Wayne State University
Digital Commons@WayneState

Biochemistry and Molecular Biology Faculty

Publications Department of Biochemistry and Molecular Biology

10-1-2006

The Structure and Function of Frataxin

Krisztina Z. Bencze
Wayne State University

Kalyan C. Kondapalli
Wayne State University

Jeremy D. Cook
Wayne State University

Stephen McMahon
Wayne State University

César Milldn-Pacheco
Universidad Autonoma del Estado de Morelos

See next page for additional authors

Recommended Citation
Bencze, K. Z., Kondapalli, K. C., Cook, J. D., McMahon, S., Milldn-Pacheco, C., Pastor, N., & Stemmler, T. L. 2006. The structure and

function of frataxin. CRBMB 41(5): 269. doi:10.1080/10409230600846058
Available at: http://digitalcommons.wayne.edu/med_biochem/3

This Article is brought to you for free and open access by the Department of Biochemistry and Molecular Biology at Digital Commons@WayneState. It
has been accepted for inclusion in Biochemistry and Molecular Biology Faculty Publications by an authorized administrator of
Digital Commons@WayneState.


http://digitalcommons.wayne.edu
http://digitalcommons.wayne.edu/med_biochem
http://digitalcommons.wayne.edu/med_biochem
http://digitalcommons.wayne.edu/bcmb
http://dx.doi.org/10.1080/10409230600846058

Authors
Krisztina Z. Bencze, Kalyan C. Kondapalli, Jeremy D. Cook, Stephen McMahon, César Millan-Pacheco, Nina
Pastor, and Timothy L. Stemmler

This article is available at Digital Commons@WayneState: http://digitalcommons.wayne.edu/med_biochem/3


http://digitalcommons.wayne.edu/med_biochem/3

This 1s the author's post-print version, previously appearing in Critical Reviews In

Biochemistry and Molecular Biology, 2006, v. 41, p. 269-91.

Available online at: http://informahealthcare.com/




The Structure and Function of Frataxin | Krisztina Z. Bencze, et. al

The Structure and Function of Frataxin

Krisztina Z. Bencze*, Kalyan C. Kondapalli*, Jeremy D. Cook*, Stephen McMahon*,

César Millan-Pacheco?®, Nina Pastor® and Timothy L. Stemmler**

*Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine,
Detroit, Michigan, USA; &¥Facultad de Ciencias, Universidad Autonoma del Estado de Morelos,

Cuernavaca, Morelos, Mexico

¥ Address correspondence to Timothy L. Stemmler, Department of Biochemistry and Molecular
Biology, Wayne State University, School of Medicine, 540 E. Canfield Ave, Detroit, MI 48201, USA.

E-mail: tstemmle@med.wayne.edu

Abstract

Frataxin, a highly conserved protein found in prokaryotes and eukaryotes, is required for
efficient regulation of cellular iron homeostasis. Humans with a frataxin deficiency have
the cardio- and neurodegenerative disorder Friedreich’s ataxia, commonly resulting from a
GAA trinucleotide repeat expansion in the frataxin gene. While frataxin’s specific function
remains a point of controversy, a general consensus is the protein assists in controlling
cellular iron homeostasis by directly binding iron. This review focuses on the structural
and biochemical aspects of iron binding by the frataxin orthologs and outlines molecular

attributes that may help explain the protein’s role in different cellular pathways.
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Frataxin, a conserved protein found ubiquitously in prokaryotes and eukaryotes, is required for
the cellular regulation of iron homeostasis. Although of extreme interest to a large number of
chemists and biologists alike, frataxin’s exact role in helping cells regulate iron chemistry and metal
availability remains controversial at best. Frataxin has been proposed to participate in at least 5
different capacities: as an iron chaperone during cellular heme and iron-sulfur (Fe-S) cluster
production, as an iron-storage protein during conditions of iron overload, assisting in the repair of
oxidatively damaged aconitase Fe-S clusters, as a factor that controls cellular oxidative stress by
moderating the concentration of reactive oxygen species (ROS) and finally as an active participant
in pathways involving energy conversion and oxidative phosphorylation. While these functions are
not necessarily exclusive, it seems extraordinary that one protein could directly control so many
biological pathways within cells. Disruption of cellular frataxin production does cause a general loss
in the cellular control of iron bioavailability and reactivity, however phenotypes are complicated
which further inhibits defining the proteins exact function. The goal of this manuscript is to take a
structural approach to help understand frataxin’s role during the regulation of cellular iron
homeostasis. However, before we begin to draw structural correlations regarding frataxin’s
function, it is beneficial to first look in detail at the iron reaction chemistry the protein helps
control.

Iron is extremely versatile in the chemistry it can perform, so it is no surprise that the metal
is found ubiquitously in all living systems. Iron is found in the active sites of proteins involved in
many diverse cellular functions ranging from oxygen transport, oxidative metabolism and electron
transport to energy production. Iron’s ability to cycle between the ferrous (Fe(Il)) and ferric (Fe(III))
oxidation states allows the metal to be extremely useful when performing redox chemistry and “this
chemical versatility is surely a reason why nature selected this element in so many life processes”
(Cotton, et al, 1988). Unfortunately iron’s flexibility towards performing redox chemistry means
the metal, if left unregulated, can perform deleterious reactions that elevate ROS concentrations,
and these reactive oxygen species can damage cells by oxidatively attacking cellular membranes,
proteins and DNA alike. Ferrous iron will readily react with dioxygen to produce superoxide and
ultimately hydroxyl radicals, as described by the Fenton reaction (Aisen, et al, 2001; Kosman,
2003):

Fe(IT) + O, — Fe(Ill) + O, (Eq.1)
2 0," + 2H" — H,0, + O, (Eq. 2)
Fe(Il) + H,0, — OH" + OH' + Fe(IIl) (Eq. 3)
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It is therefore beneficial to control the oxidation of ferrous iron as a means to prevent the
damaging effects of hydroxyl radical production. Under normal physiological conditions (pH > 2),

ferric iron undergoes stepwise hydrolysis leading to the formation of insoluble neutral species:

[Fe(H,0)s]>* — [Fe(H,0)s(OH )] + H;0" (Eq. 4)
[Fe(H,0)s(OH™)]*" — [Fe(H,0)4(OH),]" + H;0" (Eq. 5)
[Fe(H20)4(OH )2]" — [Fe(H,0)3(OH );] + H;0" (Eq. 6)

Organisms have therefore evolved protein-controlled mechanisms to modulate iron’s redox
chemistry. These mechanisms allow cells to quickly adapt to enhancement or suppression of iron
import, the delivery of Fe for utilization and finally the storage of this important element for future
use. In humans, iron abstracted from diet is reduced and acidified by the low pH environment of
the stomach and a portion is eventually transported for use in the production of heme and Fe-S
clusters. A small percentage of the metal is also stored in a manner that can be easily mobilized.
More than two thirds of the iron found in the body is incorporated into hemoglobin in developing
erythroid precursor cells or in mature red blood cells (Andrews, 1999), highlighting the importance
of heme Fe-prosthetic groups as components that help control local Oz concentration, availability
and reactivity. Owing to their remarkable structural plasticity and versatile chemical/electronic
features, Fe-S clusters are additional prosthetic groups that help control cell and organism viability
by participating in electron transfer events, substrate binding and activation, iron and sulfur
storage, the regulation of gene expression and in some cases enzyme activity (Johnson, et al, 2005).
The balance of iron in biological systems is however fragile, as both iron deficiency and overload are
destructive to cells. Diseases related to the disruption in cellular iron homeostasis are, as a result,
among the most common diseases found in humans.

Friedreich’s ataxia (FRDA), an autosomal recessive cardio- and neurodegenerative disorder
that affects 1 in 50,000 humans, results from an inability to produce frataxin and protein deficiency
leads to a disruption of cellular iron homeostasis (Delatycki, et al., 2000). The majority of FRDA
patients (ca. 96%) have extensive trinucleotide repeat expansions in the first intron of the gene
encoding frataxin, while a small percentage of patients have frataxin point mutations (Campuzano,
et al, 1996). The expanded GAA repeat adopts abnormal DNA structures that impair frataxin
transcription; the longer the repeat, the more profound the frataxin deficiency, the earlier the onset
of the disorder and the greater the intensity of the disease (Bidichandani, et al, 1998; Ohshima, et
al, 1998; Pandolfo, 2002). In humans, frataxin is a 210 amino acid protein that is nuclear encoded

but has an N-terminal mitochondrial targeting sequence that gets removed during processing
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(Campuzano, et al, 1996; Gibson, et al, 1996). Results from immunocytofluorescence and
immunocytoelectron microscopy show processed frataxin is predominately located within the
mitochondria and associated with mitochondrial membranes, crests and as free soluble protein
within the matrix (Gibson, et al, 1996). Frataxin mRNA is predominantly expressed in tissues with
a high metabolic rate, including the liver, kidney, brown fat neurons and heart (Koutnikova, et al,
1997). Phenotypes coupled with a frataxin deficiency include mitochondrial iron accumulation
(Babcock, et al, 1997; Foury, et al, 1997), disruption in both heme and Fe-S cluster production
(Rotig, et al., 1997; Stehling, et al, 2004) and a progressive breakdown in cellular iron homeostasis
(Babcock, et al, 1997; Koutnikova, et al, 1997). Mitochondrial iron accumulation diverts metal
away from other cellular compartments and frataxin deficient cells accommodate for what they
perceive as a general cellular iron deficiency by elevating mitochondrial iron import (Babcock, et al,
1997). Boosting pathways that lead to increased mitochondrial iron import facilitates the problems
associated with not being able to process the reactive iron that is already present, leading to a
further elevation in ROS levels, gradual cell damage and finally the loss of cell viability (Delatycki,
et al, 2000). FRDA patients therefore show a slow progression of muscular and neurological
symptoms (loss of motor function, progressive limb and gait ataxia, etc.) linked to the disruption in
proper iron regulation and the disorder is typically fatal due to complications resulting from
cardiomyopathy (Orth, et al, 2001).

