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Abstract

Categorization and concept formation are critical activities of intelligence. The nature of these

processes and the conceptual structures that support them is an important issue at the interface

of cognitivepsychology and artificialintelligence(AI).Our work assumes that advances in these

and other areasaxe best facilitatedby interdisciplinaryresearchmethodologies. In particular,we

describea computational model of concept formationand categorizationthat exploitsa rational

analysisofba,ic-leveleffectsby Gluck and Corter(1985).Their work providesa cleanprescription

of human categorypreferencesthat we adapt to the task of concept learning. In addition,we

extend their analyses to account for typicality (Rosch & Mervis, 1975) and fan (Anderson, 1974)

effects, and speculate on how our concept formation strategies might be extended to other facets

of intelligence, such as problem solving.

To appear in G. H. Bower (Ed.) (1990), The Psychology of Learning and Motivation: Advances in

Research and Theory (Vol. 26). Cambridge, MA: Academic Press.
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1. Introduction

Cognitivesimulationfits computational mechanisms to the constraintsofpsychologicaldata,but

therehas been long-term debate over the appropriatestartingpoint for thisprocess.Newell and

Simon (1972)recommend an initialtaskanalys_, inwhich one identifiesalternativeapproachesto a

given task(e.g.,cryptarithmetic).Anderson (inpress)suggestsa more formal rationalanalysis,in

which one associatesa generalcategoryof behaviors(e.g.,concept formation) with a performance

function to be optimized. In both views,the guiding assumption isthat natural organisms are

rationalbut resource-bounded decisionmakers (Simon, 1969). A similarbut lessformal view

is implicitin speculativeanalyses (Hall & Kibler,1985),which posit high-levelcomputational

principlesthat constrainhuman processing(e.g.,Kolodner,1983).

This paper focuseson COBWEB (Fisher,1987a,1987b),a cognitivesimulationofconcept forma-

tionand recognition.In particular,we trace the originsofthe system to rationaland speculative

analysesof thistask. Concept formation is a processof organizingobservationsinto categories

based on internalizedmeasures of category 'quality',without the aid of an externaltutor.More-

over,thisprocessof categoryformation should be guidedby two principles.First,learningshould

be incremental,in that observationsshould be efficientlyincorporatedinto memory as they are

encountered. Second, learningshould benefitperformance on some task,in thiscasepredictions

about unknown propertiesof novel observations.

To realizetheseobjectives,the COBWEB model borrows a measure of concept qualitydeveloped

by Gluck and Corter (1985) in theirwork on basic-leveleffectsin humans (alsosee Cotter &

Gluck, 1985).In hierarchicalclassificationschemes,humans tend to preferone levelof abstraction

(the 'basic'level)over others.Gluck and Corter'smeasure, categoryutility/,came from a rational

analysiswhich postulatedthatbasicconceptsare preferredbecause they optimize inferenceability.

COBWEB alsoincorporatesideasfrom Kolodner's (1983) CYRUS and Lebowitz's (1982) UNIMEM,

which providegeneralstrategiesofefficientclassificationand conceptformation. This union yields

a system thatmeets the computational objectivesofefficientretrievaland accurateprediction.In

addition,the model accounts for certaintypicality/effects(Rosch & Mervis, 1975) and fan effects

(Anderson, 1976). Thus, itprovides a unifiedaccount for a number of memory phenomena in a

single,parameter-freemodel of conceptrepresentationand concept formation.

In the followingsection,we introducesome computationaland psychologicalprinciplesofconcept

learningand representation.Notably, we view concept formation and relatedtasks in terms of

searchthrough a statespace.After this,Section3 reviewspsychologicalfindingsthatconstrainthe

representation,access,and acquisitionofconcepts.In Section4 we describeCOBWEB, a model of

conceptformationthatincorporatestheseconstraints.Section5 then evaluatesthe model in terms

of itsabilityto explain a varietyof psychologicaleffectsand the relationsamong them. In the

finalsection,we speculateon other applicationsofthe model, includingthe transitionfrom novice

to expertproblem-solvingskills.Implicitly,our discussionwill.endorse Anderson's rationalview

of cognitivesimulationas a profitablemethodology to pursue issuesat the boundary of cognitive

psychology and artificialintelligence.

d _
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2. Concept learning

Concept learninghas been widelystudiedin both artificialintelligence(AI) and psychology.How-

ever,both fieldshave traditionallyemphasized learningtasks in which a tutorprovidesclassin-

formation. We begin thissectionby discussingmethods for such supervisedlearning,sincethey

provideimportant background for our laterdiscussionof concept formation. In particular,we in-

troducethe view of concept learningas a searchprocess,in which learningmechanisms may vary

along two dimensions: searchcontroland searchdirection.We then extend the searchframework

to clusteringand concept formation,types of unsupervised learningin which thereisno external

tutorto provide classinformation.

2.1 Supervised Learning

Many psychological studies of learning have focused on concept acquisition or identification (Bruner,

Goodnow, & Austin, 1956; Hunt, Marin, & Stone, 1966; Reed, 1972; Medin & Schaffer, 1978), in

which a subject must learn to identify novel members of categories, given training observations that

are classified by the experimenter. In many experimental settings, the subject is shown a sequence

of observations; after viewing each observation, the subject must predict the category membership

of that observation and is then told the correct category. Thus, the experimental setting usually

requires continuous and active participation by the subject. Psychological investigations have

focused on characterizing the number of observations that subjects require to consistently predict

correct category membership and on the number of classification errors made before they attain

criterial accuracy.

Because it involves external feedback, concept acquisition is sometimes referred to as super-

vised learning. In artificial intelligence, this task is more commonly called learning from ezarnples

(Winston, 1975; Quinlan, 1979; Mitchell, 1982; Dietterich & Michalski, 1983), since a tutor sup-

plies preclassified examples from which the learning system must discover an appropriate concept

(intensionai) description. Many machine learning systems assume that the target Concept to be

learned is conjunctive; thus the learner acquires concept(s) that capture shared conditions over all

of the observations.

The notion of search plays a traditional role in characterizing AI systems, and one can apply this

idea to systems that learn concepts (Simon & Lea, 1974; Mitchell, 1982). One important aspect

is the direction of the search process. Many AI concept learning systems begin by comparing two

observations and extracting the commonalities between them (Hayes-Roth &: McDermott, 1978;

Vere, 1980). They then compare these common features to a third observation, again extracting the

collective commonality. This process continues until they have exhausted all the observations, thus

yieldingthe common structurethatsummarizes the entireset.This strategyfollowsa specific-to-

generaldirection,sincethe setof common featuresisinitializedas a specificinstanceand gradually

becomes more generalas more observationsare seen.In contrast,othersystems followa general-to-

specificstrategy(Langley,1987;Schlimmer & Fisher,1986).These systemsbegin with verygeneral

concept descriptions,making them more specificas errorssuggestthe need formore constrained

conditions.Further errorslead to even more specificconcepts,untilthey achievea description
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that summarizes all the training instances. Still other systems (Anderson & Kline, 1979; Mitchell,

1982; Schlimmer & Granger, 1986) combine these two strategies, carrying out bidirectional search

through the space of concept descriptions.

Concept learning systems also vary in terms of their search control strategy. In general, there

will be many concept descriptions that cover the training observations, and one must somehow deal

with these alternatives. For example, suppose the learner sees two card hands, one with three Jacks

and two Kings, and a second with two Jacks and three Kings. One hypothesis that summarizes

these observations is that the hands contain at least two Jacks and at least two Kings, but an

alternative summary is that they contain two cards of one face and three of another (i.e., a full

house). Such alternatives are the cause of search in concept learning, and researchers have used a

variety of strategies to control this search. These methods range from exhaustive techniques like

breadth-first search, which retain all concepts that are consistent with the known observations (e.g.,

Mitchell, 1982), to heuristic methods like beam search (Michalski, 1983), which retains only the

'best' hypotheses that are consistent with the observations.

Unlike experimental human subjects in psychology, many AI learning systems are not required

to actively predict class membership for each incoming observation. Rather, they process all avail-

able observations en masse to produce a set of concept descriptions that are consistent with the

observations. This is not to say that many systems could not be adapted to actively predict mem-

bership, but they were not designed with this performance task in mind. For instance, Quinlan's

(1979, 1986) ID3 algorithm uses a heuristic that requires examination of all observations, thus

complicating any strategy for generating intermediate predictions. However, one can modify the

basic method to construct descriptions incrementally (Sctdimmer & Fisher, 1986; Utgoff, 1988),

giving it the ability to make predictions after each training instance.

Although 'nonincremental' approaches have predominated in the literature on machine learning, a

growing number of researchers have examined incremental methods for concept learning. Examples

include a system by Winston (1975) and Schlimmer and Granger's (1986) STACC_.R system, which

generate predictions for each incoming observation. One can view such systems as conducting a form

of constrained search called hill climbing, which maintains a single 'active' concept description that

may be modified after each training instance. 1 These systems keep no explicit memory of previous

hypotheses, though they may simulate backtracking (return to an earlier hypothesis) by application

of their learning mechanisms.

Limiting search to one change per observation characterizes hiU-climbing learners: a single al-

ternative is kept in memory and intermediate predictions are made efficiently. Of course, placing

limits on memory and backtracking ability means that the order of training instances can have an

important effect, sometimes leading the learning system astray. However, such order effects have

also been observed in human learners (e.g., Kline, 1983), making them desirable characteristics of

I. Not all incremental learning systems should be viewed ss hill climbers. For instance, some methods (Anderson

& Kllne, 1979; Langley, 1987) retain a large set of competing descriptions, using the competitor with the highest

'strength' to make a prediction. In addition, Winston's system is not a strict hill climber in that it retains

some true backtracking ability, but nonetheless it has many of the characteristics that we deem important for

incremental learning.
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a computational model. We will return to the notion of incremental hill climbing when we discuss

the task of concept formation.

2.2 Unsupervised Learning

Despite the attractiveness of supervised learning tasks, there are many scenarios in which a learner

cannot rely on external feedback. In such cases, the learner must invoke internalized heuristics

to organize its observations. For example, many machine learning systems incorporate a notion

of 'similarity'. Such a bias also occurs in work on numerical taxonomy (Everitt, 1980; Gennari,

1989), in which algorithms use a similarity measure (e.g., the inverse of Euclidean distance) to

group similar observations into the same category.

To clarify this point, let us consider some algorithms from the numerical taxonomy literature.

For instance, 'nearest-neighbor' methods place an observation in the category that has the most

similar current member. Other methods compute a theoretical observation that represents the

central tendency (i.e., the centroid) of each category; they then place the new observation with

the category having the most similar centroid. These methods have the emergent effect of placing

great emphasis on maximizing the intra-category (i.e., within-category) similarity of observations.

Although this approach has intuitive appeal, it presents difficulties if one wishes to break the

observations into a number of contrasting categories. In reference to psychological models, Medin

(1983) points out that the set of singleton categories optimizes intra-category similarity, since each

observation is maximally similar to itself. Thus, attention on intra-category similarity alone does

not provide a sufficient basis for deciding upon the appropriate number of clusters. As a result,

clustering methods often require that the user specify the number of categories to be formed.

Alternatively, they build a tree called a dendrogram, in which each node specifies a cluster of lower-

level nodes, terminating in in&vidual observations. Following the clustering process, the user severs

the tree at various points to obtain the desired number of clusters.

Some techniques of numerical taxonomy explicitly seek to optimize a function of contrast-

ing categories. However, just as intra-category similarity favors singleton classes, inter-category

d/ssimilarity favors a single all-inclusive category, since there are no contrasting categories to share

properties with it (Medin, 1983). Thus, a reliance on both these measures might reduce the need

for user intervention. To this end, some methods incorporate a tradeoff between intra-group and

inter-group similarities, favoring categories whose members have much in common with each other

and little in common with members of contrasting categories. In Section 3 we examine one such

tradeoff function.

Recently, machine learning researchers have developed methods for conceptual clustering. For

example, Michalski and Stepp's (1983) CLUSTER attempts to form categories that have 'good' con-

cept descriptions, which can be stated as conjunctive expressions of features that are common to

al/or most category members. One criterion, simplicity, dictates that the conjunctive expression

should be short for the sake of comprehensibility. A second criterion, fit, prefers detailed (specific)

conjunctive descriptions. These criteria (and others) trade off against one another in much the

same way as intra-category and inter-category similarity. The ability to form very simple discrim-
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inating concepts for contrasting categories implies very little overlap between members of different

categories, whereas specific categories implies that there is considerable intra-category similarity. 2

Other nonincremental clustering systems include Hanson and Batter's (1989) WITT and Cheese-

man, KeUy, Self, Stutz, Taylor, and Freeman's (1988) AUTOCLASS. The former computes cor-

relations between feature pairs, forming clusters so as to m_e the intra-category pairwise

correlations across all features and to minimize the average inter-category pairwise correlations

across all features and all contrasting categories. AUTOCLASS represents another probabilistic ap-

proach to clustering, using a Bayesian method to calculate the 'most probable' categories present

in the observations. Intuitively, the most probable clusters are those whose feature distributions

vary most from a presumed prior distribution. As with WITT, AUTOCLASS is sensitive to intra-

category and inter-category similarities, and thus need not be told the number of clusters to form.

