
The Structural Simulation Toolkit

Arun F. Rodrigues
Sandia National Labs

Albuquerque, NM
afrodri@sandia.gov

Jeanine Cook
New Mexico State University

Las Cruces, NM
jecook@nmsu.edu

Elliott Cooper-Balis
University of Maryland

College Park, MD
ecc17@umd.edu

K. Scott Hemmert
Sandia National Labs

Albuquerque, NM
kshemme@sandia.gov

Chad Kersey
Sandia National Labs

Albuquerque, NM
cdkerse@sandia.gov

Rolf Riesen
Sandia National Labs

Albuquerque, NM
rolf@sandia.gov

Paul Rosenfeld
University of Maryland

College Park, MD
prosenfeld@gmail.com

Ron Oldfield
Sandia National Labs

Albuquerque, NM
raoldfi@sandia.gov

Marlow Weston
Sandia National Labs

Albuquerque, NM
miwesto@sandia.gov

ABSTRACT
As supercomputers grow, understanding their behavior and
performance has become increasingly challenging. New hur-
dles in scalability, programmability, power consumption, re-
liability, cost, and cooling are emerging, along with new
technologies such as 3D integration, GP-GPUs, silicon-pho-
tonics, and other “game changers”. Currently, they HPC
community lacks a unified toolset to evaluate these tech-
nologies and design for these challenges.

To address this problem, a number of institutions have
joined together to create the Structural Simulation Toolkit
(SST), an open, modular, parallel, multi-criteria, multi-scale
simulation framework. The SST includes a number of pro-
cessor, memory, and network models. The SST has been
used in a variety of network, memory, and application stud-
ies and aims to become the standard simulation framework
for designing and procuring HPC systems.

Categories and Subject Descriptors
B.6.3 [Simulation]: Logic Design

Keywords
Simulation, Architecture

1. INTRODUCTION
The HPC community has recognized that the develop-

ment, procurement, and operation of large, capability-class
supercomputers is necessary for the advancement of a range
of scientific and technical challenges ranging from basic sci-
ence to climate prediction to weapons design. As the HPC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC’10 New Orleans, LA USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

community reaches into the trans-petascale regime towards
exascale, the task of building these computers is becoming
increasingly difficult. In addition to the traditional chal-
lenges of raw performance and scaling, fundamental chal-
lenges in performance, power consumption[21], cost, reliabil-
ity[16], programmability[32], and cooling arise. Overcoming
these challenges will require new approaches to how we fab-
ricate, architect, program, and operate future computers.
Major changes will have to be made to the memory, net-
work, processor, and IO subsystems, along with concurrent
changes in the programming model and applications.

It is seldom practical to construct hardware prototype sys-
tems of sufficient size and number to explore this vast de-
sign space. Therefore, we will have to rely on simulation to
guide many design and procurement decisions. Currently,
the HPC architecture community lacks the tools needed for
such evaluations. While a variety of simulators exist for in-
dividual system components, there is no unified framework
to allow them to act in concert.

To address this problem, a number of institutions1 have
developed a simulation framework for simulating large-scale
HPC systems. This simulator allows parallel simulation of
large (tens to hundreds of thousands of nodes or more)
machines at multiple levels of detail (from cycle-accurate
execution-driven instruction-based to abstract message-driven
simulation). It couples multiple models for processors, mem-
ory, IO, and network subsystems. This simulator, the Struc-
tural Simulation Toolkit (SST) aims to become the standard
simulator framework for designing and procuring HPC sys-
tems by helping Industry, Academia, and the National Labs
in designing and evaluating future architectures.

1.1 SST Requirements
Effective supercomputer design and evaluation requires a

simulation environment for quickly simulating large HPC
systems in a variety of ways. Some key requirements:

• Scalable Parallel Simulation: The simulation frame-

1Currently including Sandia National Labs, Oak Ridge Na-
tional Laboratory, Micron Technologies, The University of
Maryland, New Mexico State University, Georgia Tech, and
Auburn

work must allow very large parallel simulations of even
larger parallel machines. This will allow us to use the
supercomputers of today to design and optimize the
supercomputers and applications of tomorrow. Effi-
cient parallel simulation will require built-in support
for automatic partitioning, checkpointing, and event
serialization.

