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Summary. The structure and evolution of a hypothetical cloud of comets
surrounding the Solar System is investigated, with particular reference to
showing how the derived results depend on the assumed cometary energy and
velocity distribution functions. The mean energy transfer rate by stars and
giant molecular clouds is calculated and it is shown that for reasonable values
of the parameters the cumulative effect of the clouds is dominant. Thus it is
unlikely that the loosely-bound Oort comet cloud could survive for the age
of the Solar System.

The equation describing the evolution of the comet cloud between close
encounters with nebulae is solved in a good approximation for an initial con-
dition where the energy spectrum is a power law. Formulae are also given
which relate the energy spectrum to the velocity distribution function and
density distribution, and it is shown how the current energy spectrum can be
inferred from observations. Analytic results for the standard Oort model are
presented and we show how this model is just one of a family of hypothetical
comet clouds with power-law energy spectra. The spectral index of this
standard model does not agree well with that obtained from observations,
these indicating a model with flatter spectrum and higher degree of central
condensation. More centrally condensed models may be easier to understand
as a by-product of Solar System formation, and are more stable against
disruption by encounters with nebulae.

1 Introduction

The question of whether comets owe their ultimate origin to processes associated intimately
with stellar and planet formation, or whether they are formed in the denser regions of inter-
stellar space ranks highly amongst the oldest of unsolved astronomical problems. Quite apart
from the possibly significant implications for Galactic chemistry and evolution (Tinsley &
Cameron 1974) the problem of cometary origin also has important links with Solar System
studies and questions of the long time-scale evolution of the Earth (e.g. Clube 1978, Section
12; Napier & Clube 1979; McCrea 1981; Clube & Napier 1982a). Even a cursory study of
cometary astronomy (e.g. Bailey 1975) shows that the debate ‘Solar System versus inter-
stellar’ has flourished for at least four hundred years, with a mean interval of order fifty

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny 9| uo Jasn sonsnr Jo Juswuedsq 'S'N Aq 6£85001/€09/2/702/3191e/Seluw/wod dno olwspese//:sdiy Wwol) papeojumo


http://adsabs.harvard.edu/abs/1983MNRAS.204..603B

FT9B3VNRAS. 202 - “603B!

604 M. E. Bailey

years separating periods of major advance or when one idea or the other was dominant [e.g.
Kant, Laplace, Schiaparelli, Fabry (see Newton 1878; Richter 1963), Bobrovnikoff 1929;
Opik 1932; Van Woerkom 1948; Lyttleton 1948; Oort 1950]. During the past thirty years
or so Oort’s (1950) hypothesis, that the Solar System is surrounded by a huge primordial
swarm of some 10! comets extending half-way to the nearest star, seems generally to have
been adopted, while the interstellar hypothesis has attracted only relatively few supporters.

In recent papers, however, Clube & Napier (1982b) and Napier & Staniucha (1982) have
argued strongly for the demise of this so-called Oort Cloud. Briefly, in order to work success-
fully the standard Oort theory requires external stellar perturbations to be large enough that
at large distances from the Sun the comet velocities are always distributed more or less
isotropically, thus maintaining a steady observable influx of comets with small perihelion
distances. If the perturbations are too weak, too few comets will be seen; if they are too
large the majority of those initially present will by now have escaped from the Solar System.
These authors argue that inclusion of perturbations by the recently discovered giant
molecular clouds would ensure that an occasional close encounter will efficiently remove all
comets with orbits lying beyond ~ 2 x 10* AU — just the region where the Oort theory could
be applied. In this way it was concluded that adoption of an interstellar origin for comets
was probable and it was proposed specifically that those we currently see are simply the
remnants of the most recent capture event (cf. Bobrovnikoff 1929).

In this paper we re-examine the evolution of a primordial cloud of Solar System comets,
assuming (e.g. Kuiper 1951; Opik 1973; Cameron 1973) that such a comet cloud can be
formed as a by-product of the formation of the Sun and planets. Section 2 gives a brief
overview of the standard Oort (1950) model and we present previously unpublished analytic
results. In Section 3 we give a new calculation of the mean energy transfer rate to comets in
the cloud as a result of passing encounters with stars and nebulae. At the end of this section
we estimate the expected number of passages of the Solar System through a giant molecular
cloud. Section 4 demonstrates how the observable properties of the comet cloud depend on
the assumed cometary energy spectrum and velocity distribution function. The partial
differential equation describing the evolution of the energy spectrum is solved analytically
for a power-law initial condition. Section 5 discusses the implications of this work for
theories of cometary origin and compares the empirical (1/a)-distribution with the theory.
Finally the main conclusions from this study are summarized in Section 6.

2 Summary of Oort’s (1950) model

The standard model considers a spherically symmetric swarm of comets with outer radius
R, moving with the Sun in a gravitational field dominated by the Sun, at centre. Random
external stellar perturbations lead to the development of an iostropic velocity distribution
at all radii » > Ry (say). Within R;g results from the standard model must be used with care,
as there is usually no guarantee of isotropy of the velocity distribution. Oort (1950) took
the inner and outer radii of validity of his theory to be 4 x 10* and 2 x 10° AU respectively;
more recent estimates of the outer radius (e.g. Bailey 1977) suggest values closer to 10° AU.

The standard model is defined by the chosen velocity distribution and the outer radius
R,. For simplicity Oort assumed that velocity space at radius 7 was filled uniformly out to a
maximum velocity

om0 = 2691 (1= )] M)

0
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corresponding to the speed of free-fall from R, to r. Thus the mean-square velocity
dispersion at radius 7 is

- Ymax Umax (9

v (r) = f T, v) dmvd / f T, v) 4mvtdo = Yo v gy ()
0 0

(since fis independent of v for the assumed velocity distribution) and

g ) P 1 1
V() =302(r) =%GM {— — — (2)
r Ry
where g; (r) is the radial component of velocity dispersion at 7.

The number density distribution #n(r) can then be obtained by solving the equation of
hydrostatic equilibrium, given (e.g. Binney 1980) by

di n@® @) = - GM, 2n ") 20()n() ok (r) | .
r ; ;

Here we have kept the assumption that points in velocity space are distributed uniformly,
but for completeness have allowed the distribution function f to be anisotropic. The velocity
dispersion anisotropy parameter §(r) is defined by 82 =1 — 0%/0?, where o, (¥) is the velocity
dispersion in each transverse direction. Notice that =0 corresponds to velocity dispersion
isotropy; f =1 to purely radial motions. Equation (3) can be integrated for § = constant to
give

1 32 15 \26
n(z)=A1(——1) (—) (4)
z z
where the constant 4 is given in terms of an arbitrary z, by
z, \ 32
A= () )
1—2

and z =r/R,. In the standard model, § = 0.
The total number of comets in the standard model between z; and z is then

4
Nc (Z,Zis) = 47TA1R(3) f 21/2(1 _2)3!2dz
Zis
V4

(3—-14z + 822)] i (6)

Zjs

sin? (z12)  zV2(1 — 2)1”2

8 24

=41rA1R(3,[

Extrapolating the model to small radii (z; < 1), the total number of comets is found to be

72 '
NC(I,O)=ZA1R8. (7

The normalizing factor A, in (4) and (6) is determined empirically by comparing the
observed distribution of semi-major axes, a, with that predicted by theory. We define the
predicted a-distribution to be F|.(a, D), so that the number of comets passing perihelion
per unit time with semi-major axes (@, a +da) and perihelia g <D is Fy. (a, D)da. Our
notation Fj.(a,D) is designed to make explicit the analogy with so-called ‘loss-cone’ con-
sumption of stars in galactic nuclei by a massive black hole (see Section 4). Following Oort’s
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(1950) calculation we obtain
314 1

Fic (a,D)da = (2GM)V2DR¥?*a* da (@ > 2R}). (8)

We note (cf. Bailey 1977) that F. (a, D), proportional to a2, has a quite different functional
form from either n (r = 2a) or N, (r = 2a, z;): the density structure of the comet cloud is not
related directly to observations of the a-distribution. On the Oort theory the a-distribution
peaks close to a;~ /2R;; because within R, the loss-cone orbits are not replenished
sufficiently rapidly by stellar perturbations.

Integrating (8) out to ap . = /2R, gives the total rate of passage of comets with ¢ < D
and semi-major axes greater than some value a, say. The observed rate, for D ~ 1.5 Au and

a =~ 25000 AU, is roughly one per year (Qort 1950); ie. Fope~ 3x1078s™! with an
uncertainty of about a factor of 2 (¢f. Fernandez 1981). Thus
37 1 2
A~ Fobs/ [~_ (2GM,)2DR}? (— — )] 9)
4 a RO
or
Ay~ 5%x107(10°AU/R )2 comets (AU). (10)

The total number of comets in the standard model is then of order N (1,0)=
10 (Ro/105 AU)¥2.

These equations completely determine the standard Oort (1950) model of the cometary
cloud. Apart from the assumed velocity distribution [f=constant, uniform and isotropic
within v,y (7)], the only crucial free parameter in the theory is R, the cloud’s outer radius.
This, and the value of R;s, depend principally on the magnitude of the energy transfer rate
by stellar perturbations.