The systems are also suuilar in their lack of any method for making intermediate predictions. 3

We now turn to methods for unsupervised learning that support continuous interaction with the

environment.

2.3 Concept Formation

The unsupervised systems that we have described so far are nonincremental, requiring alltraining

instances at the outset. However, in many cases human learners appear to assimilate instances as

they become available. We will refer to this process - the incremental unsupervised acquisition

of categories and their intensional descriptions - as concept formation. As with learning from

examples, concept formation can be described in terms of search, and two general approaches have

been explored in psychology and machine learning.

The firstscheme employs a specific-to-generalsearch, incrementally comparing each new obser-

vation to existing categories and adding it to one or more of the best-matching categories. In

Kolodner's (1983) CYRUS and Lebowitz's (1982) UNIMEM, matching is a function of the number of

features shared by the new observation and a given concept description. These systems generalizea

concept ifthe match with the new observation issufficientlygood. Ifan observation does not match

any concept to a prespecifieddegree then the new observation isused to create a singleton category

that may be generalized with future observations. In the process, UNIMEM and CYRUS form an

abstraction hierarchy of concepts that they use to classifyfuture cases, filteringeach observation

through levelsof the hierarchy by recursive application of the matching procedure. Both systems

can be viewed as advanced versions of Feigenbaum's (1963) EPAM, which formed discrimination

networks (actually trees)with tests that were restrictedto singlefeatures.

One can also employ a general-to-specificstrategy for concept formation, as shown by Martin's

(1989) CORA system. Like itsprecursor STAGGER (Schlimmer & Granger, 1986), the model incre-

mentally conjoins features, but it relieson correlationsbetween features to trigger this chunking

2. Studies by Medin, Wattenmaker, and Michalski (1986) qualify the extent to which fit and simplicity trade against

each other in human sorting taslm in which subjects have simultaneous access to all observations. Their experi-

mental task corresponds to nonincremental, unsupervised learning.

3. Hanson and Bauer note that their system can be run in incremental mode, but it was not designed with prediction

in mind.
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process, rather than monitoring correct and incorrect predictions of category membership. CORA's

reliance on feature correlations is similar to that used in WITT, but it descends most directly from

Chalnick and Billman's (1988) work. However, whereas CORA uses observed correlations to con-

join features, its ancestor uses observed correlations to slowly generalize initially saved instances.

Neither CoRA or the earlier system forms an abstraction hierarchy; they simply create concepts

that are conjunctions of features and that describe (possibly nondisjoint) categories.

Although approaches to concept formation may differ in search direction, they seem to universally

share the hil]-climbing organization of their incremental counterparts for supervised ]earning. As

such, they may suffer from ordering effects, in that they may discover different categories depending

on the order in which they process observations. The design of concept formation methods differs

from that of nonincremental clustering systems, in that it is largely motivated by the realization

that many real-world domains require continuous interaction with the environment. Mechanisms

for concept formation are designed to be rational but resource-bounded learners (Simon, 1969).

Each observationtriggerssmall changes to the currentcategoricalstructure,although simulated

forms ofbacktrackingmay be used to insurethatmajor changes can occur overtime. For example,

UNIMEM deletesa node and itsassociatedsubtreeifthe node's corresponding concept becomes

poor by a criterionsimilarto CLUSTER/2's fitmeasure. This allowsa new subtreeto be grown to

reflectthe characteristicsoffuturedata. Section4 elaborateson some of theseissuesinthe context

of our COBWEB system.

3. Psychological Constraints on Concept Formation

The previous sectiontouched upon psychologicalconsiderationsin concept learning,but itsmain

focuswas on searchas a genericframework inwhich to view thistask.The currentsectionconsiders

psychologicalfindingsin greaterdetail,notably typicalityand basic-leveleffects,along with their

implicationsforthe representationand formationofconcepts.

3.1 Typicality Effects and Probabilistic Concepts

Smith and Medin (1981)referto conjunctivedescriptions,discussedearlier,as classicalrepresenta-

tionsof conceptual structure.One implicationof such classicalrepresentationsisthat allconcept

members are treated equM1y during classification,since an observationeitherhas the requisite

conjunctionof featuresor itdoes not. However, experimentshave repeatedlyshown that human

subjectsdo not treatconcept instancesequally,but regard certainmembers as more 'typical'than

others.For example, in a targetrecognitiontask,subjectsmust determine ifa testinstanceisa

member of a targetcategory (e.g.,'Iss robin a bird?').Severalstudies(Rips,Shoben, 8z Smith,

1973;Rosch& Mervis, 1975) indicatethatsubjectsconsistentlyrespond aITtrmativelymore quickly

tocertainpositiveinstancesthan to others.For example, they willmore quicklyaITn'mthata robin

isa bird than they willaifixmthat a chickenisa bird. The relativeranking ofpositivetestitems

correspondsto a typicalityranking ofcategorymembers, and thisconclusionisbolsteredby results

in a varietyof other experimentaltasks(Mervis & Rosch, 1981; Smith & Medin, 1981).
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3.1.1 PIIOBABILISTIC CONCEPTS: INDEPENDENT CUE MODELS

Classical representations do not easily account for typicality effects, and in response, researchers

have proposed a number of alternative concept representations. Rosch and Mervis (1975) made an

early attempt to discover the structural determinants of typicality, finding that category members

sharing features with many other members of the same category tend to be judged more typical. In

addition, when a disjoint, contrasting category is involved, members that share few features with

members of the contrasting category tend to be judged more typical. This sensitivity to intra-

category and inter-category overlap of features is captured by their notion of family resemblance.

The apparent relation between family resemblance and typicality indicates the importance of

feature distributions in human classification. Although classical representations cannot capture such

distributional information, probabil/stic concept representations (Smith _ Medin, 1981) manage this

by associating a probability, weight, or some other confidence number with each feature of a concept

definition. A straightforward implementation is to store the conditional probability, P(f[C'k), of

each feature f's presence with respect to each category Ck; this is more commonly called the

category validity (Medin, 1983) of the feature. Recognition or classification using probabilistic

concepts usually involves summing the weights of features that are present in a new observation

(Collins & Loftus, 1975; Smith, Shoben, & Kips, 1974; Smith & Medin, 1981). Classification may

be based on whether this sum passes a specified threshold (Smith &Medin, 1981), as in neuron-llke

processing units (Nilsson, 1965; Hinton, 1989), or one may assign an observation to the category

that maximizes the sum, as in Bayesian classifiers (Duda & Hart, 1973).

The probabilistic account offers an explanation of typicality effects in that typical instances will

have features shared by many other members of the same category, giving them higher category

validities. If one assumes that recognition time is inversely proportional to these sums, then obser-

vations with high intra-category similarity will be recognized more quickly and thus be regarded

as more typical. On its own, this scheme does not explain the impact of inter-category similarity

on typicality, but one can easily imagine extensions that include cue validities (the conditional

probability of a category given a feature).

A more important limitation of this model stems from the fact that the recognition procedure is

based on individual, presumably independent, category validities. For this reason, it has been called

the independent cue model of concepts. A number of authors (Smith &Medin, 1981; Medin, 1983;

Hanson & Bauer, 1989) point out that independent cue models are representationally incomplete,

since summation of individual weights limits recognition to linearly separable categories (Nilsson,

1965). More generally, independent cue models do not capture the feature correlations that are

necessary for completeness and to which humans seem naturally attuned (Mervis &Rosch, 1981;

Medin, 1983).

3.1.2 ALTERNATIVES TO INDEPENDENT CUE MODELS

The apparent inability of independent cue models to capture bundles of correlated features has

led to a number of alternative models. One way to k_*ep track of feature correlations is simply

to remember instances of a concept, since each instance can be viewed as a maximally-specific
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conjunction of features. This is the approach taken in ezemplar representations (Smith _ Medin,

1981). An example of this approach is Reed's (1972) proz_mity model, which retains an extensional

listing of a concept's known members, classifying a new object as a member of a category, Ck, if it

matches another member of Ck more closely than a member of a contrasting category.

A disadvantage of the proximity model is that retaining an extensional listing of known category

instances becomes expensive as the number of observations grows. In response, some systems (Aha

Kibler, 1989) selectively retain only certain useful observations. A simple strategy is to retain

only observations that resulted in a misclassification during learning. 4 Computational experiments

demonstrate this strategy's advantage in terms of storage, but they also show accuracy benefits,

presumably because idiosyncratic observations are ignored and thus are not used in classification.

In contrast to selective retention, Medin and Schsffer's (1978) contezt model supports a form

of abstraction through selective attention. In particular, the model allows that a subject may not

attend to a feature, effectively dropping the feature from an observation. Classification assumes that

a new instance matches in parallel again_st the stored exemplars of each contrasting category, causing

sufficiently matching exemplars to be retrieved; an assumption is that an exemplar is retrieved with

a probability proportional to the degree that it matches the observation. An observation is classified

with the first concept for which a specified number of exemplars is retrieved. Presumably, the

context model would account for typicality effects, since new typical instances would more closely

match the typical observations currently stored; thus, a criteria/number of retrieved exemplars

would tend to be reached more quickly for typical instances.

Nosofsky's (1987) gene_lized contezt model extends ideas of selective attention by allowing

features to be weighted. Aha and McNulty (1989) demonstrate how these weights can be learned

in a supervised task. Feature weights serve to divert attention away from uninformative features -

those distributed across members of many categories - and focus attention on informative features

in classification. This variable treatment of features can capture the importance of intra-category

and inter-category overlap, and adaptations should model a variety of typica_ty effects. 5

Another alternative class of models assume a relational cue representation, which generalizes

on the independent cue approach. Like their precursors, relational cue models maintain proba-

bilities (weights, confidence values) for individual features in concept descriptions, but they also

permit joint probabilities of larger feature configurations, such as P(Color=red ^ Size=large ^

Shape--sphere [Ck)). Syntactically, these models are also generalizations of exemplar models, since

an instance can be viewed as a conjunction of features. However, the representational power of

exemplar and relational cue models are theoretically equivalent, since one can use stored exemplars,

as needed, to compute all the information used in relational cue models.

4. All of the exemplar models that we have reviewed assumes a supervised learning scenario, but similar best-match

procedures for classification are used in the single-linkage clustering methods that we discussed in Section 2.2

(Everitt, 1980).

5. Feature weighting appears to serve a purpose that is similar to r_usous for feature weights in independent cue

models, but exemplar models do not force a category to be represented by a single summary description as do

single independent cue concepts.
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Table i. Linearlyseparable and nonlinearlyseparablecategories(Medin, 1983).

LINEARLY

SEPARABLE

OBJECTS

NON-

LINEARLY

SEPARABLE

OBJECTS

CATEGORY C1

v_ v2 Vs V4

1) 1 1 1 0

2) 1 0 I 1

3) 1 1 0 1

4) 0 1 1 I

9) 1 0 0 0

10) 1 0 1 0

11) 1 1 1 1

12) 0 1 1 1

CATEGORY C2

v_ v_ vs v4

5) I 0 1 0

6) 0 1 1 0

7) 0 0 0 1

8) I 1 0 0

13) 0 0 0 1

14) 0 1 0 0

15) 1 0 1 1

16) o o o o

One example of a relational cue model is Hayes-Roth and Hayes-Roth's (1977) property-set model,

which supposes that a feature conjunction is stored with a count of the observations in which it

occurred. A new observation is classified with the concept that contains the most 'diagnostic' con-

junction of features (i.e., the combination with the highest cue validity). The feature conjunction

for which P(Ckl(conjunction)) ismaximized (over all Ck) dictates that an observation that sat-

isfiesthe conjunction should be classifiedas a member of Ck. The property-set model stores the

frequencies needed to compute cue validities(rather than category validities)for allsinglefeatures

and conjunctions of features.

In many cases,a feature combination may be useless for classification;trivially,ifsmall objects

are equally splitbetween two classes,then smallness alone will give no help in classification.Thus,

a reasonable storage strategy would throw out feature conjunctions that do not aid classification

(e.g.,those with cue validitiesthat are roughly equal for all categories). This strategy has been

used for supervised learning by Anderson and Kline's (1979) ACT and by Schlimmer and Granger's

(1986) STAGGER, whereas Chalnick and Billman (1988) have used relationalcue representations for

concept formation. The latter system removes features that do not add to the informativeness of

a composite feature. Martin (1989) takes the opposite approach, adding features to a conjunction

only ifthey add to the informativeness of the conjunction.