• Multiscale: Different simulation models must allow
either abstract or detailed evaluation of system com-
ponents. This will allow different system characteris-
tics to be evaluated at the necessary level of detail and
accuracy, while still allowing other parts of the simu-
lation to be performed in a faster but more abstract
manner.

• Holistic: Raw performance is only one of several chal-
lenges for a codesigned system. The simulator should
provide a unified interface to a variety of technology
models, allowing components to easily estimate power,
energy, area, cost, and reliability.

• Open: To be effective, the simulator must be acces-
sible to as large an audience as possible, both from a
legal and technical standpoint.

To meet these requirements, the SST is comprised of a
simple simulation core that contains a parallel discrete event
simulator and support services for simulation. components,
representing hardware systems such as processors, network
switches, or memory devices, interface with the simulation
core to communicate and operate with a common notion
of timeframe. The simulation core also provides support
services such as power and area estimation, checkpointing,
configuration/initialization of the simulation, and statistics
gathering. The SST’s modular interface eases the integra-
tion of existing simulators into a common framework and is
licensed under a BSD-like license.

1.2 Parallel Simulation
The SST uses a parallel component-based discrete event

simulation (DES) model layered on top of MPI. To achieve
better performance, the SST uses a conservative (i.e. no roll-
back) distance-based [17] optimization. At the start of the
simulation, the system topology is represented by a graph
with components as nodes and connections between them
as edges, with each edge labeled with the minimum latency
between the connected components. The Zoltan [15] library
is then used to partition components across the MPI ranks
with the goal of balancing the load and partitioning across
the highest latency links. Tests [29] indicate that the algo-
rithm is scalable and shows less than 25% overhead at 128
ranks (11,904 simulated components) compared to a single
rank for detailed simulations.

1.3 Multi-Scale
The SST includes a variety of processor, network, and

memory models at different scales and levels of accuracy.
This diversity allows the simulation user to make tradeoffs
between accuracy, complexity, and time to solution, enabling
an efficient design space exploration. The SST includes high
level stochastic processor models (see Section 4.8) which
take statistical representations of applications and run at
faster than real-time speed and cycle-based detailed proces-
sor models based on SimpleScalar[12] (See section 4.1) which

are driven by instruction execution. Network models range
from detailed flit-level router models based on the RedStorm
SeaStar router (See Section 4.6) to abstract models message-
based models (See Section 4.4). Memory models include the
highly detailed DRAMSim2 (See Section 4.2) and simple
fixed latency models.

1.4 Holistic
Modern supercomputer design is complex multi-objective

optimization in which execution speed must be balanced
against power, energy, reliability, cost, and other factors.
For example, current estimates of power consumption for
an exascale machine using today’s architectures range from
hundreds of megawatts [20] to over a gigawatt[14]. In either
case, with the cost of a megawatt-year of electricity being
roughly $1 million[4], simply powering such a machine could
cost hundreds of millions to billions of dollars a year. Clearly,
this is infeasible.

To assist the designer with power and energy estimation,
the SST provides a common interface to a variety of power
estimation libraries including McPAT [23], Orion [7], and
Sim-Panalyzer[3]. The interface also includes hooks to allow
thermal modeling tools such as HotSpot[39] to be included.
This basic interface can be extended to provide area, cost,
and reliability estimates as well.

1.5 Open
The SST source code and most of its of components are

licensed under a BSD-like license allowing free commercial
and noncommercial use. However, this license is non-viral
and the internal interfaces are design so that component
writers do not have to expose any of their component inter-
nals. This allows commercial vendors to provide components
without revealing the internal details of their implementa-
tion.

2. RELATED WORK
The SST simulation framework builds on a long tradition

of architectural and network simulators such as M5[9], NS-
3[18], and A-SIM[27]. In addition, it builds upon community
experiences in modeling power dissipation[10][37]. The SST
often seeks to directly include existing simulators to build a
“best of breed” framework. The novel approach of the SST is
to include these individual component models in a parallel,
scalable, and open-source framework.

3. SST INTERNALS
The SST (Figure 1) consists of a simulator core, which

provides simulation services, and pluggable components (see
Section 4) which constitute the individual simulation mod-
els.

The simulator core provides simulation configuration and
startup (Section 3.1), the parallel model of computation
(Section 3.2.1), checkpointing (Section 3.3), and a common
interface to the technology models.