3 Mean energy transfer rate by stars and nebulae
3.1 OUTLINE OF THE MODEL

We consider a simplified model of the encounter process in which it is assumed that the Sun
and its associated swarm of comets move with velocity V through a static distribution of
field objects having masses M and mean number density n. We define (see Fig. 1) a spherical
coordinate system centred on the Sun () with z-axis parallel to the direction of V. In this
coordinate system incoming field objects have impact parameter b, which in the model is
also the distance of closest approach to S, and azimuthal angle ¢,. They pass a typical
comet, located at (r, 8, ¢), at a distance d of closest approach given by

d*=b%+r*sin%0 — 2rb sin 0 cos (¢, — ¢). (11)

In the impulse approximation the changes of velocity of the Sun and comet, Av, and Av,
respectively, are

GM b
AV@ =2— —
bV b
and ’
2GM d
Vo= —— —.
av d
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Figure 1. Geometry of the encounter model. A field object passes the Sun (S) with velocity V and impact

parameter b. It passes the comet (), at position (7, 8, ¢), at a distance of closest approach d. The origin
for ¢, is the same as that for ¢.

The relative change of velocity of the comet with respect to the Sun is Av =Av, — Av,,
giving a net relative energy gain per unit mass of comet Ae = 4(Av, — Av,)?. This reduces to

2GM\? (rsin 0\
2A€=(bV ( d ) (12)

The impulse approximation gives a good estimate of the systematic energy increase
provided that the comet’s orbital angular velocity w is small compared to that, ws~ V/b, of
the passing field object. A rough estimate of the maximum impact parameter by, ,,, beyond
which energy transfer can be neglected, is given (cf. Spitzer 1958; Jackson 1962; Knobloch
1976) by

|4
bmax 2'(; ~ V(r3/GM®)l!2- (13)

Here for w we have used the angular frequency w, corresponding to that of a circular orbit
at radius ; the exact value of b,,,, is not too important because of the rapid fall-off in Ae
for large impact parameters (equation 12).

In addition to bp,,y (r) several other length-scales enter the problem. First we define
Bmin, which is the minimum impact parameter expected to occur during the lifetime 7 of
the Solar System. If nV is the mean value of nV averaged over time 7, the expected number
of encounters with impact parameters less than some value b is Nepc (b) = mb2nVT. Setting
this equal to a half (say) gives an estimate of bp;p; i.e.

Benin ~ Qu RV T2, (14)

Next we introduce by, (7), which is the minimum impact parameter which might be
expected to occur during a typical orbital period Py, () ~ 27/ = 27r¥2/(GM,)Y2. This is

bllnin (r) = bmin [T/Porb (r)] V2 (15)
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which gives a rough estimate of the impact parameter beyond which the energy transfer may
be regarded as approximately continuous.

We now define the distance d,;, within which a single encounter would cause immediate
ejection of the comet from the Solar System. The energy/mass needed to escape from the
radius 7 is or order GM,, /2r (assuming a circular orbit), so

2 : 2 'M.
(2GM) (rsmﬁ) 2G @' (16)
bV r

dmin

For encounters with stars, dmin,» < bmin,« < 7, s0 these close star—comet encounters all
have b ~ r sin 8. Thus we obtain

(GM@}')”2 M,

. 17
2 M (17)

dmin, x =

For encounters with giant molecular clouds, d ~ b > r. (16) then implies (averaging over 6,
setting < sin¥26 > = 0.874)

G 174 MGMC) 1/2
d... ~l kit 7'3!4. 18
min,GMC (M@) ( v ( )

In this approximation all comets beyond r are eliminated from the cloud whenever a giant
molecular cloud passes closer to the Sun than dp,j gmc. The mean interval between such
elimination of comets is

Tetim () = 2T (Bmin,GMcC /dmin,cMc ). (19)

Setting Tepm () =T defines a radius, rg say, within which comets are ‘safe’ from direct
ejection by close encounters with nebulae. We should note, however, that (18) and (19)
depend on a model where the giant molecular cloud is treated as a point mass. Very close
enounters will involve passage of the Solar System through the cloud, in which case the net
Ae per encounter will depend on the cloud’s internal structure.

Stellar encounters may cause direct removal of comets from the cometary cloud in two
ways. First those that pass very close to the Sun may perturb the Sun away from its comets.
In this case the limiting radius for survival of comets is obtained from (16) by setting
b = bmin,» and dmpin = r sin 0. This gives an outer limiting radius defined by the condition
that dimin 4 (F) = Dmin, «- The second way that stars directly remove comets is by ejecting all
those that happen to lie within a distance dp;n, . (#) of their paths. This ‘sweeping’ of the
cloud is a less dramatic evolutionary effect than a close nebular encounter or a close star—
Sun encounter, but it could nevertheless still significantly reduce the cometary numbers at
large radii where dpin, . (7) is larger. It can be shown, however, that neglecting all other
evolutionary processes the fraction of the original number density of comets at » which
survive this dissipation mechanism is exp (—dﬁm, +/bin, ») (cf. Nezhinski 1972). Thus, since
dmin,» (") < bmin,« (since otherwise the Sun would have been perturbed away from the
comets beyond r), ‘sweeping’ of the cloud can be neglected at the factor of 2 level. For
typical stellar parameters (see below) the radius where dpyin, « () = bmin, . is of order
2.5x10° AU, somewhat larger than the limit already imposed by the Galactic tidal field
(= 10%AU;cf. Wyatt & Faintich 1971).

Lastly we calculate the limiting radius gy, beyond which comets are removed by single
encounters with giant molecular clouds on an orbital time-scale. We define this by setting
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Figure 2. The length-scales defined in Section 3.1 are shown plotted versus log (). The width of each
band illustrates the range of uncertainty introduced by variations of the parameters as discussed in
Section 3.4,

Teim () = Porp, (7), which implies

13
( ngme Momce )

®

Felim = 037 (20)
For typical giant molecular cloud parameters this radius too is larger than the Galactic tidal
field limit.

These length-scales are shown in Fig. 2, plotted versus log (7) as narrow bands. The width
of each band illustrates the range of uncertainty in each length-scale caused by the
uncertainty in basic parameters discussed below in Section 3 .4.

3.2 QUASI-STEADY RATE OF INCREASE OF COMET ENERGIES BY SMALL
PERTURBATIONS

We define the mean ‘quasi-steady’ rate of increase of a comet’s energy/mass to be Eqs(r).
This is obtained by integrating (12) over all impact parameters by () < b < byax (P)
satisfying the constraint d > dp,i, and then averaging the result over the angular coordinates

©,9).
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The number of encounters per unit time with impact parameters (b,b +db),(s,, ¢, +do,)

is n¥Vb d¢, db, and each such encounter gives a mean-square velocity increase 2Ae given by
(12). Thus

2GM\? r?sin0
bV’) bV 2 db..db. 1)

We first evaluate the ¢, -integral. This is most easily effected by changing variables from
¢, tod using (11);i.e.

4G M?*n r?*sin20

d(2€qs) =n (

d(2€4) = I14(b,0)db 22
(2¢€q5) v , 10,0 (22)
where the d-integral /4 is given by
du 1 d¢,
Id=2f — -7 dd (23)
ay, d*dd

and the lower and upper limits to the range of integration, dy, and dy respectively, are

dy=max{dy;,, |b—rsind I}}

24

dy=b+rsinf (24)
Ifdy < dy, (eg.if dpmin should be greater than by, ), I = 0. Otherwise (23) reduces to

(21r/|b2~rzsin201 b —rsin 0] > dpn

2 d2. \172
(1_ mm) b=rsind
Id = b dmin 4b2
m b% +r?sin? 0) dii, — (b% — r? sin26)?
e {—~sﬁf1[( ) = g )]:Ib—rsm0|<dmm.
[6° —r*sin®6]| |2 2brsin 0 d i

\ (25)
The majority of encounters satisfy the condition |5 — rsin 8] > dmin. For the others

(16 —rsin 0] < dpyy) it is a great simplification to work with an approximation to the
rather complicated expression above. We define

x=(b—rsin 6)/dmin}

(26)

a= dmin/b
and rewrite (25), after some algebra, in the form

1
14(b,0) = fx, ) (27)

min
where

1 2(1—ax/2)* (1 -x?
fx,0)=——— — cos7! [ ( [ ( ) —1]. (28)
(1-ax/2) |x| (1 —-ax)

The mean value of f over the x-range of interest (—1 < x < 1) is

_ 1
)= f f(x, ) dx
0
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which for the special case a« =0 (i.e. b > dpi,) reduces to 7 In (2). For other values of a < 1
it is within 20 per cent of this value. We therefore approximate (25) as

{ 2n b in@|>d
—_— —rsin 8| > d;
|b2 — r?sin?0)| min
I3 (b,0) = (29)
7 In (2)
[b —rsin 0] < dpyyp -
bdmin

We next integrate (22) over all relevant impact parameters. This gives

. 4G M?n
2egs = —'_V‘_— Iy (r,0) (30)

where the b- integral [, is defined by

bmax () r2 sin2 0
1b=f 14 (b, 0)db. (31)

bmin ()
We evaluate this integral separately for the three cases

(A) bipin > 7sin 0 +d i,
(B)7sin 0 — dpin < bmin < 78in 0 +dpyin,  and
(C) bin < 7sin 0 —dpin .