A direct correlation between frataxin and cellular iron homeostasis is at present obvious, but
early studies on the yeast frataxin homolog (Yfh1) provided the initial insight into what role(s)
frataxin may play in helping cells maintain iron homeostasis (Babcock, et al, 1997). Deletion of the
frataxin gene results in the accumulation of mitochondrial iron deposits (Babcock, et al, 1997;
Foury, et al., 1997) coupled with both aconitase and general Fe-S cluster protein deficiencies (Foury,
1999; Rotig, et al,, 1997). The presence of zinc suppresses iron accumulation phenotypes in yeast
(Knight, et al, 1998). AYfh1 cells were shown to be hypersensitive to H2Os, iron and copper levels
(Babcock, et al, 1997; Foury, et al, 1997). Based on the observation that reintroduction of Yfh1
expression under depleted conditions can promote the recovery and export of these mitochondrial
iron deposits, frataxin was originally proposed to directly control mitochondrial iron efflux (Radisky,
et al, 1999). Yfhl was also shown to indirectly regulate mitochondrial iron uptake by interacting
and partially controlling the activity of the yeast mitochondrial intermediate peptidase (YMIP), a
metalloprotease required for maturation of ferrochelatase and other iron utilizing proteins (Branda,

Yang, et al,, 1999).
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In eukaryotes, frataxin is proteolytically processed during the production of the mature soluble
protein found within the mitochondrial matrix. During translation, a frataxin precursor is produced
which contains a N-terminal targeting sequence that directs the protein to the mitochondria and
eventually into the matrix (Babcock, et al, 1997; Knight, et al, 1998). Processing of the yeast
frataxin precursor protein takes place uniquely in two steps (Branda, Cavadini, et a/, 1999; Gordon,
Wang, et al, 2001). Typically, proteins targeted to the mitochondria are processed in a single step
(Branda, Cavadini, et al, 1999; Cavadini, Adamec, et al, 2000; Gordon, Kogan, et al, 2001). There
are only a few additional proteins that show this variation and examples include the Rieske (Fe-S)
containing proteins and Neurospora crassa ATPase subunit 9 (Branda, Cavadini, et al, 1999;
Cavadini, Adamec, et al, 2000; Gordon, Kogan, et al, 2001). Even within this category, only
frataxin and ATPase subunit 9 use a single enzyme for processing during both steps (Cavadini,
Adamec, et al, 2000). In the first step, the mitochondrial processing peptidase removes the N-
terminal 20 residues (domain I) of the protein generating a Yfh1 intermediate. This intermediate is
then processed again by the peptidase to remove the next 31 amino acids (domain II), generating the
123 amino acid mature Yfh1 found within the matrix. The two processing steps are independent.
Domain I is a typical mitochondrial targeting signal and it can be substituted by other
mitochondrial targeting signals with similar cellular results. Domain II serves as a spacer. The
first 20 amino acids of frataxin contain the 5 basic residues typically found in mitochondrial
targeting signals. The N-terminal region of the mature protein is rich in acidic residues. A spacer
separates basic residues in the targeting signal from acidic residues in the mature protein’s N-
terminus. This prevents unwanted interactions that might hinder recognition of the target signal
by the import proteins. Both domains are required for import into the mitochondria, however
protein with mutations blocking the first or second processing steps will still complement the Yth1
deletion phenotype (Gordon, Kogan, et al, 2001).

N-terminal processing of human frataxin (HsFtx) is still a matter of debate. Cavadini et al.
proposed a two-step processing of the N-terminus, whereas Gordon et al could identify only a single
processing event (Cavadini, Adamec, et al, 2000; Gordon, Kogan, et al, 2001). In the two-step
processing proposal, the first cleavage occurs between residues 41 and 42, removing the first 41
residues of HsFtx to generate an intermediate. The second cleavage step occurs between residues
55-56, removing only the next 14 N-terminal residues. The kinetics of the first processing step was
shown to be similar between the different species, however the second cleavage reaction rate is
species specific. The second processing step (i.e., removing the 14 residues) is the rate-limiting step

during HsFtx processing (Cavadini, Adamec, et al, 2000). In contrast, Gordon et al detected only a
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single processing event generating the 18-kDa mature human frataxin and similar results were

observed with rat or yeast mitochondrial peptidase (Gordon, Kogan, et al, 2001).

STRUCTURAL INSIGHTS INTO FRATAXIN’S FUNCTION

A detailed understanding of frataxin’s structure provides some insight into how the protein may
function within its different proposed roles. Specific questions relevant to the molecular structure of
frataxin include: Is there a patch of residues that could accommodate iron binding if frataxin is
acting as a metal chaperone? Is there a favorable interface that could promote contacts between
frataxin and protein partners coupled with heme biosynthesis, Fe-S cluster assembly and aconitase
Fe-S cluster repair? Are there molecular elements on frataxin’s surface that might promote protein
aggregation during an iron storage function? and finally, Does frataxin support an active site that
could assist in the stabilization of the redox chemistry performed by the bound iron. We will
attempt to address each question by looking closely at the structures of the different frataxin
orthologs.

Solution and crystal structures have been reported for the yeast, human and bacterial
(CyaY) frataxin orthologs (Cho, et al, 2000; Dhe-Paganon, et al, 2000; He, et al, 2004; Lee, et al,
2000; Musco, et al., 2000; Nair, et al, 2004). Frataxin has a unique fold that combines two terminal
o-helices to make one plane, five antiparallel B-strands that construct the second plane of the
protein and a sixth (and, in HsFtx, a seventh) B-strand that intersects the planes to give an overall
planer a—B sandwich structural motif structure (Figure 1). The general shared frataxin topology is
alB1B2B3B4R5P6(BT)a2, strand seven is again only detected in HsFtx. In all three cases, the
structures are extremely similar; RMSD’s of HsFtx versus CyaY and Yfh1 in regions of secondary
structure are 1.34 A and 0.65 A, respectively. The overall structural dimensions of the orthologs
are: 47 x 32 x 28 A3 for HsFtx, 45 x 30 x 25 A3 for CyaY and 47 x 29 x 23 A3 for Yfh1. Mature HsFtx
spans amino acids 75-210 of the total expressed sequence, however auto-degradation and proteolysis
at the protein’s N-terminus prior to al residues have complicated structural studies of the full-
length mature protein. Therefore, the structures solved of HsFtx begin at residue 88 in the crystal
structure and 90 in the solution structure (Dhe-Paganon, et al., 2000; Musco, et al., 2000). Circular
dichroism data on full-length mature HsFtx indicate the N-terminal residues prior to residue 92 are
predominately unstructured. Mature Yfh1 spans residues 52-174 of the expressed gene sequence.
Unlike HsFtx, the 18 amino acids N-terminal to a1 in Yfh1 are stable and partially structured in a
310 helix observed between residues 65 and 68. Mature CyaY lacks any appreciable residues N-

terminal to al. In the case of HsFtx only, frataxin has a 17 amino acid C-terminal tail following a.2.

7 DIGITALCOMMONS@WSU | 2006



The Structure and Function of Frataxin | Krisztina Z. Bencze, et. al
This C-terminal tail of HsFtx adopts a random coil structure that is tethered to the protein’s helical

plane exposed surface.
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Figure 1. Top: ribbon diagram for yeast, human and bacterial frataxin. Middle: electropotential plots for
proteins in same orientation. Bottom: electropotential plots for proteins rotated -90 degrees around the y-axis
compared to top display. Structure figures made using solution structures of Yfh1 (PDB ID# 2GA5), HsFtx
(PDB ID# 1LY7) and CyaY (PDB ID# 1SOY) frataxins.

The strong structural similarity between frataxin orthologs results from the fact that these
proteins share an extremely high degree of amino acid sequence similarity. Sequence identity of

Yfh1 versus both CyaY and HsFtx are 28.1% and 37.8%, respectively, while respective sequence
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similarities are 59.8% and 65.0%. A large number of the highly conserved amino acids include a
subset of Asp and Glu residues located in the N-terminal region of the protein. For Yfh1 this
amounts to 9 of the first ca. 50 N-terminal residues in the mature protein constructed by conserved

Asp and Glu residues (Figure 2).
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Figure 2. ClustalX alignment for a subset of characterized frataxin orthologs. Bottom three sequences
represent structurally characterized frataxin orthologs. Secondary structural elements and ruler representing

Yfh1 properties are given below the sequences.

