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Abstract

Categorization and concept formation are critical activities of intelligence. The nature of these
processes and the conceptual structures that support them is an important issue at the interface
of cognitive psychology and artificial intelligence (AI). Our work assumes that advances in these
and other areas are best facilitated by interdisciplinary research methodologies. In particular, we
describe a computational model of concept formation and categorization that exploits a rational
analysis of basic-level effects by Gluck and Corter (1985). Their work provides a clean prescription
of human category preferences that we adapt to the task of concept learning. In addition, we
extend their analyses to account for typicality (Rosch & Mervis, 1975) and fan (Anderson, 1974)
effects, and speculate on how our concept formation strategies might be extended to other facets
of intelligence, such as problem solving.

To appear in G. H. Bower (Ed.) (1990), The Psychology of Learning and Motivation: Advances in
Research and Theory (Vol. 26). Cambridge, MA: Academic Press.
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1. Introduction

Cognitive simulation fits computational mechanisms to the constraints of psychological data, but
there has been long-term debate over the appropriate starting point for this process. Newell and
Simon (1972) recommend an initial task analysis, in which one identifies alternative approaches to a
given task (e.g., cryptarithmetic). Anderson (in press) suggests a more formal rational analysis, in
which one associates a general category of behaviors (e.g., concept formation) with a performance
function to be optimized. In both views, the guiding assumption is that natural organisms are
rational but resource-bounded decision makers (Simon, 1969). A similar but less formal view
is implicit in speculative analyses (Hall & Kibler, 1985), which posit high-level computational
principles that constrain human processing (e.g., Kolodner, 1983).

This paper focuses on COBWEB (Fisher, 1987a, 1987b), a cognitive simulation of concept forma-
tion and recognition. In particular, we trace the origins of the system to rational and speculative
analyses of this task. Concept formation is a process of organizing observations into categories
based on internalized measures of category ‘quality’, without the aid of an external tutor. More-
over, this process of category formation should be guided by two principles. First, learning should
be incremental, in that observations should be efficiently incorporated into memory as they are
encountered. Second, learning should benefit performance on some task, in this case predictions
about unknown properties of novel observations.

To realize these objectives, the COBWEB model borrows a measure of concept quality developed
by Gluck and Corter (1985) in their work on basic-level effects in humans (also see Corter &
Gluck, 1985). In hierarchical classification schemes, humans tend to prefer one level of abstraction
(the ‘basic’ level) over others. Gluck and Corter’s measure, category utility, came from a rational
analysis which postulated that basic concepts are preferred because they optimize inference ability.
COBWEB also incorporates ideas from Kolodner's (1983) CyYRrUs and Lebowitz’s (1982) UNIMEM,
which provide general strategies of efficient classification and concept formation. This union yields
a system that meets the computational objectives of efficient retrieval and accurate prediction. In
addition, the model accounts for certain typicality effects (Rosch & Mervis, 1975) and fan effects
(Anderson, 1976). Thus, it provides a unified account for a number of memory phenomena in a
single, parameter-free model of concept representation and concept formation.

In the following section, we introduce some computational and psychological principles of concept
learning and representation. Notably, we view concept formation and related tasks in terms of
search through a state space. After this, Section 3 reviews psychological findings that constrain the
representation, access, and acquisition of concepts. In Section 4 we describe CoBWEB, a model of
concept formation that incorporates these constraints. Section 5 then evaluates the model in terms
of its ability to explain a variety of psychological effects and the relations among them. In the
final section, we speculate on other applications of the model, including the transition from novice
to expert problem-solving skills. Implicitly, our discussion will endorse Anderson’s rational view
of cognitive simulation as a profitable methodology to pursue issues at the boundary of cognitive
psychology and artificial intelligence.
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2. Concept learning

Concept learning has been widely studied in both artificial intelligence (Al) and psychology. How-
ever, both fields have traditionally emphasized learning tasks in which a tutor provides class in-
formation. We begin this section by discussing methods for such supervised learning, since they
provide important background for our later discussion of concept formation. In particular, we in-
troduce the view of concept learning as a search process, in which learning mechanisms may vary
along two dimensions: search control and search direction. We then extend the search framework
to clustering and concept formation, types of unsupervised learning in which there is no external
tutor to provide class information.

2.1 Supervised Learning

Many psychological studies of learning have focused on concept acquisition or identification (Bruner,
Goodnow, & Austin, 1956; Hunt, Marin, & Stone, 1966; Reed, 1972; Medin & Schaffer, 1978), in
which a subject must learn to identify novel members of categories, given training observations that
are classified by the experimenter. In many experimental settings, the subject is shown a sequence
of observations; after viewing each observation, the subject must predict the category membership
of that observation and is then told the correct category. Thus, the experimental setting usually
requires continuous and active participation by the subject. Psychological investigations have
focused on characterizing the number of observations that subjects require to consistently predict
correct category membership and on the number of classification errors made before they attain
criterial accuracy.

Because it involves external feedback, concept acquisition is sometimes referred to as super-
vised learning. In artificial intelligence, this task is more commonly called learning from ezamples
(Winston, 1975; Quinlan, 1979; Mitchell, 1982; Dietterich & Michalski, 1983), since a tutor sup-
plies preclassified examples from which the learning system must discover an appropriate concept
(intensional) description. Many machine learning systems assume that the target concept to be
learned is conjunctive; thus the learner acquires concept(s) that capture shared conditions over all
of the observations.

The notion of search plays a traditional role in characterizing Al systems, and one can apply this
idea to systems that learn concepts (Simon & Lea, 1974; Mitchell, 1982). One important aspect
is the direction of the search process. Many Al concept learning systems begin by comparing two
observations and extracting the commonalities between them (Hayes-Roth & McDermott, 1978;
Vere, 1980). They then compare these common features to a third observation, again extracting the
collective commonality. This process continues until they have exhausted all the observations, thus
yielding the common structure that summarizes the entire set. This strategy follows a specific-to-
general direction, since the set of common features is initialized as a specific instance and gradually
becomes more general as more observations are seen. In contrast, other systems follow a general-to-
specific strategy (Langley, 1987; Schlimmer & Fisher, 1986). These systems begin with very general
concept descriptions, making them more specific as errors suggest the need for more constrained
conditions. Further errors lead to even more specific concepts, until they achieve a description
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that summarizes all the training instances. Still other systems (Anderson & Kline, 1979; Mitchell,
1982; Schlimmer & Granger, 1986) combine these two strategies, carrying out bidirectional search
through the space of concept descriptions.

Concept learning systems also vary in terms of their search control strategy. In general, there
will be many concept descriptions that cover the training observations, and one must somehow deal
with these alternatives. For example, suppose the learner sees two card hands, one with three Jacks
and two Kings, and a second with two Jacks and three Kings. One hypothesis that summarizes
these observations is that the hands contain at least two Jacks and at least two Kings, but an
alternative summary is that they contain two cards of one face and three of another (i.e., a full
house). Such alternatives are the cause of search in concept learning, and researchers have used a
variety of strategies to control this search. These methods range from exhaustive techniques like
breadth-first search, which retain all concepts that are consistent with the known observations (e.g.,
Mitchell, 1982), to heuristic methods like beam search (Michalski, 1983), which retains only the
‘best’ hypotheses that are consistent with the observations.

Unlike experimental human subjects in psychology, many Al learning systems are not required
to actively predict class membership for each incoming observation. Rather, they process all avail-
able observations en masse to produce a set of concept descriptions that are consistent with the
observations. This is not to say that many systems could not be adapted to actively predict mem-
bership, but they were not designed with this performance task in mind. For instance, Quinlan’s
(1979, 1986) ID3 algorithm uses a heuristic that requires examination of all observations, thus
complicating any strategy for generating intermediate predictions. However, one can modify the
basic method to construct descriptions incrementally (Schlimmer & Fisher, 1986; Utgoff, 1988),
giving it the ability to make predictions after each training instance.

Although ‘nonincremental’ approaches have predominated in the literature on machine learning, a
growing number of researchers have examined incremental methods for concept learning. Examples
include a system by Winston (1975) and Schlimmer and Granger’s (1986) STAGGER system, which
generate predictions for each incoming observation. One can view such systems as conducting a form
of constrained search called hill climbing, which maintains a single ‘active’ concept description that
may be modified after each training instance.! These systems keep no explicit memory of previous
hypotheses, though they may simulate backtracking (return to an earlier hypothesis) by application
of their learning mechanisms.

Limiting search to one change per observation characterizes hill-climbing learners: a single al-
ternative is kept in memory and intermediate predictions are made efficiently. Of course, placing
limits on memory and backtracking ability means that the order of training instances can have an
important effect, sometimes leading the learning system astray. However, such order effects have
also been observed in human learners (e.g., Kline, 1983), making them desirable characteristics of

1. Not all incremental learning systems should be viewed as hill climbers. For instance, some methods (Anderson
& Kline, 1979; Langley, 1987) retain a large set of competing descriptions, using the competitor with the highest
‘strength’ to make a prediction. In addition, Winston’s system is not a strict hill climber in that it retains
some true backtracking ability, but nonetheless it has many of the characteristics that we deem important for
incremental learning.
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a computational model. We will return to the notion of incremental hill climbing when we discuss
the task of concept formation.

2.2 Unsupervised Learning

Despite the attractiveness of supervised learning tasks, there are many scenarios in which a learner
cannot rely on external feedback. In such cases, the learner must invoke internalized heuristics
to organize its observations. For example, many machine learning systems incorporate a notion
of ‘similarity’. Such a bias also occurs in work on numerical taxonomy (Everitt, 1980; Gennari,
1989), in which algorithms use a similarity measure (e.g., the inverse of Euclidean distance) to
group similar observations into the same category.

To clarify this point, let us consider some algorithms from the numerical taxonomy literature.
For instance, ‘nearest-neighbor’ methods place an observation in the category that has the most
similar current member. Other methods compute a theoretical observation that represents the
central tendency (i.e., the centroid) of each category; they then place the new observation with
the category having the most similar centroid. These methods have the emergent effect of placing
great emphasis on maximizing the intra-category (i.e., within-category) similarity of observations.