In Case (A), which applies principally to encounters with nebulae, we obtain

bmax () 2mr?sin? 6
Iy, A= f

Vpin( D (B> —7*sin®0)

b2 . — r*sin?0 b4
IbA(r,6)=7rln( max T ) (32)
’ b2 ax b — 1 sin?6
In the limit b, > 7 this reduces approximately to
; 26in?0 ( ! ! ) (33)
b.A = Trisin - — .
bn%in (r) bx%nax (r)

Note that this could have been obtained more simply from (21) using the approximation
b=ds>r.

If binin — dmin < ¥, as may be the case for stellar encounters, (32) should be used for
angles 8 < 0,, where

b d. .
6~ sin™ <———‘“‘" ’““‘). (34)
r

The other two cases, (B) and (C), apply only to stellar encounters. In Case (B), covering
the §-range 8, < 0 < 0,, where

bmin + dmi
0, ~ sin—x(w) (35)
r
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we obtain

IbB(r,B):ﬂln(2)rZSin20[ 1 B 1 ]
’ dmin b;nm (dmm + r sin 6)

bhax —175in%0)  (dimin +7 sin 6)°
+1rlnl:( max resin )‘ (mm rSIH) jI. (36)

b?nax dmin (2r sin @ + dmm)

And in Case (C), covering 6, < 8 < m/2, we have

rsin 0 —dmin)? r’sin?6 — by 2r?sin?6
[bc(r,G)znln[ ( ‘ min)” - ‘““‘]+n1n(2) — ;
’ - dmin (27 sin 0 — dyin) briin (r*sin®0 — dhin)
b2 . — F*sin® 0 7sin 0 +dpmin)?
+ﬂ1n[( max —77sin70) - (75in 6 + o) ] (37)
b2 ax diin (27 sin 0 + dpin)

The required mean energy increase rate, equ (r), is now obtained by averaging (30) over all
0, with I, (r, 0) given by (32), (36) and (37). Thus

81 G M?*n

2‘gqs (r= __7'_ I4s (r) (38)

where the dimensionless function /s

1 (72
Iy ()= P f sin 6 I, (r,0) df. (39)
0

In Case (A) [i.e. byin (r) > 7 + dmin ()] we obtain
- \/T_ | ( 1 ) 2 P | 1
qs = VB —1sin E —va* —1sin™ {— (40)

I
a

where = bpay (7)/7 and a = by (7)/r. This can be approximated by

I (r)=3r2( . ~—21—) Bimin 2 few ) @1)
3 bmin bmax

which also follows from the approximation (33). Equation (40), or the approximation (41),

applies to all encounters with giant molecular clouds, and also at small radii (r $ 3 x 10* AU)

to encounters with stars.

At large radii (r 2 3x10%AU), bmin, . () becomes rapidly smaller than r (see Fig. 2).
Then, both 6, and 6, are small and Iy may be approximated by neglecting the small
contributions to the integral resulting from 6 <6, (i.e. Cases A and B). In this limit
(dmin < bmin <7 < bmax)s Ip,c = 27 In [?sin?60/dyin (%) Dmin ()], which implies

A 2
~ _ _ 4
Is=1In [dmin Y (r)] 2[1-1n (2)]. (42)

Since 7% > bnin, () dmin, » (r), the logarithmic term usually dominates the small numerical
factor, giving the rough approximation

(43)

i 87G2M?2n, rP
2€qs,*(}’)% ’ :

14 dmin, « ) Bmin, + @)
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For encounters with nebulae equation (41) can be used. This gives

—_— 87TG2MéMCnGMC 1 [ r2 7'2
b

2€ F) =~ — — b > bl .
o () a sl e (r)] e () > Blnin.cntc ()]

(43)

If bmax (F) < bmin,gmc () (as it is, typically, for r S 10%® Au; see Fig. 2), 2é5, gmc = 0'and
the energy transfer by giant molecular clouds is entirely intermittent in character.

3.3 TOTAL AND INTERMITTENT ENERGY INCREASE RATE INCLUDING CLOSE
ENCOUNTERS

The mean total energy increase rate can be obtained from the above formulae by replacing
Bmin (r) with b. For stars, equation (42) applies for r 2 103AU and to a very good
approximation we have

L 8nG>M:n, 2
R, ) —— {m[b ‘ ;_ (r)]—2[1—1n(2)]}. (5)

For giant molecular clouds, provided by ax () > bmin, gmc, We have

5 - 871G *M&yc ngme 1[ r _ r ] (46)
tot;,GMC 14 3 bxznin,GMC bhax (7) '

We define the intermittent energy increase rate, due to encounters with b < by, (7), to
be the total minus the quasi-steady contribution. Such encounters occur on average about
once every two orbital periods Py, (r), and depending on how close was the encounter, or
how recently, the instantaneous value of this contribution can vary widely about the mean.
These random fluctuations in the actual energy transfer rate have important implications
for detailed models of the comet cloud and its evolution (e.g. Hills 1981), but are outside
the scope of the present investigation.

The mean intermittent energy increase rate is simply the mean total energy increase rate
minus the quasi-steady contribution. For stars, at large radii (r 2 3 x 10 AU) we therefore
have approximately

8nGM?2n, i [binm,* (r)]

2éint, . (r) = v

(r 2 3x10%AvU) 47

bmin,*

which in order of magnitude is generally comparable with the quasi-steady contribution. At
smaller radii [r < 3 x10%AuU; where by, , (7) > 7] the quasi-steady contribution (equation
40) falls with decreasing radius very much more rapidly than (45). At small radii, therefore,
the stellar energy transfer is almost entirely due to intermittent encounters with b < b;m'n, (M),
giving 2€int, , (1) = 2€g0t, . (7).

For nebulae, (44) and (46) show that the energy transfer rate at all radii is dominated by
the intermittent contribution, giving ZeTim,GMC ~ 2Etot’GMc. We note, however, that (46) is
strictly applicable only provided the Solar System always remains outside the giant molecular
cloud. In fact (see Fig. 2) for reasonable values of the parameters this condition is usually
not met and it is therefore necessary to consider in more detail the effect of penetrating
encounters. This question is treated in the Appendix, where it is shown that the total mean
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energy transfer rate due to giant molecular cloud encounters with bpmin gmc < @ (the cloud
radius) can be written in the form

87TG2M(2}MC ngMmc 1 7'2

.8tot (48)

2€ BE =

tot,gMc () 7 N —
where g, is a dimensionless constant or order unity which depends mainly on details of the
cloud’s internal structure. Equation (48) breaks down only at small radii where bpqy (7)
becomes small compared with the dimensions of the giant molecular cloud; this may enable
a small region of the comet cloud (r <10%7*%2; see Appendix) to remain relatively
unaffected by giant molecular clouds despite their inhomogeneous structures.

Although the instantaneous value of the giant molecular cloud energy transfer rate will
fluctuate widely about its mean, we may still use (48) to get an estimate of the total energy
transferred to comets at » integrated over the lifetime T of the Solar System. Neglecting
evolution of the various parameters, this is

1
2Aegmc (1) =~ 3 &tot (471G ngpc Mgmc Tr)? (49)
which, with T =4.5 x 10%yr, implies

ngMmc M r
2A 172 35 1/2 ( ) ( GMC )( ) _1. 50
[2Aegmc (7] &oot | 108 o) (5% 10502 gt ng ms (50)

This exceeds the energy needed to escape from r at a radius, 7o, given by

108 pc3\%3 (5x105M,\*3

Fo~ 42 x10%g:l3 P °) avu (51)

tot
nGMmC Mgwmc

which is comparable in order of magnitude to the ‘safe’ radius introduced earlier
(equation 19).