3.1 Configuration and Job flow
The SST in configured with a XML file which lists the

components instantiated in the simulation, any component
parameters which must be passed in, the links between the
components, and the latency on the component links. This
configuration is processed into a graph, with the component

Parallel DES

MPI
Checkpointing

Statistics

Power Area
Cost

Configuration

Services

Vendor
Component

Open
Component

Vendor
Component

Open
Component

Simulator Core

Figure 1: SST Structure

instances as nodes and the links between them as edges,
which is then fed to the Zoltan libratry to find a partition
which balances the number of components per host rank and
which will maximimze the simulated lateny between compo-
nents. Partitioning along high latency links means that rank
will have to exchange messages less frequently in our con-
servative optimization.

3.2 Model of Computation
The simulation is carried out in a component-based dis-

crete event model of computation. Each component can
assign a clock to itself, to be triggered at regualar intervals.
Components can also send events to other components along
links, which have a minimum latency. When an event ar-
rives at a component, it triggers an event handler function,
in which the component can process and respond to the
event. Alternately, the component can poll the link to re-
cieve and process any outstanding messages.

3.2.1 Parallel Implementation
Parallelism is transparent to the component writer. Com-

ponents interact through sending events to each other through
link objects. All events inherit from a common base class,
which also includes a time (see Section 3.2.2) tag to indicate
when it should be delivered. All events must be serializ-
able (using the Boost [1]Serialization Library), which can
transform the event structure into a compact binary repre-
sentation.

Whenever an event is sent, the SST core determines if the
destination of the event is local (i.e. on the same MPI rank)
or remote. Remote events are queued up for future delivery
the next time the given ranks are due to synchronize. This
occurs only as often as needed, based upon the latency pati-
tioning given by the Zoltan library. I.e. if the components
on two ranks are connected by a link with a minimum la-
tency of 1000 ns, those ranks only need synchronize every
1000ns of simualted time.

The Boost MPI library is then used to perform the actual
communication. When two ranks synchronize, they each
serialize and send the pending events to each other. When
the events are recieved, they are integrated with the local
event queues, where they wait for delivery to their target
components.

3.2.2 Time
Time in the simulator is represented using a single 64-bit

unsigned integer to count the number of atomic timesteps
that have passed since the beginning of simulation. The ac-

tual atomic timebase (time increment represented by each
atomic timestep) is user programmable and has a default of 1
fs (10−12 seconds), which provides for over 200 days of simu-
lated time. All times used by components and links are spec-
ified using strings (for example, “1.5 ns” or “1.73 GHz”), and
are resolved at build time into a TimeConverter object. The
TimeConverter object essentially represents a component’s
view of time and provides functions for converting from the
component’s timebase to the atomic timebase. The Time-

Converter simply stores the number of atomic timesteps
(refered to as its factor) in the desired time interval. In the
case of a specified clock frequency, the factor represents the
number of atomic timesteps in the clock period. For exam-
ple, a component with a 1 GHz clock would get a TimeCon-

verter object with a factor of 1000 (assuming the default
atomic timebase of 1 fs), which would also be equal to the
factor for 1 ns.

The component has two options when creating a Time-

Converter. The first is to register a clock handler, in which
case the handler is called once per clock period. The second
is to simply register a timebase with the simulator, which
can be used with the event driven interface. In either case
the returned TimeConverter object is registered with the
component’s links, where it is used to convert latencies from
the component’s view of time to the atomic timebase. The
use of TimeConverters insulates the components from both
the need to know the value of the atomic timestep, as well
as from knowing their own operating frequency. This allows
a component be written with a generic timebase, which can
be set at runtime.

3.3 Checkpointing
Because simulations may run for an extended period of

time over a number of nodes, the simulator needs the ability
to checkpoint and recover its state. To accomplish this, the
simulator core uses the Boost Serialization Library to con-
vert the core’s state and the state of each component into a
binary format. At a user defined interval, this binary state is
dumped to a file which can be used to restart the simulation
as needed.

4. COMPONENTS

4.1 genericProc
genericProc is a highly configurable multi-core proces-

sor simulator descended from the SimpleScalar[12] toolset.
Specifically, it couples multiple copies of the sim-out-order

pipeline model with a front-end emulation engine executing
the PowerPC[26] ISA.