Although this approach has intuitive appeal, it presents difficulties if one wishes to break the
observations into a number of contrasting categories. In reference to psychological models, Medin
(1983) points out that the set of singleton categories optimizes intra-category similarity, since each
observation is maximally similar to itself. Thus, attention on intra-category similarity alone does
not provide a sufficient basis for deciding upon the appropriate number of clusters. As a result,
clustering methods often require that the user specify the number of categories to be formed.
Alternatively, they build a tree called a dendrogram, in which each node specifies a cluster of lower-
level nodes, terminating in individual observations. Following the clustering process, the user severs
the tree at various points to obtain the desired number of clusters.

Some techniques of numerical taxonomy explicitly seek to optimize a function of contrast-
ing categories. However, just as intra-category similarity favors singleton classes, inter-category
dissimilarity favors a single all-inclusive category, since there are no contrasting categories to share
properties with it (Medin, 1983). Thus, a reliance on both these measures might reduce the need
for user intervention. To this end, some methods incorporate a tradeoff between intra-group and
inter-group similarities, favoring categories whose members have much in common with each other
and little in common with members of contrasting categories. In Section 3 we examine one such
tradeoff function.

Recently, machine learning researchers have developed methods for conceptual clustering. For
example, Michalski and Stepp’s (1983) CLUSTER attempts to form categories that have ‘good’ con-
cept descriptions, which can be stated as conjunctive expressions of features that are common to
all or most category members. One criterion, simplicity, dictates that the conjunctive expression
should be short for the sake of comprehensibility. A second criterion, fit, prefers detailed (specific)
conjunctive descriptions. These criteria (and others) trade off against one another in much the
same way as intra-category and inter-category similarity. The ability to form very simple discrim-
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inating concepts for contrasting categories implies very little overlap between members of different
categories, whereas specific categories implies that there is considerable intra-category similarity.?

Other nonincremental clustering systems include Hanson and Bauer’s (1989) WITT and Cheese-
man, Kelly, Self, Stutz, Taylor, and Freeman’s (1988) AuTocrass. The former computes cor-
relations between feature pairs, forming clusters so as to maximize the intra-category pairwise
correlations across all features and to minimize the average inter-category pairwise correlations
across all features and all contrasting categories. AUTOCLASS represents another probabilistic ap-
proach to clustering, using a Bayesian method to calculate the ‘most probable’ categories present
in the observations. Intuitively, the most probable clusters are those whose feature distributions
vary most from a presumed prior distribution. As with WITT, AUTOCLASS is sensitive to intra-
category and inter-category similarities, and thus need not be told the number of clusters to form.
The systems are also similar in their lack of any method for making intermediate predictions.?
We now turn to methods for unsupervised learning that support continuous interaction with the
environment.

2.3 Concept Formation

The unsupervised systems that we have described so far are nonincremental, requiring all training
instances at the outset. However, in many cases human learners appear to assimilate instances as
they become available. We will refer to this process — the incremental unsupervised acquisition
of categories and their intensional descriptions — as concept formation. As with learning from
examples, concept formation can be described in terms of search, and two general approaches have
been explored in psychology and machine learning.

The first scheme employs a specific-to-general search, incrementally comparing each new obser-
vation to existing categories and adding it to one or more of the best-matching categories. In
Kolodner’s (1983) CYRUs and Lebowitz’s (1982) UNIMEM, matching is a function of the number of
features shared by the new observation and a given concept description. These systems generalize a
concept if the match with the new observation is sufficiently good. If an observation does not match
any concept to a prespecified degree then the new observation is used to create a singleton category
that may be generalized with future observations. In the process, UNIMEM and CYRUs form an
abstraction hierarchy of concepts that they use to classify future cases, filtering each observation
through levels of the hierarchy by recursive application of the matching procedure. Both systems
can be viewed as advanced versions of Feigenbaum'’s (1963) EpAM, which formed discrimination
networks (actually trees) with tests that were restricted to single features.

One can also employ a general-to-specific strategy for concept formation, as shown by Martin’s
(1989) Cora system. Like its precursor STAGGER (Schlimmer & Granger, 1986), the model incre-
mentally conjoins features, but it relies on correlations between features to trigger this chunking

2. Studies by Medin, Wattenmaker, and Michalski (1986) qualify the extent to which fit and simplicity trade against
each other in human sorting tasks in which subjects have simultaneous access to all observations. Their experi-
mental task corresponds to nonincremental, unsupervised learning.

3. Hanson and Bauer note that their system can be run in incremental mode, but it was not designed with prediction
in mind. ’
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process, rather than monitoring correct and incorrect predictions of category membership. CORA’s
reliance on feature correlations is similar to that used in WITT, but it descends most directly from
Chalnick and Billman’s (1988) work. However, whereas CORA uses observed correlations to con-
join features, its ancestor uses observed correlations to slowly generalize initially saved instances.
Neither CORA or the earlier system forms an abstraction hierarchy; they simply create concepts
that are conjunctions of features and that describe (possibly nondisjoint) categories.

Although approaches to concept formation may differ in search direction, they seem to universally
share the hill-climbing organization of their incremental counterparts for supervised learning. As
such, they may suffer from ordering effects, in that they may discover different categories depending
on the order in which they process observations. The design of concept formation methods differs
from that of nonincremental clustering systems, in that it is largely motivated by the realization
that many real-world domains require continuous interaction with the environment. Mechanisms
for concept formation are designed to be rational but resource-bounded learners (Simon, 1969).
Each observation triggers small changes to the current categorical structure, although simulated
forms of backtracking may be used to insure that major changes can occur over time. For example,
UNIMEM deletes a node and its associated subtree if the node’s corresponding concept becomes
poor by a criterion similar to CLUSTER/2’s fit measure. This allows a new subtree to be grown to
reflect the characteristics of future data. Section 4 elaborates on some of these issues in the context
of our COBWEB system.

3. Psychological Constraints on Concept Formation

The previous section touched upon psychological considerations in concept learning, but its main
focus was on search as a generic framework in which to view this task. The current section considers
psychological findings in greater detail, notably typicality and basic-level effects, along with their
implications for the representation and formation of concepts.

3.1 Typicality Effects and Probabilistic Concepts

Smith and Medin (1981) refer to conjunctive descriptions, discussed earlier, as classical representa-
tions of conceptual structure. One implication of such classical representations is that all concept
members are treated equally during classification, since an observation either has the requisite
conjunction of features or it does not. However, experiments have repeatedly shown that human
subjects do not treat concept instances equally, but regard certain members as more ‘typical’ than
others. For example, in a target recognition task, subjects must determine if a test instance is a
member of a target category (e.g., ‘Is a robin a bird?’). Several studies (Rips, Shoben, & Smith,
1973; Rosch & Mervis, 1975) indicate that subjects consistently respond affirmatively more quickly
to certain positive instances than to others. For example, they will more quickly affirm that a robin
is a bird than they will affirm that a chicken is a bird. The relative ranking of positive test items
corresponds to a typicality ranking of category members, and this conclusion is bolstered by results
in a variety of other experimental tasks (Mervis & Rosch, 1981; Smith & Medin, 1981).
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3.1.1 ProBABILISTIC CONCEPTS: INDEPENDENT CUE MODELS

Classical representations do not easily account for typicality effects, and in response, researchers
have proposed a number of alternative concept representations. Rosch and Mervis (1975) made an
early attempt to discover the structural determinants of typicality, finding that category members
sharing features with many other members of the same category tend to be judged more typical. In
addition, when a disjoint, contrasting category is involved, members that share few features with
members of the contrasting category tend to be judged more typical. This sensitivity to intra-
category and inter-category overlap of features is captured by their notion of family resemblance.

The apparent relation between family resemblance and typicality indicates the importance of
feature distributions in human classification. Although classical representations cannot capture such
distributional information, probabilistic concept representations (Smith & Medin, 1981) manage this
by associating a probability, weight, or some other confidence number with each feature of a concept
definition. A straightforward implementation is to store the conditional probability, P(f|Cy), of
each feature f's presence with respect to each category Ci; this is more commonly called the
category validity (Medin, 1983) of the feature. Recognition or classification using probabilistic
concepts usually involves summing the weights of features that are present in a new observation
(Collins & Loftus, 1975; Smith, Shoben, & Rips, 1974; Smith & Medin, 1981). Classification may
be based on whether this sum passes a specified threshold (Smith & Medin, 1981}, as in neuron-like
processing units (Nilsson, 1965; Hinton, 1989), or one may assign an observation to the category
that maximizes the sum, as in Bayesian classifiers (Duda & Hart, 1973).

The probabilistic account offers an explanation of typicality effects in that typical instances will
have features shared by many other members of the same category, giving them higher category
validities. If one assumes that recognition time is inversely proportional to these sums, then obser-
vations with high intra-category similarity will be recognized more quickly and thus be regarded
as more typical. On its own, this scheme does not explain the impact of inter-category similarity
on typicality, but one can easily imagine extensions that include cue validities (the conditional
probability of a category given a feature).

A more important limitation of this model stems from the fact that the recognition procedure is
based on individual, presumably independent, category validities. For this reason, it has been called
the independent cue model of concepts. A number of authors (Smith & Medin, 1981; Medin, 1983;
Hanson & Bauer, 1989) point out that independent cue models are representationally incomplete,
since summation of individual weights limits recognition to linearly separable categories (Nilsson,
1965). More generally, independent cue models do not capture the feature correlations that are
necessary for completeness and to which humans seem naturally attuned (Mervis & Rosch, 1981;
Medin, 1983).

3.1.2 ALTERNATIVES TO INDEPENDENT CUE MODELS

The apparent inability of independent cue models to capture bundles of correlated features has
led to a number of alternative models. One way to keep track of feature correlations is simply
to remember instances of a concept, since each instance can be viewed as a maximally-specific
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conjunction of features. This is the approach taken in ezemplar representations (Smith & Medin,
1981). An example of this approach is Reed’s (1972) prozimity model, which retains an extensional
listing of a concept’s known members, classifying a new object as a member of a category, Ck, if it
matches another member of Cx more closely than a member of a contrasting category.