In Fig. 3 we show the quasi-steady and total stellar energy transfer rates calculated
directly from (39) for the parameters M, =0.7 My, n, =0.1pc™> and two values of the
velocity: ¥ =16 and 60 km s™!. Also shown, as dashed lines, are the analytic approximations
(equations 41 and 43) to the quasi-steady contribution; the approximation (45) to the total
stellar energy transfer rate would be indistinguishable on the figure from the directly
calculated function. At large radii the quasi-steady stellar energy transfer rate can be roughly
approximated by a power law

€gs,» ~ Cr’?  m?s™®  (r23x10%av) (52)

where C ~ Cy=10"2!m*25™3 has an uncertainty of order 2, depending mainly on V. Thus at
10°Au the stellar energy transfer rate, dominated by the quasi-steady contribution, is of
order 1073 m?s7, larger than the corresponding values quoted by Opik (1973, equation 9.4)
and Weissman (1980a, equation 8) by factors of order 10 and 2 respectively. The cumulative
velocity perturbation at 10° AU due to encounters with stars integrated over the lifetime of
the Solar System is thus of order

[2€401,+ (r =10%AU) T] V2 = 170X v/2) ms™1, (53)

We note that the lower limit of this quantity (corresponding to a predominance of high-
velocity stellar encounters) is in agreement with Weissman’s (1980a) estimate. However, the
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Figure 3. The mean total stellar energy transfer rate and the quasi-steady contribution are shown for two
values of the velocity (¥ =16 and 60 km s™'). Each curve assumes M, = 0.7 Mg and n, = 0.1 pc. The
dashed lines show the analytic approximations (equations 41 and 43) to the quasi-steady contribution.
The tick on each eqs , curve indicates the radius where bjn , (r) =7.

important point to be emphasized is that this is smaller than (50) for all but an extreme
combination of giant molecular cloud parameters. This shows that, at large radii, the mean
energy increase due to giant molecular clouds is greater than that due to stars. However, this
dominant contribution is basically intermittent in character, itself dominated by occasional
close or penetrating encounters with » < few a. These occur at intervals separated by periods
of order 108 yr during which the total energy transfer rate is dominated by stars.

We thus arrive at a picture in which the total energy transfer rate at large radii is
dominated for long periods by the stellar contribution, comprising a significant quasi-steady
component together with occasional fluctuations due to intermittent close encounters. At
intervals of order 10%yr the Solar System will pass within a few tens of parsecs of a giant
molecular cloud complex, and for a short time this contribution will dominate the energy
transfer rate. The evolution of the comet cloud during these times may be quite dramatic, as
the outer layers will almost certainly be stripped off and replaced (presumably) by comets
from more tightly bound orbits within. We note, however, that this kind of evolution does
not lead to a progressive shrinking of the comet cloud as suggested by Weissman (1980a) and
Napier & Staniucha (1982). Athough the total number of comets in the cloud declines, its
size does not.

3.4 DISCUSSION OF PARAMETERS AND VALIDITY OF MODEL

For the stellar encounters we follow previous authors (e.g. Oort 1950; Rickman 1976) in
adopting (M?2n, (0)) ~ 0.05 M2pc™3, corresponding to a mid-plane space density 7, (0) ~
0.1 pc™ and a typical stellar mass of order 0.7 M. For the giant molecular clouds, observa-
tions (e.g. Solomon, Sanders & Scoville 1979 and references therein) indicate a total number
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of order 4000 in the ‘molecular ring’ of the Galaxy (4 S R < 8 kpc). Each cloud hasa typical
mass Mgpc ~ 5x10°M, and radius a ~ 20 pe. In the Solar neighbourhood (assumed here
to lie at about 10 kpc from the Galactic Centre), the giant molecular cloud space density is
about 1/5 the mean within the ring. Perpendicular to the plane the density distribution is
Gaussian,

ngmc (2) = ngmc (0) exp (—z%/2h?) (54)

with a scale-height (Gordon & Burton 1979) A=~ 50 pc. With these parameters we obtain
negme (0) =~ 4x1078pc™ and M& e ngme (0) = 10*M2 pe3.

In our simplified encounter model we have neglected the random velocities of the field
objects and taken V simply to be the velocity of the Solar System through a static distribu-
tion of field particles. In fact, although V is known quite well at the present time (the space
motion, ¥, is =~ 16 kms™!, while that, V,(0), perpendicular to the plane is =~ 7 kms™;
Woolley 1971), it is not clear what value should be chosen as representative of the solar
motion over the past 4.5 x 10%yr. On the one hand, since the Sun was presumably formed
close to the Galactic plane with a low peculiar motion, the present observation of a low
velocity might suggest that its velocity has always been small. However, the relaxation time-
scale (dominated by massive complexes in the plane such as giant molecular clouds) is only
of order 5x 108 yr (Wielen 1977), so the Sun’s present small velocity ought not to persist. It
might therefore be argued that it would be more reasonable to choose a value of V' more
typical of stars of the same age as the Sun. Following Wielen (1977) such parameters at the
present time would be ¥ ~ 60 km s and ¥ (0) ~ 35km s7%.

Clearly, without a detailed evolutionary calculation of the Solar motion it is not possible
to choose reliably between the possibilities. We have decided therefore to accept that V is
uncertain, and have considered the above two cases: Case (1) ¥=16kms™ and V,(0) =
7 km s™';and Case (2) ¥ =60 km s™ and V', (0) =35 km s, as extremes.

This uncertainty in the mean Solar motion introduces an associated uncertainty in the
mean density 7 of the field objects encountered by the Sun. Assuming that the Solar motion
perpendicular to the Galactic plane is simple harmonic with amplitude A =V (0)//Cgy,
where the Galactic constant Cgy ~ 1072?s72 (Wielen 1973), the fraction of the total time
spent between heights (z,z +dz) is dz/(mnA\/1 — z2/A?). The mean density of field objects
encountered by the Solar System is then approximately

=10 [ S e (aa? ds 55)

T Jo V1—x?

where x =z/A, a = A/\2h=V (0)/\/20, and o, is the z-velocity dispersion of the field
objects. For stars we find 7, /n, (0) ~ 1 (Case 1) and 0.8 (Case 2), not significantly different
from one another. For giant molecular clouds, however, /30, ~ 8 kms™! (Blitz 1979), and
we find igpmc/ngmc (0)~ 0.6 (Case 1) and 0.1 (Case 2). If we now introduce a further
factor y>1 to allow for probable secular evolution of the Galactic gas content [i.e.
evolution in either Mgyc or ngmc (0)] we obtain M&yc ngme =~ (4 +3) x 103y M2 pc™,
The uncertain solar motion thus leads nearly to an order of magnitude uncertainty in the
importance of giant molecular clouds; the uncertain Galactic evolution, represented by 7,
probably introduces a further uncertainty of a factor of 2. Napier & Staniucha (1982) took
Y=1.5.

These values of the parameters and their ranges were used to calculate the various length-
scales shown in Fig. 2. For clarity of presentation the effect of varying y was not included in
the bands representing bmin gmc and b;nin,GMC.
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Given these values of the parameters it is worthwhile estimating, for comparison with
Napier & Staniucha (1982), the expected number of penetrative encounters with giant
molecular clouds. Allowing for gravitational focusing, this is

Npen = ngmMmcC na*V' T (l + 2‘%9}43) (56)
aVv

where ngyc ~ (1.6 £1.2)x1078y pc™3 depending on the adopted mean solar motion. Case
(1) then gives Npen = S7, while Case (2) yields Npen ~ 1.5y. The expected number of
penetrating encounters is thus of order 37(;< 2), a result somewhat smaller than that (~ 20)
found by Napier & Staniucha (1982). Most of the difference can be attributed to our
improved treatment of the average density of giant molecular clouds encountered by the
Sun, taking account of the z-distribution. Although the estimate of Ny, is still quite
uncertain, we note that if the number of penetrating encounters is typically only of order a
few during the lifetime of the Solar System, the argument made by Napier & Staniucha
(1982) against survival of a primordial comet cloud becomes less compelling. This is
reflected in our estimate of ro (equation 51), which even for ngyc =2.8 x 108 pc,y=1.5
and gy =2 is still of order 10*Au. This suggests that comets formed with orbits initially
within this radius could have survived to the present day. We cannot of course rule out the
possibility that an exceptionally close encounter with an exceptionally massive cloud might
have very seriously depleted a primordial comet cloud. An assessment of the likelihood of
such an event lies outside the scope of the present study.

Finally we comment briefly on the validity of our simplified encounter model. An
obvious alternative would be to assume that the Solar System is at rest within a system of
field objects moving with random velocities. In this case, following Qort’s (1950) calculation,
the mean value of 2Ae averaged over angles is
[ 2GMV\ r 1+7/D
2Ae = ( ) [————— ]

+(1 —r/D)

DV

D (57)

where the * refers to cases where the impact parameter D to the comet is = the distance 7 of
the comet from the Sun. We now define n (M)dM to be the number of particles/volume with
masses in the range (M, M +dM) and f(V)dV to be the fraction with speeds V in the range
(V, V +dV). The mean energy transfer rate then becomes (integrating over all D)

2—é=8n02f n(M)Mza’Mf VIFWV)dv Ip (58)
0 0
where
1 (Pmax r 1+r/D :
A et LR P )
2 Dmin D i(l——r/D)

This integral can be solved by substituting x = /D to give

Ip=1/2 {(1+x)In (1 +x)+ (1 —x)In [£(1 — x)]} "2min (60)

*/Dmax

When both Dy, and D, are > r, as is the case for encounters with nebulae,(60) reducesto

I =+ v ) 61)
D= = _
2 Drznin D?nax
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which may be compared with (41). In the other extreme (Dyin < 7, Diax > 7) the analysis
leading to (57) is not entirely justified (see Oort 1950; Rickman 1976 for discussion).
Ignoring this detail, however, in this limit (60) becomes

IDmln(Dr )+1 (62)

min

which may be compared with (45). Taking account of the note added in proof in Oort’s
(1950) article, we conclude that the detailed encounter geometry affects the energy transfer
rate only by a small numerical factor whose deviation from unity is negligible compared with
the ranges of the other model parameters discussed. The general problem (both Sun and field
objects moving) still, however, remains an important problem for future investigation.