Conserved N-terminal acidic residues are located in the a1l and B1 secondary structural regions of
frataxin. Electrostatic potential plots show these conserved acidic residues line the exposed surface
of the al and B1 interfaces, generating a general negatively charged surface that covers roughly a
quarter of frataxin’s total accessible surface (Dhe-Paganon, et al, 2000). Carboxylate side chains
from Asp and Glu residues often serve as ligands for bounds metal in many iron-binding proteins,
suggesting the possibility of these regions participating in metal binding. While HsFtx does not
contain any cysteines, CyaY and Yfh1 contain poorly conserved cysteines at positions distant from

the acidic patches.
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Multiple factors have been shown to influence the stability of frataxin’s fold. The Pastore
laboratory (MRC, London) performed extensive characterization studies on the three in vitro
isolated and structurally characterized frataxins with the goal of defining factors that help stabilize
each protein’s structure (Adinolfi, Nair, et al, 2004; Adinolfi, et al, 2002). Apo-bacterial, yeast and
human frataxin are predominately stable as monomers at 1 mM protein concentrations, as
confirmed by proton linewidths observed in 15N labeled protein *N-HSQC specta (He, et al, 2004;
Mori, 1995; Musco, et al, 1999; Musco, et al, 2000; Nair, et al, 2003; Nair, et al, 2004). Apo-Yfh1
1s however stable as a monomer for only up to two weeks after isolation, at which point it begins to
self aggregate (Cook, et al, 2006). Although CyaY, Yfh1l and HsFtx share a high degree of sequence
homology and fold, the bacterial and human orthologs have melting points in the respective range of
54 and 60°C (Adinolfi, Nair, et al, 2004), while the yeast protein is less stable, with a melting point
at ca. 39°C ((Adinolfi, Nair, et al, 2004) and unpublished results from our laboratory). The type of
buffer (organic vs. phosphate) has minimal effect on protein stability for these three frataxin
orthologs, however the presence of salt generally increases the stability of frataxin’s fold (most
pronounced in Yfh1). Lowering the pH raised the stability of Yfh1 but this had no effect on the
helical fold of CyaY and HsFtx within the pH range of 6-8. The presence of iron at high metal to
protein stoichiometries further increased the stability of all frataxins orthologs. Residues C-
terminal to a2 in the protein’s structure appear to dramatically increase the general stability of
frataxin. C-terminal CyaY truncation mutants matching the shorter Yfh1 construct showed a
substantial (14°C) drop in the protein’s melting temperature. A C-terminal extension to Yfh1
caused a ca. 7°C increase in the protein’s melting temperature. Structural studies show the C-
terminal extension in CyaY and HsFtx are unstructured but make surface contacts with al and a2
amino acids, most likely providing additional contacts that help stabilize the protein’s fold. Finally,
the non-conserved N-terminal region of full-length HsFtx appears to be important for the partial
apo-protein aggregation often found in the in vitro expressed/isolated protein (O'Neill, Gakh, et al,
2005).

Close inspection of frataxin’s helical plane shows interesting structural attributes that may
contribute to a better understanding of how the protein binds metal and also in mutations that
cause FRDA. On Yfh1, al is lined with exposed surface acidic residues Glu71, Asp78, Asp79,
Asp82, Asp86, Glu89, Glu90 and Glu93 (Figure 3A). The orientation and proximity of these
conserved residues generates a conserved acidic patch on the protein in this region and these
residues would be in a perfect position to contribute to cation binding. Frataxin helices a1 and a2

are parallel and orientated at a average adjacent backbone distance of ca. 11 A, predominately due
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to interactions between the long side chains of hydrophobic and aromatic residues within this plane
(in Yfh1, al residues in this region include Leu84, Leu88, Leu91 and a2 residues include Leul62,
Val166 and Ile170). Additional interactions between hydrophobic core amino acids on the B-sheet

surface of the protein help secure the spatial orientation of a1 to a2.

w131
R141
D143

E148
V150

Figure 3. Yfh1 residues that are highly conserved on the helical (A) and B-sheet (B) planes of the protein.
Identity of HsFtx FRDA point mutations on the helical (C) and B-sheet (D) planes of Yfh1. Structure figures
made using Yfh1 solution structure (PDB ID# 2GA5).

In case of the human frataxin, the C-terminal tail of HsFtx, including residues Thr196, Leul198
and Leu200, appear to further contribute to the stabilization of these inter-helical residue
interactions (Cho, et al, 2000; Dhe-Paganon, et al., 2000; Lee, et al, 2000; Musco, et al., 2000; Nair,

et al., 2004). Surface exposed residues on the a2 surface of frataxin are less conserved; in Yfh1,
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Glul65 and Lys168 are fairly well conserved however the remaining surface residues are mixed.
Yfh1 surface residues in the p6-loop (or in HsFtx B6-B7) region share highly conserved polar Arg153
and Asn154 residues. Disease causing HsFtx helical plane point mutations are identified on the
conserved Yfh1 sequence as al residue Leu84 mutation (to a Ser) and on a2, Leul58 mutation (to a
His), Thr159 mutation (to an Arg) and Leul62 mutation (to an Arg) (Figure 3C) (Bartolo, et al,
1998; Cossee, et al, 1999; Filla, 1996; Zuhlke, et al, 2004). Since these are all buried in the
globular domain of the protein and play an important role in the packing of the two helices,
mutating these residues most likely causes a disruption of elements that stabilize frataxin’s fold.

Numerous surface exposed residues on the B-sheet plane of frataxin are also highly
conserved, and close inspection of this surface aids in the understanding of mutations that cause
FRDA. Surface exposed residues on the Yfh1 B-sheet plane include Asp101, Glu103, Val108,
Thr110, Glul12, Thr118, Asn122, Trp131, Argl41, Asp143, Glul48 and Val150, of which Asp101,
Thr110, Asn122, Trp131 and Asp143 are fully conserved (Figure 3B). HsFtx amino acids,
complementary in position to Yfh1 residues Asn122, Trp131 and Argl41, are surface exposed and
mutated in a small set of FRDA patients (Figure 3D) (Forrest, et al, 1998; Labuda, et al, 1999;
Zuhlke, et al, 2004). Yfh1 B-sheet residues with side chains directed towards the hydrophobic core
of frataxin include the conserved residues Ile121, Leul32 and Trp149. Along the B-sheet surface of
HsFtx, Yfh1 residues at complementary positions of Ile130, Leul32 and Trp149 were found as point
mutations in some FRDA patients, and mutating these residues would surely alter frataxin’s fold
(Campuzano, et al,, 1996; Cossee, et al,, 1999). In addition, Gly107 in the loop region between
Yfh1’s 1 and B2 is an additional point mutation found in a subset of FRDA patients (Bidichandani,
et al, 1997). Yfhl residue I1e99 is the final HsFtx point mutation seen in a subset of FRDA
patients, and this residue is located on the B-sheet plane of frataxin, connecting a1 to p1 (Cossee, et
al., 1999).

Although frataxin’s fold is fairly unique, a o—f sandwich motif structure is seen in a
surprising number of proteins that share similar functions to those proposed for frataxin. The a—J3
sandwich motif can be easily recognized in the ferredoxin-like fold of some cytosolic copper
chaperones. Although human HAH1 (Anastassopoulou, et al., 2004), yeast ATX1 (Arnesano, et al.,
2001) and BsCopZ (Banci, et al,, 2003) (PDB ID’s: 1TL5, 1FES and 1P8G) are smaller in their
overall size compared to frataxin (ca. 18A x 22A x 30A), and their helices are tilted at 45 degrees to
each other, the helices and beta strands still form a general two layer structure that is similar to the
o—p sandwich motif found in frataxin. The copper binding domains of these proteins involve a

conserved CXXC motif formed in a loop region; this binding site is surrounded by hydrophobic
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residues that are essential for binding to partner proteins but distinct in position from the acidic
patch on frataxin’s al/p1 surface (i.e., the proposed metal binding region of frataxin). Recent
crystallographic data on complex I of the Thermus thermophilus mitochondrial respiratory chain
revealed a previously unknown protein Nqo15 that is also a member of this superfamily (Sazanov,
et al, 2006). Nqol5 binds in close contact with 4 other domains to help stabilize the larger complex.
This protein is constructed by 129 amino acids, held together in an oa— sandwich motif fold.
Despite a low sequence homology (average of 12%), the crystal structures superimpose well with
RMSD values of 2.5 A and 3.3 A for CyaY and HsFtx, respectively. This domain binds to the
complex through its B-sheet surface in a manner that creates a hydrophilic channel connecting the
solvent with the N3 subdomain. The N-terminal f1 and loop connecting 1 and B2 contain several
surface exposed histidine residues. Based on the fold similarity between frataxin and Nqo15, and
given that a recent publication from the Cowan laboratory (Ohio State University) that proposed
frataxin’s B-sheet plane may be an essential interface when interacting with ISU proteins during
Fe-S cluster assembly (Yoon, et al, 2003), the authors of the Nqo15 structure proposed that the
conserved B-sheet plane histidine residues could serve as an iron binding site during iron storage

and delivery by the protein when reconstitution of the Fe-S cluster in subdomain N3 is required.

