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Abstract

Interpreted languages have become increasingly popular due to de-
mands for rapid program development, ease of use, portability, and
safety. Beyond the general impression that they are “slow,”however,
little has been documented about the performance of interpreters as
a class of applications.

This paper examines interpreter performance by measuring and
analyzing interpreters from both software and hardware perspec-
tives. As examples, we measure the MIPSI, Java, Perl, and Tcl
interpreters running an array of micro and macro benchmarks on a
DEC Alpha platform. Our measurementsof these interpreters relate
performance to the complexity of the interpreter’s virtual machine
and demonstrate that native runtime libraries can play a key role
in providing good performance. From an architectural perspective,
we show that interpreter performance is primarily a function of the
interpreter itself and is relativelyindependent of the application be-
ing interpreted. We also demonstrate that high-level interpreters’
demands on processor resources are comparable to those of other
complex compiled programs, such as gcc. We conclude that inter-
preters, as a class of applications, do not currently motivate special
hardware support for increased performance.

1 Introduction

Interpreted languageshave becomecommonplacefor a wide variety
of computational tasks. For example, JavaandPerl are now standard
languages for building internet applications, while Tcl is commonly
used for rapid development of interactive user interfaces. Inter-
preters also play a crucial role as binary emulators, enabling code to
port directly from onearchitecture to another [Afzal et al. 96]. Such
environments reflect the extent to which program function, ease of
development, portability, and safety represent important concerns
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for a broad range of contemporary application domains.

Despite the recent emphasis on safety and portability, the per-
formance of interpreters remains a primary concern. In low-end
consumer-oriented systems, for example, where low price limits
hardware resources, interpreted programs must still execute effec-
tively. Successful design of such systems therefore requires an
understanding of the overall structure and performance of inter-
preters. To date, there has been little analysis of the performance of
interpreters as a class of applications.

This paper explores the performance implications of interpreted
code executing on modern microprocessors. We measure and eval-
uate interpreters for the MIPS instruction set and the Tcl, Perl, and
Java languages while running a wide array of micro and macro
benchmarks on a DEC Alpha platform. Our goal isnot to compare
these interpreters to each other, but rather, to (1) understand the im-
portant parameters of interpreter performance, and (2) measure the
demands of these interpreters on current processors. Using various
instrumentation and tracing techniques, we provide detailed mea-
surements of the interpreter implementations. We also use trace-
driven simulation to profile processor resource utilization during
interpreter execution. Our data allows comparison of the inter-
preted benchmarks to similar microbenchmarks written in C and to
the SPECint92 benchmark suite.

Previous research has concentrated mainly on the analysis
of programming languages and their interaction with architec-
ture. Early measurement studies of commercial minicomputer
systems looked at instruction set usage and showed that only
a small percentage of the processor’s instruction set accounted
for more than 80% of the dynamic instructions used in typical
programs [Foster et al. 71, Alexander & Wortman 75, Elshoff 76].
Similar studies on CISCs provided the rationale for moving
to RISC processors [Clark & Levy 82, Hennessy & Patterson 90].
More recently, researchers have looked at the interaction of the
memory system and various object-oriented and functional lan-
guages [Calder et al. 94, Diwan et al. 95, Goncalves & Appel 95,
Holzle & Ungar 95]. Researchers have also studied the interaction
of particular classes of applications with architecture: for exam-
ple, [Maynard et al. 94] and [Uhlig et al. 95] studied the memory
system behavior of commercial and productivity applications.

In a similar vein, we investigate the interaction of interpreters
with modern architectures and show how interpreted applications
use the facilities provided by interpreters. The execution time of
an interpreted program depends upon the number of commands in-
terpreted and the time to decode and execute each command; we
show how the number of commands and their execution time vary
widely from interpreter to interpreter and are directly related to the
complexity of the virtual machine implemented. Of the interpreters
we studied, for example, the Tcl interpreter supports the highest



level virtual machine; for an identical program, it thus executes
fewer commands, but more native instructions per command, than
the other interpreters. With our measurements,we show where each
of the interpreters falls in this spectrum, and how their performance
relates to such a characterization of their virtual machines. We also
show that native runtime libraries can play a key role in providing
good interpreter performance. The Java interpreter, for example,
leverages native graphics runtime libraries to provide good perfor-
mance for graphics-oriented applications.