SimpleScalar is widely used in the architecture commu-
nity and we have extended it with a cache coherency model,
a prefetcher (using n-block lookahead), and by refactoring
the memory model to allow connection with more accurate
memory models, such as DRAMSim2. We have also added
in event counting to help provide data for power/energy
modeling. genericProc can be easily extended to access
or control special hardware such as advanced memories or
NICs. From the programmer’s perspective this access can be
done through overloading unused system calls or by a mem-
ory mapped interface. This makes the component useful for
prototyping advanced processor features.

4.2 DRAMSim2

DRAMSim2[30] is a cycle accurate DDR2/3 memory sys-
tem simulator developed at the University of Maryland. The
simulator models a memory controller that receives mem-
ory transactions (read, write), converts them into DRAM
device commands (RAS, CAS, PRE), and issues them to
simulated ranks of DRAM devices. DRAMSim2 keeps track
of the state of every bank and bus in the memory system
and issues requests so that they do not violate DRAM tim-
ing constraints. The simulated memory controller can safely
execute memory requests out of order while respecting po-
tential dependences in the transaction stream. DRAM de-
vice timing and power consumption parameters along with
system level parameters such as memory controller queue
depths, queuing structures, address mapping scheme, and
row buffer policy can be easily configured using a simple ini
file. Device timing parameters can be obtained from man-
ufacturer data sheets or can be tailored to reflect new or
custom DDR devices. The output of the simulation includes
bandwidth, latency, and power statistics both globally and
per rank for each simulation epoch. Power computation is
performed using an event counting methodology developed
by Micron Technologies[19]. Additionally, a visualization
tool that enables graphing and comparing DRAMSim2 sim-
ulation results is currently being developed.

One of the most important goals of DRAMSim2 is that it
strives to be accurate. In addition to extensive testing by
hand and manual analysis of simulation output, DRAMSim2
contains an HDL validation mode for automated testing.
Any simulation can be configured to output a verification
file which is turned into Verilog code that can be run using
Micron’s DDR2/3 behavioral Verilog models. These models
do extensive checking for timing violations so one can be
reasonably certain that if it passes this test, the simulation
results are accurate. Many non-trivial DRAMSim2 simula-
tions have been verified this way which is a good indication
that the memory system model does not violate and of the
many DDR timing constraints.

DRAMSim2 also has the goal of being simple to integrate
into simulation frameworks, such as the SST. While making
extensive use of the C++ STL data structures, DRAMSim2
requires no external library dependencies and has been suc-
cessfully built on Linux, OSX, and Cygwin on Windows.
The DRAMSim2 library has a straight forward interface
which requires minimal wrapper code (less than 180 lines
of code, including headers) to work with SST. The DRAM-
SimC SST component provides an interface to the DRAM-
Sim2 library. Upon instantiation, the DRAMSimC compo-
nent registers a callback function for completed requests and
begins to issue a clock signal to DRAMSim2. DRAMSimC
converts any incoming SST memory request messages into
DRAMSim2 transactions. After the memory request com-
pletes, a certain number of clock ticks later, DRAMSim2
executes the response callback which is turned back into an
SST message and sent back. This encapsulation allows any
component to drive the DRAMSim simulation, such as a
processor model or the included DRAMSimTraceC compo-
nent which executes memory traces.

4.3 DiskSim
The long-term goal of our I/O simulation work is to de-

velop a complete simulation framework to evaluate the scal-
ability of experimental I/O systems and protocols. The first
step toward that goal is demonstrate accurate simulation

of existing disk-based storage technologies. Our SST com-
ponents for disk simulation extend the functionality of the
DiskSim software[11], a complex and well-proven simulation
model capable of simulating a large variety of disks and stor-
age topologies from all the major manufactures. If a partic-
ular disk is not explicitly supported by DiskSim through an
existing parameter file, an additional tool called DIXtrac[33]
is able to extract these parameters from a disk compliant
with the SCSI protocol.

Our SST components for I/O are effectively lightweight
wrappers around the DiskSim software, using it as a black
box to provide accurate latency and bandwidth timings for
block-based requests; however, integrating DiskSim with SST
required a number of engineering fixes. First, we modified
DiskSim to be 64-bit compliant to support current hard-
ware architectures. After significant testing and validation,
we submitted these changes back to the original developers
for general distribution. Second, we developed “bridge” soft-
ware to convert SST requests to DiskSim requests. Finally,
we are making modifications to DiskSim to enable compat-
ibility between the simulator clock used by SST.