3.1.3 PROBABILISTIC CONCEPT HIERARCHIES

Exemplar and relationalcue models both address a purported weakness of independent cue models

- their inabilityto explicitlycapture correlations between features. However, as we will show,

this limitation does not apply to network of independent cue representations. A combination of

such concepts has the same representational power as exemplar and relationalcue models. Similar

completeness arguments occur inthe literatureon neural computing (Nilsson,1965), where networks

of simple classifiers(e.g.,linear threshold units) can achieve representational completeness, even

though their components are severely limited.
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Linearly Separable

root

101X 011X 0001 11XX

Noniinearly Separable

root

XX11

A A
(2) (5) (4) (6) (1) (3) (8) (11) (12) (15)

C1 C2 Cl C2 Cl C1 C2 C1 C1 C2

10X0 (C1) 0XOX (C2)

(9) (10) (13) (14) (16)

C1 C1 C2 C2 C2

Figure i. Concept trees over nonlinearly and linearly separable categories.

As we have noted, concepts that are represented using independent cues are individually limited

to the recognition of linearly separable categories. Medin (1983) suggests that if independent

cue models are the basis of human conceptual structure, then in some cases linearly separable

categories should be easier to learn tlum nonlinearly separable ones. An investigation into this

question required that subjects learn, under supervision, one of the two category pairs displayed

in Table 1. Observations were characterized in terms of four binary-valued attributes, AI through

,44. Subjects judged the linearly separable set more difRcult to learn, and this set also resulted

in more recognition errors. Gluck, Bower, and Hee (1989) have accounted for similar data with a

relational cue model in which pairwise composite cues are used to convert the nonlinearly separable

categories to linearly separable categories. This transformation makes the concept easier to learn

in composite-cue space than the orig_aal linearly separable categories.

An alternative account of these d_ta exploits the notion of probabilistic concept hierarchies. Con-

sider the concept trees of Figure 1, which discriminate the category pairs of Medin's experiments, e

An independent cue model insists that each node divides the total set of observations into linearly

separable categories. However, this division need not correspond to the sets that were taught,

CI and C2. Rather, like a decision tree (Quinlan, 1986) or discrimination network (Feigenbaum,

1963; Kolodner, 1983; Felgenbaum & Simon, 1984), members of a given class may reside in distinct

portions of the hierarchy.

One can think of tree construction as being guided by the simple heuristic of grouping objects

having the most features in common. The actual method used to form the hierarchies in the figure

is more complicated (as described in Section 3.2), but the simplification is consistent with this

technique and with intuitions about independent cue representations. The trees reveal that several

atypical members of GI in the linearly separable set share many properties with C2 and vice versa.

Thus, these similar items are reasonably placed within the same mid_e-level nodes of the hierarchy.

Observation 7 is quite unlike any other instance, placing it in a separate category. On the other

hand, there are fairly specific patterns that perfectly discriminate many members of contrasting

6. For simpliclty, the concepts lot the nodes in Figure 1 lureabbreviated by = pattern (e.g., IO1X) thst is common

to all category (node) members; 'X' denotes an a.ttfibute in which no single value is common to sl/members.
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categories in the nonlinear domain. Medin's finding can be explained in terms of the average depth

to which observations must be classified before one can perfectly distinguish members of C1 from

C2. The linearly separable set requires an average depth of 1.87 before reaching a node that contains

only members of one category; in contrast, the nonlinearly separable set has 1.37 as its average

depth.

Our demonstration is simplified, but it nonetheless illustrates that hierarchies or other networks

of independent cue concepts have the same representational power as exemplar and relational cue

models. Linearly separable representations direct classification to deeper levels of the tree until a

perfect discrimination can be made. In addition to their representational strength, hierarchies offer

efficiency advantages. A tree structure allows recognition to occur in logarithmic time as a function

of stored observations, rather than in linear or exponential time, as it does for some alternatives.

We now turn our attention to heuristics for guiding the formation of such concept hierarchies,

focusing on the evidence for preferred concepts in human memory.

3.2 Basic-Level Effects and Concept Quality

Psychologicalstudieshave shown that,withinhierarchicalclassificationschemes, there appears to

be a basiclevelpreferredby human subjects.For example, in a hierarchycontaining {animal,

vertebrate,mammal, dog, collie},subjectbehavior may indicatethat 'dog'liesat the basiclevel.

Rosch, Mervis,Gray,Johnson, and Boyes-Braem (1976)used a targetrecognitiontaskto show that

subjectsare quickerto confirmthat a testitem isa member ofsuch a basiccategory than they are

fora superordinateor subordinatecategory.In a forcednaming task (Rosch etal.,1976;Jolicoeur,

Gluck, & Kosslyn, 1984),a subjectisshown a pictureof a particularitem and asked to respond

with itsidentity.

3.2.1 EARLY MEASURES FOR PREDICTING THE BASIC LEVEL

The identificationofpreferredconceptsinhumans must constrainany model ofhuman classification,

and it may alsoprovide a basis for principledmeasures of concept qualityfor use in concept

formationby human and machine. Infact,researchershave proposed anumber ofmeasures designed

to predictthe basiclevel.An earlyproposal (Rosch et al.,1976) postulated that a basic-level

category m_es the totalcue validity/of a category over featuresthat are shared by allor

most members of the category(i.e.,only featureswith high categoryvalidity).This can be stated

formallyas

Y]jP(C_]P_) forfeaturesVj such that P(Vj[Ck) _ 1.0

Rosch et al.did not specifyhow closeto unitya categoryvaliditymust come beforeitisincluded

in the calculationof totalcue validity.

Jones (1983)has proposed anothermeasure, calledcollocation,thatdirectlyincorporatescategory

validityintothe predictionofbasiclevel.This functioncan be statedas

collocation(l_,Ck) = P(Ck]l_)P(l_[Ck)
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He argued that a basic-level node (e.g., bird) has more collocation.maximizing values among its

ancestral-related nodes (e.g., animal, robin) than concepts at other levels. Neither Rosch nor Jones

compared their measures' predictions against experimental results, but both suggested that the

basic level maximizes a tradeoff between cue and category validities over descriptive features.

3.2.2 CATEGORY UTILITY

The notion of a tradeoff is also important to a third measure that has been proposed to predict

basic-level categories (Corter _ G1uck, 1985; Gluck L, Corter, 1985). This function, called category

utility, can be developed from a weighted variation on the collocation measure:

__, P(V_ )PC CkI_ )P(VjlC, D , (1)
J

where P(_) weights the contribution of individual feature collocations by the base rate of the

respective feature. In essence, this measure reflects the importance of increasing cue and category

validities for more frequently occurring features.

However, Corter and Gluck did not express category utility as an extension to collocation. Rather,

they devised it with the idea that basic-level categories are preferred because they best facilitate

predictions about observations in the environment. In their view, category utility is a function of

a category's prediction potential, or

PCCk)E(number of correctly predicted  lck) ,

which is a tradeoff between the ezpected number of features that can be correctly predicted about a

member of a category Ck and the proportion of the environment P(Ck) to which those predictions

apply.

Assuming a probability matching strategy for prediction (Bruner, Goodnow, H Austin, 1956),

the expectation can be further formalized by noting that one can predict a feature with probability

P(Vj]Ck), and that this prediction will be correct with the same probability:

P(Ck) _ P(_lCk) 2 (2)
J

Clearly, a probability mazimizing strategy (Bruner, Goodnow, & Austin, 1956) has advantages in

actually generating predictions. However, it is important to realize that it is not superior in terms of

heuristically ordering categories in terms of prediction potential, which is the intent behind category

utility. In fact, there are important advantages to assuming a probability-matching strategy when

forming categories, as detailed by Fisher (1987a).

Simple algebraic manipulations show the equivalence of functions (1) and (2). Thus, category

utility can be viewed as s tradeofl" between cue and category validity, as well as a function that

measures a category's prediction potential. More intuitively, these views can be unified by noting

that the P(_ICk) term reflects the importance of categories with predictable features (Tversky,
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1977; Lebowitz, 1982; Kolodnex, 1983), but that features must also be predictive or discriminating

of a category (Tvexsky, 1977; Lebowitz, 1982; Kolodnex, 1983), so that a one can classify an instance

and access predictable features. Finally, Cortex and Cluck (1985) define category utility as the

increase in the expected number of features that can be correctly predicted, given knowledge of a

category, over the expected number of correct predictions without such knowledge. The expression

cu(c, ) = P(Ck)[ - P(Vj)
J J

provides a forms] statement of their complete definition of the category utility CU.

(3)

3.2.3 PROPERTIES OF CATEGORY UTILITY

There are severalpropertiesof categoryutilitythat are worth mentioning at thispoint.First,the

measure has the desirableproperty that itwillbe zeroifallfeaturedistributionsare independent

ofmembership in a category.That is,if

P(_ICk) = e(_) ,

then

p(p_lCt)2_ p(p_)2 = 0 ,

and P_ willbe 'irrelevant'to a category'sscoreand presumably to an observation'smembership in

Ck. If all such features are independent, then CU(Ck) = O.

Second, category utility is not a function of feature correlations, but categories that capture

featurecorrelationswilltend to have higherscoresfor thismeasure. If category C'k captures a

correlationbetween N features,then the sum ofthe individualcategoryvaliditieswillbe higherthan

ifthe correlationiscapturedonlyin partornot atall.This propertyhas important implicationsfor

the processofconcept formation,in thatitletsone capturefeatureintercorrelationswithout their

'direct'computation. Rather than computing P(VI A V2 A ...A Vn) explicitly,concept formation

can introducea categoryC_ that convertsthe taskof computing P(VI A V2 A... A VnlCk) to one of

computing P(Ck) I'I_=iP(ViICk)•In words, C_ isan auxiliaryvariablethatmay leadto conditional

independence among some features(Pearl,1985).

To see thispoint,considerthe hierarchiesof Figure 1,which were formed using category utility

as a decisionheuristic.Note thatthe term P(ViICk) equals1.0forthosefeaturesshown withineach

middle-levelcategory.Trivially,the distributionsof thesefeaturesare conditionallyindependent of

other featureswithinthe same class.Nodes in the treetend tocapture distinctsetsof correlated

features;the probabilityof each conjunctionof featuresshown at a node issimply the probability

of the category,P(Ck), sinceI'I_=IP(P_ICk) = I'I'_=I1.0 = 1.0.These computations may not be

so cleaninother domains, but one can nonethelessefficientlyand effectivelycompute such feature

correlationsthrough the interactionof concept hierarchiesand an independent cue heuristic.
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3.3 Summary

To summarize, psychological findings indicate that there are important constraints on the repre-

sentation and access of concepts. In particular, typicality effects suggest that classical concept

representations are untenable in many situations, since some category members receive preferential

treatment. We have advanced probabilistic concept hierarchies as a representation scheme that

supports these preferences, in which features vary in their contribution to family resemblance and

classification. Furthermore, tree-structured probabilistic concepts are representationally complete;

they do not suffer from the limitations of independent cue concepts in isolation, such as a restriction

to linearly separable categories.

In addition to intra-category preferences implied by typicality rankings, basic-level effects suggest

that humans also give preferential treatment to certain categories over others. These preferences

can be predicted in static memory structures by measures like category utility. However, these same

human preferences undoubtedly play a significant role in concept learning, as well as retrieval. This

supposition is supported by studies (11osch et al., 1976) which indicate that basic-level categories

are learned before either subordinate or superordinate categories. We now describe the manner

in which predictors of human categorization preferences can be adapted to the task of concept

learning and classification.

4. A Model of Concept Retrieval and Learning

In this section we describe COBWEB (Fisher, 1987a, 19871)), a concept formation system that adapts

category utility to the task of concept learning and recognition. Our initial motivation for using

category utility was that it rewards categories that improve prediction, a characteristic made evi-

dent by Gluck and Corter's analysis. Thus, this section's perspective is primarily computational,

but rational (Anderson, in press) and speculative (Hall _k Kibler, 1985) analyses posit that compu-

tational and psychological concerns are not independent. In Section 5, we expand our discussion

to selected psychological findings.

We will describe COBW]_B in terms of the search framework that we presented earlier. Conve-

niently, one can easily transform category utility from a characteristic function of static concept

hierarchies to a heuristic _uide for concept learning. In particular, one can partition a known set

of observations into contrasting categories, C_, so as to m_miT.e the average ut/lity of categories

in the partition or

c (ck)

where n is the number of categories in the partition. Because category utility requires only in/orma-

tion about individual feature distributions within each Ck, one can effectively represent a category

with an independent cue representation, where each feature, _, is weighted by P(Vj[Ck).

