. regions could not 
be determined. CL isotype was determined by ELISA anal- 
),sis of the respective IgM clone, which is named in the fifth 
column. The V. sequences 13-2a and 20p3a differ by a single 
base pair from 13-2 and 20p3, respectively, but appear to be 
distinct germline elements because the 13-2a and 20p3a se- 
quences were each recovered from >1 independent rearrange- 
ments (Hillson, J. L., unpublished data). References for the 
named genes include 56pl, 51p1, 20p3, V.6 (15), 1.9111, 13- 
2, 22-21~ 5-1RI (16), 301969 (17), 26c (18), 287 0-lillson, J. L., 
unpublished data), J. dements (19), and D. elements (8, 
19-24). 
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Figure 2. Protein sequences of the H chain V regions of monodonal IgM. Amino acids were translated from the obtained nucleotide sequences 
of 27 IgM described in Fig. 1, and are shown from codon 9 through codon 114. Sequences are grouped by V. gene family and ability to bind to 
protein A. For comparison, the V. sequences of six previously reported V.3 IgM are shown at the bottom of the V.3 group, with their names itali- 
cized and marked with an asterisk (4, 25-28). (Tbp) Sequence from done 5A10. Amino acids of other sequences are specified only where different 
from 5A10. ( - )  Relative deletion. (Bottom) (X) Position at which a single amino acid residue is identical among and unique to all our V.3 sequences. 
(x) All V.3 residues at that position are identical or conserved, and also present in the V.4, V.5, or V.6 sequence, but not the V.1 sequences. The 
sequences of the previously reported sequences (POm, Lay, Pdv, KL1, SJ1, and TS2) are excluded from the analysis leading to the assignment of X 
and x designators. Sequence organization and CDR are according to Kabat et al. (8). The nudeotide sequences from which these amino acid sequences 
were generated are available from EMBL/GenBank/DDJB among the sequences having the accession numbers L04323-L04346 and L03815-L03830. 

Each of the 20 different V. nucleotide sequences encoded 
a different translated protein sequence, i.e., six different pro- 
teins from the V.1 family, 11 from V.3, and one each from 
V.4, V.5, and V.6 (Fig. 2). Comparison of these protein 
sequences identified 23 positions at which the amino acid 
residue is invariant among the V.3 sequences and different 
from the residue(s) present in the V.1 sequences. At posi- 
tion 82a also, the V.3 residues are identical, and different 
from the V.1 residues, except for a conservative substitution 
in one V.3 sequence, 3Gll (Fig. 2). 

Discussion 
We have determined the SPA-binding ability and the V. 

sequences of a panel of 27 monoclonal human IgM derived 
from fetal B lymphocytes. We found that 15 of 15 V.3 IgM 
bound to SPA, whereas none of the IgM from the V.1, V.4, 
V.5, and V.6 families bound to SPA. No correlation was 
seen between SPA binding and D or J. gene use, or CL iso- 
type. This result confirms that binding to SPA is a functional 
marker for V.3 IgM, and indicates that SPA-binding IgM 
are encoded by many of the V.3 genes expressed in the 
human fetal repertoire. 

The fetal origin of the studied IgM makes it likely that 
the V. sequences they contained were encoded by unmutated 
genes, and were not subject to selection by exogenous Ag. 
In fact, 12 of the distinct V. sequences, including six from 
the V.3 family, were identical to those of known V. germ- 
line genes�9 The finding that all IgM had unmutated J. se- 
quences provides additional evidence that the novel V. se- 
quences, four V.3 and one V.1, are probably unmutated, 
and therefore identical to V. germline sequences that have 
not yet been reported. Thus, the data clearly identify 11 dis- 
tinct V.3 genes that encode SPA-binding IgM. Further- 
more, specificity for SPA was encoded by the unmutated form 
of at least six, and probably all 11, of these V.3 germline 
genes. 

The haploid genome is estimated to contain between 25 
and 50 V.3 germline gene loci, up to two thirds of which 
are functional (16, 29). Thus, about 20-40% of V.3 germ- 
line loci, and a larger portion of functional V.3 germline 
loci, have now been directly demonstrated to encode SPA- 
binding Ig. It seems likely that many of the remaining V.3 
loci will also encode SPA-binding proteins. In previous studies 
of polyclonal Ig purified from blood, a small minority of total 
V.3 IgM, and a larger subset of total V.3 IgA and V.3 IgG 
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Figure 3. VH3 residues implicated in the Fab site that binds to SPA. 
Shown is an alpha carbon backbone model of a VL-V. pair from a V.3 
Ig. (Righ 0 V. polypeptide; (/eft) VL. (Filled dots) V. and VL CDR residues. 
V. CDR loops are labeled. V. regions containing residues associated with 
binding to SPA are indicated by a medium line in FR1 (9.27) and a heavy 
line in 3' CDR2 (62-65) and FR3 (66-84). (Filled triangles) V. FR3 
residues at which a nonconservative substitution is associated with loss 
of specificity for SPA. Also indicated (open circles) are the first and terminal 
V. residues (1 and I13), and a FR2 residue on the V. (41) and Vt (L40) 
chain. The figure is modified from that of McPC603 in Kabat et al. (8). 

did not demonstrate Fab-mediated binding to SPA (4, 5). The 
elements encoding these SPA-nonbinding V~3 Ig could have 
lost specificity for SPA through somatic modification, or they 
might belong to a subset of V.3 germline genes that encode 
SPA-nonbinding proteins. It is also possible that certain com- 
binations of D, J., V~, and JL genes abrogate V.3 binding 
to SPA. However, the broad variety of these genes (D, J., 
VL, JL) that have been found to encode SPA-binding IgM 
argues that this effect occurs infrequently, if at all (4, 28, 30). 