A disadvantage of the proximity model is that retaining an extensional listing of known category
instances becomes expensive as the number of observations grows. In response, some systems (Aha
& Kibler, 1989) selectively retain only certain useful observations. A simple strategy is to retain
only observations that resulted in a misclassification during learning.* Computational experiments
demonstrate this strategy’s advantage in terms of storage, but they also show accuracy benefits,
presumably because idiosyncratic observations are ignored and thus are not used in classification.

In contrast to selective retention, Medin and Schaffer’s (1978) context model supports a form
of abstraction through selective attention. In particular, the model allows that a subject may not
attend to a feature, effectively dropping the feature from an observation. Classification assumes that
anew instance matches in parallel against the stored exemplars of each contrasting category, causing
sufficiently matching exemplars to be retrieved; an assumption is that an exemplar is retrieved with
a probability proportional to the degree that it matches the observation. An observationis classified
with the first concept for which a specified number of exemplars is retrieved. Presumably, the
context model would account for typicality effects, since new typical instances would more closely
match the typical observations currently stored; thus, a criterial number of retrieved exemplars
would tend to be reached more quickly for typical instances.

Nosofsky’s (1987) generalized contezt model extends ideas of selective attention by allowing
features to be weighted. Aha and McNulty (1989) demonstrate how these weights can be learned
in a supervised task. Feature weights serve to divert attention away from uninformative features —
those distributed across members of many categories — and focus attention on informative features
in classification. This variable treatment of features can capture the importance of intra-category
and inter-category overlap, and adaptations should model a variety of typicality effects.’

Another alternative class of models assume a relational cue representation, which generalizes
on the independent cue approach. Like their precursors, relational cue models maintain proba-
bilities (weights, confidence values) for individual features in concept descriptions, but they also
permit joint probabilities of larger feature configurations, such as P(Color=red A Size=large A
Shape=sphere |Ci)). Syntactically, these models are also generalizations of exemplar models, since
an instance can be viewed as a conjunction of features. However, the representational power of
exemplar and relational cue models are theoretically equivalent, since one can use stored exemplars,
as needed, to compute all the information used in relational cue models.

4. All of the exemplar models that we have reviewed assumes a supervised learning scenario, but similar best-match
procedures for classification are used in the single-linkage clustering methods that we discussed in Section 2.2
(Everitt, 1980).

5. Feature weighting appears to serve a purpose that is similar to reasons for feature weights in independent cue
models, but exemplar models do not force a category to be represented by a single summary description as do
single independent cue concepts.



STRUCTURE AND FORMATION OF CATEGORIES 9

Table 1. Linearly separable and nonlinearly separable categories (Medin, 1983).

CATEGORY C; CATEGORY C;

W »» K W w v 3 W

LINEARLY 1) 11 1 0 5 1 0 1 0
SEPARABLE 2) 1 0 1 1 6) 0 1 1 O
OBIECTS 3)) 1.1 o0 1 7y 06 0 0 1
4) 0 1 1 1 8 1 1 0 O

NoN- 99 1 0 0 O 13) 0 0 o0 1
LINEARLY 10) 1.0 1 O 14y 0 1 0 ©O
SEPARABLE 1) 1 1 1 1 15 1 0 1 1
OBJECTS 12) 0 1 1 1 16) 0 0 0 ©

One example of a relational cue model is Hayes-Roth and Hayes-Roth’s (1977) property-set model,
which supposes that a feature conjunction is stored with a count of the observations in which it
occurred. A new observation is classified with the concept that contains the most ‘diagnostic’ con-
junction of features (i.e., the combination with the highest cue validity). The feature conjunction
for which P(Cj|(conjunction)) is maximized (over all Cy) dictates that an observation that sat-
isfies the conjunction should be classified as a member of C;. The property-set model stores the
frequencies needed to compute cue validities (rather than category validities) for all single features
and conjunctions of features.

In many cases, a feature combination may be useless for classification; trivially, if small objects
are equally split between two classes, then smallness alone will give no help in classification. Thus,
a reasonable storage strategy would throw out feature conjunctions that do not aid classification
(e.g., those with cue validities that are roughly equal for all categories). This strategy has been
used for supervised learning by Anderson and Kline's (1979) ACT and by Schlimmer and Granger’s
(1986) STAGGER, whereas Chalnick and Billman (1988) have used relational cue representations for
concept formation. The latter system removes features that do not add to the informativeness of
a composite feature. Martin (1989) takes the opposite approach, adding features to a con_]unctxon
only if they add to the informativeness of the conjunction.

3.1.3 ProBABILISTIC CONCEPT HIERARCHIES

Exemplar and relational cue models both address a purported weakness of independent cue models
— their inability to explicitly capture correlations between features. However, as we will show,
this limitation does not apply to network of independent cue representations. A combination of
such concepts has the same representational power as exemplar and relational cue models. Similar
completeness arguments occur in the literature on neural computing (Nilsson, 1965), where networks
of simple classifiers (e.g., linear threshold units) can achieve representational completeness, even
though their components are severely limited.
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Figure 1. Concept trees over nonlinearly and linearly separable categories.

As we have noted, concepts that are represented using independent cues are individually limited
to the recognition of linearly separable categories. Medin (1983) suggests that if independent
cue models are the basis of human conceptual structure, then in some cases linearly separable
categories should be easier to learn than nonlinearly separable ones. An investigation into this
question required that subjects learn, under supervision, one of the two category pairs displayed
in Table 1. Observations were characterized in terms of four binary-valued attributes, A, through
A,. Subjects judged the linearly separable set more difficult to learn, and this set also resulted
in more recognition errors. Gluck, Bower, and Hee (1989) have accounted for similar data with a
relational cue model in which pairwise composite cues are used to convert the nonlinearly separable
categories to linearly separable categories. This transformation makes the concept easier to learn
in composite-cue space than the original linearly separable categories.

An alternative account of these data exploits the notion of probabilistic concept hierarchies. Con-
sider the concept trees of Figure 1, which discriminate the category pairs of Medin’s experiments.®
An independent cue model insists that each node divides the total set of observations into linearly
separable categories. However, this division need not correspond to the sets that were taught,
C, and C,. Rather, like a decision tree (Quinlan, 1986) or discrimination network (Feigenbaum,
1963; Kolodner, 1983; Feigenbaum & Simon, 1984), members of a given class may reside in distinct
portions of the hierarchy.

One can think of tree construction as being guided by the simple heuristic of grouping objects
having the most features in common. The actual method used to form the hierarchies in the figure
is more complicated (as described in Section 3.2), but the simplification is consistent with this
technique and with intuitions about independent cue representations. The trees reveal that several
atypical members of C, in the linearly separable set share many properties with C; and vice versa.
Thus, these similar items are reasonably placed within the same middle-level nodes of the hierarchy.
Observation 7 is quite unlike any other instance, placing it in a séparate category. On the other
hand, there are fairly specific patterns that perfectly discriminate many members of contrasting

6. For simplicity, the concepts for the nodes in Figure 1 are abbreviated by a pattern (e.g., 101X) that is common
to all category (node) members; ‘X’ denotes an attribute in which no single value is common to all members.
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categories in the nonlinear domain. Medin’s finding can be explained in terms of the average depth
to which observations must be classified before one can perfectly distinguish members of C; from
C,. The linearly separable set requires an average depth of 1.87 before reaching a node that contains
only members of one category; in contrast, the nonlinearly separable set has 1.37 as its average
depth.

Our demonstration is simplified, but it nonetheless illustrates that hierarchies or other networks
of independent cue concepts have the same representational power as exemplar and relational cue
models. Linearly separable representations direct classification to deeper levels of the tree until a
perfect discrimination can be made. In addition to their representational strength, hierarchies offer
efficiency advantages. A tree structure allows recognition to occur in logarithmic time as a function
of stored observations, rather than in linear or exponential time, as it does for some alternatives.
We now turn our attention to heuristics for guiding the formation of such concept hierarchies,
focusing on the evidence for preferred concepts in human memory.

3.2 Basic-Level Effects and Concept Quality

Psychological studies have shown that, within hierarchical classification schemes, there appears to
be a basic level preferred by human subjects. For example, in a hierarchy containing {animal,
vertebrate, mammal, dog, collie}, subject behavior may indicate that ‘dog’ lies at the basic level.
Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976) used a target recognition task to show that
subjects are quicker to confirm that a test item is a member of such a basic category than they are
for a superordinate or subordinate category. In a forced naming task (Rosch et al., 1976; Jolicoeur,
Gluck, & Kosslyn, 1984), a subject is shown a picture of a particular item and asked to respond
with its identity.

3.2.1 EARLY MEASURES FOR PREDICTING THE Basic LEVEL

The identification of preferred concepts in humans must constrain any model of human classification,
and it may also provide a basis for principled measures of concept quality for use in concept
formation by human and machine. In fact, researchers have proposed a number of measures designed
to predict the basic level. An early proposal (Rosch et al., 1976) postulated that a basic-level
category maximizes the total cue validity of a category over features that are shared by all or
most members of the category (i.e., only features with hlgh category validity). This can be stated
formally as

3 ; P(Ci|V;) for features V; such that P(V;|Ci) = 1.0

Rosch et al. did not specify how close to unity a category vahdlty must come before it is included
in the calculation of total cue validity.

Jones (1983) has proposed another measure, called collocation, that directly incorporates category
validity into the prediction of basic level. This function can be stated as

collocation(V;, Ci) = P(C:|V;)P(V;|Ck)
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He argued that a basic-level node (e.g., bird) has more collocation-maximizing values among its
ancestral-related nodes (e.g., animal, robin) than concepts at other levels. Neither Rosch nor Jones
compared their measures’ predictions against experimental results, but both suggested that the
basic level maximizes a tradeoff between cue and category validities over descriptive features.

3.2.2 CATEGORY UTILITY

The notion of a tradeoff is also important to a third measure that has been proposed to predict
basic-level categories (Corter & Gluck, 1985; Gluck & Corter, 1985). This function, called category
utility, can be developed from a weighted variation on the collocation measure:

- PV;)P(CUV)PV;ICE) (1)

where P(V;) weights the contribution of individual feature collocations by the base rate of the
respective feature. In essence, this measure reflects the importance of increasing cue and category
validities for more frequently occurring features.