Figure 2 illustrates that contrasting categories can be organized under a root node whose features

are weighted by applicable base rate probabilities, P(Tv_[root)_ P(_v_). In this case, observations

correspond to the voting records of U.S. congresspersons on key issues with values of 'yea' or
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Root

(U.S Representatives)

Party=Dem(0.98)

Party=Rep(0.02)

Immigration=yea(0.41 )

Test-Ban=yea(0.9)

F ree- Exports=yea(0.65)

Party=Dem(0.6)

Party=Rep(0.4)

Immigration=yea(0.49)

Test- Ban=yea(0.86)

Party=Dem(0.88) [

Immigration=yea(0.71 )

Test-Ban-yea(0.86)

Free-Exports=yea(0.17)

Party=Dem(0.19)

Party=Rep(0.81 )

Immigration-yea(0.58)

Test-Ban=yea(0.81 )

Figure 2. A sample probabilistic concept hierarchy over congressional voting records.

'nea' (Lebowitz, 1987). T In addition, we assume that each category is weighted by the proportion

of observations, P(Ck), classified under it. By definition P(root) = 1.0. CoIlectiveiy, P(Ck)'s,

P(Vj)'s, and P(_[Ck)'s supply the requisite information for calculating category utility.

Conceptually, the easiest way to find an optim_ set of contrasting categories is to exhaustively

search the possible partitions of the known observations. This can proceed in a manner similar

to the specific-to-general search that we described earlier: given a partition over rn observations,

consideration of the rn + 1st observation generates rn new partitions, each the resuit of placing

the observation into one of the existing categories. In addition, there is an rn + 1st partition that

results from creating a new singleton category that contains only the new observation. The search

for the best partition ceases when one encounters the last observation; one can then identify the

partition with the best average category utility from among the alternatives. At this point, one can

simply return the best partition or one may further decompose each category of the best partition

by recursive/y applying the exhaustive search procedure over the subset of observations that are

classified by the category. This recursive procedure results in a tree of probabilistic concepts.

This exhaustive approach is clearly impractical, since the procedure requires that one examine

alternative partitions that grow exponentially with the number of observations. Search is reduced

significantly in systems like CLUSTER/2 by maintaining a fixed number of alternatives after each

observation. The hill-climbing approach described in Section 2.3 restricts the number of alternative

partitions that are maintained to one. In particular, FiBber's (1987a, 1987b) COBWEB assimilates

an rn + 1st observation by evaluating the partitions that result by adding the observation to each

existing category and the partition that results from creating a new singleton category. It then

7. We only list 'yea' v,dues on _.lected votes, but all features" with nonsero probability at a node axe stored at the

node.
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Leazning curves for three attributes in the congressional domain.

evaluates each of these alternatives using category utility and retains the best choice. If the instance

is incorporated into an existing category, then the observation is assimi]ated into the respective

subtree by the same procedure, s Anderson (in press) has recently described a similar approach, in

which a Bayesian measure guides the incremental assimilation of new observations.

As with assimilation, COBWEB also uses category utility to guide object recognition: an ob-

servation is sorted down a path of 'best matching' categories to a leaf, at which point the new

observation may be recognized as matching the leaf. For example, consider the congressional rot-

ink records classified by the tree of Figure 2. A new voting record oi" unknown political party may

be recognized (perhaps incorrectly) as an instance of the political party of the best-matching leaf.

As we discussed in relation to linearly separable categories, this strategy lets category members be

distributed throughout the tree, and not restricted to one node of the tree.

l_.ecognition need not be limited to any particttlar category label (e.g., party), so that one can

predict any unknown feature in this manner. This capability can be tested systematicaJ]y by mea-

suring predictive accuracy at intermittent points in the evolution of a prohabilistic tree. The system

is presented each 'test' item with one or more attributes removed, it sorts the incomplete obser-

vation to the 'best-matching' leaf of the concept hierarchy, and it predicts the missing attributes

based on those in the leaf. This occurs for all attributes of all test items, thus yielding an accuracy

level for each attribute. The graph of Figure 3 shows sample 'learning curves' for the attributes

POLITICAL PAItTY, IMMIGItATION-VOTE, and SATELLITE-TEST-BAN.

In general, prediction accuracy for an attribute is closely related to the attribute's inter-correlation

with other attributes of the domain. Political party is highly correlated with other attributes,

whereas a congressman's vote on an immigration bill is relatively uncorrelated with other features.

These data support earlier claims that category utility captures correlations in the data when cou-

pled with appropriate learning mechanisms. Similar findings hold for other natural domains and

for artificial domains in which one can systematically vary the amount of intercorrelation (Fisher,

8. ConwEs only handles nom_-ny-vsIued attributes, but Gennsxi, Lansley, and Fisher (1989) describe CLXSSST, a

descendent of COBWEB that mumes continuou_y-vnlued attributes.
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1987a, 1987b; Gennari, Langley, & Fisher, 1989). Not surprisingly, in domains with very little

inter-correlation, the learning rate and the asymptotic accuracy suffers greatly. For some features,

the system's predictive ability may even be worse than chance.

The reason for COBWES's poor behavior with respect to some features is that classification to a

leaf often simulates a probability-matching strategy (Bruner, Goodnow, & Austin, 1956). Viewed

in statistical terms, sorting to a leaf may overfit the data. Recall from Section 3.2 that category

utility has the desirable property that features which are independent of category membership will

not influence classification at deeper levels, since P(I_ICk) _ - p(_)2 = 0. Inversely, an attribute's

independence should also signal that deeper classification will not aid prediction of the attribute.

Thus, one should follow a probability maximizing strategy at an appropriate point in classification.

Several heuristics for identifying points of approximate feature independence and points of optimal

prediction (Quinlan, 1986; Fisher, 1989) have produced significant advantages in terms of prediction

accuracy.

Our summary of COBWEB has been brief, in part because the precise nature of the learning

operators is of limited relevance to the forthcoming discussion. Rather, the important assumptions

are that memory is organized into probabilistic concept hierarchies and in a manner that is guided

by category utility. This section has illustrated that one can carry out the process incrementally

and in a manner that seems consistent with many aspects of human learning (Simon, 1969; Langley,

Gennari, & Iba, 1987; Anderson, in press). However, as described here, COBWEB's hill-climbing

learning method exhibits ordering effects that we have detailed elsewhere, along with simulated

backtracking mechanisms that mitigate the effect (Fisher, 1987a, 1987b; Gennari, Langley, & Fisher,

1989). Finally, our evaluation of COBWEB has been in terms of prediction accuracy of features and

category labels. This is an important evaluation criterion in machine learning, but one that is

intimately related to the psychological literature on recognition (e.g., Feigenbaum, 1963). We will

now investigate the psychological plausibility of our methods for recognition, classification, and

prediction.

5. An Analysis of Memory Phenomena

In this section we extend our analysis of COBWEB and category utility to a number of psychological

phenomena. Our discussion is very much in line with Anderson's (in press) rational analysis of

cognition. In effect, Gluck and Corter's derivation of category utility stemmed from the prescription

that categories facilitate accurate prediction. We open the section by introducing some conventions

that are important in our analysis of the basic level, typicality, and fan effect data that follow.

5.1 Category Match

A common thread in each of the psychological studies that we examine is the use of subject response

time to queries about experimental stimuli. For example, subjects might be required to verify that

a stimulus is a member of a previously learned category. This section illustrates that response time
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Figure 4. Approximation of a tree from Hoffman and Ziessier's (1983) basic-level studies.

in each of these studies is well predicted by a simple variation of category utility that is only a

function of the features occurring in the observation (stimulus) being classified:

P(Ck) _"_[P(_ICs=) 2- p(_)2] ,

J

for Vj present in the observation. We will call this category match because it intuitively corresponds

to the degree that an observation matches a category and the extent to which that category is

activated during recognition. The measure also fits Tversky's (1977) model of category-object

resemblance, in that it is a function of category size (P(Ck)) and sums over the features that 'agree'

and 'conflict'. ° If the amount of conflict between features outweighs the amount of agreement then

category match will be negative; trivially, if an observation has a feature that is not present in any

category member, then P(V'IC ) = 0.0 and P(VIC) _ - P(V) 2 < O.

Intuitively, category match corresponds to activation strength, which we might assume to be

inversely related to response time (Collins & Loftus, 1975). However, this section will concentrate

primarily on the predictive (or descriptive) links between category match and human response

time. That category match turns out to be a good predictor of response time is not strongly tied

to particular 'implementation' details (e.g., the precise nature of the classification procedure), but

relies only on general assumptions about memory organization: that probabilistic concepts are

hierarchically organized in a manner that is guided by category utility, l° There will be exceptions

to this section's exclusion of 'implementation' detail, but only on occasions when it seems most

productive to explain counterintuitive findings. We will more thoroughly discuss how the predictions

9. Most often there will not be perfect agreement or contiict between an observation's feature _nd a category's

feature distributions. RAther, the amount of agreement sad conflict is weighted. Had--ikadic and Yun (1989)

use a measure of similar intent in their INC system, but relevance is only computed over features shared by the

observation sad class. Computer experiments by Fisher (1987) indicate th&t classification and learning behavior

using category match closely approximate the behavior of the full category utility measure, with differences only

occurring very early in tra_ing.

I0. In fact, this is a desirable characteristic that is enforced by methodologies for system development that segregate

stages of specificatwn, design, sad imp|ementation. Within cognitive science, these stages are roughly analogous

to Mart's (1982) three levels of description for information proce_ng systems.
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Table 2. The encoded tree from Hoffman and Ziessler (1983).

SUPERORDINATE

ToP-I

TOP-2

BASIC LEVEL

MIDDLE-1

MIDDLE-2

MIDDLE-3

MIDDLE-4

SUBORDINATE [J OUTER INSIDE BOTTOM

LEAF-1

LEAF-2

LEAF-3

LEAr-4

LZA_-5

LEA_-6

LEAF-7

LEAF-8

0 0 0

0 0 1

1 2 2

1 2 3

1 3 0

1 3 1

0 4 2

0 4 3

of category match can be implemented by the classificationmechanisms of a CoBWEB-like system

in Section 6, but for now we turn our attention to the predictive merits of category match with

respect to basic level,typicality,and fan effectphenomena.

5.2 Basic-Level Effects

Gluck and Corter (1985) verifiedthat category utilitypredicted the basic levelin two experimental

studies (Hoffman & Ziessler,1983; Murphy & Smith, 1982): a basic-levelcategory maximizes

category utilityamong itsancestors and descendents. In a study by Hoffman and Ziessler,subjects

learned a classificationtree over 'nonsense' objects like the one shown in Figure 4. Each category

(node) had a 'nonsense' name that subjects used to identify category membership in recognition

tasks. Objects were defined in terms of three attributes: the shape of the INSIDE subcomponent

with values SQUARE, TRIANGLE, STAR, or CIRCLE (encoded as 0, 1, 2, and 3, respectively); the

OUTER shape, with (encoded) values of 0 and 1; and the shape of the BOTTOM, with values 0, 1, 2,

and 3. Table 2 shows the encoding of the Hoffman and Ziesslerdata that was assumed by Corter

and Gluck. For the tree of Figure 4, subjects consistently 'preferred'level two (where the root is

at levelzero).

To account for the order in which subjects verify category membership, we use the category

match measure. Figure 4 shows the match scores of several categories (nodes) obtained for the

observation (OUTER -- 0, BOTTOM -- 0, INSIDE = 0}. The appropriate basic-levelcategory is the

most highly rated, with category match indicating a negative score for some categories for which

the observation isnot a member. Intuitively,a negative score indicates that an observation and

a category's feature distributions conflictmore than they agree. This simulation assumes that

classificationoccurs with respect to the tree that subjects are explicitlytaught, and that a verbal

indication of the target category activates a corresponding node in the tree. When classification

via the perceptual cues of a pictured observation reach the verbally signifiednode, the observation

isidentifiedas a member of the target.
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Table 3. Our encoding of the Murphy and Smith (1982) tree.

SUPERORDINATE BASIC LEVEL SUBORDINATE IIHANDLE SHAFT HEAD
11

TOP-1

TOP-2

MIDDLE-1

MIDDLE-2

MIDDLE-3

MIDDLE-4

SUB-I

SUE-2

SUE-3

SUE-4

SUE-5

SUB-6

SUB-7

SUE-8

SIZE

2 2 0 0, I

2 2 1 0, I

0 3 3 O, I

I 3 3 O, 1

3 4 4 0, I

3 4 5 O, 1

4 0 6 O, 1

4 1 6 O, I

HoiTman and Ziessler also explored two other trees over the same objects of Figure 4. One variant

resulted by placing nodes Middle-1 and Middle-4 under the same top-level node and Middie-2 and

Mid_e-3 under the same top node. In this variant subjects treated the top nodes as basic, but

category match predicts a tie between the top and midd]e nodes in this tree - middle and top nodes

each match their respective observations with a score of 0.469. This is similar to the predictions

found by Gluck and Cotter with the full category utility measure. In Section 6 we speculate on a

resolution to this tie that involves selectively 'masking' -nlnformative features in the category match

computation. A third tree was also used by Hoffman and Ziessler in which subjects regarded the

bottommost level of leaves to be basic. As with the tree of Figure 4, the basic level is unambiguously

identified by category match.