At all levels of our DiskSim integration, we validated com-
ponents by comparing simulated results to real measured
values from the “skippy” and “seeker” benchmark codes [36].
The benchmark codes measure disk bandwidth, latency, ro-
tational latency, head switch time, and cylinder switch time.
All tests matched values to within reasonable error limits of
the hardware.

4.4 Generic Router Models
The generic router model component can be used it situa-

tion where the simulation of a large network is required, but
emphasis is on simulation of the endpoints and the detailed
inner workings of the network routers are not as relevant.
The router is a model of the type found in machines such
as the Intel Paragon, ASCI Red, and to some extent Cray’s
XT line of machines.

Messages are wormhole routed2 and use source-based rout-
ing.

When a message passes through a router, a configuraable
hop delay is added to simulate processing of the route in-
formation. The router components act like full bandwidth
preserving crossbar switches. If a path from an input port to
an output port is available, the message is forwarded with-
out further delays. If the output port is busy, the router
component computes at what time the blocked message will
be able to proceed and delays forwarding the event for the
blocked message by that amount of time.

Using output port delays and input port event reschedul-
ing, the router model can model congestion in the network,
even though there is no flow control protocol between routers
in place, and the links have, in essence, infinite capacity.
Link bandwidth is a parameter passed to the router model
which it uses to compute output port capacity and control
the flow of outgoing data accordingly.

The router model does not support virtual channels. How-
ever, message deadlock cannot occur because messages are
sent across the links in the form of single events, which do
not prevent other messages from using the same links.

2Work is under way to allow flit-based routing. Dividing the
available bandwidth among several simultaneous data flows
is a better model, for NoC for example, than blocking entire
messages.

The router model maintains a small number of counters to
enable statistics on the number of messages coming in and
going out of each port, how often congestion occurred and
how much delay that caused. To provide power/energy con-
sumption information, the McPAT or ORION power models
can be enabled in a router component.

This generic router model component allows for a variety
of topologies. Currently, there is support for two and three-
dimensional meshes with or without wraparounds in the x,
y, and z dimension, binary tree, binary fat tree, hypercube,
a flattened two-dimensional butterfly, and a fully connected
graph. An XML configuration file generation tool, genTopo,
is included to make configuration of large networks easier.

4.5 The Communication Pattern SST Compo-
nent

For many simulation studies, it is important to have real-
istic network traffic, but computation at the endpoints is of
limited relevance. The communication pattern component
of SST allows the generation of network traffic without in-
curring the processing and memory overhead of running a
full endpoint simulator.

The only communication pattern implemented at the mo-
ment is ghost which simulates ghost cell exchanges on a five-
point stencil operator where each rank communicates only
with its East, West, South, and North neighbor. Imple-
mentations of communication patterns for FFT, the NAS
parallel benchmark integer sort (IS), and master/slave are
under way.

Each pattern generator is implemented as a state machine.
They simulate compute time by suspending operations until
a future event indicates the passing time and the need to
transition to another state in the state machine. The state
machines contain states for waiting for messages, if the al-
gorithm has a dependency on incoming data. The state
machines have additional states to enable various check-
point/restart methods, the handling of faults, and the re-
covery after a fault.

4.6 Red Storm Router Model
The Red Storm router model is a near cycle accurate

model of the SeaStar router using in the Cray XT3 through
XT6 line of supercomputers. The component primarily mod-
els the internal crossbar and input/output queues of the
SeaStar. Added flexibility is enabled by parameterizing queue
depths, FLIT size and number of FLITs in a packet. The
router model has been compared to actual runs on Red
Storm and was found to match within 5% for long messages
and 12% for short messages.[38]

4.7 QSim
QSim is a front-end for execute-at-fetch microarchitec-

tural simulations that extends and instruments the QEMU[8]
processor emulator. QSim adds the ability to arbitrarily
control the advancement of execution of the emulated CPU
cores and to register callbacks to examine instructions and
memory accesses. For this reason, it can be regarded as a
re-implementation of Shade [13] for the manycore era. How-
ever, unlike Shade, which provides only user mode emula-
tion of the Sparc and MIPS architectures, QSim provides
a paravirtualized full-system simulation of 32 and 64 bit
x86 CPUs. Because the advancement of execution within
QSim’s emulated CPUs is controlled by an external timing

model, achievement of accurate instruction timing is possi-
ble, although some features, like wrong-path execution for
misspeculations, remain difficult to implement.