FRATAXIN’S IRON BINDING ABILITY

Given the spatial arrangement of conserved acidic residues on the a1/B1 regions of frataxin (Figure
1), and the fact that Asp and Glu carboxylate side chains are chemically suited as ligands for
binding metals, it is not surprising to learn that frataxin is an iron binding protein. However, the
Isaya laboratory (Mayo Clinic) were the first to identify that frataxin directly binds iron; this iron
binding ability was first determined in the yeast system (Adamec, et al,, 2000). The iron binding
ability of additional frataxin orthologs has since been confirmed for both the human and bacterial
proteins (Adinolfi, et al, 2002; Bou-Abdallah, et al, 2004; Cavadini, et al, 2002; Cook, et al., 2006;
Yoon, et al., 2003; Yoon, et al, 2004). While it was initially recognized that iron binding in the yeast
system induces frataxin to oligomerize under unique solution conditions, numerous subsequent
reports suggest that oligomerization is not essential when the protein functions in an iron
chaperone capacity (i.e., during heme and Fe-S cluster assembly) but it may be important when the
protein participates in helping control ROS production under iron overloading conditions. In an
attempt to deconvolute the published reports concerning the iron binding ability of frataxin in its
different oligomeric states and how these relate to the different proposed functions of frataxin, we

will selectively discuss, in the following text, issues concerning: first the iron binding ability of
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monomeric frataxin, secondly frataxin’s ability to form iron loaded oligomers and finally the
protein’s ability to regulate the redox chemistry performed by iron bound to the protein. Each of

these points is summarized below.

Frataxin will bind iron as a stable protein monomer.

Metal to protein stoichiometries, measured for monomeric bacterial, yeast and N-terminally
truncated human frataxin show these proteins will tightly bind 2, 2 and 7 Fe(II) atoms, respectively
(Bou-Abdallah, et al, 2004; Cook, et al., 2006; Yoon, et al, 2003). Iron dissociation constants,
measured for CyaY, Yfth1l and N-terminally truncated HsFtx give average Ki values of 3.8, 3.0 and
55.0 uM, respectively(Bou-Abdallah, et al, 2004; Cook, et al, 2006; Yoon, et al, 2003). The
presence of magnesium or calcium salts, at physiologically relevant concentrations found within the
mitochondria, stabilize CyaY and Yfh1 in the iron bound monomeric state against oligomerization,
while a large portion of bacterially overexpressed HsFtx is stable as an iron loaded monomer
regardless of the solution conditions (Adinolfi, et al., 2002; Cook, et al., 2006). N-terminally
truncated HsFtx was shown to bind ca. 6 Fe(III) atoms at a Kiof 10.2 pM (Yoon, et al, 2003). In the
presence of oxidants, monomeric CyaY can bind up to six Fe(III) atoms and will interact with up to
25 Fe(III) atoms/monomer (Bou-Abdallah, et al, 2004). Ferric iron binding studies for Yfh1 are
linked only to protein homooligomerization (Adamec, et al, 2000).

NMR spectroscopy provided a powerful tool for identifying frataxin amino acids directly
affected by the presence of iron. Backbone amide resonances for the three characterized frataxins
are generally well dispersed, hence providing a fingerprint for the majority of protein amino acids
(He, et al, 2004; Musco, et al, 1999; Nair, et al, 2003). Subtle perturbations in the amide
resonances and general signal intensity due to the addition of iron therefore serve as markers for
residues affected by the presence of paramagnetic iron. Ferrous iron titrations performed
anaerobically with the 5N labeled frataxin orthologs show distinct alterations in al and f1 amino
acid NMR resonances and, in the case of the CyaY and HsFtx, these perturbations are dependent on
metal to protein stoichiometry. General trends in amide resonance perturbations upon addition of
iron can be divided into two categories: amide resonances that were significantly line broadened
(often beyond detection) and amide chemical shifts that were shifted in the presence of metal.
Bacterial amide resonances broadened upon addition of a single Fe(II) atom include a1l residues
Arg20, Leu21, Asp22 and Asp23 (Table 1), while human resonances include a1 residues Asp112,
Leull3, Aspl115 and Val125 (Nair, et al, 2004).
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Table 1. Comparison of the iron interaction with Yfh1, HsFtx and CyaY residues in al thru
B2 secondary structural regions

Yfhl HsFtx CyaY Structure
Sequence Fe Effect Sequence Fe Effect Sequence Fe Effect Consensus

Glu71 Thr93 Ser4 br2

Lys72 Thr94 Glu5 br2

Tyr73 Tyr95 Phe6 br2 al
His74 Glu96 His7 br2 al
Glu75 sh2 Arg97 Arg8 al
Glu76 sh2 Leu98 Leu9 al
Ala77 Ala99 Alal0 ol
Asp78 sh2 Glu100 Aspll al
Asp79 br2 Glu101 Glnl2 ol
Tyr80 Thr102 Leul3 al
Leu81 Leul03 Trpl4 al
Asp82 br2 Aspl04 br2 Leuls ol
His83 br2 Ser105 Thrl6 al
Leu84 Leul06 Ile17 ol
Leu85 Alal07 br2 Glul8 ol
Asp86 br2 Glul08 br2 Glul9 br2 al
Ser87 sh2 Phe109 Arg20 brl al
Leu88 Phel10 br2 Leu21 brl al
Glu89 sh2 Glul11 Asp22 brl al
Glu90 sh2 Aspl12 brl Asp23 brl al
Leu9l Leull3 brl Trp24 br2

Ser92 sh2 Alall4 br2 Asp25

Glu93 sh2 Aspll15 brl Gly26

Ala%4 Lys116 -

--- Prol17 ---

His95 Tyr118 ---

Pro96 Thr119 br2 ---

Asp97 Phe120 br2 Asp27

Cys98 Glul21 Ser28

11e99 Aspl22 br2 Asp29

Pro100 Tyr123 11e30
Aspl01 Aspl24 br2 Asp31 br2 B1
Vall102 Vall25 brl Cys32 br2 B1
Glu103 br2 Ser126 Glu33 B1
LeulO4 Phel27 lle34 B1
Ser105 sh2 Gly128 Asn35 B1
His106 Ser129 Gly36
Gly107 Gly130 Gly37

Val108 Vall31 Val38 B2
Met109 Leul32 Leu39 32
Thr110 Thr133 Thr40 B2
Leulll sh2 Vall34 lle41 B2
Glul12 br2 Lys135 Thr42 B2
llel1113 Leul36 Phe43 B2
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Table 1. The table represents a stoichiometry of between 1 to 2 Fe(II) per protein monomer. Abbre-
viations include: brl and br2 (broadened and shifted at 1:1 and 2:1 respective Fe(II) to protein ratios) and sh2
(shifted at a 2:1 Fe(II) to protein). The final column contains the ortholog consensus secondary structure. The

dashed line represents gaps in sequence homology (see Figure 2 for clarification). Conserved residues are

shaded.

Additional bacterial resonances broadened upon the addition of a second Fe(II) atom include al
residues Ser4, Glub, Phe6, His7, Glul9 and Trp24, and B1 residues Asp31 and Cys32; human
resonances include those from al residues Asp104, Ala107, Glu108, Phel10, Alal14, Thr119,
Phe120, Asp122 and Asp124. Addition of up to six Fe(II) atoms to CyaY and HsFtx caused a
general broadening of amide resonances throughout the al and B1 regions. A number of additional
CyaY and HsFtx resonances in the al and B1 regions underwent chemical shift perturbations upon
the addition of ferrous metal. Yfh1 resonances broadened under similar buffer conditions by
addition of up to 2 iron atoms include al residues Asp79, Asp82, His83 and Asp86, the B1 residue
Glul03 and the B2 residue Glu112, while amide resonances for additional a1, B1 and B2 residues
undergo chemical shift perturbations in the presence of iron (Cook, et al,, 2006). Ferric iron
titrations were performed on CyaY with similar results to those obtained from ferrous iron binding.
CyaY residues significantly broadened at a 1:1 Fe(III) to protein stoichiometry include ol residues
Arg20, Asp22 and Asp23. In the presence of a 2:1 ration, additional broadened resonances include
al residue Asp29, as well as B1 residues I1e30, Asp31, Cys32, Glu33 and Ile34. Again, addition of
up to six iron atoms causes a general broadening of a1 and B1 resonances. Finally binding studies
performed on CyaY with the non-paramagnetic Ca(Il) ions showed general chemical shift
perturbations in only the al and B1 regions (Nair, et al,, 2004). In summary, these NMR titrations
paint a picture of frataxin’s metal binding residues located predominately in the conserved acidic al
and B1 regions of frataxin (Table 1).