However, Corter and Gluck did not express category utility as an extension to collocation. Rather,
they devised it with the idea that basic-level categories are preferred because they best facilitate
predictions about observations in the environment. In their view, category utility is a function of
a category’s prediction potential, or

P(Ci)E(number of correctly predicted V;|Ci) ,

which is a tradeoff between the ezpected number of features that can be correctly predicted about a
member of a category Cj and the proportion of the environment P(Cy) to which those predictions
apply.

Assuming a probability matching strategy for prediction (Bruner, Goodnow, & Austin, 1956),
the expectation can be further formalized by noting that one can predict a feature with probability
P(V;|Cy), and that this prediction will be correct with the same probability:

P(Ck)ZP(I{,-le)’ : (2)

Clearly, a probability mazimizing strategy (Bruner, Goodnow, & Austin, 1956) has advantages in
actually generating predictions. However, it is important to realize that it is not superior in terms of
heuristically ordering categories in terms of prediction potential, which is the intent behind category
utility. In fact, there are important advantages to assuming a probability-matching strategy when
forming categories, as detailed by Fisher (1987a).

Simple algebraic manipulations show the equivalence of functions (1) and (2). Thus, category
utility can be viewed as a tradeoff between cue and category validity, as well as a function that
measures a category’s prediction potential. More intuitively, these views can be unified by noting
that the P(V;|Ci) term reflects the importance of categories with predictable features (Tversky,
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1977; Lebowitz, 1982; Kolodner, 1983), but that features must also be predictive or discriminating
of a category (Tversky, 1977; Lebowitz, 1982; Kolodner, 1983), so that a one can classify an instance
and access predictable features. Finally, Corter and Gluck (1985) define category utility as the
increase in the expected number of features that can be correctly predicted, given knowledge of a
category, over the expected number of correct predictions without such knowledge. The expression

CU(Ck) = P(C)[D_ P(ViICh)* - 2 P(V;)?) (3)

provides a formal statement of their complete definition of the category utility CU.

3.2.3 PROPERTIES OF CATEGORY UTILITY

There are several properties of category utility that are worth mentioning at this point. First, the
measure has the desirable property that it will be zero if all feature distributions are independent
of membership in a category. That is, if

P(V;ICi) = P(V5)

then

P(VjlCi)* - P(V;)* =0 ,

and V; will be ‘irrelevant’ to a category’s score and presumably to an observation’s membership in
Ci. If all such features are independent, then CU(Cy) = 0.

Second, category utility is not a function of feature correlations, but categories that capture
feature correlations will tend to have higher scores for this measure. If category C captures a
correlation between N features, then the sum of the individual category validities will be higher than
if the correlation is captured only in part or not at all. This property has important implications for
the process of concept formation, in that it lets one capture feature intercorrelations without their
‘direct’ computation. Rather than computing P(V; A V2 A ... A V,)) explicitly, concept formation
can introduce a category C} that converts the task of computing P(V; AVa A ... A ValCk) to one of
computing P(Cy) [T72, P(V:|Ck). In words, Cy is an auxiliary variable that may lead to conditional
independence among some features (Pearl, 1985).

To see this point, consider the hierarchies of Figure 1, which were formed using category utility
as a decision heuristic. Note that the term P(V;|Ci) equals 1.0 for those features shown within each
middle-level category. Trivially, the distributions of these features are conditionally independent of
other features within the same class. Nodes in the tree tend tocapture distinct sets of correlated
features; the probability of each conjunction of features shown at a node is simply the probability
of the category, P(Cy), since [J; P(V;ICk) = []=; 1.0 = 1.0. These computations may not be
so clean in other domains, but one can nonetheless efficiently and effectively compute such feature
correlations through the interaction of concept hierarchies and an independent cue heuristic.
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3.3 Summary

To summarize, psychological findings indicate that there are important constraints on the repre-
sentation and access of concepts. In particular, typicality effects suggest that classical concept
representations are untenable in many situations, since some category members receive preferential
treatment. We have advanced probabilistic concept hierarchies as a representation scheme that
supports these preferences, in which features vary in their contribution to family resemblance and
classification. Furthermore, tree-structured probabilistic concepts are representationally complete;
they do not suffer from the limitations of independent cue concepts in isolation, such as a restriction
to linearly separable categories.

In addition to intra-category preferences implied by typxca.hty rankings, basic-level effects suggest
that humans also give preferential treatment to certain categories over others. These preferences
can be predicted in static memory structures by measures like category utility. However, these same
human preferences undoubtedly play a significant role in concept learning, as well as retrieval. This
supposition is supported by studies (Rosch et al., 1976) which indicate that basic-level] categories
are learned before either subordinate or superordinate categories. We now describe the manner
in which predictors of human categorization preferences can be adapted to the task of concept
learning and classification.

4. A Model of Concept Retrieval and Learning

In this section we describe CoBWEB (Fisher, 1987a, 1987b), a concept formation system that adapts
category utility to the task of concept learning and recognition. Our initial motivation for using
category utility was that it rewards categories that improve prediction, a characteristic made evi-
dent by Gluck and Corter’s analysis. Thus, this section’s perspective is primarily computational,
but rational (Anderson, in press) and speculative (Hall & Kibler, 1985) analyses posit that compu-
tational and psychological concerns are not independent. In Section 5, we expand our discussion
to selected psychological findings.

We will describe COBWEB in terms of the search framework that we presented earlier. Conve-
niently, one can easily transform category utility from a characteristic function of static concept
hierarchies to a heuristic guide for concept learning. In particular, one can partition a known set
of observations into contrasting categories, Ci, so as to maximize the average utility of categories
in the partition or

Ti=1 CU(Ch)

n

’

where n is the number of categories in the partition. Because category utility requires only informa-
tion about individual feature distributions within each Ci, one can effectively represent a category
with an independent cue representation, where each feature, Vj, is weighted by P(V;|Cy).

Figure 2 illustrates that contrasting categories can be orgamzed under a root node whose features
are weighted by applicable base rate probabilities, P(Vj|root) = P(V;). In this case, observations
correspond to the voting records of U.S. congresspersons on key issues with values of ‘yea’ or
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~

Root Party=Dem(0.6)
(U.S Representatives) Party=Rep(0.4)
Immigration=yea(0.49)

/ Test-Ban=yea(0.86)
Party=Dem(0.98) Party=Dem(0.19)
Party=Rep(0.02) Party=Rep(0.81)
Immigration=yea(0.41) Immigration=yea(0.58)
Test-Ban=yea(0.9) \ Test-Ban=yea(0.81)
Free-Exports=yea(0.65) ...

Party=Dem(0.88)
Immigration=yea(0.71) / \
Test-Banwyea(0.86)

Free-Exports=yea(0.17)

Figure 2. A sample probabilistic concept hierarchy over congressional voting records.

‘nea’ (Lebowitz, 1987).7 In addition, we assume that each category is weighted by the proportion
of observations, P(C), classified under it. By definition P(root) = 1.0. Collectively, P(Ci)’s,
P(V;)’s, and P(V;|Cy)'’s supply the requisite information for calculating category utility.

Conceptually, the easiest way to find an optimal set of contrasting categories is to exhaustively
search the possible partitions of the known observations. This can proceed in a manner similar
to the specific-to-general search that we described earlier: given a partition over m observations,
consideration of the m 4 1st observation generates m new partitions, each the result of placing
the observation into one of the existing categories. In addition, there is an m + 1st partition that
results from creating a new singleton category that contains only the new observation. The search
for the best partition ceases when one encounters the last observation; one can then identify the
partition with the best average category utility from among the alternatives. At this point, one can
simply return the best partition or one may further decompose each category of the best partition
by recursively applying the exhaustive search procedure over the subset of observations that are
classified by the category. This recursive procedure results in a tree of probabilistic concepts.

This exhaustive approach is clearly impractical, since the procedure requires that one examine
alternative partitions that grow exponentially with the number of observations. Search is reduced
significantly in systems like CLUSTER/2 by maintaining a fired number of alternatives after each
observation. The hill-climbing approach described in Section 2.3 restricts the number of alternative
partitions that are maintained to one. In particular, Fisher’s (1987a, 1987b) COBWEB assimilates
an m + 1st observation by evaluating the partitions that result by adding the observation to each
existing category and the partition that results from creating a new singleton category. It then

-

7. We only list ‘yea’ values on selected votes, but all features with nongero probability at a node are stored at the
node.
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Satellite-test-ban 90%
—
89%
55%

Immigration

Percentage Accuracy

Number of Training Observations

Figure 3. Learning curves for three attributes in the congressional domain.

evaluates each of these alternatives using category utility and retains the best choice. If the instance
is incorporated into an existing category, then the observation is assimilated into the respective
subtree by the same procedure.® Anderson (in press) has recently described a similar approach, in
which a Bayesian measure guides the incremental assimilation of new observations.

As with assimilation, COBWEB also uses category utility to guide object recognition: an ob-
servation is sorted down a path of ‘best matching’ categories to a leaf, at which point the new
observation may be recognized as matching the leaf. For example, consider the congressional vot-
ing records classified by the tree of Figure 2. A new voting record of unknown political party may
be recognized (perhaps incorrectly) as an instance of the political party of the best-matching leaf.
As we discussed in relation to linearly separable categories, this strategy lets category members be
distributed throughout the tree, and not restricted to one node of the tree.

Recognition need not be limited to any particular category label (e.g., party), so that one can
predict any unknown feature in this manner. This capability can be tested systematically by mea-
suring predictive accuracy at intermittent points in the evolution of a probabilistic tree. The system
is presented each ‘test’ item with one or more attributes removed, it sorts the incomplete obser-
vation to the ‘best-matching’ leaf of the concept hierarchy, and it predicts the missing attributes
based on those in the leaf. This occurs for all attributes of all test items, thus yielding an accuracy
level for each attribute. The graph of Figure 3 shows sample ‘learning curves’ for the attributes
POLITICAL PARTY, IMMIGRATION-VOTE, and SATELLITE-TEST-BAN.