4 Structure and evolution of the comet cloud
4.1 PREDICTED a-DISTRIBUTION

We consider a spherically symmetric comet cloud with density distribution n(r,?)
corresponding to some specified distribution function f(r,v, ). Planetary perturbations
remove all comets in the cloud which have perihelia < R, which we take here to be of the
same order, ~ 10 AU, as the radii of the orbits of Jupiter and Saturn. Since comets from the
cloud generally have semi-major axes a > R, the specific angular momentumJ corresponding
to such a 9oss-cone’ orbit satisfies J < J;,, where

Jp =(2GMo R ). (63)

The outer radius of the cloud, R, =~ 10° Au, is determined principally by the overall effect of
the Galaxy.

The distribution function f is defined so that the number of comets per unit volume with
velocities within d3v about v in velocity space is f(r, v, £) d>v. In the standard model for
example, £ = 3n(r)/4mvd, . () = (34,/4m)(Ro/2GMo)¥? = constant. The functional form of
f, however, is not arbitrary: provided a comet’s energy does not change significantly on a
dynamical time-scale, Jeans’s theorem applies and we know therefore that f must be
constant along a particle’s orbit. Thus f(r, v, t) = f(E,J, t), where the energy/mass E is

1 1 GM
E=—v2+—p2 - —
2 2

(64)
r

andJ = ry;. Here v, and v; are the radial and transverse components of velocity respectively.

We first check that between close encounters with giant molecular clouds ‘collisions’ are
indeed negligible. This means that a comet’s energy E = —GM,/2a must not change signifi-
cantly on a dynamical time-scale P(a) = 2ma>?/(GM,)V2. If we define v, to be the orbital
velocity of a comet at radius 7, the net change of energy after receiving an impulse Av =
Av, — Av, relative to the Sun is

AE =v,-Av +1/2 (Av)%. (65)

The first term describes the randomizing or ‘thermalizing’ effect of stellar perturbations; the
second the systematic energy increase calculated in the previous section.

We first consider whether (Av)? is negligible compared with the mean-square orbital
velocity v3 = GMo/a. From (12) the order of magnitude of Av in the two limits b < r and
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b > ris readily shown to be
2GM, 1 b<r

Av= —— ¥ { (66)
bV r/lb b>r

The smallest impact parameter expected to occur during one orbital period is of order
Bimin (r = @), given (equation 15) by

1
bimin,» (@) = . (GMo)(n, VY 203", (67)
7T

Thus for @ 2 10%* AU, where by, (2) < a (see Fig. 2), the maximum expected Av is of order

172 M*)

n *
Avpay ~ 41 (GMo @)™ (—) ( . (68)
) V M@

Here we have used (66) and set 7 = a. This approx1mat10n is no less accurate than (66), since
averaged over an elliptical orbit 7=a (1 + Y2¢?) and for an isotropic distribution of orbits
(€?y=". Thus (F) = 5a/4 ~ a. Av is therefore negligible compared with v, provided

V\¥5 M, 4/5 |4
a < (AT Y5 (GM..YV5 (_) (_) ~ 3x10° ( ) AU 69
(4m) ™" (GMo) n) \M, 1kms™ ©

where for the numerical factor we have taken n, = 0.1 pc™. A similar limit may be derived
by considering encounters with comets of smaller a.
Thus the mean rate of increase of AF is

(AEY=1/2 {(AV) = éqs, 5 (70)
and the mean rate of increase of (AE)? is approximately

o -

€qs, - (71)

. ) 2G
((AE)*Y ~ v3((AV)» =

Here _éqs » should be taken as the mean value of (52) averaged over a typical elliptical orbit,
but because this average (ie. 772 is within 20 per cent of a* (and equals 1.1a"2 for the
mean eccentricity {e) = %3), no great error is introduced by assuming simply that

€gs, « (@) = Cal2. (72)

We can now check both that the expected systematic energy increase over an orbital period
is negligible compared with |E | and that the expected ‘random-walk’ energy change is also
negligible. The first is AEyg; ~ €qs, , (@) P(a) and the second, AE g, is [4|E| €gs, , (@) P (a)] V2

The ratio AEgyg /A 44 is less than unity for a S 5 x 10%(C,o/C)3 au, so it is sufficient to
consider the second. This is negligible compared with |E] provided

C 1/3
a2 < (161C) V3 (GMo)"? ~ 2% 10° (EO) AU. (73)

Since comets in the cloud generally have semi-major axes a < 10% AU this shows that f should
indeed be f(E,J, t).

Although external perturbations do not usually cause significant energy changes on an
orbital time-scale (excepting intermittent close encounters with stars or clouds), they can
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still cause appreciable changes in J. We define J, to be the rms change in J expected for a
nearly parabolic orbit during one orbital period. Then, since the transverse velocity impulse
Av, per revolution is Av?=73(Av)>=1.6 €4 , (@) P(a), using r2=124"* for e=1, we
have

T 172
Jp =~ 2a Avy ~ 8 (g) (GM)Y4C1242, (74)

Because the change in energy during one orbital period is negligible compared with E, the
angular momentum vectors (represented by J) can be regarded in a first approximation as
diffusing in (£, J)-space on spheres of constant £. The loss-cone is defined by J < J,,.

The problem of working out the distribution function when allowance is made for the
removal of loss-cone orbits is analogous to that of the stellar distribution function in a
galactic nucleus dominated by a massive black hole (Lightman & Shapiro 1977; Bahcall &
Wolf 1976; Young 1977, and references therein). In spite of the loss-cone, the distribution
function is found still to be very nearly isotropic (i.e. independent of J), varying only
logarithmically with J even in the ‘diffusion’ limit J, < Jp,. Following Young (1977) in this
limit we have

In [/ max (E)]
FIE, Jmax (E), t] {l_ln [Jp/Jmax(E)]} >Jp

0 J<Jp

fEJ, ¢t) =~ (75)

whereas in the opposite extreme (Jp » Jp), when particles scatter rapidly in and out of the
loss-cone,

FET, 1) = FIE Jmax E), 1] = F(E, 1), | (76)

Here Jax (E) = GMo/(—2E)"? is the specific angular momentum of the circular orbit with
energy E.
Combining (63) and (74) we obtain

Jp C\" (10 au\"?( a \?
5o 0ar (E)7 (0270 ) o
Jp Co R, 10* AU
so that the distribution function is isotropic provided a * a;5 given by
CaY4 R /4
a2~ 22 %10 (—3) ( P ) AU. (78)
C 10 AU

We note that this limit could be reduced temporarily if particular stellar encounters had
combined to produce an unusually large 6/ during one orbital period.

Given the distribution function, the flux into the loss-cone can be calculated straight-
forwardly. Here we follow Young (1977, equation II—13), who derives

mJp (E)
4n f[E, I max (), t] k2 (E dE Jp < Jirans
F(E)dE = &) (79)
A7 f [E,Jmax (E), t] nJ2dE Ib > Jicans

where & (E) = {2 1In [Jpax E)p1} ? =[In (@/2R )] V' and Jyrgns =k (E) J,,. The transition
between the two forms of the expression occurs at an a-value or order 1.6 aj5, given by

@trans va
Qirans = | In R )] . (80)
p
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To abbreviate the notation we write f [E,Jmax (E), t] = f(E, £). The a-distribution implied
by (79) is then [using F) (@) da = F. (E) |(dE/da) | da]

1287 (GMo)"*
f(E,t)——)‘Cd da a < Qirang

: 2
Fi.(@)da= 3v2 k*(a (81)
4rPf(E, 1) (GMo)*Rya™da  a> Gyans.

The flux F), into the loss-cone defines the flux of comets which may become observable,
although in practice we only detect those which pass rather closer to the Sun than R, having
J rather less than J,. In the standard model (Section 2) f = (34 1/4m) (R o/2GM5)>* = constant.
Substituting this into (81) for the case @ > @rang gives an expression identical to (8) except
that R, has replaced D. Because in this limit (@ > @yrays) l0ss-cone depletion of the orbits is
negligible, the change is not important; the flux of such orbits with perihelia less than some
value, q say, is proportional to g. In the other extreme (@ < @yrang) comets coming from the
cloud for the first time should only be found with J-values within an amount of order Jp
about J,; i.e. perihelia within a small range about R,. If comets with small a-values are
observed, they must be explained either as comets entering the Solar System for the second
or subsequent time (Bailey 1977), or as the result of a particular combination of stellar or
molecular cloud encounters which led to a 8/ larger than the rms value Jp (e.g. Oort 1950;
Hills 1981).