From an architectural perspective, we find that interpreter per-
formance is primarily a function of the interpreter itself and is
independent of the application being interpreted. For example, the
instruction and data cache performance of the Tcl interpreter is
roughly equivalent when running any of our macro benchmarks.
We also demonstrate that an interpreter’s demands on the processor
resources, particularly the instruction cache, are a function of the
complexity of the virtual machine; and that the architectural behav-
ior of high-level interpreters is comparable to that of other complex
compiled translators, such as gcc. As a result, we conclude that
interpreters, as a class of applications, do not currently motivate the
need for special hardware support for increased performance.

In the rest of this paper we investigate the question of interpreter
performance. Section 2 presents the interpreters that form the basis
of this study. Section 3 analyzes and compares the performance of
the interpreter implementations, and Section 4 extends the analysis
by measuring the impact of interpreters on different components of
a modern microprocessor architecture. Section 5 summarizes our
measurements and results, and concludes the paper.

2 Interpreter Descriptions

We examined four interpreters in our study:

� MIPSI [Sirer 93] is an instruction-level emulator that exe-
cutes MIPS R3000 [Kane & Heinrich 92] binaries compiled
for the DEC Ultrix operating system. MIPSI has been
used to investigate architectural alternatives for garbage col-
lection [Goncalves & Appel 95] and multithreaded proces-
sors [Tullsen et al. 95], and as a teaching tool in architecture
and operating system classes. The internal structure of the
interpreter follows closely that of the initial stages of a CPU
pipeline, with the fetch, decode and execute stages performed
explicitly in software.

� Java is an object-oriented language and runtime environment
designed to support the safe execution of portable programs
downloaded via the World Wide Web. Java is similar to C++,
but provides additional language features, such as automatic
garbage collection, threads, and synchronization. Java also
provides an extensive collection of native runtime libraries that
define a high-level interface to routines for building graphical
user interfaces. Instead of direct interpretation, Java source
programs are compiled offline into byte codes defined by the
Java Virtual Machine (JVM) [Sun Microsystems 95]. The
Java interpreter operates directly on files containing JVM byte
codes.

� Perl is a scripting language designed for manipulating text,
data, files, and processes [Wall & Schwartz 90]. Perl supports
a variety of advanced programming abstractions useful for
string and file processing, including regular expressions, a

high-level I/O interface, automatic memory management, and
associative arrays. Perl programs are not interpreted directly,
but are compiled at startup time into an internal representation
of the source program. Perl performs this compilation step
each time a program is invoked.

� Tcl is an embeddable command language that allows ap-
plications to be customized with a single scripting lan-
guage [Ousterhout 94]. Tcl is also used as a stand-alone pro-
gramming environment, providing a programming language
interface that includes basic functionality comparable to that
found in Perl, as well as mechanisms for easily extending
the interpreter with compiled application-specific commands.
One popular extension to Tcl is the Tk toolkit, which provides
a simple window system interface to enable rapid prototyping
of graphical user interfaces. The Tcl interpreter is structured
to ease the addition and execution of application-specificcom-
mands, and it executes source programs directly.

We chose these interpreters for several reasons. First, they have
a diverse set of goals and implementation strategies, enabling us to
explore how these different strategies are reflected in their perfor-
mance. Second, they are available in source form, enabling us to
attribute overhead to various aspects of the implementation. Third,
the interpreters are all available on a platform with tools for col-
lecting and processing address traces, enabling us to analyze their
behavior from an architectural perspective using trace-driven sim-
ulation. Finally, the popularity of Java, Perl, and Tcl makes them
of interest to a large user community, while MIPSI serves as a
representative binary emulator.

3 Interpreter Performance

This section analyzes the performance of each of the interpreters
running a variety of workloads. We begin by showing the behav-
ior of simple microbenchmarks. Using several real programs, we
then characterize some fundamental interpreter overheads, examine
the distribution of commands, and measure the cost of command
interpretation. Finally, we show how the memory model that each
interpreter presents can affect overall performance.

All of our measurements were performed on 175-MHz
DEC Alpha 3000/300X workstations running Digital Unix
3.2. Instrumentation data and traces were gathered using
ATOM [Srivastava & Eustace 94], a binary-rewriting tool from
DEC WRL. Explicit timings and cycle counts were gathered by
modifying interpreter source to sample the Alpha cycle counter.
Times and cycle counts include all system activity, while instruc-
tion counts exclude the behavior of both the operating system and
the X window system server.