Gluck and Cotter also evaluated category utility in light Of experiments by Murphy and Smith

(1982). Once again, in this study subjects were trained to recoEndze instances of categories arranged

hierarchically. In these experiments objects were abstract 'tools' that varied along four perceptual

dimensions (tool size and the types of hancUe, shaft, and head). Categories were assigned nonsense

names of equal length, and target recognition studies behaviorally identified one level as basic. In

addition, Murphy and Smith also looked at 'false' cases, in which an observation was not a member

of the given target. In each of the false cases, a test item from a different superorclinate category

than the target concept was selected. Data from the true cases support previous findings on basic-

level preference, but they found that subjects showed some tendency, although not statistical]y

significant, to more quickly reject the 'false' cases as members of subordinate target categories than

basic targets.

Table 4 summarizes the average subject response times and category match scores in the true

and false cases. In the true cases we report category match of an observation with each category to

which it belongs. In the false case, the match between an observation and unrelated superordinate,

basic, and subordinate targets are reported. In both the true and false cases, category match

correctly predicts response time orders: as category match increases response time decreases. In

the false cases all category match scores are negative because'there is no feature overlap between

a test observation and target concept. In fact, the difference, P(VIC) 2 - P(V) 2, is equal for all
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TaMe 4. Average response times (Murphy & Smith, 1982) and category match rankings.

SUPERO RDINATE

BASIC LEVEL

SUBORDINATE

TRUE CASES FALSE CASES

RESPONSE CATEGORY RESPONSE CATEGORY

TIME MATCH TIME MATCH

879MS 0.21 882MS --0.070

678MS 0.53 714MS --0.035

723MS 0.36 691MS --0.018

categories in the false case; the difference in false category match scores is due solely to the P(C)

term of category match, which magnifies the negative difference for higher level categories. We have

no strong hypothesis regarding these data, other than to suggest that when no featural connections

exist between an observation and a category, as is the case here, it is reasonable to assume that any

search of the category membership proceeds in time proportional to the category's size as reflected

in P(C).

Murphy and Smith performed a second experiment intended to expand their findings about

subordinate recognition in the false case. In particular, they reported response times for cases in

which the observation was not a member of the subordinate target, but (1) was a member of the

same basic category, (2) was a member of the same superordinate category, but not the same basic

category, and (3) was not a member of the same superordinate category. These cases vary the

'relatedness' of the target and observation, with (1) being the most related of the false cases and

case (3) being totally unrelated. Table 5 shows the response times, which indicate that items of

the same basic category require greater time to reject than the other two cases.

To explain their findings, Murphy and Smith propose a preparation model of classification and

category structure. In this model, a verbal cue activates the target category and its 'conceptual'

definition. Recognition occurs by summing the number of concept features that match an obser-

vation, as well as the number of conflicting features. An observation is accepted or rejected as a

category member when a concept-specific 'threshold' is reached. Separate thresholds are presumed

for acceptance and rejection. Like the preparation model, our application of category match is

effectively a summing procedure. However, our category match data and our earlier discussion of

classification in systems such as COBWEB suggests a different view of true and false recognition.

To motivate our processing assumptions consider the category match scores in Table 5. The

negative category match scores accurately predict no difference between the unrelated and same-

superordinate case, but a positive score is shown for the same-basic condition. This violates our

assumption that category match and response time are inversely related, since subordinate rejection

required the longest response time. To maintain consistency we must assume that match scores on

opposite sides of zero are inverted in their relation to response time. In addition, we posit that a

category match of zero (or less) may be regarded as a category-independent cause for rejecting an
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Table5.Averageresponsetimes(Murphy & Smith,1982)and categorymatch rankingson falsedatawith

varyingdegreesofrelatedness.

DISTINCT SUPERORDINATE

SAME SUPERORDINATE

SAME BASIC

RESPONSE CATEGORY

TIME MATCH

691MS --0.018

687MS --0.018

902MS +0.232

observation.Intuitively,thisisdesirablebecause a negativescoresuggestsgreatermismatch than

match offeatures.

Conversely,we arealsoconcerned with criteriaforsuccessfulclassification.Systems likeCOBWEB

assume thatan observationisclassifiedwith the categorythat mazirn{zesactivation.We assumed

in discussingthe Hoffman and Ziesslerstudiesthat successfultargetrecognitionoccurred when

activationthat was triggeredby perceptual cues reached a verbally-activatedtargetnode; this

suggeststhat recognitionisnot simply a processof directcomparison between targetdefinition

and observationas the preparationmodel suggests,but ismediated by other memory elements.

Our views of successand failurein recognitionare unifiablewhen one considersthat categories

along the path to a targetmay induce conditionalindependence with respect to featuresthat

are common to allor many subordinates.Category match's subtractionof base rate probabilities

insuresthatsuch featureshave no impact on classification,but an observation'sremaining features

may conflictwith a concept and resultin a negativematch at that levelof classification.Thus,

our view isthat the best matching node in memory definesa variable'threshold'that cannot be

achievedby any contrastingcategory.Competing categoriesare removed as candidateswhen their

conditionalmatches drop below a category-independentthresholdof zero. Our analysispredicts

thatthe subordinatecategory of Table 5 isrejectedmore slowlybecause itspositivescorerequires

thatit'compete'with contrastingcategoriesforsome periodof time.

In summary, a qualitative characterization that captures all of the false response times (i.e.,

Tables 4 and 5) is that they vary proportionally to the absolute value of category match. In

contrast, response times for true cases vary inversely with category match. More generally, we

suggest that category-specific thresholds are not required in the false or true cases. Instead, positive

and maximizing activation strength may be the sole determinant of categorization.

5.3 Typicality Effects

Our discussionhas replicatedGluck and Corter'sanalysisofbasic-leveleffectswith categorymatch

and extended ittoMurphy and Smith's'false'data.In thissectionwe extend theirrationalanalysis

of categorystructurefurtherby using categorymatch to predicttypicalityeffectsin probabilistic

trees.To review briefly,typicalitystudiesindicatethat,in'additionto the between-categorypref-

erencessuggestedby basic-leveleffects,humans alsoexhibitpreferenceswithin categories.
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A

B

Table 6. Nonsense strings used by Rosch and Mervis (1975) to test typicality differences.

(A)

LETTER INTRA-CATEG. TYPICALITY

STRING OVERLAP

JXPHM Low Low

QBLFS Low Low

XPHMQ MEDIUM MEDIUM

MQBLF MEDIUM MEDIUM

PHMQB HIGH HIGH

HMQBL HIGH HIGH

CTRVG

TRVGZ

RVGZK

VGZKD

GZKDW

ZKDWN

(B)

LETTER INTER-CATEG. TYPICALITY

STRING OVERLAP

HPNWD Low HIGH

HPC6B Low HIGH

A HPNSJ MEDIUM MEDIUM

4KC6D MEDIUM MEDIUM

GKNTJ HIGH Low

4KCTG HIGH Low

8SJKT

8SJ3G

B 9UJCG

4UZC9

4UZRT

MSZR5

5.3.1 TYPICALITY AND INTRA-CATEGORY SIMILARITY

To demonstrate consistencywith typicalityeffects,we willfocuson studiesby Rosch and Mervis

(1975).Their experimentsdemonstrate thattypicalityincreaseswith the number offeaturesshared

with other objectsof the same category and variesinverselywith the number of featuresshared

with members of contrastingclasses.In theirstudy ofintra-categoryinfluences,Rosch and Mervis

used the 'nonsense'stringsin Table 6 (a).Members of categoryA variedin the extentthat they

overlapwith other members of the same class.For example, the symbols of 'QBLFS' appeared in

an average of 2.0 other stringsof category A, whereas the symbols of 'HMQBL' were shared by

3.2 other members of categoryA. The inter-classoverlapbetween members of A and B was held

constant (i.e.,there was no overlap).After subjectslearned to distinguishcategoriesA and B,

the average time to classifyletterstringsas members of A or B was determined. Response time

decreasedas the amount ofintra-categoryoverlapincreased,supportingthe hypothesisthattypical

instancessharedmore propertieswith othermembers ofthe same class.

To analyze the Rosch and Mervis data itis important to distinguishthe task performed by

subjectsin typicalityexperimentsfrom the basic-levelstudiespresentedearlier.In the target

recognitiontasksitappears that categorymatch appliedto the targetconcept isa good predictor

ofresponsetime ranking,but unlikethe basic-levelstudies,Rosch and Mervis did not givesubjects

a targetcategoryforwhich membership had to be verifiedor rejected;they requiredthat subjects

predictthe membership of an observation.Thus, assumptions about the portionsof memory that

may be examined duringclassificationare lessclear.For thisreasonour analysiswillfocus on two

strategiesofrepresentationthatmight reasonablybe used toencode the typicalitystimuliby human
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I Class=A(1.0) ]

M(1.0)

J(0.33)

JXPHM XPI-IbtQ PHMQB

Root

Class=A(1.0)

M(0.83)

S(0.167)

Class=A(0.5)

Class=B(0.5)

Q(0.417)

S(0.083)

Class=A(1.0) ]
Q(1.0)

sio.33)

_ _ HM_t.

Class=B(1.0)

G(0.83)

C(0.1 67)

Figure 5. A concept hierarchy that summarizes the intrs.category overlap data.

subjects; by considering two alternative encodings we hope to better illustrate the robustness oi"

category match as a predictor of response time.

The first strategy, which we term local, assumes that each category is associated with a dis-

tinct independent cue concept; this is shnilar to our assumptions in the basic-level studies. An

observation is classified with the category that m,LYimi,.es category match in time that is inversely

proportional to the match score. A second strategy is inspired by a general processing assumption

discussed in relation to the Murphy and Smith data: recognition effects are mediated by concepts in

memory other than the target or, in this case, the possible targets. A dL_tr_buted strategy assumes

that category members may be distributed throughout memory. This was an important assump-

tion behind our discussion of linearly separable categories in Section 3 and prediction accuracy in

Section 4. In a distributed representation, externally-defined categories need not correspond to

nodes in memory, but external-category 'features' or labels can be used to predict the membership

of an observation. In modeling this strategy, we use COBWEB to organize the strings of the Rosch

and Mervis studies, thereby simulating a subject's training phase. A test item's external-category

membership is predicted at the concept tree node that maximizes category match and at which a

prediction of external-category membership can be made with certainty (i.e., an external category

label has a probability of 1.0 at the node). Time is assumed to be inversely proportional to the

category match score of this node. 11

Table 7 (a) shows response times for category A test items and category match scores for local

and distributed representations. Because COBWEB is sensitive to input order, the distributed

representation scores are averaged over 20 trees constructed from random orderings of the data

strings. A representative tree for these data is shown in Figure 5. Since there is no overlap between

II. We could have also given a distributed account of buic-level dat_, in which superordinate, buic, and subordinate

category labels may be distributed throughout a prob_bilktic concept hierarchy. In general, basic-level findings
from a distributed account are consistent with human data. However, an unexplained implication of this account

is that a superordinate label can be predicted with certainty at any node that a basic label can be predicted,

apparently lea_ling to equal response times. Section 6 discusses a resolution of this issue.
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Table 7. Average response times and category match rankings for Roseh and Mervis (1975) data.

RESPONSE

TXME

CATEGORY

MATCH

(LOCAL)

CATEGORY

MATCH

(COBWEB)

INTRA- HIGH 560MS 0.948 0.910

CATEGORY MEDIUM 617MS 0.823 0.832

OVERLAP (*) LOW 692MS 0.594 0.736

INTER- Low 909MS 0.306 0.488

CATEGORY MEDIUM 986MS 0.196 0.461

OVERLAP (B) HIGH 1125MS 0.120 0.396

classesA and B, COBWEB's approach ofgrouping similarobjectsalmost alwaysresultsinthe same

categories(atthe top level)as thosebased solelyon the externallabel;12recallthat thesetopmost

nodes are alsothe two concepts consideredin the localrepresentation.In addition,the top-most

node generallymaximizes the categorymatch scoresof the high and medium intra-overlapdata,

thusexplainingthe similarityofcategorymatch scoresforthesedata usingthe localand distributed

representations.In contrast,low intra-overlapitems exhibitmarkedly highercategorymatch scores

using a distributedrepresentation.This reflectsthe factthatlow intra-overlapobservationsin this

experiment more oftenmatch a subordinatenode in the treebetterthan they match the top-level

node. Our assumption isthatclassificationwillbe more rapid with respectto the subordinate.