The site on Ig Fab that binds to SPA has been localized 
to the variable region of the H chain (31), and shown to be 
functionally distinct from a conventional hapten-binding site 
(32). Our data now provide structural evidence that SPA binds 
outside the classical antibody binding site. The V. sequences 
from our IgM identify 24 amino acid positions at which all 
V.3 sequences have a conserved residue, and all V.1 se- 
quences differ by a nonconservative change. Two of these po- 
sitions are in FR2, which is inaccessible to solvent (8). The 
remaining 22 positions localize a candidate binding site for 
SPA to two peptides, one in FR1 (residues 9-27), the other 
in 3' CDR2/FR3 (residues 62-84). Seven of these positions, 
indicated at the bottom of Fig. 2 (X), are strongly associated 
with IgM ability to bind to SPA, because their V.3 residues 
are unique. The other 15 positions, (x), could also have a 
role in SPA binding, even though their V.3 amino acids ap- 
pear in the V.6 sequence (13 of 15 positions), the V.4 se- 

quence (12 positions), or the V.5 sequence (5 positions). In 
an intact, folded Ig molecule, the two peptides reside in closely 
adjacent, solvent-exposed, ~/-pleated sheets that define a re- 
gion on the lateral aspect of the Fab molecule that is removed 
from the V. hypervariable loops (8) (Fig. 3). This 9". struc- 
ture is structurally analogous to the region bound by T cell 
superantigens on the fl chain of TCRs (33, 34). 

Further insight into the protein A-binding site of V.3 Ig 
can be gained by examining six previously reported V. se- 
quences, from IgM Pom, Lay, Riv, KL1, SJ1, and TS2 (Fig. 
2) (25-27), IgM Pore, Lay, Riv, and KL1 bind to SPA (4, 
28). In contrast, IgM SJ1 and TS2 have been reported to not 
bind to SPA (28), even though their protein sequences are 
94 and 96% identical, respectively, to those encoded by 1.9III 
and 56pl, which we found to bind to SPA (Fig. 1). A se- 
quence comparison that includes SJ1 and TS2 identifies five 
FR3 positions, 75, 76, 80, 82a, and 84, at which nonconser- 
vative substitutions in a V.3 sequence are associated with in- 
ability to bind protein A (Fig. 2). Each of these positions 
was also identified by the above analysis of our V~3 se- 
quences (Fig. 2). Thus, some of these substitutions could have 
abrogated SPA binding. The other substitutions in SJ1 and 
TS2 are unlikely to have abrogated SPA binding because, ei- 
ther (a) they resulted in a conservative amino acid change 
(residues 28 in FR1, and 59 in CDR2); (b) they occurred 
at a site that is inaccessible to SPA (residue 40 in FR2); or 
(c) in other V.3 IgM, nonconservative substitutions at that 
position were associated with retained ability to bind SPA 
(residues 52, 52a, and 57 in CDR2) (Fig. 2). 

These findings suggest that the FR3 75-84 peptide con- 
rains a determinant that is critical for binding to SPA. Residues 
75-84 begin in a FR3 loop, and extend to include a portion 
of FR3 that is nearer to the C region than to the CDR (Fig. 
3). Among residues 75-84, nonconservative substitutions that 
do not abrogate SPA binding are found in IgM KL1 (T to 
P, residue 77); Lay (R to Q, residue 83); and Pore (Q to I 
and R to Q, residues 81 and 83) (Fig. 2). It seems likely, 
therefore, that only a limited number of residues in the 75 
to 84 peptide is directly involved in the SPA-V.3 interaction. 
This prediction can be directly tested by site-directed muta- 
genesis. 

In conclusion, we have studied the SPA-binding proper- 
ties of a panel of monoclonal human IgM produced by B 
lymphocytes derived from fetal liver or spleen. Binding oc- 
curred with all V.3 molecules, but no others, indicating that 
specificity for SPA is encoded by at least 11 different VH3 
germline genes. Analysis of IgM V. sequences indicated that 
conserved residues in VH3 FR1 and 3' C D R 2 / F R 3  likely 
play a role in SPA recognition by V~3 proteins. Furthermore, 
the site to which SPA binds might directly involve residues 
in the FR3 75-84 peptide. These findings elucidate the struc- 
tural basis of the nonclassical binding specificity that V.3 Ig 
have for SPA, and demonstrate a structural analogy between 
the SPA-Fab interaction, and the binding of bacterial super- 
antigens to TCRs. 
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