3.1 Microbenchmarks and virtual machines

Table 1 demonstrates the slowdown of various simple operations
performed by each interpreter relative to equivalent operations im-
plemented in a compiled C program. The table shows that all
the interpreters are significantly slower than C, and that no single
interpreter performs best across all the microbenchmarks. Further-
more, the operations that access operating system service routines
(e.g., theread benchmark) are slowed less than the other opera-
tions, becausemost of the computation is done in precompiled code.
Thestring-concat andstring-split benchmarks show a



Benchmark Description Slowdown relative to C
MIPSI Java 1.0.1 Perl 4.036 Tcl 7.4

a=b+c assign the sum of two memory locations to a third 260 96 770 6500
if conditional assignment 79 21 190 1500
null-proc null procedure call 84 84 670 580
string-concat concatenate two strings 186 504 19 78
string-split split a string into four component strings 65 161 13 29
read read a 4K file from a warm buffer cache 3.3 4.6 1.2 15

Table 1:Microbenchmark results. This table shows the slowdown of each microbenchmark relative to the equivalent operation implemented
in C and compiled using the version of the C compiler that comes with Digital UNIX. Each microbenchmark ran for at least five seconds per
trial. Each number presented is the average of 20 runs. Standard deviations were no more than 10% and were usually under 5%.

similar effect for those languages (Perl and Tcl) that provide string
manipulation facilities in native runtime libraries.

The explanation for the variations in the microbenchmark results
lies in thevirtual machine interface implemented by each inter-
preter. The virtual machine interface defines a set ofvirtual com-
mands which provide a portable interface between the program and
the processor. The implementation of the virtual machine executes
one virtual command on each trip through the main interpreter loop.
The interpreter thus incurs an overhead for fetching and decoding
each virtual command before performing the work specified by the
command. The execution time of an interpreted program there-
fore depends on the number of commands interpreted, the fetching
and decoding cost of each command, and the time spent actually
executing the operation specified by the command.

These cost components of interpretation are not independent of
one another: the number of commands required to accomplish a
given task depends on the level of the virtual machine abstraction
defined by the interpreter. A simple virtual machine might require
the execution of a large number of commands, so the decoding
cost of each command can be critical to program execution time.
On the other hand, a complex virtual machine can execute a given
program in fewer commands, so the aggregate decoding cost may
be moderate.

The interpreters we measure definevirtual machines ranging from
simple to complex. For example, MIPSI and Java define simple vir-
tual machines; the overhead of each virtual command is small and
nearly fixed, but a large number of commands are required to ac-
complish a given task. In contrast, Perl and Tcl each definecomplex
virtual machines and result in non-uniform slowdowns relative to
the C implementations. Sometimes, as with string management, the
virtual machines provide an efficient implementation of a service.
Other times, as with variable summation and assignment, the virtual
machine interface introduces substantial overheads.

3.2 Application performance

The microbenchmark numbers help explain but not predict program
performance. To gain better insight, we measured a set of typi-
cal programs, selected for each language from publicly available
sources. These programs are described in Table 2. Thedes pro-
gram has been implemented in all four languages and provides a
common reference point for the interpreters.

Table 2 also shows the baseline performance of the interpreters
running the benchmarksuite. For each program, the table shows the
total number of virtual commands executed by the interpreter while
running the program, the number of underlying native instructions
executed by the interpreter, the ratio of native instructions to virtual
commands (separated into fetch/decode and execute categories),

and the program’s total execution time in machine cycles. For
Perl, we break out the number of instructions devoted to program
precompilation in the Native Instructions column. We do not include
this precompilation overhead when calculating the average number
of native instructions per virtual command, as it represents a fixed
overhead per program.

The table shows that the average number of instructions required
to fetch and decode a single virtual command is low and roughly
fixed for MIPSI and Java, which use a simple uniform representa-
tion of virtual commands. In contrast, Perl uses a more complex
internal representation of virtual commands, and thus has increased
decoding costs. Tcl has fetch and decode costs that are an order of
magnitude higher than the other languages, primarily because Tcl
interprets the ASCII sourceprogram directly. The importance of the
fetch/decode component of command interpretation diminishes as
the cost of executing the command increases. For Java and Perl, the
average number of native instructions required to execute virtual
command varies, and can dominate the fetch/decode component.
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Figure 1: Cumulative native instruction count distributions. Each
point (x; y) shows that the top x virtual commands account for
y% of the native instructions executed for the benchmark. The
native instructions only include the execute component from Table 2
(fetch/decode instructions are excluded). Figure 2 shows the exact
contribution of specific commands in more detail.