42 THE COMETARY ENERGY SPECTRUM

Between major encounters with giant molecular clouds, when the outer layers of the comet
cloud may be removed completely, evolution of the comet cloud is governed by two kinds
of process: the removal of comets with energy E into the loss-cone at a rate F. (£), and the
random and systematic energy changes caused by external stellar perturbations. It is there-
fore natural to introduce a function N (F,J, t), defined so that the total number of comets
in the cloud with specific energies (£,E +dE) and angular momenta (J,J +dJ) is
N (E,J,t)dE dJ. The energy spectrum is then

Jmax (E)
N(E,t)=f N(E,J,t)dJ. (82)
0

The function N(E,J,t) is related to the distribution function f by (Lightman & Shapiro
1977; Young 1977)

N(E,J, 1) =420 (GM,)J (—EY3? f(E,J, ?). (83)

In the present application the distribution function is very nearly isotropic (except under
some initial conditions at small a-values), so (82) and (83) combine to give (c¢f. Bahcall &
Wolf 1976, equation 42)

N(E, 1) =21 (GMo)’ (—E) 2 f(E, 1). (84)
The evolution equation is then (cf. Lightman & Shapiro 1977, equation 45)

2

Mo 2 wdey+t 2 s - Fio ) (85)
o  oF 2 3E? e

where (AE)Y and ((AE)% are given approximately by (70) and (71). We introduce the
dimensionless variables 7= ¢/T and x = E/E = R,/a, where R is the outer radius of the cloud
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and £ is the specific energy of the circular orbit with radius R, (i.e. E=—GM, /2R,), and
assume (c¢f. 70 and 71)

(AEY=Ax“ ,

: . 2GM,A . (86)
((AEY?) = —4E(AE) = —— x"‘*lJ

0

Then (85) reduces to
W _24RT 2xtl N +(4a +5)x® 6N+ (2a+3) x* 71N} — NF(x) 87
— = — a x*— +aRa x — x
ar  GM, { ax? x le
where

324R, T x™?

5GM, k% (x)
Fie )=y, (88)
; (GMG)IIZ TRpR5512x512 X < Xirans

X > Xirans

Here k2(x) =In(Ro/2Rpx) is typically of order 7 for x-values of interest. The transition
between the two forms of (88) occurs at x,ns given (cf. 79) by

m\V4
Xizans K2 (X gans) = 2 (?) (GM.Y¥3C RoR3Y. (89)

For representative values of the parameters X gane ~ 3 and @yrans = 3 X 10%AU.

Equation (87) can be solved numerically once a suitable initial condition N (x,0) and
boundary conditions are specified. It should be remarked, however, that the equation is
strictly only applicable between close encounters with giant molecular clouds. Having
obtained the present-day energy spectrum N (x, 1), it is then straightforward to obtain the
cloud’s distribution function from (84) and thereby deduce other cloud properties such as
n(r) and Fy.(a) da for comparison with observations. For example, in the standard model
we should have

372
N(x)= 72*14 1 RE(GM) x5 (90)

Umax E (v=vmax)

n()= f Anv? f(r,v)dv = 4n f vf(E)dE
v=0 E@=0)

ie.

E (v=vmax) GM, v2
n(r)=4n/2f J (E+ ) dE. 91)

E (v=0) r

The upper and lower limits on the integral are — GMo/Rand — GM,/r respectively, so (90)
reduces finally to

n(r)y=4, (—1;9— 1)3,2
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in agreement with (4). It can also be verified that the total number of comets given by (7)
agrees with that obtained alternatively by integrating (90) over all energies.

43 APPROXIMATE SOLUTIONS OF THE EVOLUTION EQUATION

We consider first the effect of neglecting secular and random energy changes. Evolution of N
is then due solely to the finite loss-cone in which comets either evolve into short-period

comets or are ejected from the Solar System into hyperbolic orbits. Setting 4 = 0 in the first
factor of (87) we thus obtain

N(x,7)=N(x,0) exp [—Ff. (x) 1]. (92)

The e-folding time-scale at x, 7., (x) = F% (x)™., is shortest at x = Xtrans corresponding to
the maximum of F. (E) dE (cf. Lightman & Shapiro 1977, fig 2). If we assume (72) for the
energy transfer rate, 4 = CR§’, and the minimum value of 7, (x) becomes

CO 5/8 IOAU 3/8 o4
T1/2,min = 0.78 (F R k (xtrans)'
p

For typical values of the parameters this is of order 2. Thus on time-scales shorter than the
age of the Solar System, neglect of the loss-cone would introduce an error of at most a
factor < 2. This conclusion might have been anticipated, because in the standard model the
total flux into the loss-cone is only on the order of 10 per year, too small to make a significant
impact on the total number of comets during the age of the Solar System.

We are therefore justified, in a first approximation, in ignoring loss-cone losses. The
equation to be solved is then

oN 1 0iN oN

-zzDO{Zx“ — t(@da+5)x* —+aRa+3)x* "N (93)
or 0x? ax

where Do=AR,T/GM,. For typical values of the parameters (e.g. Ro~105AU, 4 ~10713
m?s™®) Dy is of order unity. We note that the outward flux of comets, F, measured positive if
the net flow is towards higher-energy orbits, is given from conservation of comet number by

oN oF

a—t' == E ' (94)
Thus (93) implies

«@ a+1 oN
F(x)=A4 [Qa+3)Nx*+2x Pl | (95)

We first investigate steady-state solutions of (93), assuming that conditions are such that

a steady-state energy spectrum can be achieved. The evolution time can be estimated crudely
from (93) to be of order '

Tey~ X1 7Y {2Dg[20% + 7 (@ + D]}

ie.

Lev

GM, (Ro)l“"‘ 1

~ =2 . (96)
AR, 2[20%+ 7 (a +1)]

a

For typical values of the parameters (e.g. 4 ~ 107®m?s™ o~ —1/2,a ~ R,) this is of order
10° yr, indicating that there may not be enough time between major encounters with giant
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molecular clouds for a quasi-steady state to be reached. However, possible steady-state
solutions are still of interest, and setting /07 = 0 in (93) or F = constant in (95) it is readily
shown that these solutions are power laws of the form Ny (x) =Kx™?, with ¢ = a or & +3/2.
The g =a solution tends to zero at small binding energies (x - 0), because (see Fig. 3)
o ~ —1/2 is generally negative. This solution, in which there is no external source of comets,
has positive net flux F = 34K. By contrast the ¢ = a + 3/2 solution diverges as x > 0 and has
zero net flux: the systematic outward drift of comets is just balanced by inward diffusion.
It is possible that this kind of solution might become relevant during an extended period of
capture of comets from an interstellar population. In the application considered below we
shall be interested in the evolution of a comet cloud with no external sources, so it is the
q = a solution that we expect to apply.

We now consider a more general solution, using the technique of separation of variables
to solve (93). We define the separation constant to be —X 2 and resolve (93) into modes
each of the form Ax (x) Bx (7). It is then readily verified that

By (1) =exp (—X?27) 97)
and
d*A 4o +5) dA aa+3) X2
x2 X+( )x__)f+|:(____) +_x1_a]Ax=0- (98)
dx? 2 dx 2 4D

This differential equation leads to Bessel’s equation (e.g. Gradshteyn & Ryzhik 1980;
equation 8.491.12), with the general solution

A, () =a(X) x4 1, [yx1= 2] +b(X) x @4+ J_ [yxA=2] (v # integer). (99)

If v is an integer, the J_, component must be replaced by the Bessel function N, (7x(1 —a) )
of the second kind. The constants » and vy are given by

v=3/[2(1 - a)] }

v=X/[D§*(1 — a)] (100)

Here we shall investigate only those solutions that remain finite as x - 0. (This seems a

reasonable restriction on cloud models, although any finite comet cloud will have its outer

boundary defined at x > 0.) Then b (X) = 0, and the general solution to (93) becomes

N(x,7)=2x"(3+) J- Xa(X)J,[B(x) X] exp (—7X?dX (101)
X=0

where the weight function @ (X) is determined by the initial condition

N(x,0)=2x"(%+ [ Xa(X)J, [B(x) X] dX. (102)
JX =0
Here we have defined
GM, \? 1
= (1—a)/2/ pDY2 1_a] =( O) (1-w)2 103
x)=x b .
B) Dy -l =( 0) oy (103)

Using the Fourier—Bessel theorem, (102) can be inverted to give the weight function a (X)
explicitly;i.e.

_ GM,, 1 o wa
a(X) ART 4(1—w) J;=Ox N(x,0)J,[B(x) X] dx. (104)
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To illustrate the behaviour of these time-dependent solutions, we now consider the
evolution of power-law initial conditions of the form N (x,0) =Kx™. After some straight-
forward algebra and use of formulae (6.561.14) and (6.631.1) of Gradshteyn & Ryzhik
(1980) we find (subject to a < g < 5/2) that

GM, \? r'é - — B2
N(x,T)=K(AR T) RA-a]? x> (F(b)a) 1F1(a;b; 64:X)) (105)
0 \

where T'(z) is the gamma function, ¢ = (¢ — a)/(1 —a) and b= (5 — 2a)/2(1 — @). Here
1F1(a;b;z) is the degenerate hypergeometric function defined by

az a(@+1) z?
- + —

Fi(a;b;z)=1"
@bz =l b(h+1)2!
For small values of |z| {F;(a;b;z)—>1, while if z is large and negative it tends to the value
I'(b)/T' (b — a) (—z)?. Using these relations it can be verified that (105) tends to the assumed
initial condition, Kx™®, as 7> 0; and that as 7 —> o the solution tends to the ‘g = o’ steady-
state form.