Structural studies directed at characterizing the metal-ligand coordination geometry and
electronic properties of bound iron provide additional insight into the metal binding ability of the
monomeric frataxin orthologs. X-ray absorption spectroscopy (XAS) provides a powerful tool for
characterizing structural and electronic properties of metals bound to proteins in solution (Teo,
1986). This technique has been used to characterize iron bound to Yfh1 and HsFtx monomers. Iron
bound to monomeric Yfth1l and HsFtx is stable in the ferrous state when samples are prepared
anaerobically or in the presence of the reducing agent dithionite (Bencze, et al, 2006; Cook, et al.,
2006). Analysis of the iron 1s>3d transitions in the x-ray absorption near edge structure (XANES)

portion of the XAS spectrum are consistent with ferrous iron existing in the high-spin state and
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coordinated in a highly centrosymmetric metal-ligand coordination geometry when bound to
monomeric HsFtx and Yfh1 (Bencze, et al, 2006; Cook, et al, 2006). Structural analysis of the
Fe(ID)-ligand coordination geometry for monomeric Yfh1 and HsFtx from the extended x-ray
absorption fine structure (EXAFS) portion of the XAS spectrum are consistent with iron bound in a
highly symmetric 6 coordinate ligand environment. Ligands coordinating Fe(II) are exclusively
oxygen and/or nitrogen based, in agreement with a1 and 1 Asp, Glu and His residues identified in
the multiple NMR titrations as residues that possibly interact with iron. Additional ligands to the
protein bound metal surely also come from water or hydroxide ions. There is no evidence for any
metal* ¢ * metal interaction for the ferrous iron bound to monomeric frataxin, even when up to two

metals are bound in both Yfh1 and HsFtx.

Frataxin can form stable iron loaded homooligomers

Frataxin ability to homooligomerize, forming aggregates with metal binding abilities similar
to that of ferritin, suggests frataxin may act in an iron storage protein. Under elevated metal to
protein stoichiometries, the presence of oxygen and the absence of salt, Yfh1 will form a 48-
multimeric homooligomer that can bind up to 50 iron atoms per protein monomer (Gakh, et al,
2002). CyaY aggregates of a similar size and iron loading capacity will also form under low salt,
aerobic and iron-overloaded solution conditions (Adinolfi, et al, 2002). Assembly in both systems is
predominately averted under high concentrations of other divalent metal ions or in the presence of
physiological salt concentrations (Adamec, et al,, 2000; Adinolfi, et al., 2002; Cook, et al., 2006),
indicating CyaY and Yfh1 assembly is iron specific and will proceed under low salt but molecular
oxygen (O2) dependent conditions. Monomeric HsFtx does not self-assemble at high iron
concentrations, however a ca. 59-mer HsFtx homooligomer is isolated as part of the . coli
overexpressed protein and this oligomer can bind approximately 10 iron atoms under aerobic and
salt free conditions (Cavadini, et al, 2002). The bulk iron bound in Yfh1 and HsFtx assemblies is
predominately in the high-spin Fe(III) state (Nichol, et al, 2003).

Yfh1 homooligomers have a unique morphology that highly resemble those seen from the
iron storage protein ferritin, suggesting iron storage may be an important function of frataxin
(Adamec, et al, 2000; Gakh, et al., 2002). Unlike ferritin, which forms spherical aggregates in the
absence of metal (Theil, 1973), Yfh1 will only self assemble in the presence of Fe, Oz and low salt
(Adinolfi, et al, 2002; Park, et al, 2002). Stoichiometric and higher Fe(I):protein ratios drive Yfh1
to progressively self-assemble into larger homooligomers beginning from a protein trimer repeating

unit, directing next to a hexamer, then to a 12-mer, 24-mer and finally resulting in the 48-mer
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spherical protein aggregate that resembles ferritin (Adamec, et al, 2000). The 48-mer Yth1
aggregate stores bulk metal, of greater than 2000 iron atoms, predominately as ferrihydrite (Nichol,
et al, 2003). The ca. 59-mer HsFtx homooligomers, isolated from a portion of the protein
overexpressed in K. coli, will store ca. 600 iron atoms as ferrihydrite in a rod-shaped polymeric
protein structural morphology (Cavadini, et al, 2002). Non-covalent protein subunit interactions,
mediated by the non-conserved N-terminal region of human frataxin, were shown to be important
for assembly (O'Neill, Gakh, et al, 2005). Iron does not induce the assembly of the monomeric
portion of overexpressed HsFtx isolated from Z. coli (Adinolfi, et al., 2002). CyaY can also form
aggregates in the presence of iron and like Yfh1, aggregation is closely controlled by the presence of
salt (Adinolfi, et al, 2002). Analytical ultracentrifugation studies show CyaY tetramers can be
formed when Fe(II) is added anaerobically; different protein aggregates are formed upon oxidation
of the bound Fe(II) (Bou-Abdallah, et al, 2004). These in vitro assembly results are intriguing as
they suggest protein aggregation may be an important property of the protein, in that it may help
regulate cellular iron homeostasis under iron overloaded cellular conditions.

Residues in the a1/B1 region are essential for controlling frataxin homooligomerization.
Specific conserved acidic residues in the al/B1 region of Yfh1l and CyaY are required for assembly.
Mutating CyaY al residues Glul8, Glul9 and Asp22, along with 1 residue Glu33 abolishes the
iron induced oligomerization behavior (Adinolfi, et al, 2002). Mutating conserved Yfh1 acidic
residues Asp86, Glu90 and Asp93 abolishes the iron induced oligomerization behavior of the protein,
surprisingly with no real in vivo phenotypes under normal growth conditions (Aloria, et al, 2004).
Additional Yfh1 mutational studies indicate Asp93 is critical for protein self-assembly (Gakh, et al,
2006). Unlike CyaY and Yfh1, a portion of the full length mature HsFtx (residues 56-210) will self-
assemble in the absence of metal; N-terminally truncated HsFtx lacking the initial 22 residues does
not self assemble in the absence of iron (Cavadini, et al, 2002; O'Neill, Gakh, et al, 2005).

XAS results show iron bound to Yfh1 and HsFtx spherical aggregates is predominately stable
in the ferric state when samples are prepared aerobically at high metal to protein ratios (Nichol, et
al.,, 2003). Analysis of the 1s>3d transitions in the XANES spectra indicate ferric iron is
coordinated in a highly centrosymmetric metal-ligand structural environment. Structural analysis
of ferric iron coordinated to Yfh1 and HsFtx aggregates are consistent with bulk metal being bound
as ferrihydrite, a biomineral composed of ferric oxide/hydroxide octahedra. The ligands coordinating
the metal come predominately from complexed mono- and bidentate oxygen ligands that hold the
multinuclear Fe cluster together and not from protein based ligands. These structural studies were

essential for the early identification of how frataxin oligomers store bulk metal, hence participating
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as an iron storage capacity, maintaining metal in an inert form to shield the cell against unwanted
iron redox chemistry.

Functional correlations between frataxin oligomers and ferritin are obvious. Mitochondrial
ferritin (MtF) is an additional iron storage protein found in eukaryotes. Mature MtF is a 22kDa
protein encoded by an intronless gene on 5q23.1 chromosome in humans. MtF shares a 79%
sequence identity with H-ferritin and the proteins possess ferroxidase activity. Its expression is
restricted to tissues with high number of mitochondria (i.e., the testis) unlike frataxin, which is
ubiquitous 1n its expression. MtF expression is not correlated to tissues like liver, which are
involved in iron storage. MtF expression is observed in iron-loaded erythroblasts from patients with
sideroblastic anemia, but not in normal erythroblasts, suggesting it may be induced only under
conditions of stress in some cells. Consistent with these data, reports show that MtF expression in
normal cells results in cytoplasmic and mitochondrial iron deprivation and a decrease in enzymatic
activity of Fe-S cluster containing enzymes like aconitase (Levi, et al, 2004). Correlating these
findings with what is known about iron storage role of frataxin, it is possible that frataxin may be
the iron storage molecule under low salt but normal iron level conditions whereas both frataxin and
mitochondrial ferritin scavenge iron to protect the cell from oxidative damage under iron

overloading conditions.

Frataxin controls iron’s redox chemistry

As previously outlined, iron is extremely reactive towards oxygen based redox chemistry, so
it is not surprising that a breakdown in cellular iron homeostasis resulting from a frataxin
deficiency causes elevated oxidative stress to affected cells. Controlling the ability of iron to perform
redox chemistry appears to be an additional function of frataxin, suggesting this protein may
directly participate in controlling cellular oxidative stress by reducing ROS production. /n vivo
reports indicate frataxin deficiency leads to oxidative damage in humans (Emond, et al, 2000;
Schultz, et al, 2000), mice (Ristow, et al, 2003; Thierbach, et al, 2005), yeast (Karthikeyan, et a/,
2003) and Caenorhabditis elegans (Vazquez-Manrique, et al, 2006). Mitochondrial iron overload,
resulting from a frataxin deficiency, leads to oxidative damage in mitochondrial and nuclear DNA as
well as to Fe-S clusters in mitochondrial aconitase and other respiratory enzymes (Babcock, et al,
1997; Cavadini, Gellera, et al, 2000; Foury, 1999; Karthikeyan, et al,, 2002). Interestingly, frataxin
affords protection for DNA against iron-induced oxidative damage (Gakh, et al, 2006; O'Neill, Gakh,
et al., 2005), presumably by directly binding iron and modulating its oxidation chemistry (Bou-
Abdallah, et al, 2004).
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In numerous biological systems, protein controlled ferroxidase centers direct the controlled
oxidation of ferrous iron. These centers are common among proteins within different metabolic
pathways that involve iron. One of many examples of ferroxidase centers is found in the iron
storage protein ferritin (Theil, 1987; Theil, 2003). Mammals contain two types of ferritin subunits,
the heavy (H) chain and the light (L) chain, which differ in size. Ferritin binds ferrous iron via Glu
and His residues on the H chain and metal is ultimately oxidized at the protein’s ferroxidase center
to form oxygen bridged diferric center. Metal is then moved from the ferroxidase center to the
nucleation site for storage as inert ferric oxide cores.