Regardlessofwhether one assumes a localordistributedrepresentation,categorymatch scoresare

inverselyrelatedto responsetime. Intuitively,featuresthat are relativelyunique among category

A members willcause a decreasein categorymatch fortheirrespectiveobservationsbecause they

have smallerP(VIC )valuesforthesefeatures.Conversely,the P(V[C) valuesforunique features

willbe higher at subordinatenodes, thus increasingcategory match at lower nodes, even to the

point ofoffsettingthe reduced P(C) values.

5.3.2 TYPICALITY AND INTER-CATEGORY SIMILARITY

In addition to varying intra-categoryoverlap,Rosch and Mervis explored the impact of inter-

category (between-category)similarity.Table 6 (b) shows the stimulifor thisstudy, in which

subjectswere taught to distinguishcategoriesA and B. Intra-categoryoverlapwas held constant

forcategoryA members, but the averageextentto which categoryA members overlapped with B

variedfrom 0.0 ('HPNWD') to 1.3('4KCTG'). As Table 7 (b)indicates,categoryA instancesthat

shared few symbols with stringsin categoryB were recognizedmore quickly(i.e.,were treatedas

more typical).

12. At times atypical members of A (or B) may be placed in distinct categories.
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Root
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C(0.417)

M(0.083)

I
Class=A(0.5) I nl
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GKNTJ

Class=B(0.8)

Class=A(0.2)

U(0.8)

C(0.6)

4DC64

4KCTG (n2)

Figure 6. Tree constructed over inter.category experimental data.

Once again, we used two representation strategies in testing the relationship between category

match predictions and the response time data. For these stimuli, significant featural overlap between

certain members of A and B caused COBWEB to consistently distribute class A members throu_out

the resultant concept hierarchy. Figure 6 shows one such tree. In this case, the most stronsly

indicated node may not allow a prediction of category membership to be made with certainty and

alternative nodes must be examined. For example, node nt of the tree of Figure 6 does not allow

an unambiguous prediction of A or B membership. In this case, the category match score of node

n2 would have to be used when classifying '4KCTG'.

Table 7 (b) reveals that, in the case of both local and distributed representations, category

match scores were again inversely related to Rosch and Mervis' response time data. Scores for

the distributed case are averaged over 26 trials. Intuitively, inter-category (A and B) similarities

tend to _e evidence across lateral subtrees. In cases such as ':J', the feature is actually more

predictive of category B than A, thus adding nothing to the category match score of the atypical

observations to which these features belong, or actually detracting from it.

5.3.3 DISCUSSION OF' TYPICALITY RESULTS

Taken alone and collectively the data from our intra-category and inter-category studies demon-

strate that category match accurately ranks test item response time. To better illustrate this,

Table 8 shows the predicted response times from the local and distributed category match scores

of Table 7 that were obtained from a Linear regression. Category match accounts for 95.7% of the

variance in response time in the local case (F(1,4) = 88.7, p < 0.001) and 96.6% in the distributed

case (F(1,4) - 114.1, p < 0.001). x3 While both strategies account for most of the variance,

the distributed representation compresses the category match scores across the typicality range,

13. We considered the intra.c_tegory ud inter-category dat_ as one sample, given that our calculation of category

match scores in each case wM identical Considering the dAt8 u two'separate samples yields similar accounts of

variance and predicted response times.
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Table8.Human and predictedresponsetimesforRosch and Mervis(1975)data.

RESPONSE

TIME

PREDICTED

TIME

(LOCAL)

PREDICTED

TIME

(Coswzs)

INTRA- HIGH 560MS 526 535

CATEGORY MEDIUM 617MS 606 615

OVERLAP (A) Low 692MS 753 713

INTER- Low 909MS 938 968

CATEGORY MEDIUM 986MS 1008 995

OVERLAP (B) HIGH 1125MS 1057 1062

possibly because it bettertailorsrecognitionto an observation. More specifically,distribution

indicatesthat typicalityrankings emerge from variationalong two dimensions of categorization

(Rosch, 1978). Relativelyunique featuresto a category willtend to diffuseactivationtowards

subordinate categories(i.e.,along a verticaldimension). Features that overlap with contrasting

categoriesdiffuseactivationacrossnodes that classifyobservationsofmore than one contrastcat-

egory (i.e.,a horizontaldimension).Local accounts of typicalityonly considervariancealong this

latterdimension.

A distributedmodel makes the verticaldimension explicitin explanationsof typicality.This

suggestsinteractionswith basic-leveleffects,which alsoemerge from variationalong thisdimension.

For example, Rosch et al.(1976) predictedand Jolicoeur,Gluck, and Kosslyn (1984) verified

that the human preferencefor the basic levelis qualified.In particular,an observation (e.g.,

a specificchicken)may be sufficientlyatypicalof itsbasic-levelcategory (e.g.,bird)that itwill

be firstrecognized as an instanceof a subordinatecategory (e.g.,chicken). Low intra-category

overlapresultsin greateractivationof subordinatenodes, while thereisa simultaneous decrease

in activationof the basic-levelnode for atypicalobjectsdue to lessintra-categoryoverlap and

more inter-categoryoverlap.In casesofsuf[icientatypicality,thesetendenciesmay interactso that

classificationisinitiatedat a subordinatelevel.This isnicelyillustratedby the data ofTable 6 (a).

In thissimulationthe categorymatch scoresof atypicalobjects(nonsensestrings)were higher at

subordinatesthan at top levelnodes of a COBWEB-generated tree- presumably the basiclevel,

sincethislevelmaximizes categoryutility.

5.4 Fan Effects

To a largeextent,knowledge of basicleveland typicalityeffectsinfluencedour adoption of prob-

abilisticrepresentationsand the category match metric. However, the framework also accounts

forcertainfan effects(Anderson, 1976),which did not influenceour representationand processing

biases.Nonetheless,thesephenomena are accuratelypredictedby applicationof category match

to probabilisticrepresentations.
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Table 9. Human and predicted response times for Anderson's (1974) fan effect data.

(A) TRuEs (s) FALS_S

1 2 3

1111MS 1174MS 1222MS

(1120MS) (1157MS) (1184MS)

1167MS 1198MS 1222MS

(1157MS) (1195MS) (1259MS)

1153MS 1233MS 1357MS

(1184MS) (1259MS) (1321MS)

1 2 3

1197MS 1221MS 1264MS

(1168MS) (1240MS) (1306MS)

1250MS 1356MS 1291MS

(1240MS) (1312MS) (1379MS)

1262MS 1471MS 1465MS

(1306MS) (1379MS) (1444MS)

Fan efl'ects indicate that observations with frequently encountered features may be more dh_cult

to recognize than observations with relatively unique features, given that exposure across observa-

tions is relatively constant. Anderson (1974) demonstrated this principle in sentence recognition

tasks, which typically used simple sentences that consisted of a person and a location:

(I-I) The doctor is in the bank. (1-2) The fireman is in the park.

(2-I) The teacher is in the church. (2-2) The teacher is in the park.

Sentences vary in the number of features (persons, locations) that they share with other sentences.

The numbers preceding each sentence indicate the number of sentences that contain the respective

persons and locations. For example, sentence (2-1) indicates that 'teacher' appears twice and

'church' appears once in the set of four sentences.

After subjects were trained on selected sentences, they were presented with probes and asked

whether they had previously observed a sentence (true) or not (false). Anderson found that recog-

nition time increased in the true and false case with the frequency that a person and location was

present in training sentences. Table 9 shows matrices of nine ceils each, which show the averaged

human response data (Anderson, 1974) in the upper portion of each cell. Each cell corresponds to

items with the number of persons and locations denoted on the horizontal and vertical dimensions,

respectively. In general, response time for both true and false huraan data increases as one moves

to the right and/or down.

Elsewhere (Silber & Fisher, 1989), we explained these effects as a special case of typicality phe-

nomena, in which a subject was to classify test observations with respect to the singleton categories

formed from the training observations. In this account, the intra-category overlap between single-

ton categories is identical, since each observation contains exactly two features. Response time

diiTerences are thus explained entirely in terms of inter-category overlap. The more features that

an observation shares with other observations, the greater the overlap between its corresponding

singleton category and contrasting singleton categories. Observations with greater overlap should

require greater response time, which is consistent with typicality findings.
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In accounting forthesedata we willprimarilybe concerned with localrepresentations,particu-

larlyin the caseoftruetestitems.The reasonforthisisthat COBWEB may impose an organization

above the singletonlevel,but both featuresof a sentencecan only be predictedwith certaintyat

the leaves.In the case of'true'testitems we thusreportcategorymatch scoresfor the testitem's

correspondingsingleton,sincethisisthe strongestmatch. The falsecaseismore complicated.In

contrastto the Murphy and Smith experiments,subjectsare not given a verbally-cuedtargetcat-

egory on which to focus.Rather,we assume that allcategoriesmust be investigatedand rejected.

There are a number of ways thatwe might simulatethisprocess,but forsimplicitywe reportthe

average categorymatch scoreof an observationacrossallcategoriesin memory: thisisthe set of

singletonsin the localcase and singletonsplus internalnodes in the distributedcase. Averaging

captures the intuitionthatlargerscoresindicatethat more of memory must be investigated,but

itmakes minimal assumptions about how thismight be accomplished.

In additionto the human data at the top of each cell,Table 9 shows predictedresponse times

in parenthesesthat were generatedfrom a linearregression.Once again,falseresponse times are

proportionalto categorymatch, and thereisan inverserelationbetween the two in the truecase.

Category match scoresaccount for 83.8% of the variancein true response time (F(1,7) = 36.3,

p < 0.001) and 70.9% of the variance in false response time iF(l, 7) = 17.1, p < 0.004). 14

In contrast to our account of fan effects, Anderson's (1976) initial explanation suggested that

items were stored in a semantic network and activation spread from the features of a test sentence

until the original instance was found in memory (trues) or all links.from the features had been

exhausted (falses). A mathematical abstraction of Anderson's ACT processing model accounted

for 83% of the variance in the true and false response times. It appears that Anderson considered

the true and false cases as one sample, whereas we have modeled them separately. Overall the

AcT-based model yields better predictions than our model, but it also assumes more parameters

that are linked to the processing assumptions of ACT.

Recently, Anderson (in press) has provided an explanation of fan effect based on a rational model

of information retrieval systems. A key ingredient in his explanation is the cue validity of features

towards a sentence. Similarly, we can see the role of cue validity in category match by reexpressing

itas _j P(l,_)P(C]l,_)P(1,_[C)-P(Vj)P(C)P(Vj). SinceP(P_]C)'sand P(C)'s are constantacross

allsingletoncategories,a dominant factorin categorymatch are the cue validities,P(C[_). More

generally,low cue validityreflectsgreateroverlapwith contrast(singleton)categories.In fact,as

firstobserved by Jane Silber(personalcommunication), itisthe relianceon cue validitythatunifies

fan with typicalityphenomena, notablythe aspectthat emerges from inter-categoryoverlap.

6. General Discussion

In thispaper we presentedspeculativeand rationalanalysesofbasiclevel,typicality,and fan effects.

Our primary goalwas to verifythe abilityof Gluck and Corter;scategoryutilityand our category

match varianttopredicthuman responsetime;our preciseapplicationofcategorymatch necessarily

.#.#

14. We considered the true and false data as separate samples, given differences in the calculation of category match

scores between the two cases.
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varied with differences across the experimental studies, but collectively our various assumptions are

consistent. In the case of all 'true' stimuli, response time is predicted by the score of the node that

maximizes category match and that satisfies the conditions of the stimnlus (e.g., membership in

a target category; possession of both person and location features of the stimulus). In the 'false'

cases, response time is predicted by a function of the match scores of nodes that must be examined

in order to issue a false response with certainty (e.g., a target category if one is supplied or all

categories in memory otherwise).

A benefit of exploiting Gluck and Corter's rational analysis is that it provides a specification of

concept quality that has both computational and psychological merit. In particular, we coupled

category utility and methods from machine learning (Kolodner, 1983; Lebowitz, 1982) in the proba-

bilistic representations and classification strategies of COBWEB. Our ongoing research is advancing

in two directions: to improve the system so that it is more fully consistent with the psychological

phenomena, and to expand the scope of the model to other areas of cognition, notably problem

solving.