QSim is a library external to the simulation environment,
only requiring calls to a timer interrupt function to con-
vey the passage of time to the operating system running
within it. While this disables certain CPU features like the
Timestamp Counter (TSC) and High-Precision Event Timer
(HPET), it simplifies the design of Qsim and increases the
freedom of the QSim user.

SST and QSim are combined by a set of simulator-independent
components called Slide. Though Slide is still work in progress,
the QSim library has been successfully demonstrated with
both a simple multi-cycle timing model based on the Intel
386 instruction timings and a cycle-level model of a unipro-
cessor nonblocking cache hierarchy using SST as the simu-
lation back end.

4.8 SST Stochastic Processor Models
SST currently implements two stochastic processor mod-

els that can be used in system simulation. These include
an AMD Opteron and a Sun Niagara 2 processor model.
The Opteron is presently a single-core model; we are in the
process of developing a multi-core Opteron model. We have
both a single- and multi-core Niagara 2 model. All of these
models are statistical and based on a Monte Carlo tech-
nique [6, 34, 35].

The Monte Carlo processor modeling technique is based
on the equation, CPI = CPIi + CPIs, where CPIi is the
ideal or intrinsic CPI based on the instruction issue width
and CPIs is the CPI due to stalls (CPI is cycles per in-
struction). CPIi is obtained from processor manuals; the
stall causes are determined from both processor manuals
and from micro-benchmarks designed to stress a particular
processor component. For many processors, general reasons
for stalls include cache misses, branch mis-predictions, and
issue stalls due to data dependencies.

Processor models comprise most of the major micro-architecture
components, including caches, branch predictors, issue queues,
and execution units. Parameters to a processor model in-
clude characteristics of the micro-architecture and applica-
tion characteristics. Micro-architecture characteristics pri-
marily consist of component latencies, that are obtained
either from processor manuals or from micro-benchmarks.
Application characteristics include dynamic instruction mix
and statistics on stall causes. These are collected using hard-
ware performance counters and dynamic binary instrumen-
tation tools.

The current versions of these models within SST take the
dynamic execution trace, push each instruction through the
model, and essentially return the cycle at which each in-
struction is completed. This information is passed out of
the model to any connecting component models. Models
can be used as high-level processor components of a larger
system simulation or they can be used as stand-alone models
for performance prediction and design-space analysis.

5. EXAMPLE MEMORY STUDY
The SST has been used for a number of studies, including

network and memory studies, power/thermal modeling stud-
ies, application analysis, and network protocol optimization.
A few examples are presented below.

For a variety of applications, the main memory subsystem

is the dominant factor in on-node performance. Understand-
ing how different applications stress the memory system is
an important part of optimizing applications and of design-
ing future memory systems. Using the SST, Sandia has been
studying a variety of applications to understand their mem-
ory characteristics.

5%

16%

51%

28%

MiniMD Memory Power Breakdown

NoC
DRAM
L2
MC

1%
15%

59%

26%

GUPS Memory Power Breakdown

NoC
DRAM
L2
MC

0

15

30

45

60

GUPS PageRank MiniMD HPCCG

35.99

9.59

30.44

50.03

LSQ Occupancy

E
n
tr
ie
s

0

125

250

375

500

GUPS PageRank MiniMD HPCCG

414.01

60.7

200.32

2206.8

Avg. Memory Latency

n
a
n
o
s
e
c
o
n
d
s

Figure 2: Memory Access Characteristics

Using the genericProc and DRAMSim2 components, an
8-core processor connected to a DDR3 memory system was
simulated. Several applications were run to examine dif-
ferent memory usage patterns: GUPS (random access)[5];
PageRank from the MTGL[31](graph traversal); Mantevo’s[2]
MiniMD (molecular dynamics); and Matenvo’s HPCCG (sparse
matrix-vector multiplication). The effect of the average load-
store queue length and memory latency are shown in Fig-
ure 2. This simple experiment quickly isolates which ap-
plications are most memory intensive (GUPS and HPCCG)
and highlights a major performance bottleneck in the mem-
ory system when running GUPS. The extraordinarily high
latency of memory operations shows an overloaded memory
controller and bandwidth limitation, indicating a need for
redesign.