Recent reports have shown frataxin will also perform ferroxidase chemistry (Park, et al,
2002). In Yfh1 at sub-stoichiometric metal to protein levels, coupled with ferrous iron oxidation,
H20:2 is most likely generated through Oz consumption during the ferroxidase reaction. The
presence of hydrogen peroxide is only minimally detected under these conditions and therefore it
has been proposed that H2O2 immediately reacts with protein to attenuate all Fenton chemistry.
Ferroxidation is progressively overcome by slower autooxidation at stoichiometric and higher iron to
protein concentrations in Yfh1, and metal oxidation leads to progressive assembly of higher order
protein oligomers. Therefore, it has been suggested that frataxin’s ability to initially perform
ferroxidase chemistry, retaining a portion of bound metal in a bioavailable form, and eventually
storing iron in a less accessible form allows this protein to serve both as an iron chaperone and an
iron storage protein (Park, et al, 2003). Formation of the ferroxidase center in yeast frataxin is
correlated to al residues Asp79 and Asp82; yeast mutants targeting these residues that have
reduced ferroxidase activity and assemble at a slower rate than wild type protein (Gakh, et al,
2006). A series of frataxin a1/B1 residues were implicated as participating in the iron
mineralization chemistry observed under iron overloaded conditions, possibly by acting as iron
binding amino acids in the yeast frataxin oligomers. Yfh1 residues al Asp86, Glu89, Glu90 and
Glu93, and B1 residues Asp101 and Glul03 are generally important in promoting the iron binding
and metal sequestering properties of frataxin oligomers (Gakh, et al, 2006).

Ferroxidase centers were also detected in HsFtx and CyaY aggregates (O'Neill, Gakh, et al,
2005). The oligomeric form of iron loaded HsFtx showed distinct protection of DNA against
oxidative damage in the presence of H202 (O'Neill, Gakh, et al, 2005). Iron oxidation studies on
Cya¥Y monomers showed no apparent ferroxidase activity in the presence of molecular oxygen;
rather, Oz acted as a rather poor oxidant to Fe(II) bound to the protein (Bou-Abdallah, et al., 2004).
The oxidation of Fe(II) bound to CyaY was accelerated in the presence of H202 and as a result there

was an increase in the protein’s ability to bind additional metals (Bou-Abdallah, et al., 2004).
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Unpublished results from our laboratory for Yfh1 monomers showed similar results to those
published for CyaY monomers, with Oz induced Fe(II) oxidation rates on the minutes time scale
(50% conversion in ca. 10 minutes at 100 pm protein/iron concentrations). In these published
studies, during the reduction of Oz to 2H20, the presence of highly reactive H202 or hydroxyl

radicals was minimal.

FRATAXIN’s ROLE IN CELLULAR HEME BIOSYNTHESIS

Cells often utilize heme prosthetic groups when helping control normal cellular pathways. Given
that frataxin is required for the production of heme, it is not a far stretch to suggest this protein
could directly participate in heme bioassembly. Heme, a ubiquitous iron-containing tetrapyrrole
ring system, is involved in multiple aspects of cellular metabolism. The Fe-prosthetic groups are
used by globins, cytochromes and several additional enzymes (Ponka, 1999) that play key roles in
the sensing and/or utilization of molecular oxygen in all living organisms (Andrew, et al,, 1990;
Padmanaban, et al., 1989; Zhu, et al., 1999). Heme centers help drive cellular energy generation
during respiration by storing and transporting oxygen (Atamna, 2004). Heme groups can also
participate in both catalytic and regulatory functions within cells (Zhu, et al, 2002). This prosthetic
group can function as an effector center that regulates several biological processes encompassing
transcription, translation, protein translocation and erythroid differentiation (Padmanaban, et al,
1989). They function as ligands for transcription factors within prokaryotes (Monson, et al,, 1992)
and in yeast (Creusot, et al, 1988; Fytlovich, et al, 1993; Pfeifer, et al, 1989; Zhang, et al., 1998).
In higher eukaryotes, heme helps control the activity of specific transcription factors (Ogawa, et al,
2001; Sassa, et al, 1996) and proteins in several biochemical pathways by binding to the short
protein sequence labeled the “heme regulatory motif’ (Zhang, et al, 1995). Heme regulation is
essential during erythroid differentiation. In mammalian erythroid cells, heme initiates changes in
key factors controlling numerous activities ranging from cell cycle and Ras signaling to chromatin
structure, splicing and protein folding (Zhu, et al, 1999). Thus the multifunctional roles of heme
suggests fluctuations in its concentration help control several key aspects of cellular metabolism
(Atamna, 2004). In order to better understand the role frataxin plays in heme bioassembly, we
present a brief description of the assembly pathway as it applies to our protein.

The heme biosynthetic pathway was outlined in detail during the 1950’s and 60’s (Labbe, et
al, 1999). Cellular heme biosynthesis occurs in eight sequential steps, four of which (step 1 and
steps 6-8) occur within the mitochondria, while the other steps occur within the cytoplasm (Tait,

1978). The enzyme ferrochelatase catalyses the final step in the heme biosynthetic pathway.
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Ferrous iron is inserted into porphyrin by ferrochelatase to produce a functional heme prosthetic
group (Taketani, 2005). Ferrochelatase is associated with the inner mitochondrial membrane in
eukaryotes; in prokaryotes, ferrochelatase is found within the cytoplasm (Bacillus subtillus) or
associated to the cytoplasmic membrane (Dailey, et a, 2000). To this date, structures of apo- and
metal-loaded bacterial (Bacillus subtilis), yeast (Saccharomyces cerevisiae) and human
ferrochelatases have been solved (Al-Karadaghi, et al, 1997; Karlberg, et al., 2002; Wu, et al, 2001).
While the functional bacterial protein is monomeric, human and yeast ferrochelatase are
homodimers (Karlberg, et al, 2002). Mammalian, yeast (Schizosaccharomyces pombe) and some
bacterial ferrochelatases are metalloenzymes that contain [2Fe-2S] prosthetic groups which are
required for activity (Ferreira, 1999). All three orthologs have a conserved overall fold of two
Rossmann-type domains with a four-stranded parallel B-sheet that is flanked by a-helices. These
domains contribute to the formation of the porphyrin-binding cleft. The differences between the
eukaryotic and prokaryotic structures are mostly limited to the region in the eukaryotic
ferrochelatase suggested to be involved in interactions with membranes and to the C-terminus,
which contains the Fe-S cluster in the human but not the S. cerevisiae and B. subtilis enzymes
(Karlberg, et al, 2002). The localization of ferrochelatase to the matrix side of the inner
mitochondrial membrane assures uptake of the poorly soluble porphyrin and for heme release
(Ferreira, 1999; Taketani, 2005). The hydrophobic exterior of ferrochelatase is in stark contrast to
the hydrophilic interior of the active sites that are lined with conserved charged residues well
positioned to receive the positively charged iron. The porphyrin-binding cleft of ferrochelatase
exhibits a high degree of conservation from prokaryotes to higher eukaryotes (Al-Karadaghi, et al,
2006).

Ferrochelatase can chelate various divalent metal ions besides Fe?*, most prominent being Zn%*
(Dailey, 2003). A general mechanism for the metallation of the tetrapyrrole, proposed in 1974,
suggested that deformation of the porphyrin ring after an outer-sphere complex formation between
the metal ion and porphyrin would generate an appropriate configuration for metal insertion
(Hambright, et al, 1974). More recent studies have looked into mechanisms that endow
ferrochelatase assisted ferrous ion metallation of porphyrin. Quantum and molecular mechanical
calculations showed ferrochelatases induce a thermodynamically favorable distortion of free base
protoporphyrin IX (Sigfridsson, et al, 2003). Al-Karadaghi et al recently proposed that the degree
of distortion imposed by ferrochelatase modulates the type of metal ion that is inserted and this in
turn is determined by subtle structural changes in the highly conserved active sites in the porphyrin