In general, prediction accuracy for an attribute is closely related to the attribute’s inter-correlation
with other attributes of the domain. Political party is highly correlated with other attributes,
whereas a congressman’s vote on an immigration bill is relatively uncorrelated with other features.
These data support earlier claims that category utility captures correlations in the data when cou-
pled with appropriate learning mechanisms. Similar findings hold for other natural domains and
for artificial domains in which one can systematically vary the amount of intercorrelation (Fisher,

8. Conwes only handles nominally-valued attributes, but Gennari, Langley, and Fisher (1989) describe CrassiT, 2
descendent of CoBWEB that assumes continuously-valued attributes.
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1987a, 1987b; Gennari, Langley, & Fisher, 1989). Not surprisingly, in domains with very little
inter-correlation, the learning rate and the asymptotic accuracy suffers greatly. For some features,
the system’s predictive ability may even be worse than chance.

The reason for COBWEB’s poor behavior with respect to some features is that classification to a
leaf often simulates a probability-matching strategy (Bruner, Goodnow, & Austin, 1956). Viewed
in statistical terms, sorting to a leaf may overfit the data. Recall from Section 3.2 that category
utility has the desirable property that features which are independent of category membership will
not influence classification at deeper levels, since P(V;|Ci)? — P(V;)? = 0. Inversely, an attribute’s
independence should also signal that deeper classification will not aid prediction of the attribute.
Thus, one should follow a probability maximizing strategy at an appropriate point in classification.
Several heuristics for identifying points of approximate feature independence and points of optimal
prediction (Quinlan, 1986; Fisher, 1989) have produced significant advantages in terms of prediction
accuracy.

Our summary of COBWEB has been brief, in part because the precise nature of the learning
operators is of limited relevance to the forthcoming discussion. Rather, the important assumptions
are that memory is organized into probabilistic concept hierarchies and in a manner that is guided
by category utility. This section has illustrated that one can carry out the process incrementally
and in a manner that seems consistent with many aspects of human learning (Simon, 1969; Langley,
Gennari, & Iba, 1987; Anderson, in press). However, as described here, COBWEB’s hill-climbing
learning method exhibits ordering effects that we have detailed elsewhere, along with simulated
backtracking mechanisms that mitigate the effect (Fisher, 1987a, 1987b; Gennari, Langley, & Fisher,
1989). Finally, our evaluation of COBWEB has been in terms of prediction accuracy of features and
category labels. This is an important evaluation criterion in machine learning, but one that is
intimately related to the psychological literature on recognition (e.g., Feigenbaum, 1963). We will
now investigate the psychological plausibility of our methods for recognition, classification, and
prediction.

5. An Analysis of Memory Phenomena

In this section we extend our analysis of COBWEB and category utility to a number of psychological
phenomena. Our discussion is very much in line with Anderson’s (in press) rational ‘analysis of
cognition. In effect, Gluck and Corter’s derivation of category utility stemmed from the prescription
that categories facilitate accurate prediction. We open the section by introducing some conventions
that are important in our analysis of the basic level, typicality, and fan effect data that follow.

5.1 Category Match

A common thread in each of the psychological studies that we examine is the use of sub ject response
time to queries about experimental stimuli. For example, subjects might be required to verify that
a stimulus is a member of a previously learned category. This section illustrates that response time
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Figure 4. Approximation of a tree from Hoffman and Ziessler’s (1983) basic-level studies.

in each of these studies is well predicted by a simple variation of category utility that is only a
function of the features occurring in the observation (stimulus) being classified:

P(Cx) TIP(V;ICL) - PV

for V; present in the observation. We will call this category match because it intuitively corresponds
to the degree that an observation matches a category and the extent to which that category is
activated during recognition. The measure also fits Tversky’s (1977) model of category-object
resemblance, in that it is a function of category size (P(C)) and sums over the features that ‘agree’
and ‘conflict’.? If the amount of conflict between features outweighs the amount of agreement then
category match will be negative; trivially, if an observation has a feature that is not present in any
category member, then P(V|C) = 0.0 and P(V|C)? - P(V)? < 0.

Intuitively, category match corresponds to activation strength, which we might assume to be
inversely related to response time (Collins & Loftus, 1975). However, this section will concentrate
primarily on the predictive (or descriptive) links between category match and human response
time. That category match turns out to be a good predictor of response time is not strongly tied
to particular ‘implementation’ details (e.g., the precise nature of the classification procedure}, but
relies only on general assumptions about memory organization: that probabilistic concepts are
hierarchically organized in a manner that is guided by category utility.1® There will be exceptions
to this section’s exclusion of ‘implementation’ detail, but only on occasions when it seems most
productive to explain counterintuitive findings. We will more thoroughly discuss how the predictions

9. Most often there will not be perfect agreement or conflict between an observation’s feature and a category’s
feature distributions. Rather, the amount of agreement and conflict is weighted. Hadzikadic and Yun (1989)
use a measure of similar intent in their INC system, but relevance is only computed over features shared by the
obeervation and class. Computer experiments by Fisher (1987) indicate that classification and learning behavior
using category match closely approximate the behavior of the full category utility measure, with differences only
occurring very early in training.

10. In fact, this is a desirable characteristic that is enforced by methodologies for system development that segregate
stages of specification, design, and implementation. Within cognitive science, these stages are roughly analogous
to Marr’s (1982) three levels of description for information processing systems.
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Table 2. The encoded tree from Hoffman and Ziessler (1983).

SUPERORDINATE | Basic LEVEL | SUBORDINATE || OUTER INSIDE BoTToM

Tor-1 MIDDLE-1 LEAF-1 0 0 0
LEAP-2 0 0 1

MIDDLE-2 LEAF-3 1 2 2

LEAFP-4 1 2 3

Top-2 MIDDLE-3 LEAFR-5 1 3 0
LEAF-6 1 3 1

MiIDDLE-4 LEAFR-T 0 4 2

LEAF-8 0 4 3

of category match can be implemented by the classification mechanisms of a CoBWEB-like system
in Section 6, but for now we turn our attention to the predictive merits of category match with
respect to basic level, typicality, and fan effect phenomena.

5.2 Basic-Level Effects

Gluck and Corter (1985) verified that category utility predicted the basic level in two experimental
studies (Hoffman & Ziessler, 1983; Murphy & Smith, 1982): a basic-level category maximizes
category utility among its ancestors and descendents. In a study by Hoffman and Ziessler, subjects
learned a classification tree over ‘nonsense’ objects like the one shown in Figure 4. Each category
(node) had a ‘nonsense’ name that subjects used to identify category membership in recognition
tasks. Objects were defined in terms of three attributes: the shape of the INSIDE subcomponent
with values SQUARE, TRIANGLE, STAR, or CIRCLE (encoded as 0, 1, 2, and 3, respectively); the
OUTER shape, with (encoded) values of 0 and 1; and the shape of the BoTTOM, with values 0, 1, 2,
and 3. Table 2 shows the encoding of the Hoffman and Ziessler data that was assumed by Corter
and Gluck. For the tree of Figure 4, subjects consistently ‘preferred’ level two (where the root is
at level zero).

To account for the order in which subjects verify category membership, we use the category
match measure. Figure 4 shows the match scores of several categories (nodes) obtained for the
observation {OUTER = 0, BorTOoM = 0, INSIDE = 0}. The appropriate basic-level category is the
most highly rated, with category match indicating a negative score for some categories for which
the observation is not a member. Intuitively, a negative score indicates that an observation and
a category’s feature distributions conflict more than they agree. This simulation assumes that
classification occurs with respect to the tree that subjects are explicitly taught, and that a verbal
indication of the target category activates a corresponding node in the tree. When classification
via the perceptual cues of a pictured observation reach the verbally signified node, the observation
is identified as a member of the target.
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Table 3. Our encoding of the Murphy and Smith (1982) tree.

SUPERORDINATE l Basic LEVEL | SUBORDINATE || HANDLE  SHAFT HEeAD SIZE
Topr-1 MIDDLE-1 Sus-1 2 2 0 0,1
Sup-2 2 2 1 0,1

MIDDLE-2 SuB-3 0 3 3 0,1

Sus-4 1 3 3 0,1

Top-2 MIDDLE-3 SuB-5 3 4 4 0,1
Sus-6 3 4 5 0,1

MiIDDLE-4 SuB-7 4 0 6 0,1

SuB-8 4 1 6 0,1

Hoffman and Ziessler also explored two other trees over the same objects of Figure 4. One variant
resulted by placing nodes Middle-1 and Middle-4 under the same top-level node and Middle-2 and
Middle-3 under the same top node. In this variant subjects treated the top nodes as basic, but
category match predicts a tie between the top and middle nodes in this tree — middle and top nodes
each match their respective observations with a score of 0.469. This is similar to the predictions
found by Gluck and Corter with the full category utility measure. In Section 6 we speculate on a
resolution to this tie that involves selectively ‘masking’ uninformative features in the category match
computation. A third tree was also used by Hoffman and Ziessler in which subjects regarded the
bottommost level of leaves to be basic. As with the tree of Figure 4, the basic level is unambiguously
identified by category match.

Gluck and Corter also evaluated category utility in light of experiments by Murphy and Smith
(1982). Once again, in this study subjects were trained to recognize instances of categories arranged
hierarchically. In these experiments objects were abstract ‘tools’ that varied along four perceptual
dimensions (tool size and the types of handle, shaft, and head). Categories were assigned nonsense
names of equal length, and target recognition studies behaviorally identified one level as basic. In
addition, Murphy and Smith also looked at ‘false’ cases, in which an observation was not a member
of the given target. In each of the false cases, a test item from a different superordinate category
than the target concept was selected. Data from the true cases support previous findings on basic-
level preference, but they found that subjects showed some tendency, although not statistically
significant, to more quickly reject the ‘false’ cases as members of subordinate target categories than
basic targets.