Using McPAT and DRAMSim2’s internal memory mod-
els, it is also possible to determine what the major power
consumers are for each application (Figure 3).

6. SUMMARY
The SST is an open, modular, parallel, multi-objective,

multi-scale simulation framework for HPC architectural ex-
ploration. It contains a number of components including
processors, memory models, network components and stor-
age models, ranging from very detailed to very abstract.
Interfaces to a number of power and thermal models allows
multi-objective design space exploration. The SST has been

5%

16%

51%

28%

MiniMD Memory Power Breakdown

NoC
DRAM
L2
MC

1%
15%

59%

26%

GUPS Memory Power Breakdown

NoC
DRAM
L2
MC

0

15

30

45

60

GUPS PageRank MiniMD HPCCG

35.99

9.59

30.44

50.03

LSQ Occupancy

E
n
tr
ie
s

0

125

250

375

500

GUPS PageRank MiniMD HPCCG

414.01

60.7

200.32

2206.8

Avg. Memory Latency

n
a
n
o
s
e
c
o
n
d
s

Figure 3: Memory System Power Usage

used in a number of architectural studies.

6.1 Future Work
The SST project is continuing to grow in a variety of ways.

A few of our current projects include:

• Development of area, cost, and reliability technology
models.

• Improvement of the partitioning algorithm to include
estimates of component computational and memory
requirements.

• More complex storage topologies and RAID [28] config-
urations, simulation of file system software overheads,
and simulation of evolving non-volatile storage archi-
tectures such as SSDs and Phase-change memory.

• Integration of stochastic processor models with execution-
based front-end(s) and detailed memory modeled. Ad-
dition of Monte Carlo processor for the IBM Cell BE,
the HP Itanium 2, and the Sun Niagara 1.

• Integration of the MacSim[22] GPU model, Zesto [24,
25] processor model, and M5 node model.

Acknowledgment
Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

7. ADDITIONAL AUTHORS
Additional authors: Brian Barrett (Sandia National Labs,

email: bwbarre@sandia.gov) and Bruce Jacob (University
of Maryland, email: blj@umd.edu)

8. REFERENCES
[1] BOOST C++ Libraries. http://www.boost.org.

[2] Mantevo Project Home Page.
https://software.sandia.gov/mantevo/.

[3] The SimpleScalar-Arm Power Modeling Project.
http://www.eecs.umich.edu/ panalyzer/, url =
http://www.eecs.umich.edu/ panalyzer/.

[4] Annual energy review 2007. Technical Report
DOE/EIA-0384(2007), Department of Energy Energy
Information Administration, 2007.

[5] Hpc challenge awards competition.
http://www.hpcchallenge.org/, April 2010.

[6] W. Alkohlani, J. Cook, and R. Srinivasan. Extending
the Monte Carlo Processor Modeling Technique:
Statistical Performance Models of the Niagara 2
Processor. Proceedings of the IACC International
Conference on Parallel Processing (ICPP), 2010.

[7] L.-S. P. Andrew Kahng, Bin Li and K. Samadi. Orion
2.0: A fast and accurate noc power and area model for
early-stage design space exploration. In Design
Automation and Test in Europe (DATE), April 2009.

[8] F. Bellard. Qemu, a fast and portable dynamic
translator. In ATEC ’05: Proceedings of the annual
conference on USENIX Annual Technical Conference,
pages 41–41, Berkeley, CA, USA, 2005. USENIX
Association.

[9] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The m5 simulator:
Modeling networked systems. IEEE Micro, 26:52–60,
2006.

[10] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In In Proceedings of the 27th Annual
International Symposium on Computer Architecture,
pages 83–94, 2000.

[11] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R.
Ganger. The disksim simulation environment version
4.0 reference manual. Tech Report CMU-PDL-08-101,
Carnegie Mellon University, May 2008.

[12] D. Burger and T. Austin. The SimpleScalar Tool Set,
Version 2.0. SimpleScalar LLC.