binding cleft of ferrochelatase (Al-Karadaghi, et al, 2006).
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Ferrochelatase requires ferrous iron as a substrate to complete heme assembly (Taketani,
2005) and the cellular mechanism that makes ferrous iron available, while also limiting the toxic
effects of the metal, most likely involve the presence of a ferrous iron chaperone. Recent reports
indicate frataxin is the elusive iron chaperone that delivers the ferrous iron to ferrochelatase, hence
promoting heme biosynthesis in a direct manner. In frataxin deleted yeast strains, Foury et. al.
observed a decrease in cytochrome c oxidase activity (Foury, et al, 1997). Later Dancis and co-
workers, working with frataxin null yeast strains, observed a severe deficiency of cytochromes b, ¢
and (a+a3) (Lesuisse, et al, 2003). Using a yeast strain with a single copy of Yfh1, placed under the
control of a regulatable promoter to prevent rho minus conversion and secondary nuclear mutations
that might mask the defect, the Dancis laboratory (Univ. of Penn., Philadelphia) observed the
recovery of cytochromes in general and cytochrome c in particular upon re-induction of frataxin
expression (Lesuisse, et al, 2003). Although frataxin deleted cells have reduced levels of
ferrochelatase, it was shown that cellular heme production is modulated by the insertion of zinc
instead of iron into the porphyrin ring (Lesuisse, et al, 2003). Furthermore, increasing
ferrochelatase levels using a multicopy plasmid did not correct the heme synthesis defect (Lesuisse,
et al, 2003). These experiments proved that mitochondrial iron located in yeast frataxin deficient
cells is not available for heme synthesis. Surface plasmon resonance studies showed, in the absence
of iron, recombinant Yfh1 interacts with yeast ferrochelatase with a high affinity (Ki= 40 nM)
(Lesuisse, et al., 2003). Working towards obtaining a global result of frataxin deficiency, Schoenfeld
et. al. found frataxin deficiency leads to the down regulation of mitochondrial transcripts and a
kinetic inhibition of the heme pathway. An additional significant observation from their studies
was a large increase in zinc chelatase activity of ferrochelatase (Schoenfeld, et al, 2005), consistent
with earlier studies by Lesuisse et. al (Lesuisse, et al, 2003). This growing evidence implicates
frataxin in determining the specificity of metal for the ferrochelatase by directly binding to the
protein partner.

The presence of frataxin in vitro has been shown to stimulate heme development under controlled
conditions. [In vitroferrochelatase activity assays, in the presence of citrate, showed monomeric
human frataxin can deliver the ferrous iron required for heme synthesis; an optimal ferrochelatase
activity was observed at a stoichiometric ratio of one frataxin monomer per ferrochelatase dimer
(Yoon, et al, 2004). The Cowan laboratory, using isothermal titration calorimetry and fluorescence
quenching experiments, were able to quantitatively investigate complex formation between human
frataxin and ferrochelatase. The Kafor the interaction between HsFtx and human ferrochelatase in

the presence of iron was 17 nM; no interaction was detected for the human proteins in the absence
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of iron. In the yeast system, the Isaya laboratory showed ferrous iron associated with Yfh1
oligomers was available to yeast ferrochelatase for stimulation of in vitro heme synthesis (Park, et
al, 2003). Metal transfer was shown to occur in the presence of Fe(II) specific chelators, suggesting
again a strong intermolecular interaction is formed at the ferrous iron site in the frataxin-
ferrochelatase protein complex (Park, et al, 2003).

Spectroscopic analysis of the yeast frataxin/ferrochelatase complex has been useful in helping to
identify where and how the proteins interact. Our laboratory has shown that solution titrations,
adding unlabeled yeast ferrochelatase into >N-labeled Yfh1, allowed us to probe by NMR which
frataxin amino acids underwent amide chemical shift perturbations as a result of complex formation
(He, et al, 2004). Frataxin chemical shift perturbations were localized predominately on the helical
plane of the protein. Specific Yfh1 residues affected by ferrochelatase binding included surface
exposed al residues His83, Glu89, Glu90, Glu93 and His95, in the metal binding region of the
protein (of which all Glu’s are conserved), and B6-loop-a2 residues Val150, Asn154, Thr159, Asp160,
Thr163, Glul64, Ser171 and Lys172 (of which Val150, Asn154, Thr163 and Glul64 are conserved in
their physical properties). Yfh1 residues in the [16-loop region provide a hydrophobic patch on the
protein and thus it is tempting to speculate that this domain might help target and facilitate the
binding of frataxin to the hydrophobic exterior of ferrochelatase (He, et al., 2004). Complementary
experiments were also performed on the human proteins by our laboratory in collaboration with the
Cowan laboratory, with similar results identifying the helical residues perturbed upon complex
formation (Bencze, et al., 2006). These results suggest the helical plane of frataxin, including the
711 iron-binding residues, is responsible for generating a favorable interface when frataxin binds to
ferrochelatase.

Recently we performed modeling studies to predict how frataxin may interact with ferrochelatase.
Using the Yfh1 solution structure (He, et al., 2004) and the Co2+ bound yeast ferrochelatase crystal
structure (Karlberg, et al., 2002), we were able to generate a plausible model for the interaction
between these two proteins (Figure 4) in an orientation that may suggest how iron is delivered to
ferrochelatase during heme biosynthesis. We generated a large collection of complexes using the
automatic docking program (ZDOCK), however we applied strict inclusion criteria that match
published biophysical data when selecting appropriate docking interactions. The simulation
selection criteria utilized were: a) Yfh1 residues identified in our NMR titration as perturbed by the
presence of ferrochelatase, b) the location of the metal binding sites from both the human and yeast
metal loaded ferrochelatase structures and c) excluding the region of ferrochelatase that docks to

the membrane (Wu, et al., 2001). In our docking model, the Yfh1 monomer interacts with the yeast
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ferrochelatase dimer through highly conserved frataxin helices [11/112 and the highly conserved
ferrochelatase metal docking site including [14-loop-[16, (18 and (111 amino acids. Human
ferrochelatase binds cobalt at this docking site using residues His231 and Asp383, located opposite
to the membrane binding loops near a groove lined by arginines and lysines (Wu, et al,, 2001).
These Lys and Arg residues could provide complementary electrostatic interactions to the acidic

helices found in frataxin (Figure 1).

Surface Potential ENENIEIN=5,000 0.000 5.000 OV - <

Figure 4. Lowest energy simulation of Yfh1 monomer docked to the metal loaded yeast ferrochelatase. (A)
Side view of single Yfh1 monomer (green) docked to yeast ferrochelatase dimer (dark and light blue). Co2* is
bound in the yeast ferrochelatase structure in the assembly active site close to the four membrane attachment
lips at the bottom of the figure. (B) Side view (90° - Horizontal rotation of Figure 4A) showing monomeric
Yfh1 interacts with both units in the ferrochelatase dimer. (C) Ferrochelatase side view with Yfh1 structure
removed to show the residues that directly interact with frataxin (in red). (D) Electrostatic potential plots of

ferrochelatase side view. Dynamics simulations were performed by VMD (Humphry, et al., 1996) while
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docking was performed using ZDock (Chen, et al,, 2003) using the Yfh1 structure (PDB ID# 2GA5) and Co?*
loaded yeast ferrochelatase structure (PDB ID# 1L8X).

In our docking model, the Yfh1 iron-binding a1 unit docks in close proximity to the ferrochelatase
cobalt binding site found in the human ortholog; in yeast, two glutamate side chains are at this site
and these could function during iron binding by the ferrochelatase. Iron bound to ferrochelatase
would then be free to translocate towards the heme assembly active site (i.e., the position of bound
Co?* in the yeast ferrochelatase structure), as has been proposed by Wu et al. (Wu, et al, 2001).
These data are also consistent with the published ratio of 1:1 frataxin monomer/ferrochelatase
dimer binding interactions seen in both the yeast and human systems (Lesuisse, et al., 2003; Yoon,
et al., 2004). A recent report postulated protoporphyrin might help modulate the frataxin-ferrochelatase
interaction, with porphyrin stabilizing the interaction (Al-Karadaghi, et al., 2006). Porphyrin was however not
added to our docking simulation. Given that the entry site for porphyrin is at the ferrochelatase
surface opposite to the frataxin binding site, one would expect no direct effect of porphyrin binding
on frataxin-ferrochelatase affinity. However, the lowest energy normal mode explored by free
ferrochelatase, and therefore the most likely to be physiologically relevant, shows that opening the
porphyrin binding site closes up partially the frataxin binding site, suggesting a possible indirect
effect of porphyrin on frataxin binding by the ferrochelatase and vice versa. Current studies are
underway in our laboratory to determine if iron or porphyrin alters the binding affinity between the
wild type yeast frataxin and ferrochelatase proteins, and if mutating surface contact residues

between the partners affects complex formation and metal transfer.

FRATAXIN AND Fe-S CLUSTER ASSEMBLY

Mounting evidence implicates frataxin also plays a direct role in Fe-S cluster biosynthesis. Fe-S
clusters are among the most complex and ancient prosthetic groups found in biology. They play
essential roles in cellular processes ranging from electron transport, catalysis, gene regulation and
iron uptake (Chen, et al, 2004). As an illustration of their importance, there are three separate
pathways in bacteria for the production of Fe-S clusters. The first pathway identified involves the
nitrogen fixation machinery that assembles the Fe-S clusters required for the maturation of
nitrogenase (Frazzon, et al, 2002; Rees, et al., 2000). For most cellular needs, Fe-S clusters are
provided by the second pathway, involving the ISC-assembly machinery (Kispal, et al., 1999; Zheng,

et al, 1998). In some bacteria, a minor contributor under stressed conditions is the third pathway,
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the sulfur mobilization (SUF) machinery (Takahashi, et aZ, 2002). Many bacteria contain more
than one of these pathways and interestingly they appear to be somewhat interchangeable (Ali, et
al., 2004; Takahashi, et al, 2002). The mitochondria of eukaryotes however utilize only ISC
orthologs for Fe-S cluster assembly and numerous reports outline the different characteristics of
this highly important pathway (Johnson, et al, 2005; Lill, et al, 2005; Mansy, et al, 2004). A brief
outline of the proteins within the yeast ISC-assembly machinery is given below as a basis for
introducing frataxin’s role in Fe-S cluster assembly.