Table 4 summarizes the average subject response times and category match scores in the true
and false cases. In the true cases we report category match of an observation with each category to
which it belongs. In the false case, the match between an observation and unrelated superordinate,
basic, and subordinate targets are reported. In both the true and false cases, category match
correctly predicts response time orders: as category match increases response time decreases. In
the false cases all category match scores are negative because“there is no feature overlap between
a test observation and target concept. In fact, the difference, P(V|C )2 — P(V)?, is equal for all
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Table 4. Average response times (Murphy & Smith, 1982) and category match rankings.

TRUE CASES FaLsSE CASES

RESPONSE CATEGORY | RESPONSE CATEGORY

TIME MATcCH TIME MATCH
SUPERORDINATE 879Ms 0.21 882Ms —0.070
Basic LeveL 678Ms 0.53 T14Mms -0.035
SUBORDINATE 723Ms 0.36 691mMs —-0.018

categories in the false case; the difference in false category match scores is due solely to the P(C)
term of category match, which magnifies the negative difference for higher level categories. We have
no strong hypothesis regarding these data, other than to suggest that when no featural connections
exist between an observation and a category, as is the case here, it is reasonable to assume that any
search of the category membership proceeds in time proportional to the category’s size as reflected
in P(C).

Murphy and Smith performed a second experiment intended to expand their findings about
subordinate recognition in the false case. In particular, they reported response times for cases in
which the observation was not a member of the subordinate target, but (1) was a member of the
same basic category, (2) was a member of the same superordinate category, but not the same basic
category, and (3) was not a member of the same superordinate category. These cases vary the
‘relatedness’ of the target and observation, with (1) being the most related of the false cases and
case (3) being totally unrelated. Table 5 shows the response times, which indicate that items of
the same basic category require greater time to reject than the other two cases.

To explain their findings, Murphy and Smith propose a preparation model of classification and
category structure. In this model, a verbal cue activates the target category and its ‘conceptual’
definition. Recognition occurs by summing the number of concept features that match an obser-
vation, as well as the number of conflicting features. An observation is accepted or rejected as a
category member when a concept-specific ‘threshold’ is reached. Separate thresholds are presumed
for acceptance and rejection. Like the preparation model, our application of category match is
effectively a summing procedure. However, our category match data and our earlier discussion of
classification in systems such as COBWEB suggests a different view of true and false recognition.

To motivate our processing assumptions consider the category match scores in Table 5. The
negative category match scores accurately predict no difference between the unrelated and same-
superordinate case, but a positive score is shown for the same-basic condition. This violates our
assumption that category match and response time are inversely related, since subordinate rejection
required the longest response time. To maintain consistency we must assume that match scores on
opposite sides of zero are inverted in their relation to response time. In addition, we posit that a
category match of zero (or less) may be regarded as a category-independent cause for rejecting an
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Table 5. Average response times (Murphy & Smith, 1982) and category match rankings on false data with
varying degrees of relatedness.

RESPONSE CATEGORY
TIME MATCH
DISTINCT SUPERORDINATE 691Ms -0.018
SAME SUPERORDINATE 687Ms -0.018
SAME Basic 902Ms +0.232

observation. Intuitively, this is desirable because a negative score suggests greater mismatch than
match of features.

Conversely, we are also concerned with criteria for successful classification. Systems like COBWEB
assume that an observation is classified with the category that mazimizes activation. We assumed
in discussing the Hoffman and Ziessler studies that successful target recognition occurred when
activation that was triggered by perceptual cues reached a verbally-activated target node; this
suggests that recognition is not simply a process of direct comparison between target definition
and observation as the preparation model suggests, but is mediated by other memory elements.
Our views of success and failure in recognition are unifiable when one considers that categories
along the path to a target may induce conditional independence with respect to features that
are common to all or many subordinates. Category match’s subtraction of base rate probabilities
insures that such features have no impact on classification, but an observation’s remaining features
may conflict with a concept and result in a negative match at that level of classification. Thus,
our view is that the best matching node in memory defines a variable ‘threshold’ that cannot be
achieved by any contrasting category. Competing categories are removed as candidates when their
conditional matches drop below a category-independent threshold of zero. Our analysis predicts
that the subordinate category of Table 5 is rejected more slowly because its positive score requires
that it ‘compete’ with contrasting categories for some period of time.

In summary, a qualitative characterization that captures all of the false response times (i.e.,
Tables 4 and 5) is that they vary proportionally to the absolute value of category match. In
contrast, response times for true cases vary inversely with category match. More generally, we
suggest that category-specific thresholds are not required in the false or true cases. Instead, positive
and maximizing activation strength may be the sole determinant of categorization.

5.3 Typicality Effects

Our discussion has replicated Gluck and Corter’s analysis of basic-level effects with category match
and extended it to Murphy and Smith’s ‘false’ data. In this section we extend their rational analysis
of category structure further by using category match to predict typicality effects in probabilistic
trees. To review briefly, typicality studies indicate that, in"addition to the between-category pref-
erences suggested by basic-level effects, humans also exhibit preferences within categories.
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Table 6. Nonsense strings used by Rosch and Mervis (1975) to test typicality differences.

(a) ()
LETTER INTRA-CATEG. TYPICALITY LETTER INTER-CATEG. TYPICALITY
STRING OVERLAP STRING OVERLAP
JXPHM Low Low HPNWD Low HiGgH
QBLFS Low Low HPC6B Low HiGgH
A XPHMQ MebpIiuM MEDIUM A HPNSJ MEeDIUM MEDIUM
MQBLF MEDIUM MEDIUM 4KC6D MepiumMm MEDIUM
PHMQB HiGH HiGgH GKNTJ Hicn Low
HMQBL HiGgH HigH 4KCTG HigH Low
CTRVG 8SJKT
TRVGZ 8SJ3G
B RVGZK B 9UIJCG
VGZKD 4UZC9
GZKDW 4UZRT
ZKDWN MSZRS5

5.3.1 TYPICALITY AND INTRA-CATEGORY SIMILARITY

To demonstrate consistency with typicality effects, we will focus on studies by Rosch and Mervis
(1975). Their experiments demonstrate that typicality increases with the number of features shared
with other objects of the same category and varies inversely with the number of features shared
with members of contrasting classes. In their study of intra-category influences, Rosch and Mervis
used the ‘nonsense’ strings in Table 6 (a). Members of category A varied in the extent that they
overlap with other members of the same class. For example, the symbols of ‘QBLFS’ appeared in
an average of 2.0 other strings of category A, whereas the symbols of ‘HMQBL’ were shared by
3.2 other members of category A. The inter-class overlap between members of A and B was held
constant (i.e., there was no overlap). After subjects learned to distinguish categories A and B,
the average time to classify letter strings as members of A or B was determined. Response time
decreased as the amount of intra-category overlap increased, supporting the hypothesis that typical
instances shared more properties with other members of the same class.

To analyze the Rosch and Mervis data it is important to distinguish the task performed by
subjects in typicality experiments from the basic-level studies presented earlier. In the target
recognition tasks it appears that category match applied to the target concept is a good predictor
of response time ranking, but unlike the basic-level studies, Rosch and Mervis did not give subjects
a target category for which membership had to be verified or rejected; they required that subjects
predict the membership of an observation. Thus, assumptions about the portions of memory that
may be examined during classification are less clear. For this reason our analysis will focus on two
strategies of representation that might reasonably be used to encode the typicality stimuli by human



24 D. FiSHER AND P. LANGLEY

Root | Class=A(0.5)
Class=B(0.5)

/ Q(0.417) \

Class=A(1.0) S(0.083) Class=B(1.0)
/ M(0.83) ~_ / G(0.83) N
Class=A(1.0) S(0.167) Class=A(1.0) | ... |Ct0.187) o
M(1.0) Q(1.0)
J(0.33) 5(0.33)
JXPAM XPHMQ  PHMOB CELFS MQBLF HMOBL

Figure 5. A concept hierarchy that summarizes the intra-category overlap data.

subjects; by considering two alternative encodings we hope to better illustrate the robustness of
category match as a predictor of response time.

The first strategy, which we term local, assumes that each category is associated with a dis-
tinct independent cue concept; this is similar to our assumptions in the basic-level studies. An
observation is classified with the category that maximizes category match in time that is inversely
proportional to the match score. A second strategy is inspired by a general processing assumption
discussed in relation to the Murphy and Smith data: recognition effects are mediated by concepts in
memory other than the target or, in this case, the possible targets. A distributed strategy assumes
that category members may be distributed throughout memory. This was an important assump-
tion behind our discussion of linearly separable categories in Section 3 and prediction accuracy in
Section 4. In a distributed representation, externally-defined categories need not correspond to
nodes in memory, but external-category ‘features’ or labels can be used to predict the membership
of an observation. In modeling this strategy, we use COBWEB to organize the strings of the Rosch
and Mervis studies, thereby simulating a subject’s training phase. A test item’s external-category
membership is predicted at the concept tree node that maximizes category match and at which a
prediction of external-category membership can be made with certainty (i.e., an external category
label has a probability of 1.0 at the node). Time is assumed to be inversely proportional to the
category match score of this node.}?

Table 7 (a) shows response times for category A test items and category match scores for local
and distributed representations. Because COBWEB is sensitive to input order, the distributed
representation scores are averaged over 20 trees constructed from random orderings of the data
strings. A representative tree for these data is shown in Figure 5. Since there is no overlap between

11. We could have also given a distributed account of basic-level data, in which superordinate, basic, and subordinate
category labels may be distributed throughout a probabilistic concept hierarchy. In general, basic-level findings
from a distributed account are consistent with human data. However, an unexplained implication of this account
is that a superordinate label can be predicted with certainty at any node that a basic label can be predicted,
apparently leading to equal response times. Section 6 discusses a resolution of this issue.
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Table 7. Average response times and category match rankings for Rosch and Mervis (1975) data.