6.1 The Role of Indexing

Despite the descriptive merits of our specification, we have noted that it leaves certain 'imple-

mentation' issues unexplained. For example, our analysis of the Murphy and Smith data required

that false response times rise with category match scores. However, taken alone, the assumption -

thatincreasedmatch impliesfasteraccess- suggeststhatfalsecategorieswith highermatch scores

would be more quicklyaccessed,thus allowingforfasterrejection.To resolvethisproblem, we

appealed to assumptionsabout processingand representationwhich requiredthatpoorlymatching

categorieswould be more quicklyrejected.We can now fleshout some generalmechanisms that

willrealizethesebehavioralconstraints.

Many theoriesoflearningand memory have addressedthe problem ofidentifyingand exploiting

informativefeaturesforclassification.Category utilityand categorymatch suggestthat a feature

positivelyinforms the categorizationprocess ifand only ifP(IIC) > P(f). This criterionof

featureinformativenesshas been suggested by data in such diverseareas as stereotypetheory

(McCauley, Stitt,& Segal,1980) and animal learning(Rescorla,1968),as wellas otherareasofAI

and psychology (Schlimmer, 1986).

However, strictadherence to thiscriterionmay stillallow featuresoflittlebenefitto be evalu-

ated.For example, P(flC) - 1.0 forallsingletoncategories,thus satisfyingthe criterionformost

leaves.In response,Fisher (1988,1989) and Quinlan (1986)have employed a varietyof methods

fordeterminingwhen the P(IIC) > P(f) relationissignificant.Given categoryutility'srelationto

Jones'(1983)collocationmeasure - P(C[V)P(V]C) - an attractivemethod would be to findnodes

thatmaximize thisproduct foreach feature.Intuitively,these willbe the most specificcategories

(i.e.,yieldinghigh P(VIC)) forwhich the featureisstilldiscriminating(i.e.,yieldinghigh P(CIV)).

For example, the feature'fly'may be maximized at 'birds',but below thisitdoes not discriminate

among birds.Our heuristicassumption isthatatcollocation-maximizingnodes a feature'spresence

becomes approximately independent ofmembership inlower-levelcategories.
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This heuristiccreatesa 'horizon'beyond which a featuredoes not discriminate.We may impose

thishorizon through indezing (Feigenbaum & Simon, 1984; Kolodner, 1983; Lebowitz, 1982): a

featurelabelsa linkfrom a node to one or more ofitsdescendents;the linkistraversedonly when

an observationwith that featureisobserved.For example, in the zoologicaltaxonomy, 'fly'would

index the categories'vertebrate'and 'bird'from the taxonomy's root,sincethesenodes are within

the horizon determined by collocation.15 In many cases,a feature'scollocationismaximized at

the root and thus does not index any node. This indexing strategymay alsobe recursivelyapplied

so that descendentsof 'bird'are indexed by featuresthat discriminatethem from the 'bird'node.

Notice that 'fly'would not index any descendant in thiscontext,whereas 'not-fly'presumably

would. Conversely,'fly'would not index 'mammal' from the root,but withinthe 'mammal' context

itwould discriminate'bats'.

In the revisedmodel, classificationwould be based on a categorymatch scorethat iscomputed

onlyover the featuresofan observationthatare used forindexing.All such scoreswillbe positive,

with the maximum score dictatingcategorymembership. This procedure would recursefrom the

maximum node untilitreached a 'dead end', at which no indicesfor the observationremain.

Computationally,thisindexingscheme radicallydelimitsthe portionsof memory that are accessed

foreach observation,without appealingto ad hoe thresholds.

This strategyalsoappears to have desirablepsychologicalproperties,but at thispoint we can

only speculatewith respectto some ofthe data. First,the approach breaksthe basic-leveltiethat

we reportedinrelationto the Hoffman and Ziesslerstudies;in the caseofone tree,subjectstreated

the top-most nodes as basic,but categorymatch predicteda tiebetween these nodes and their

children.In thiscase,indexingbringsallfeaturesto bear on the top-levelnodes,but itremoves a

featurefrom the match computation forthe middle-levelnodes. Basic-levelidentificationsare also

accuratelypredictedin the other studies,as are typicalityrankings from the Rosch and Mervis

studies.

The revisedmodel alsopromises to explainresultswith falsetestitems. To review our earlier

account of Murphy and Smith's data, the 'false'targetis verballycued, which is the only cue

in the case of superordinate-onlyrelatednessand unrelatedness.Their matching score ismore

quicklyoverwhelmed by the match scoreof the correctcategory than is the falsetargetin the

basic-relatednesscase. There are no concept-specificthresholds,but one can view recognitionas

mediated by implicitand variablethresholdsthat emerge from the competition among contrast

categories.Membership in a categorycan be rejectedwhen a dead end isreached and a competing

category has a highermatching score.A similaraccount alsoappliesto Anderson's data. Thus,

our account of the falsedata suggeststhatlow match scoresin our specificationtranslateto more

dead ends in categorization.

15. This differs from our earlier systems (Fisher, 1988; Silber & Fisher, 1989), which directed indices on/_/ at

collocation-maximizing nodes (e.g., bird, but not vertebrate). This strategy proved too fragile, paxticularly

during the early stages of le._-ming.
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6.2 Models of the Planning Process

In addition to improving our account of categorization phenomena, we are extending the model of

recognition and learning to domains such as planning. This work is closely related to a growing

body of research in machine learning that is focused on problem solving (e.g., Minton, 1988; Shavlik,

1989). Much of this work has focused on analytic learning methods (Mitchell, Keller, & Kedsr-

Cabelli, 1986) that transform knowledge from one form into another.

In contrast, we propose that learning in problem-solving domains is best modeled as concept

formation, in which memory organizes problem-solving experience in a manner that facilitates

efficient reuse and that incrementally transforms a novice into an expert. Our approach augments

a problem solver with a concept formation component that organizes problem descriptions and

solution traces (Allen & Langley, 1989; Yang & Fisher, 1989). A new problem is classified via the

concept hierarchy in hopes of finding a reusable solution trace. In cases where a complete solution

cannot be recovered, one may still obtain a partial solution by recovering predictable subtraces

at nodes encountered during classification. Our framework is consistent with psychological (Chi,

Feltovich, & Glaser, 1981) and computational (Bareiss, 1989) views that expertise involves an

ability to solve problems via classification versus search.

We expect that many of the behaviors that occur in conceptual memory - such as typicality and

basic-level effects - will also occur with problem-solving memory. Thus, we hope to account for

many of the same types of phenomena in episodic memory that we explained for object memory.

This work is also addressing some limitations of featural and probabilistic models generally and

COBWEB specifically. In particular, we are extending our strategies to structured representations

(Smith & Merlin, 1981; Dietterich & Michalski, 1983), which allow relationships between object

features or components (e.g., nexl:-to(x, y)). In addition, we are using an object's function in

problem solving as a guide for concept learning (Wisniewski, 1989; Nelson, 1973). More generally,

we hope to develop a general-purpose cognitive architecture that is founded on the principles of

human memory that we have described here (Langley, Thompson, Iba, Gennari, & Allen, 1989).

Finally, we hope to illustrate that our analysis in particular, and rational/speculative analyses in

general, provide generic models of intelligent behavior that cognitive scientists can exploit, regard-

less of the side of the psychological/computational fence on which they typically reside.

Acknowledgements

We thank Dennis Kibler, Jim Corter, Mark Gluck, Kichard Granger, and Jeff Schlimmer for their

insights and influential discussions in the early stages of this work. In addition, we thank Jeanette

Altarriba, Kogers Hall, Kevin Thompson, Jim Corter, and Mark Gluck for helpful suggestions on

more recent versions of the material. Doug Fisher was supported by Grant No. NCC 2-645 from

NASA Ames Research Center.



STRUCTURE AND FORMATION OF CATEGORIES 33

References

Aha, D., & Kibler, D. (1989). Noise-tolerant instance-based learning. Proceedings of the Eleventh

International Conference on Artificial Intelligence (pp. 794-800). Detroit, MI: Morgan Kauf-

msA'lll.

Alaa, D., & McNulty, D. (1989). Learning relative attribute weights for instance-based concept

descriptions. Proceedings of the Eleventh Annual Conference of the Cognitive Science Society

(pp. 530-537). Ann Arbor, MI: Lawrence Erlbaum.

Allen, J., & Langley, P. (1989). Using concept hierarchies to organize plan knowledge. Proceedings

of the Sixth International Workshop on Machine Learning (pp. 229-231). Ithaca, IVY: Morgan

Kaufmann.

Anderson, J. R. (1974). Retrieval of propositional information from long term memory. Cognitive

Psychology, 6,451-474.

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R. (in press). The place of cognitive architectures in a rational analysis. In K. Van

Lehn (Ed.), Architectures for intelligence. I-Iillsdale, N J: Lawrence Erlbaum.

Anderson, J. K., & Kline, P. J. (1979). A learning system and its psychological implications.

Proceedings of the Sixth International Joint Conference on Artificial Intelligence (pp. 16-21).

Tokyo, Japan: Morgan Kaufmann.

Bareiss, R. (1989). Exemplar-based knowledge acquisition. San Diego, CA: Academic Press.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: John Wiley

& Sons.

Chalnick,A., & Billman, D. (1988).Unsupervised learningof correlationalstructure.Proceedings

of the Tenth Annual Conference of the Cognitive Science Society (pp. 510-516). Montreal,

Quebec: Lawrence Erlbaum.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). AuTOCLASS:

A Bayesian classification system. Proceedings of the Fifth International Machine Learning

Conference (pp. 54-64). Ann Arbor, 1VII: Morgan Kaufanann.

Chi, M., Feltovieh, P., & Glaser, R. (1981). Categorization and representation of physics problems

by experts and novices. Cognitive Science, 5,121-152.

Collins, A., & Loftus, E. (1975). A spreading activation theory of semantic processing. Psychological

Review, 82,407-428.

Corter, J., _ Gluck, M. (1985). Machine generalization and human categorization: An informa-

tion theoretic view. Proceedings of the Workshop on Probability and Uncertainty in Artificial

Intelligence (pp. 201-207). Los Angeles, CA.

Dietterich, T. G., & Michalski, R. S. (1983). A comparative review of selected methods of learning

from examples. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:

An artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.



34 D. FISHBR AND P. LANGLEY

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: John

Wiley & Sons.

Everitt, B. (1981). Cluster analysis. London: Heineman_.

Feigenbaum, E. A. (1963). The simulation of verbal learning behavior. In E. A. Feigenbaurn & 3.

Feldman (Eds.), Computers and thought. New York: McGraw-Hill.

Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recognition and learning. Cognitive

Science, 8,305-336.

Fisher, D. (1988). A computational account of basic level and typicality effects. Proceedings of the

Seventh National Conference on Artificial Intelligence (pp. 233-238). St. Paul, MN: Morgan

Kaufrnann.

Fisher, D. H. (1987a). Knowledge acquisition via incremental conceptual clustering. Doctoral

dissertation, Department of Information & Computer Science, University of California, Irvine.

Fisher, D. H. (1987b). Knowledge acquisition via incremental conceptual clustering. Machine

Learning, 2,139-172.

Fisher, D. H. (1989). Noise-tolerant conceptual clustering. Proceedings of the Eleventh Interna-

tional Joint Conference Artificial Intelligence (pp. 825-830). Detroit, MI: Morgan Kaufmann.

Gennari, J. (1989). A survey of clustering methods (TeehnicalReport 89-38). Irvine, CA: University

of California, Department of Information & Computer Science.

Gennari, 3. H., Langley, P., & Fisher, D. (1989). Models of incremental concept formation. Artificial

Intelligence, 40, 11-62.

Cluck, M., Bower, G., & Hee, M. (1989). A configural-cue network model of animal and human

associative learning. Proceedings of the Eleventh Annual Conference of the Cognitive Science

Society (pp. 323-332). Ann Arbor, IVI:I:Lawrence Erlbaum.

Glue.k, M. A., & Corter, J. E. (1985). Information, uncertainty, and the utility of categories.

Proceedings of the Seventh Annual Conference of the Cognitive Science Society (pp. 283-287).

Irvine, CA: Lawrence Erlbaum.

Hadzikadic, M., & Yun, D. (1989). Concept formation by incremental conceptual clustering. Pro-

ceedings of the International Joint Conference Artificial Intelligence (pp. 831-836). Detroit,

MI: Morgan Kanhnann.

Hall, R., & Kibler, D. (1985). Differing methodological perspectives in artificial intelligence. AI

Magazine, 6,166-179.

Hanson, S. 3., & Bauer, M. (1989). Conceptual clustering, categorization, and polymorphy. Ma-

chine Learning, 3, 343-372.

Hayes-Roth, B., & Hayes-Roth, F. (1977). Concept learning and the recognition and classification

of exemplars. Journal of Verbal Learning and Verbal Behavior, 16,321-338.

Hayes-Roth, F., & McDermott, 3. (1978). An interference matcKing technique for inducing ab-

stractions. Communications of the ACM, _.I, 401--410.

Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, JO, 185-234.



STRUCTURE AND FORMATION OF CATEGORIES 35

Hoffman, J.,& Ziessler,C. (1984).Objectidentifikationinkunstlichenbegriffshierarchien.Zeitscrift

fur Psychologie,16, 43-275.

Hunt, E.,Matin, J.,& Stone,P. (1966).Ezperiments in induction.New York: Academic Press.

Jolicoeur,P.,Gluck, M. A., & Kosslyn,S.M. (1984).Picturesand names: Making the connection.

CognitivePsychology,16,243-275.

Jones,G. (1983).Identifyingbasiccategories.PsychologicalBulletin,9J, 423-428.

Kline, P. J. (1983). Computing the similarity of structured objects by means of heuristic search

for correspondences. Doctoral dissertation, Department of Psychology, University of Michigan,

Ann Arbor.

Kolodner, J. L. (1983). Reconstructive memory: A computer model. Cognitive Science, 7, 281-328.

Langley, P. (1987). A general theory of discrimination learning. In D. Klahr, P. Langley, & R.

Neches (Eds.), Production system models of learning and development. Cambridge, MA: MIT

Press.

Langley, P., Geunari, J., & Iba, W. (1987). HiU-climbing theories of learning. Proceedings of

the Fourth International Workshop on Machine Learning (pp. 312-323). Irvine, CA: Morgan

Kaufmann.

Langley, P., Thompson, K., Iba, W., Geunari, J. H., & Allen, J. A. (1989). An integrated cog-

nitive architecture for autonomous agents (Technical Report 89-28). Irvine: Department of

Information & Computer Science, University of California.

Lebowitz, M. (1982). Correcting erroneous generalizations. Cognition and Brain Theory, 5,367-

381.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMZM. Machine Learn-

ing, 2, 103-138.

Mart, D. Vision: A computational investigation into the human representation and processing of

visual information. San Fransisco, CA: W. H. Freeman.

Martin, J. D. (1989). Reducing redundant learning. Proceedings of the S_th International Work-

shop on Machine Learning (pp. 396-399). Ithaca, N'Y: Morgan Kanfmann.

McCauley, C., Stitt, C., & Segal, M. (1980). Stereotyping: From prejudice to prediction. Psycho-

logical Bulletin, 87, 195-208.

Medin, D. (1983). Structural principles of categorization. In T. Tighe & B. Shepp (Eds.), Percep-

tion, cognition, and development. Hillsdale, N J: Lawrence Erlbaum.

Medin, D., & SchaIfer, M. (1978). A context theory of classification learning. Psychological Review,

85,207-238.

Medin, D. L., Wattenmaker, W. D., & Michalski, R. S. (1986). Constraints and preferences in

inductive learning (Technical Report). Urbana-Champaign: University of Illinois, Department

of Computer Science.

Mervis, C., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology,

32, 89-115.



36 D. FISHER AND P. LANGLEY

Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S. Michalski, 3.

G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach.

San Mateo, CA: Morgan Kaufinann.

Michalski, R. S., & Stepp, R. E. (1983). Learning from observation: Conceptual clustering. In

R. S. Michalski, J. G. Carbonel], & T. M. Mitchell (Eds.), Machine learning: An artificial

intelligence approach. San Marco, CA: Morgan Kaufmaxm.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. Pro-

ceedings of the Seventh National Conference on Artificial Intelligence (pp. 564-569). St. Paul,

MN: Morgan Kauflnann.

Mitchdl, T. M. (1982). Generalization as search. Artificial Intelligence, 18,203-226.

Mitchell, T. M., Keller, It. M., & Kedar-Cabelli, S. T. (1986). Explanation-based learning: A

unifying view. Machine Learning, 1,47-80.

Murphy, G., & Smith, E. (1982). Basic level superiority in picture categorization. Journal of Verbal

Learning and Verbal Behavior, 2I, 1-20.

Nelson, K. (1973). Some evidence for the cognitive primacy of categorization and its functional

basis. Merrill-Palmer Quarterly of Behavior and Development, 19, 21-39.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Nilsson, N. (1965). Learning machines. New York: McGraw-Hill.

Nosofsky, It. M. (1987). Attention and learning processes in the identification and categorization

of integral stimuli. Journal of Ezperimental Psychology: Learning, Memory, and Cognition,

13, 87-108.

Quinlan, J. It. (1979). Discovering rules by induction from large collections of examples. In D.

Michie (Ed.), Ezpert systems in the micro electronicage. Edinburgh: Edinburgh University

Press.

Quiulan, J. It. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Pearl, J. (1985). Learning hidden causes from empirical data. Proceedings of the Ninth International

Joint Conference on Artificial Intelligence (pp. 567-572). Los Angeles, CA: Morgan Kauf.mann.

Reed, S. (1972). Pattern recognition and categorization. Cognitive Psychology, 3,382-407.

Rescorla, It. A. (1968). Probability of shock in the presence and absence of CS in fear conditioning.

Journal of Comparative and Physiological Psychology, 66, 1-5.

Rips, L., Shoben, E., & Smith, E. (1973). Semantic distance and the verification of semantic

relations. Journal of Verbal Learning and Verbal Behavior, lP., 1-20.

Itosch, E. (1978). Principles of categorization. In E. Rosch& B. Lloyd, (Eds.) Cognition and

categorization. Hillsdale, N J: Lawrence Erlbaum.

Rose.h, E., & Mervis, C. (1975). Family resemblances: Studies in the internal structure of categories.

Cognitive Psychology, 7, 573--605.

Rosch, E., Mervis, C., Gray, W., Johnson, D., _ Boyes-Braem, P. (1976). Basic objects in natural

categories. Cognitive Psychology, 18,382-439.



STRUCTURE AND FORMATION OF CATEGORIES 37

Sch/immer, J. C. (1986). a note on correlational measures (Technical Report 86-13). Irvine:

University of California, Department of Information & Computer Science.

Sch]immer, J. C., & Fisher, D. (1986). A case study of incremental concept induction." Proceedings

of the Fifth National Conference on Artificial Intelligence (pp. 496-501). Philadelphia, PA:

Morgan Kanfmann.

Schlimmer, J. C., & Granger, R. H., Jr. (1986). Incremental learning from noisy data. Machine

Learning, I, 317-334.

Shavlik, J. (1989). Acquiring recursive concepts with explanation-based learning. Proceedings of

the Eleventh International Conference on Artificial Intelligence (pp. 688-693). Detroit, MI:

Morgan Katffmann.

Silber, J., & Fisher, D. (1989). A model of natural category structure and its behavioral im-

plications. Proceedings of the Eleventh Annual Conference of the Cognitive Science Society

(pp. 884-891). Ann Arbor, MI: Lawrence Erlbaum.

Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.

Simon, H. A., & Lea, G. (1974). Problem solving and rule induction: A unified view. In L. W.

Gregg (Ed.), Knowledge and cognition. Hillsdale, NJ: Lawrence Erlbaum.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University

Press.

Smith, E., Shoben, E., & Rips, L. (1974). Structure and processes in semantic memory: A featural

model for semantic decisions. Psychological Review, 81,214-241.

Tversky, A. (1977). Features of similarity. Psychological Review, 81,327-352.

Utgoff, P. E. (1988). ID5: An incremental ID3. Proceedings of the Fifth International Conference

on Machine Learning (pp. 107-120). Ann Arbor,/vii: Morgan Kaufrnann.

Vere, S. (1980). Multilevel counterfactuals for generalization of relational concepts and productions.

Artificial Intelligence, 1,l, 139-164.

Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. Winston (Ed.),

The psychology of computer vision. New York: McGraw-Hill.

Wisniewski, E. (1989). Learning from examples: The effect of different conceptual roles. Proceed-

ings of the Eleventh Annual Conference of the Cognitive Science Society (pp. 980-986). Ann

Arbor, IV[I: Lawrence Erlbaum.

Yang, H., & Fisher, D. (1989). Conceptual clustering of means-ends plans. Proceedings of the Sizth

International Workshop on Machine Learning (pp. 232-234). Ithaca, N'Y: Morgan Kaufmann.





AI RESEARCH BRANCH TECHNICAL REPORT LIST

NASA AMES RESEARCH CENTER MARCH 1992

RIA-90-02-15-1

The Structure and Formation of Natural Categories

DOUGLAS FISHER AND PATRICK LANGLEY February 1990

Categorization and concept formation are critical activities of intelligence. These processes and the

conceptual structures that support them raise important issues at the interface of cognitive psychology

and artificial intelligence. Our work presumes that advances in these and other areas are best facilitated by

research methodologies that reward interdisciplinary interaction. In particular, we describe a computational

model of concept formation and categorization that exploits a it rational analysis of basic level effects by

Gluck and Cortez (1985). Their work provides a clean prescription of human category preferences that we

adapt to the task of concept learning. In addition, we extend their analysis to account for typicality and fan

(Anderson, effects, and speculate on how our concept formation strategies might be extended to other facets

of intelligence, such as problem solving.

RIA-90-03-20-1

Proposal for Constructing an Advanced_ofltoare Tool for Planetary Atmospheric Modeling

RICHARD KELLER, MICHAEL SIMS, DAV_ THOMPSON, ESTER PODOLAK, AND

CHRISTOPHER P. McKAY _ March 1990

Scientific model building can be a time-intensi_ and painstaking process, ot_en involving the development

of large and complex computer progran_. De_ite the effort involve_l , scientific models cannot easily

be distributed and shared with other scientists. _ general, implero_Cnted scientific models are complex,

idiosyncratic, and difficult for anyone but the origina_scientist/pr0ff_axnmer to understand. We believe that

advanced software techniques can facilitate both the m_el-building and model-sharing process. We propose

to construct a scientific modeling so_w_e_tool that se_ves Ks an aid to the scientist in developing and
using models. The proposed tool will include an interactiVe'intelligent graphical interface and a high-level

domain-specific modeling language. As a testbed for th_ r_earch, we propose development of a software

prototype in the domain of planetary atmospheric moaVeling.
/ \

RIA-90-04-06-1 i/

Model Compilation: An Approach to Automaj_d Model Derivation ".\

RICHARD KELLER, CATHERIN BAUDIN, Y/_fMI IWASAKI, PANDURANG _YAK, AND

KAZUO TANAKA ,//I _ April 1990

In this paper, we introduce an approach to automated model derivation for i_towledge based systems. The

approach - called model compilatio_i- involves procedurally generating the se_ of domain models used by

a knowledge-based system. With an implemented example, we illustrate how th_s approach can be used to

derive models of different precision and abstraction, and models tailored to ditfei_nt tasks, from a given set

of base dorr_in models. In particular, we describe two implemented model coml_lers, each of which takes

as input a base model that describes the structure and behavior of a simple elect_vmechanical device - the

Reaction Wheel Assembly of NASA's Hubble Space Telescope. The comp'ders _ansform this relatively

general base model into simple task- specific models for troubleshooting and red,sign, respectively, by

applying a sequence of model transformations. Each transformation in this sequence p/oduces an increasingly

more specialized device model. The compilation approach lessens the burden of updating and maintaining

consistency among models by enabling their automatic regeneration.







REPORT DOCUMENTATION PAGE I OMB NO. 0704-0188

Public reoOr_mq burclen for thJs ,:oHe(tton if ,_f©rma[Ion r$ _s_imc'lte_ to a#erage ? hOUr per re'_nse, m(iuding the t_me _or revpewlng instrudions, searching exlstln _ data source';,

,_latherln_ _nc_ marntaln_ng the d_ta neecle_. _nd o_mp_e_n 9 _r,d re,_lew_@ the _ctle(tlon of _tormatlon c.end .'omment_ regardm 9 this b_Jrden estimate or any other aspe_ of t_ls

,_ol_e_c_on of irlform_ltiorL including sucJge_tron_ for r_cl_ mq _h_s burden to _;J_hlnc]ton Heaclctuarter$ cJerwces. _rrec'.orate for !nformat_on Op_fatlon_ and Reports, 121_ )effete.on

Oa_$ HrgDway, Suite 1204, Afhngton, v,_ 22202--_02 and to th_ Office ,:)+ N_ana_]ement _nd Budget. Paperwork Redud_on Prolect (0704-018@), Washington, DE 2050 ]

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Dates attached

_. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA- Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, C_. 94035-1000

S. FUNDING NUMBERS

R. PERFORMING ORGANIZATION

REPORT NUMBER

Attached

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Available for Public

13. ABSTRACT (Maximum 200 words)

Distribut ion

B CHC. EF

12b. DISTRIBUTION CODE

Abstracts ATTACHED

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION

OF REPORT

18. SECURITY CLASSIFICATION

OF THIS PAGE

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed _ ANSI Std Zig-t8

298-102