(106)

44 RESULTS FOR CLOUDS WITH POWER-LAW ENERGY SPECTRA

In this section we give some basic properties of comet clouds with power-law energy spectra,
the evolution of which is given by (105). Here we ignore the time-dependence, and assume
simply that the number of comets with energies in the range (£, £ +dE) is

N(E)dE = Kx Y dE (107)

where, as before, x = E/E = Ry/a is the normalized binding energy. The distribution function
fis then given (equation 84) by

K
10) = 5 (GMey ViR~ (108)

and the density distribution (cf. 91) by

n(r)=2m (G;:[@) * szO/r ) (—2%) —Xx )1’2 dx. (109)

0 2

The density distribution can be obtained analytically for distribution functions of the form
(107) when g is half-integral. Denoting this g-dependence of n(r) by ny(r), we have for
example

2 R 372
Ng,(r) = ;/—772 KGMoR3* (70 - 1) ,

i Sk [

i 2o (][5 2]

2o (o (B2 o
21
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These density profiles illustrate the kind of variation which might occur between models
differing only in respect of the index g of the energy spectrum. They show too, as noted by
Oort (1950), that the standard model has only a relatively weak density gradient towards
the centre; most of its comets are to be found in weakly-bound orbits far from the Sun. In
general there is no need for g to take the standard value ¢ = 5/2; and it might even be the
case, particularly in models where comets originate in much more tightly-bound orbits (cf.
Opik 1973), that g is small or negative. Viewed from this angle the standard model might
appear to be implausible on physical grounds (cf. Hills 1981).

Until a reliable theory of the origin of comets has been developed, it seems best in the
present context to regard the spectral index g as a possible parameter to be determined from
observations. With this in mind we give below the predicted loss-cone flux, both as a
function of @ and as a function of y =1/a. From (79) and (81) we obtain

£K A——0a"""4s a<a

32 In (2/2 Ry rans? a1
Fi.(a)da= :

Iy K(GMo)*R,yRa ™™ da  a> aygns,

it
and

16 KCRY ———— y @3 gy ys

32 In (1/2R ranss
Fie(v)dy = v (112Rp ) (112)

1
oK (GMo)*R, Ry y¥? ~ dy Y < Vtrans-

Here C is defined in equation (52) and the transition a-value, @y, is of order 3 x 10*AU
(equation 80). The normalizing constant K can be obtained in the same way as for the
standard model (Section 2, equation 9). Integrating (111) over @y,ns < @ < Ro/2, setting R,
equal to D =~ 1.5 AU and equating the result to F, ~ 1 yr™!, we obtain

(7 -2q) m(GMoYy¥*D™' R{
[admd? — (Ro/2)3 2]

Fops- (113)

Finally the total number of comets in the cloud can be obtained by integrating (107) over
all energies;i.e.

[©]

Emax G
Ntot=f N@E)dE =K - 29 xEm)' =Y @e1)  (114)

Ry 2(g-1)

For completeness we note that our spectral index g corresponds to Hills’ (1981) n=2 — g;
the standard model then hasn = —1/2.

Emin

5 Discussion and comparison with observations

Setting aside those theories (e.g. van Flandern 1978; Yabushita 1979) in which comets are a
short-lived transient phenomenon attributed to a recent event which occurred (3—6) x 10%yr
ago, we expect that most of the development of the previous section should be applicable
irrespective of the detailed theory of comet origin under discussion. Thus it is possible in
principle to use the observed orbital data to determine the present distribution function
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(equation 81). This can then be combined with a theory of the spectral evolution (e.g.
equation 105) to determine the initial energy spectrum. Given this, it might be possible to
provide significant constraints on theories of cometary origin. This is in contrast to
Weissman’s (1980a) rather pessimistic statement, although the chain of argument is
weakened by the possibility that successive encounters with giant molecular clouds could
have obliterated all trace of the initial energy spectrum. It is possible, however, that some
spectral structure might survive, and in any case the theory should still be applicable to
models (e.g. Clube & Napier 1982b) in which comets have been captured from interstellar
space during a recent giant molecular cloud encounter.

Since, to the writer’s knowledge, no theory of cometary origins yet proposed has
predicted the initial energy spectrum, it is not yet possible to use the machinery of Section 4
to try to discriminate between theories. However, it is still of some interest to attempt to
determine the observed energy spectrum from present orbital data. For example, the
discussion of Section 4 4 shows (equation 112) that a logarithmic plot of the (1/a)-distribution,
log [Nops(1/a)] versus log (1/a), should show a break of about four in slope at y = yyans =
1/(3 x 10* Au). This prediction can be checked, and, if the data were good enough, the
current value of ¢ in the neighbourhood of Y, could be estimated.

The most recent compilation of original (1/a)-values of new comets (those coming from
the Oort Cloud for the first time) is that of Marsden, Sekanina & Everhart (1978). We have
taken from their sample of 200 comets the 111 best-determined ‘Class I’ orbits and
represented each by a unit Gaussian:

! 29 2

Mi= 3o exp [- (v —y)*/20{] (115)
where y; is the original (1/a)-value of the orbit and o; is its quoted mean error. This seemed,
at least for the comets of longest period (¢ 2 10*AuU, say) which interest us here, to be a
preferable way of combining data of widely-varying o; than the alternative of simply con-
structing a (1/a)-histrogram. Adding the 111 such Gaussians together we obtained the upper
(broken) curve of Fig. 4. Because it is probable that many of these comets have been
affected by non-gravitational forces (e.g. due to out-gassing) we have also plotted in Fig. 4
the curve (solid line) obtained from the 37 comets with perihelia greater than 2 Au.

The data are still too patchy to allow completely firm conclusions to be drawn, but the
graph does show a sharp break at log (y) ~ 1.55, corresponding to @ = 2.8 x 10% Au. The size
of the break is difficult to determine accurately, but eye-fitting two straight lines to the
curve for the 37 orbits least affected by non-gravitational perturbations gives values for the
slopes either side of Yipans 0f 0.9 £0.2 and —4.5 £1.5. The break in slope is thus consistent
with the theoretically expected value of 4, and the spectral index for the long-period comets
(@ 2 @ypps) is of order 1.6 £0.2, somewhat smaller than the values (5/2) for the standard
model.

We thus interpret Fig. 4 as indicating that the considerations of Section 4 are appropriate
to the present cloud of comets surrounding the Solar System. This does not prove that the
cloud is primordial, and until competing theories have been developed sufficiently we prefer
not to pre-judge the issue. For example, although the current mean spectral index g deter-
minded above is quite uncertain, even should a power-law approximation be the case (cf.
105), the value g ~ 1.6 admits of at least two possible interpretations within the framework
of Section 4. In the first it might be speculated that the effect of a close encounter with a
giant molecular cloud might be to produce an inverted energy spectrum of the kind observed
or assumed in the standard model (e.g. ¢ =2, say). Then it could be argued that the observed
spectrum represents evolution of this initial condition towards the positive-flux ‘g = o’
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Figure 4. The Gaussian-smoothed (1/a)-distribution is shown. Data from Marsden, Sekanina & Everhart
(1978).

steady-state form along an evolutionary track described by (105). In this case one would
have a primordial hypothesis. Alternatively it might be argued that the energy spectrum had
evolved to a steady state. Then, since a ~ 0, one could perhaps argue that the cloud had
relaxed to the zero-flux ‘q = a +3/2’ solution, indicating an external interstellar source of
comets. Clearly, neither of these interpretations in their current form can be regarded
seriously as an explanation of the observations — but they do serve to illustrate the difficulty
of shooting ghosts! It is most important that theories of cometary origin should attempt to
predict the energy spectrum, because this is one of the very few ways that different theories
can be tested.

Napier & Staniucha (1982) argued the case against a primordial comet cloud principally
on the ground that encounters with nebulae would have removed all but a negligible fraction
of the initial number of comets. However, although giant molecular clouds most probably
do dominate the cumulative energy transfer (Section 3 and equations 50 and 53), it does not
necessarily follow that a primordial comet cloud would be dissipated. Comets within
r $10%AuU are relatively safe from giant molecular cloud perturbations, and if the initial
index of the energy spectrum was smaller than unity, these would be in the majority
(equation 110). In fact, on a primordial hypothesis it seems not unreasonable to expect
more comets initially in more tightly-bound orbits (i.e. ¢ < 0; ¢f. Hills 1981), so such a
hypothesis might lead rather naturally to the possibility of a massive centrally-condensed
reservoir of comets from which to draw during the subsequent evolution. This possible
solution to the survival problem of the Oort Cloud would admittedly increase the total
number (and mass) of comets required initially, but if comets formed in the outer parts of
the early Solar nebulae (e.g. Hills 1982) this need not be a serious difficulty. (It would,
however, be a problem for theories where comets formed initially in the planetary system.)
Reducing ¢ might also alleviate the well-known difficulty of placement into the observable
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part of the cloud (e.g. Opik 1973, section 9; Biermann & Michel 1978; Dermott & Gold
1978; Hills 1981).