Virtual Native Average Native Instructions Total
Language Benchmark Description Size (KB) Commands Instructions per Virtual Command Cycles

(�103) (�103) Fetch/Decode Execute (�103)

C des DES encryption and decryption 90 170 170 0 1.0 530

MIPSI des DES encryption and decryption 29 190 13,000 51 17 29,000
compress Unix compress utility 33 4,200 290,000 49 20 570,000
eqntott Equation to truth table conversion 53 15,000 1,000,000 47 19 1,800,000
espresso Boolean minimization 210 760 52,000 49 20 100,000
li Lisp interpreter 94 3,400 240,000 48 23 450,000

Java des DES encryption and decryption 35 320 14,000 16 27 63,000
asteroids Asteroids game 18 2,800 120,000 16 27 1,300,000
hanoi Towers of Hanoi (5 disks) 4.9 180 33,000 16 170 340,000
javac Espresso Java compiler (1.0 beta) 280 5,700 240,000 16 26 900,000
mand Interactive Mandelbrot explorer 7.0 5,600 190,000 16 18 370,000

Perl des DES encryption and decryption 23 140 (6,100) 45,000 200 82 230,000
a2ps Convert ASCII file to postscript 24 590 (4,200) 290,000 130 350 2,500,000
plexus HTTP server 26 49 (29,000) 95,000 180 1,200 770,000
txt2html Convert text to HTML 33 39 (5,900) 100,000 150 2,300 360,000
weblint HTML syntax checker 39 120 (7,600) 130,000 150 870 650,000

Tcl des DES encryption and decryption 27 82 600,000 2,100 5,200 2,000,000
tcllex Lexical analysis tool 7.8 31 220,000 3,800 3,300 890,000
tcltags Generate emacs tags file 3.3 260 1,100,000 2,700 1,500 4,300,000
demos Tk widget demos 98 12 95,000 2,600 5,300 1,700,000
hanoi Tk towers of Hanoi (5 disks) 7.2 3.4 17,000 2,100 3,000 300,000
ical Tk interactive calendar program 170 15 66,000 2,100 2,300 1,300,000
tkdiff Tk interface to diff 45 5.9 37,000 2,000 4,300 340,000
xf Tk interface builder 2,700 8.9 94,000 5,200 5,400 3,300,000

Table 2: This table shows baseline performance measurements of the interpreters running a set of representative programs, along with one
benchmark program written in C. The Size column gives the size of the input to the interpreter. The Native Instructions column shows the
total number of instructions executed by the program, excluding the operating system and the windowing system. For Perl, this column also
shows in parentheses the number of instructions precompiling the program. The Average columns show the number of native instructions
executed divided by the total number of virtual commands, split into Fetch/Decode and Execute components. For Perl, these ratios exclude
precompilation instructions. The Tcl xf and demos programs have not been ported to version 7.4 of the interpreter, so we run those on
version 7.3; all other Tcl programs run on version 7.4.

For example, in Java’shanoi benchmark, most of the commands
have long-running implementations in the native graphics runtime
library, and as a result only 8.6% of all instructions are due to
fetching and decoding virtual commands.

The execution time for different virtual commands depends on
the complexity of those commands. This leads us to ask whether
specific virtual commands account for a disproportionate amount of
an interpreter’s execution costs; such commands would be natural
targets for optimization. Figure 1 gives an initial indication of the
concentration of instructions among distinct virtual commands. For
example, for thedes benchmark in Tcl, just two virtual commands
account for 96% of the execute component of native instructions.
Figure 2 presents more detailed data for each of our benchmark
applications. For each benchmark, we show two histograms: on
the left, the white-barred histogram shows the distribution ofvir-
tual commands; on the right, the grey-barred histogram shows the
percentage ofnative instructions due to command execution for
each virtual command. For example, for thetxt2html bench-
mark in Perl, thematch command accounts for 9% of the virtual
commands interpreted and 84% of the native instructions due to
command execution.

For MIPSI, we see that for each program three virtual commands
are responsible for over 60% of the instructions dedicated to virtual
command execution. For the most part, these instructions manipu-
late the interpreted program’s memory model (lw andsw), which

we describe in more detail in the following section1. Recall from
Table 2, however, that the majority of MIPSI’s overall execution
time is due to fetch/decode overhead rather than command execu-
tion. Thus, a good initial target of optimization for MIPSI would be
the fetch/decode loop rather than any individual command.