[13] B. Cmelik and D. Keppel. Shade: a fast
instruction-set simulator for execution profiling. In
SIGMETRICS ’94: Proceedings of the 1994 ACM
SIGMETRICS conference on Measurement and
modeling of computer systems, pages 128–137, New
York, NY, USA, 1994. ACM.

[14] O. o. S. Department of Energy. Advanced
architectures and critical technologies for exascale
computing. Funding Opportunity Number:
DE-FOA-0000255, January 2010.

[15] K. Devine, E. Boman, R. Heaphy, B. Hendrickson,
and C. Vaughn. Zoltan data management services for
parallel dynamic applications. omputing in Science
and Engineering, 4(2):90–97, 2002.

[16] E. M. E. (ed). Systems Resiliance at Extreme Scale.

Technical report, DARPA, 2009.

[17] R. Fujimoto. Parallel discrete event simulation. In
Proceedings of the 21st conference on Winter
simulation, pages 19–28, New York, 1989. ACM.

[18] T. Henderson, , T. R. Henderson, and S. Roy. ns-3
project goals.

[19] M. T. Inc. Calculating memory system power for ddr2.
Technical Report TN-47-04, 2005.

[20] D. Jensen and A. Rodrigues. Embedded systems and
exascale computing. Computing in Science And
Engineering, 2010. Accepted for Publication.

[21] P. M. e. Kogge. ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems.
Technical report, University of Notre Dame CSE
Department Technical Report, TR-2008-13,
September 28, 2008.

[22] N. B. Lakshminarayana and H. Kim. Effect of
instruction fetch and memory scheduling on gpu
performance. In Workshop on Language, Compiler,
and Architecture Support for GPGPU, in conjunction
with HPCA/PPoPP 2010, 2010.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. B. an d Dean
M. Tullsen, and N. P. Jouppi. McPAT: An Integrated
Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM
International Sy mposium on Microarchitecture, pages
469–480, 2009.

[24] G. Loh, S. Subramaniam, and Y. Xie.

[25] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A
cycle-level simulator for highly detailed
microarchitecture exploration. In In Proc. of the Int.
Symp. on Performance Analysis of Systems and
Software, 2009.

[26] Motorola. Motorola mpc7400 powerpc
microprocessors. Technical report, Motorola, 2005.

[27] D. Nellans, V. K. Kadaru, and E. Brunv. Asim- an
asynchronous architectural level simulator abstract.

[28] D. A. Patterson, G. A. Gibson, and R. H. Katz.

[29] A. Rodrigues. Gossamer simulator design document.
Tech Report T2005-10, University of Notre Dame,
Computer Science and Engineering, South Bend, IN,
2005.

[30] P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
Dramsim2. http://www.ece.umd.edu/dramsim/, July
2010.

[31] Sandia National Laboratories. MultiThreaded Graph
Library. https://software.sandia.gov/trac/mtgl.

[32] V. e. Sarkar. Exascale Software Study. Technical
report, DARPA, September 14, 2009.

[33] J. Schindler and G. Ganger. Automated disk drive
characterization. Technical Report CMU-CS-99-176,
School of Computer Science, Carnegie Mellon
University, 1999.

[34] R. Srinivasan, J. Cook, and O. Lubeck. Performance
Modeling Using Monte Carlo Simulation. IEEE
Computer Architecture Letters, 5(1), 2006.

[35] R. Srinivasan, J. Cook, and O. Lubeck. Ultra-Fast
CPU Performance Prediction: Extending the Monte
Carlo Approach. Proceedings of the IEEE
International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD),
2006.

[36] N. Talagala, R. H. Dusseau, and D. Patterson.
Microbenchmark-based extraction of local and global
disk characteristics. Technical report CSD-99-1063,
University of California at Berkeley, June 2000.

[37] D. T. S. Thoziyoor, D. Tarjan, and S. Thoziyoor.
Cacti 4.0. Technical report, 2006.

[38] K. Underwood, M. Levenhagen, and A. Rodrigues.
Simulating red storm: Challenges and successes in
building a system simulation. In IEEE International
Parallel and Distributed Processing Symposium, Long
Beach, CA, 2007. IEEE.

[39] S. G. R. J. R. W. Huang, K. Skadron and M. R. Stan.
Differentiating the roles of ir measurement and
simulation for power and temperature-aware design.
In Proceedings of the 2009 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2009.