RESPONSE | CATEGORY | CATEGORY
TIME MATCH MATCH

(Locat) (CoBWEB)
INTRA- Hicn 560Ms 0.948 0.910
CATEGORY MEDIUM 617Ms 0.823 0.832
OVERLAP (A) Low 692Ms 0.594 0.736
INTER- Low 909Ms 0.306 0.488
CATEGORY MEDIUM 986Ms 0.196 0.461
OveRLAP (B) HigH 1125Ms 0.120 0.396

classes A and B, COBWEB’s approach of grouping similar objects almost always results in the same
categories (at the top level) as those based solely on the external label;!? recall that these topmost
nodes are also the two concepts considered in the local representation. In addition, the top-most
node generally maximizes the category match scores of the high and medium intra-overlap data,
thus explaining the similarity of category match scores for these data using the local and distributed
representations. In contrast, low intra-overlap items exhibit markedly higher category match scores
using a distributed representation. This reflects the fact that low intra-overlap observations in this
experiment more often match a subordinate node in the tree better than they match the top-level
node. Our assumption is that classification will be more rapid with respect to the subordinate.

Regardless of whether one assumes a local or distributed representation, category match scores are
inversely related to response time. Intuitively, features that are relatively unique among category
A members will cause a decrease in category match for their respective observations because they
have smaller P(V|C) values for these features. Conversely, the P(V|C) values for unique features
will be higher at subordinate nodes, thus increasing category match at lower nodes, even to the
point of offsetting the reduced P(C) values.

5.3.2 TYPICALITY AND INTER-CATEGORY SIMILARITY

In addition to varying intra-category overlap, Rosch and Mervis explored the impact of inter-
category (between-category) similarity. Table 6 (b) shows the stimuli for this study, in which
subjects were taught to distinguish categories A and B. Intra-category overlap was held constant
for category A members, but the average extent to which category A members overlapped with B
varied from 0.0 (‘"HPNWD’) to 1.3 (‘4KCTG’). As Table 7 (b) indicates, category A instances that
shared few symbols with strings in category B were recognized more quickly (i.e., were treated as
more typical). '

12. At times atypical members of A (or B) may be placed in distinct categories.
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Root | ¢1ags=A(0.5)

Class=B(0.5)
C(0.417)

Class=A(1.0) M(0.083) Class=B(0.8)
H(1.0) Class=A(0.2)
o , U(0.8)
J(0.33) Class=A(0.5) | N C(0.6)
|~ Class=B(0.5) o

4DC64

HPNWD HPCB8 HPNSJ K(0.75)

GKNTJ 4KCTG (n2)

Figure 6. Tree constructed over inter-category experimental data.

Once again, we used two representation strategies in testing the relationship between category
match predictions and the response time data. For these stimuli, significant featural overlap between
certain members of A and B caused COBWEB to consistently distribute class A members throughout
the resultant concept hierarchy. Figure 6 shows one such tree. In this case, the most strongly
indicated node may not allow a prediction of category membership to be made with certainty and
alternative nodes must be examined. For example, node n; of the tree of Figure 6 does not allow
an unambiguous prediction of A or B membership. In this case, the category match score of node
n, would have to be used when classifying ‘4KCTG’.

Table 7 (b) reveals that, in the case of both local and distributed representations, category
match scores were again inversely related to Rosch and Mervis’ response time data. Scores for
the distributed case are averaged over 20 trials. Intuitively, inter-category (A and B) similarities
tend to diffuse evidence across lateral subtrees. In cases such as ‘J°, the feature is actually more
predictive of category B than A, thus adding nothing to the category match score of the atypical
observations to which these features belong, or actually detracting from it.

5.3.3 DiscussioN oF TYPICALITY RESULTS

Taken alone and collectively the data from our intra-category and inter-category studies demon-
strate that category match accurately ranks test item response time. To better illustrate this,
Table 8 shows the predicted response times from the local and distributed category match scores
of Table 7 that were obtained from a linear regression. Category match accounts for 95.7% of the
variance in response time in the local case (F(1,4) = 88.7, p < 0.001) and 96.6% in the distributed
case (F(1,4) = 114.1, p < 0.001).!3 While both strategies account for most of the variance,
the distributed representation compresses the category match scores across the typicality range,

13. We considered the intra-category and inter-category data as one sample, given that our calculation of category
match scores in each case was identical. Considering the data as two separate samples yields similar accounts of
variance and predicied response times.
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Table 8. Human and predicted response times for Rosch and Mervis (1975) data.

REsPONSE | PREDICTED | PREDICTED
TIME TIME TIME
(Locar) (CoBWEB)

INTRA- HicH 560Ms 526 535
CATEGORY MEDIUM 617mMs 606 615
OVERLAP (o) Low 692Ms 753 713
INTER- Low 909Ms 938 968
CATEGORY MEDIUM 986Mms 1008 995
Overrap (B) HiGH 1125Ms 1057 1062

possibly because it better tailors recognition to an observation. More specifically, distribution
indicates that typicality rankings emerge from variation along two dimensions of categorization
(Rosch, 1978). Relatively unique features to a category will tend to diffuse activation towards
subordinate categories (i.e., along a vertical dimension). Features that overlap with contrasting
categories diffuse activation across nodes that classify observations of more than one contrast cat-
egory (i.e., a horizontal dimension). Local accounts of typicality only consider variance along this
latter dimension.

A distributed model makes the vertical dimension explicit in explanations of typicality. This
suggests interactions with basic-level effects, which also emerge from variation along this dimension.
For example, Rosch et al. (1976) predicted and Jolicoeur, Gluck, and Kosslyn (1984) verified
that the human preference for the basic level is qualified. In particular, an observation (e.g.,
a specific chicken) may be sufficiently atypical of its basic-level category (e.g., bird) that it will
be first recognized as an instance of a subordinate category (e.g., chicken). Low intra-category
overlap results in greater activation of subordinate nodes, while there is a simultaneous decrease
in activation of the basic-level node for atypical objects due to less intra-category overlap and
more inter-category overlap. In cases of sufficient atypicality, these tendencies may interact so that
classification is initiated at a subordinate level. This is nicely illustrated by the data of Table 6 (a).
In this simulation the category match scores of atypical objects (nonsense strings) were higher at
subordinates than at top level nodes of a COBWEB-generated tree — presumably the basic level,
since this level maximizes category utility.

5.4 Fan Effects

To a large extent, knowledge of basic level and typicality effects influenced our adoption of prob-
abilistic representations and the category match metric. However, the framework also accounts
for certain fan effects (Anderson, 1976), which did not influence our representation and processing
biases. Nonetheless, these phenomena are accurately predicted by application of category match
to probabilistic representations.
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Table 9. Human and predicted response times for Anderson’s (1974) fan effect data.

(a) TrUES (B) FALSES
1 2 3 1 2 3
1 1111mMs 1174Ms 1222Ms 1197wms 1221Ms 1264Ms
(1120Ms) | (1157ms) | (1184Ms) (1168Mms) | (1240ms) [ (1306Ms)
2 1167Ms 1198Ms 1222Ms 1250Ms 1356Ms 1291Ms
(1157Ms) | (1195Ms) | (1259Ms) (1240Ms) | (1312Ms) | (1379Ms)
3 1153mMs 1233Ms 135TMs 1262Ms | 1471ms 1465Ms
(1184mMs) | (1259ms) | (1321Ms) (1306Ms) | (1379Ms) | (1444mMs)

Fan effects indicate that observations with frequently encountered features may be more difficult
to recognize than observations with relatively unique features, given that exposure across observa-
tions is relatively constant. Anderson (1974) demonstrated this principle in sentence recognition
tasks, which typically used simple sentences that consisted of a person and a location:

(1-1) The doctor is in the bank. (1-2) The fireman is in the park.
(2-1) The teacher is in the church. (2-2) The teacher is in the park.

Sentences vary in the number of features (persons, locations) that they share with other sentences.
The numbers preceding each sentence indicate the number of sentences that contain the respective
persons and locations. For example, sentence (2-1) indicates that ‘teacher’ appears twice and
‘church’ appears once in the set of four sentences.

After subjects were trained on selected sentences, they were presented with probes and asked
whether they had previously observed a sentence (true) or not (false). Anderson found that recog-
nition time increased in the true and false case with the frequency that a person and location was
present in training sentences. Table 9 shows matrices of nine cells each, which show the averaged
human response data (Anderson, 1974) in the upper portion of each cell. Each cell corresponds to
iterns with the number of persons and locations denoted on the horizontal and vertical dimensions,
respectively. In general, response time for both true and false human data increases as one moves
to the right and/or down.

Elsewhere (Silber & Fisher, 1989), we explained these effects as a special case of typicality phe-
nomena, in which a subject was to classify test observations with respect to the singleton categories
formed from the training observations. In this account, the intra-category overlap between single-
ton categories is identical, since each observation contains exactly two features. Response time
differences are thus explained entirely in terms of inter-category overlap. The more features that
an observation shares with other observations, the greater the overlap between its corresponding
singleton category and contrasting singleton categories. Observations with greater overlap should
require greater response time, which is consistent with typicality findings.
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In accounting for these data we will primarily be concerned with local representations, particu-
larly in the case of true test items. The reason for this is that COBWEB may impose an organization
above the singleton level, but both features of a sentence can only be predicted with certainty at
the leaves. In the case of ‘true’ test items we thus report category match scores for the test item’s
corresponding singleton, since this is the strongest match. The false case is more complicated. In
contrast to the Murphy and Smith experiments, subjects are not given a verbally-cued target cat-
egory on which to focus. Rather, we assume that all categories must be investigated and rejected.
There are a number of ways that we might simulate this process, but for simplicity we report the
average category match score of an observation across all categories in memory: this is the set of
singletons in the local case and singletons plus internal nodes in the distributed case. Averaging
captures the intuition that larger scores indicate that more of memory must be investigated, but
it makes minimal assumptions about how this might be accomplished.

In addition to the human data at the top of each cell, Table 9 shows predicted response times
in parentheses that were generated from a linear regression. Once again, false response times are
proportional to category match, and there is an inverse relation between the two in the true case.
Category match scores account for 83.8% of the variance in true response time (F(1,7) = 36.3,
p < 0.001) and 70.9% of the variance in false response time (F(1,7) = 17.1, p < 0.004).14

In contrast to our account of fan effects, Anderson’s (1976) initial explanation suggested that
items were stored in a semantic network and activation spread from the features of a test sentence
until the original instance was found in memory (trues) or all links from the features had been
exhausted (falses). A mathematical abstraction of Anderson’s ACT processing model accounted
for 83% of the variance in the true and false response times. It appears that Anderson considered
the true and false cases as one sample, whereas we have modeled them separately. Overall the
AcT-based model yields better predictions than our model, but it also assumes more parameters
that are linked to the processing assumptions of Act.