Finally it may be possible to bring various indirect arguments to bear on the problem. For
example, a well-established comet cloud would normally be expected to show the observed
preponderence of retrograde-to-direct orbits amongst the apparently new comets (Bailey
1977; Fernandez 1981); and additionally (Bailey 1977) should show a weak concentration
towards lines on the celestial sphere close to the Galactic Equator. Fernandez (1981) has
also emphasized that on some, but not all, capture hypotheses a preponderance of direct
orbits would be predicted, contrary to observation. A second example is the recent work by
Clube & Napier (e.g. 1982c¢) in which the mean interval between major cometary impacts on
the Earth is linked with that between close encounters with nebulae or passages through
spiral arms. This is just the sort of connection which might be expected on an interstellar
hypothesis, but it should also be noted that the mean interval between impacts of long-
period comets, alone, on the Earth is of order [Fyps /2R2/(1 AU)?] ™ ~ 10%yr, so such corre-
lations could also arise even if comets had a purely Solar System origin (see also Hills 1981;
Weissman 1980b). Lastly one could use the fact that some theories of Solar System origin
(e.g. Kuiper 1951) predict the existence of a comet ‘belt’, analogous to the asteroid belt,
lying some distance beyond the orbits of the major planets. The existence of such a belt
could help to resolve some difficulties with the observed numbers of short-period comets
(e.g. Fernandez 1980); and if it could successfully be detected (Bailey 1976), a Solar System
origin for comets would appear more probable.

6 Conclusions
The principal conclusions to be drawn from this work are the following:

(1) The number of passages of the Solar System through giant molecular clouds during its
lifetime is in the range 1—10, depending on parameters; rather less than that worked out by
Napier & Staniucha (1982). This makes survival of the loosely-bound primordial Oort
(1950) comet cloud rather unlikely for reasonable values of the parameters.

(2) Analytic results derived for the standard Oort (1950) model show that this is just one
of a family of hypothetical clouds with power-law energy spectra. The energy spectral index,
q =5/2 (equation 107) gives relatively poor agreement with the observed (1/a)-distribution.
Observations (Fig. 4) suggest that better agreement would be provided by models with
smaller g and a higher degree of central concentration (equation 110).

(3) Loss-cone removal of comets and direct ‘sweeping’ of the cloud by stars are negligible
at the factor of 2 level. The dominant evolutionary processes are the occasional close
encounter with a giant molecular cloud, and the random and systematic energy changes
caused by stellar perturbations. The secular evolution of the energy spectrum, neglecting the
loss-cone and ‘sweeping’, is solved exactly for a power-law initial condition (equation 105).

(4) Provided that the velocity distribution function at large radii is isotropic, the present
work should apply irrespective of the precise assumption about cometary origins (e.g. Solar
System versus interstellar). We emphasize, however, that observations in principle can
discriminate between different theories, provided that the theories in question predict the
energy spectrum.
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Appendix: Energy transfer rate allowing for penetrative encounters with nebulae

Here we estimate the mean energy transfer rate by giant molecular clouds for cases when the
minimum impact parameter by gmc is smaller than the cloud radius a. In order to bracket
the likely possibilities we consider two kinds of cloud model, each spherically symmetric
with total mass Mgyc and space density ngyc. In the first we assume the cloud is simply a
uniform sphere of radius @, while in the second the basic cloud itself is assumed to contain
substructure comprising on average Ng subclouds with masses M, distributed according to
some prescribed mass function N (M) dM;. For simplicity we assume the subclouds can be
treated as point masses.

The total energy transfer rate due to giant molecular clouds when bmin,gMmc < @ can then
be written as the sum of three terms: that due to non-penetrating encounters with b > a,
that due to the effect of the cloud-as-a-whole in cases with b < @, and that due to the
cloud’s substructure (if any) in cases with b < a. The first is easily written down. This is

(cf. 46)

2€np () =

87TG2M(2_;MC naMme 1 r2 7'2
_‘(— __) [bmax(r)>a]~ (Al)

2

d N bR ()
If bmax () < a, asit is when 7 S 10%4*%2 oy (Fig. 2), this contribution is zero: at small radii
only penetrating encounters contribute to the giant molecular cloud energy transfer rate.

The second two terms, due to penetrating encounters, clearly depend in detail on the
adopted cloud model. For a uniform cloud it is readily shown (e.g. Biermann 1978) that in
the impulse approximation the velocity increment Av given to a particle passing through the
cloud with impact parameter b < a is

26GMgyc b b2\
Av="SMC " (1-Z) . (A2)
bV b a®

Using the approximation b ~ d and averaging over 0, the mean relative energy transfer is
found to be

. [2GMgye\? 2 P [ ( p2\32 72

2Aez(—) -— |[1— ——~) ] . A3
|4 3 p* a? (43)

(Notice that this result, for a uniform cloud, can easily be extended to homogeneous clouds

of arbitrary known density distributions.) The contribution to Av resulting from that part of
the motion while the particle lies outside the cloud is

> (A%)

2GMgpmc b [1 o “2]
BV b _( __)

so the net contribution to Av, treating the cloud as a whole, should lie between that given by
(A3) and that obtained similarly from (A4);i.e.

2GMGMC)2 2 7'2

2Aewh = ( v 35 fon () (AS)
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where x = b/a and
[1-(1=x})"]2$ fan () S [1 - (1 —xH¥?]% (A6)

In order not to underestimate the mean energy transfer rate by penetrating encounters
with b < a, we assume here that f,,, (x) = [1 — (1 —x*)¥?]2. This is tantamount to assuming
that, whatever the cloud’ substructure, the effect of the cloud-as-a-whole can be modelled
by treating the cloud as a uniform sphere. This contribution to the mean energy transfer rate
is therefore of order

87TG2M(2;MC HgMC 1 7'2
v 37 &wh Xmin) (A7)

where Xmin = bmin,gmc/2 and

267wh (r) =

1 2
Ewh (xmin) = [3x2 — 5x4 +6 (1 _x2)1/2 + - [(1 _x2)3!2 _ 1]
X

om0

(A8)
Xmin-
This function is typically of order unity, showing that €wh i comparable on average to that
of all non-penetrative encounters put together.

We now determine the third contribution: that due to the cloud’s assumed substructure.
Treating the subclouds as point masses, the mean relative energy per encounter with each
subcloud is

2GM, )2 277
v /] 3b;

2Ae, ~ ( (A9)
where bg is the impact parameter for the subcloud. The number of subClouds with masses
in the range (Mg, Ms+dM;) is N(M;)dMg, so the total number of subclouds per giant
molecular cloud is

My
Ng= f N (M) dM, (A10)
My

where mp and my are the assumed lower and upper mass limits for the substructure.
Integrating (A9) over all impact parameters and summing over all subclouds thus gives for
the mean energy transfer rate due to substructure

- 87G2n M
2%, (r) = —— M€

U 1 1 1
N (M) M2 dM,— r2( _ ) (A11)
V My, ) ) * 3 br2nin,s b?nax,s(r)

-1/
We normally expect bmin s~ Vs bin gmc < Pmax,s @5 SO

T 87TGzMéMC ngMmce 1 r2

2€g =

Al2
V 3°° bl aMc (A12)

where the dimensionless parameter gg = N2(M2) [M&yc depends only on the mass-distribution
of the substructure, i.e.

Ny

My
8=— N (M) MZ M. (A13)
Méme Ymy,
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Typically g ~ 1. For example, if all subclouds have the same mass [i.e. N (M) = N8 (M — MJ)],
8s=1;and if N (M) = k Mg? with Ng= 25 and my [Mgyc = 1/5 we would have g~ 1.75.

The mean total energy transfer rate due to encounters with nebulae in which bmin,gMc < @
can therefore be written in the form

= 81G>MEqyc hgme 1 1*
2egmc (1) = = 8ot (A14)
v 3 bain,GMC
where
biin,GMC a*
ot =8t — [gwh (¥min) +1 - 2—]. (A15)
a biax

In this expression we have assumed bp,,, (7) > a. If this is not the case, the last two terms of
(A15) are zero, and the approximation leading to (A12) must be checked. At small radii
bmax (r) may become comparable with by, ¢, in which case even the existence of sub-
structure may not necessarily cause significant energy transfer. For typical values of N (e.g.
Ng~ 25, say), bmin,s~ /5a~ 4 pc and comets with < 10%7* %2 Ay will remain relatively
unaffected by the giant molecular cloud (see Fig. 2).

For typical values of the parameters (e.g. byin,gmc S @/2 and gg ~ 1) equation (A15) is
dominated by g, the term due to substructure. Thus if substructure is present (as seems
likely), it can dominate the mean energy transfer rate due to penetrating encounters; a point
made previously by Napier & Staniucha (1982) and Clube & Napier (1982b). We have shown
here that provided r is not too small, the mean energy transfer rate including substructure is
comparable to that obtained alternatively simply by treating the basic clouds as point
masses.
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