Within the ISC-assembly pathway, yeast Fe-S cluster biosynthesis begins with the liberation
of sulfur by the cysteine desulfurase, Nfs1 (Kispal, et al,, 1999). A disulfide bond is formed between
Nfs1 and free mitochondrial cysteine, leading to bond cleavage and alanine release (Lill, et al,
2005). Arhl, a ferredoxin reductase, and Yahl, a ferredoxin, are both required for efficient ISC
assembly (Muhlenhoff, et al, 2003), and it has been proposed they provide the electrons necessary
for sulfur liberation (Lill, et aZ, 2005). Next, sulfur is transferred to the cluster assembly scaffold
proteins, a ~28 kDa protein dimer constructed of Isul (and/or) 2, usually via heterotetrameric
complexes of the scaffold and the desulfurase (Garland, et al, 1999; Gerber, et al, 2003; Lill, et al,
2005; Schilke, 1999). The recently identified protein Isd11 is required to both stabilize and act as an
adaptor between Nfs1 and the scaffold proteins and this helps promote sulfur release (Adam, et al.,
2006; Muhlenhoff, et al, 2003; Wiedemann, et al, 2006).

A general property of the scaffold proteins is that they are dynamic in nature, hence
providing a flexible platform on which to construct Fe-S clusters while retaining the ability to
release the prosthetic group for transfer to future acceptor proteins (Adinolfi, Rizzo, et al., 2004;
Bertini, et al, 2003; Mansy, et al., 2004). While the structure of the yeast ortholog has not yet been
solved, structures for Isu orthologs are consistent with having a B-sheet surface connected to a
globular helical protein arrangement (Bertini, et al, 2003; Liu, et al, 2005; Ramelot, et al, 2004).
The structure of Zn?* bound to the Streptococcus pyogenes and Haemophilus influenzae orthologs
shows divalent metal is ligated by conserved cysteine residues in a surface exposed region of the
protein monomer (Liu, et al, 2005; Ramelot, et al,, 2004).

Frataxin is required for the in vivo productions of Fe-S clusters and is believed to play a
direct role in their assembly. A Fe-S cluster deficiency was identified in FRDA patients early in the
recognition of the disorder, suggesting the need for frataxin in Fe-S cluster assembly (Rotig, et al,
1997). This idea was supported by mouse knockouts showing similar disease phenotypes (Puccio, et
al, 2001) and more recently in the bacterial system (Vivas, et al, 2006). The majority of the direct

frataxin 1n vivo Fe-S cluster correlations come again however from studies in the yeast system

27 DIGITALCOMMONS@WSU | 2006



The Structure and Function of Frataxin | Krisztina Z. Bencze, et. al

(Chen, et al,, 2002; Duby, et al, 2002; Muhlenhoff, Richhardt, Ristow, et al, 2002). Suppressing
Yfh1 expression results in respiratory deficiency, mitochondrial iron accumulation and reduced Fe-S
enzyme activity while non Fe-S containing enzymes remained active (Chen, et al, 2002). Additional
studies suggest frataxin may not be essential for Fe-S cluster assembly, but it does improve the
efficiency of the assembly process (Duby, et al., 2002). A direct interaction between frataxin and the
assembly apparatus proteins has been detected (Gerber, et al, 2003; Muhlenhoff, et al,, 2003;
Ramazzotti, et al., 2004) and the requirement of frataxin for the maturation of Fe-S clusters in yeast
has been confirmed (Stehling, et al, 2004). Taken together, these data suggest frataxin plays a
direct role in the cellular assembly of Fe-S clusters.

Recent in vitro studies show frataxin binds to the ISU scaffold protein with high affinity and
stimulates the production of Fe-S clusters, indicating frataxin may be acting as the iron chaperone
that delivers the Fe(II) required for bioassembly. Binding between in vitro human frataxin and the
ISU dimer has been reported to occur with an affinity in the nanomolar range (Yoon, et al, 2003).
Binding of monomeric HsFtx with the human ISU dimer was dependent on the presence of iron, in
close correlation with yeast studies showing that the interaction between Yfh1 and Isul/Nfsl1 is also
iron dependent (Gerber, et al, 2003). In vitro activity assays for the yeast and human protein
systems show the presence of frataxin stimulates Fe-S cluster assembly (Muhlenhoff, Richhardst,
Gerber, et al, 2002; Yoon, et al, 2003). Based on the fact that frataxin is an iron-binding protein,
that it binds tightly to the ISU complex and finally that it stimulates Fe-S cluster assembly, it

seems highly probable that frataxin can act as the iron chaperone during Fe-S clusters bioassembly.

FRATAXIN ROLE IN ADDITIONAL PATHWAYS

Numerous reports have linked frataxin deficiency with an enhanced reduction in aconitase activity
(Chen, et al., 2002; Foury, 1999; Rotig, et al., 1997). Additional reports indicate frataxin may also
deliver Fe(ID) to aconitase for the use in repairing oxidatively damaged [4Fe-4S]2* clusters converted
to the inactive [3Fe-4S]* form (Bulteau, et al, 2004). Damage to aconitase, a Krebs-cycle enzyme
that converts citrate to isocitrate (Beinert, et al, 1996), has shown to be a marker for cellular
oxidative damage (Bulteau, et al, 2003). Reduced aconitase activity leads to increased transcription
of the iron-import mechanism and this leads to further mitochondrial iron overload in FRDA
patients (Chen, et al, 2004). Frataxin interacts in a citrate dependent manner with oxidatively
damaged aconitase, promoting aconitase enzyme reactivation in a manner that suggests frataxin
delivers the Fe(Il) required to reactivate the damaged iron-deficient Fe-S center (Bulteau, et al,

2004). Furthermore, aconitase appears to directly associate with frataxin under high concentrations
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of ROS, possibly as a means to further protect aconitase against [4Fe-4S]2* cluster disassembly,
irreversible inactivation and potential degradation (Bulteau, et al, 2005). AYfh1 yeast cells have
low manganese superoxide-dismutase activity that can be recovered by supplementing Mn or
limiting Fe in the media, suggesting a correlation between cellular iron overload and reduced SOD
activity as a cause of oxidative stress in FRDA cells (Irazusta, et al, 2006). Finally, the
overexpression of frataxin in human cell lines leads to increased mitochondrial oxidative
metabolism, as shown by an increased aconitase activity, mitochondrial membrane potential,
cellular respiration and ATP content (Schulz, et al, 2006). These data suggest frataxin provides a
direct line of defense against cellular oxidative stress by controlling aconitase activity and iron
import, as well as a possible additional indirect correlation between the partial regulation of the

enzymatic activity of other proteins that control ROS activity.

OPEN QUESTIONS REGARDING FRATAXIN

Frataxin has been shown to play an important role in regulating cellular iron homeostasis,
although the exact function(s) of the protein continues to remain controversial. While numerous
groups have implicated frataxin as a protein that directs the utility of bioavailable iron, many key
questions remain unanswered. If frataxin is an iron chaperone, what drives this chaperone to
deliver iron specifically to multiple different protein partners (i.e., ferrochelatase, ISU scaffold or
aconitase) when members of the copper chaperone family are highly specific with regard to their
protein partners (Rosenzweig, et al, 2000)? Certainly additional structural data of frataxin in
complex with each protein partner will help provide a better understanding of how and why these
proteins interact within the different pathways. How can frataxin participate in two
counterproductive roles, providing bioavailable and labile Fe(II,) when acting as an iron chaperone,
while at other times retaining iron as inert Fe(III) when acting in an iron storage capacity, to help
prevent toxicity? Structural data regarding iron-loaded frataxin oligomers will surely help address
this issue of how and why these assemblies form and identifying conditions when these assemblies
can be observed in vivo will provide additional insight into their physiological relevance. Finally,
what is the dominant function of frataxin? Frataxin has recently been shown to interact with the

succinate dehydrogenase complex subunits, implying an additional possible role for frataxin in
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mitochondrial electron transport (Gonzalez-Cabo, et al, 2005). Frataxin has also been shown to be
a key activator of mitochondrial energy conversion and oxidative phosphorylation, suggesting yet
another additional role for the protein in energy production (Ristow, et al, 2000). Finally, CyaY has
recently been shown to interact with the cysteine desulfurase IscS to promote both ferric iron
reduction and Fe-S cluster assembly, suggesting iron delivery by frataxin may only occur when
coupled with iron reduction (Layer, et al, 2006). In vivo mutational studies that split the individual
phenotypes for each pathway will provide biological relevance to help understand frataxin’s role in
each of the many functions proposed for this important protein. Addressing these and other equally
important issues regarding how frataxin functions will surely help drive research directed at
developing improved treatment strategies that better help control iron regulation in disorders like

Friedreich’s ataxia.
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