Recently, Anderson (in press) has provided an explanation of fan effect based on a rational model
of information retrieval systems. A key ingredient in his explanation is the cue validity of features
towards a sentence. Similarly, we can see the role of cue validity in category match by reexpressing
itas 3, P(V;)P(C|V;)P(V;|C)— P(V;)P(C)P(V;). Since P(V;|C)'s and P(C)’s are constant across
all singleton categories, a dominant factor in category match are the cue validities, P(C|V;). More
generally, low cue validity reflects greater overlap with contrast (singleton) categories. In fact, as
first observed by Jane Silber (personal communication), it is the reliance on cue validity that unifies
fan with typicality phenomena, notably the aspect that emerges from inter-category overlap.

6. General Discussion

In this paper we presented speculative and rational analyses of bg.sic level, typicality, and fan effects.
Our primary goal was to verify the ability of Gluck and Corter’s category utility and our category
match variant to predict human response time; our precise application of category match necessarily

14. We considered the true and false data as separate samples, given differences in the calculation of category match
scores between the two cases.
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varied with differences across the experimental studies, but collectively our various assumptions are
consistent. In the case of all ‘true’ stimuli, response time is predicted by the score of the node that
maximizes category match and that satisfies the conditions of the stimulus (e.g., membership in
a target category; possession of both person and location features of the stimulus). In the ‘false’
cases, response time is predicted by a function of the match scores of nodes that must be examined
in order to issue a false response with certainty (e.g., a target category if one is supplied or all
categories in memory otherwise).

A benefit of exploiting Gluck and Corter’s rational analysis is that it provides a specification of
concept quality that has both computational and psychological merit. In particular, we coupled
category utility and methods from machine learning (Kolodner, 1983; Lebowitz, 1982) in the proba-
bilistic representations and classification strategies of COBWEB. Our ongoing research is advancing
in two directions: to improve the system so that it is more fully consistent with the psychological
phenomena, and to expand the scope of the model to other areas of cognition, notably problem
solving.

6.1 The Role of Indexing

Despite the descriptive merits of our specification, we have noted that it leaves certain ‘imple-
mentation’ issues unexplained. For example, our analysis of the Murphy and Smith data required
that false response times rise with category match scores. However, taken alone, the assumption -
that increased match implies faster access — suggests that false categories with higher match scores
would be more quickly accessed, thus allowing for faster rejection. To resolve this problem, we
appealed to assumptions about processing and representation which required that poorly matching
categories would be more quickly rejected. We can now flesh out some general mechanisms that
will realize these behavioral constraints.

Many theories of learning and memory have addressed the problem of identifying and exploiting
informative features for classification. Category utility and category match suggest that a feature
positively informs the categorization process if and only if P(f|C) > P(f). This criterion of
feature informativeness has been suggested by data in such diverse areas as stereotype theory
(McCauley, Stitt, & Segal, 1980) and animal learning (Rescorla, 1968), as well as other areas of Al
and psychology (Schlimmer, 1986).

However, strict adherence to this criterion may still allow features of little benefit to be evalu-
ated. For example, P(f|C) = 1.0 for all singleton categories, thus satisfying the criterion for most
leaves. In response, Fisher (1988, 1989) and Quinlan (1986) have employed a variety of methods
for determining when the P(f|C) > P(f) relation is significant. Given category utility’s relation to
Jones’ (1983) collocation measure — P(C|V)P(V|C) - an attractive method would be to find nodes
that maximize this product for each feature. Intuitively, these will be the most specific categories
(i.e., yielding high P(V'|C)) for which the feature is still discriminating (i.e., yielding high P(C|V)).
For example, the feature ‘fly’ may be maximized at ‘birds’, but below this it does not discriminate
among birds. Our heuristic assumption is that at collocation-maximizing nodes a feature's presence
becomes approximately independent of membership in lower-level categories.
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This heuristic creates a ‘horizon’ beyond which a feature does not discriminate. We may impose
this horizon through indezing (Feigenbaum & Simon, 1984; Kolodner, 1983; Lebowitz, 1982): a
feature labels a link from a node to one or more of its descendents; the link is traversed only when
an observation with that feature is observed. For example, in the zoological taxonomy, ‘ly’ would
index the categories ‘vertebrate’ and ‘bird’ from the taxonomy’s root, since these nodes are within
the horizon determined by collocation.!® In many cases, a feature’s collocation is maximized at
the root and thus does not index any node. This indexing strategy may also be recursively applied
so that descendents of ‘bird’ are indexed by features that discriminate them from the ‘bird’ node.
Notice that ‘fly’ would not index any descendant in this context, whereas ‘not-fly’ presumably
would. Conversely, ‘fly’ would not index ‘mammal’ from the root, but within the ‘mammal’ context
it would discriminate ‘bats’.

In the revised model, classification would be based on a category match score that is computed
only over the features of an observation that are used for indexing. All such scores will be positive,
with the maximum score dictating category membership. This procedure would recurse from the
maximum node until it reached a ‘dead end’, at which no indices for the observation remain.
Computationally, this indexing scheme radically delimits the portions of memory that are accessed
for each observation, without appealing to ad hoc thresholds.

This strategy also appears to have desirable psychological properties, but at this point we can
only speculate with respect to some of the data. First, the approach breaks the basic-level tie that
we reported in relation to the Hoffman and Ziessler studies; in the case of one tree, subjects treated
the top-most nodes as basic, but category match predicted a tie between these nodes and their
children. In this case, indexing brings all features to bear on the top-level nodes, but it removes a
feature from the match computation for the middle-level nodes. Basic-level identifications are also
accurately predicted in the other studies, as are typicality rankings from the Rosch and Mervis
studies.

The revised model also promises to explain results with false test items. To review our earlier
account of Murphy and Smith’s data, the ‘false’ target is verbally cued, which is the only cue
in the case of superordinate-only relatedness and unrelatedness. Their matching score is more
quickly overwhelmed by the match score of the correct category than is the false target in the
basic-relatedness case. There are no concept-specific thresholds, but one can view recognition as
mediated by implicit and variable thresholds that emerge from the competition among contrast
categories. Membership in a category can be rejected when a dead end is reached and a competing
category has a higher matching score. A similar account also applies to Anderson’s data. Thus,
our account of the false data suggests that low match scores in our specification translate to more
dead ends in categorization.

15. This differs from our earlier systems (Fisher, 1988; Silber & Fisher, 1989), which directed indices only at
collocation-maximizing nodes (e.g., bird, but not vertebrate). This sirategy proved too fragile, particularly
during the early stages of learning.
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6.2 Models of the Planning Process

In addition to improving our account of categorization phenomena, we are extending the model of
recognition and learning to domains such as planning. This work is closely related to a growing
body of research in machine learning that is focused on problem solving (e.g., Minton, 1988; Shavlik,
1989). Much of this work has focused on analytic learning methods (Mitchell, Keller, & Kedar-
Cabelli, 1986) that transform knowledge from one form into another.

In contrast, we propose that learning in problem-solving domains is best modeled as concept
formation, in which memory organizes problem-solving experience in a manner that facilitates
efficient reuse and that incrementally transforms a novice into an expert. Our approach augments
a problem solver with a concept formation component that organizes problem descriptions and
solution traces (Allen & Langley, 1989; Yang & Fisher, 1989). A new problem is classified via the
concept hierarchy in hopes of finding a reusable solution trace. In cases where a complete solution
cannot be recovered, one may still obtain a partial solution by recovering predictable subtraces
at nodes encountered during classification. Our framework is consistent with psychological (Chi,
Feltovich, & Glaser, 1981) and computational (Bareiss, 1989) views that expertise involves an
ability to solve problems via classification versus search.

We expect that many of the behaviors that occur in conceptual memory - such as typicality and
basic-level effects — will also occur with problem-solving memory. Thus, we hope to account for
many of the same types of phenomena in episodic memory that we explained for object memory.
This work is also addressing some limitations of featural and probabilistic models generally and
CoBWEB specifically. In particular, we are extending our strategies to structured representations
(Smith & Medin, 1981; Dietterich & Michalski, 1983), which allow relationships between object
features or components (e.g., next-to(x, y)). In addition, we are using an object’s function in
problem solving as a guide for concept learning (Wisniewski, 1989; Nelson, 1973). More generally,
we hope to develop a general-purpose cognitive architecture that is founded on the principles of
human memory that we have described here (Langley, Thompson, Iba, Gennari, & Allen, 1989).
Finally, we hope to illustrate that our analysis in particular, and rational/speculative analyses in
general, provide generic models of intelligent behavior that cognitive scientists can exploit, regard-
less of the side of the psychological/computational fence on which they typically reside.
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and painstaking process, often involving the development
of large and complex computer programs. Dexpite the effort involved, scientific models cannot easily
be distributed and shared with other scientists. general, implemented scientific models are complex,
idiosyncratic, and difficult for anyone but the origin scientist/programmer to understand. We believe that
advanced software techniques can facilitate both the m el-buildisig and model-sharing process. We propose
to construct a scientific modeling software tool that se ves,,af‘s an aid to the scientist in developing and
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In this paper, we introduce an approaéix to automated model derivation for knowledge based systems. The
approach — called model compilation - involves procedurally generating the ¢t of domain models used by
a knowledge-based system. With an implemented example, we illustrate how this approach can be used to
derive models of different precision and abstraction, and models tailored to diffedent tasks, from a given set
of base domain models. In particular, we describe two implemented model compjlers, each of which takes
as input a base model that describes the structure and behavior of a simple electrpmechanical device - the
Reaction Wheel Assembly of NASA’s Hubble Space Telescope. The compilers tyansform this relatively
general base model into simple task- specific models for troubleshooting and redesign, respectively, by
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