The Javagraphsshow that someJavaprograms spenda large frac-
tion of their execution time in native runtime libraries (native).
For the benchmarks that use graphics heavily (e.g.,hanoi and
asteroids), up to 57% of instructions due to the execute com-
ponent occur within these libraries. For these applications the in-
terpreter itself is therefore not the primary performance bottleneck.
Figure 2 also illustrates how Java applications that extensively use
native libraries diminish the importance of primitive byte codes.
In theasteroids benchmark,st load (stack load) commands
account for 30% of the virtual commands executed, but less than
7% of the execute instructions because the program spends almost
half (48%) of its execute instructions within native library code.

Finally, for Perl and Tcl, a small number of virtual commands
dominate the execution time of each application (Figure 1). How-
ever, the specific set of dominant virtual commands varies from
program to program (Figure 2). The reason is that the high-level
virtual machines give programmers a great deal of flexibility in

1The counts forsll are inflated because the assembler encodes no-ops to fill delay
slots assll instructions. Foreqntott, espresso, andli, more than 90% of the
sll instructions are no-ops,while fordes andcompress, 33% and 65% of thesll
instructions are no-ops respectively.
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Figure 2:Native instruction and virtual command count distributions. For each benchmark, we show two histograms. On the left (in white),
the histogram shows the distribution of of virtual command counts from Table 2. On the right (in grey), the histogram shows the distribution of
native instructions across virtual commands for the “execute” component of command interpretation (fetch/decode instructions are excluded).
We omit infrequently executed virtual commands, and group the Java commands into primary categories. Bars higher than 40% are clipped,
and the exact percentage is shown at the end of the bar.



choosing which set of commands to use to implement any given
program. Thus the set of commands used by each program varies.
The result is that optimizing a particular command or set of com-
mands will not result in broad performance improvements for these
two languages.

3.3 Memory Model

In the previous subsection we discussed the virtual command usage
of interpreted programs. We now discuss how interpreted programs
access data. The virtual machine implemented by each interpreter
provides a mechanism for accessing memory. This includes a way
of naming data in memory and primitives to fetch and store values.
Since many virtual commands access “memory,” the complexity of
the virtual memory model can affect performance. Specifically:

� MIPSI translates each memory access using in-core simulated
page tables. The average per-access memory cost for our
benchmarks is 62 native instructions; the percentage of to-
tal instructions executed for memory model implementation
ranges from 13% to 18%. As with other aspects of perfor-
mance, the MIPSI low-level virtual machine exhibits uniform
behavior.

� Java data can be stored either temporarily on thread stacks
or more permanently in object fields. Stack data can be ac-
cessed implicitly during the execution of a Java bytecode to
fetch operands or save results (e.g.,iadd), or explicitly using
specificstackbytecodes. Object fieldscanonly beaccessedus-
ing specific bytecodes (e.g.,getfield andputfield). Each
stack reference costs 2 instructions on average, and each object
field reference costs 11 instructions on average. Together, they
account for 7% to 13% of total instructions executed across the
Java benchmarks.

� Perl data can be stored in scalars, arrays, and associative ar-
rays. Perl uses a symbol table to translate variable names, but
the preprocessing phase compiles away most of these transla-
tions for scalars and arrays. For associative arrays, Perl always
requires a hash table translation, which on average costs 210
native instructions. The percentage of total instructions ex-
ecuted to support the memory model ranges from 0.16% to
3.8%. These results illustrate one of the benefits of a prepro-
cessing (or compilation) phase.

� Tcl data is named by strings and can be stored in scalars,
lists, and (associative) arrays. All variable references require
a symbol-table lookup that translates the variable name to a
storage location. The average per-access memory cost ranges
from 206 (fordes) to 514 (forxf) native instructions. The
cost varies due to the number of entries in the symbol table.
The percentage of total instructions executed to support the
memory model ranges from 3.4% to 14%, and is on average
9.3%.

These measurements show that while the memory model can be
a significant source of overhead, preprocessing the input program
as Perl does can reduce the subsequent runtime overhead of the
memory model.

3.4 Summary

Simple interpreters such as MIPSI have the advantage of providing
core functionality with nearly fixed overhead per virtual command.
At the other extreme, complex interpreters such as Tcl and Perl
provide highly expressive virtual command sets with relatively high
interpretation overhead per virtual command. Finally, Java offers a
compromise approach, with a reasonably efficient core set of func-
tionality and a means of accessingnative library code. Applications
that make extensive use of native libraries can substantially reduce
their reliance on interpreted code and its associated overheads.

4 The Architectural Impact of Interpreters

In this section we use trace-driven simulation to analyze the effect
of interpreter execution on architectural resources, such as the cache
and execution units. Using our benchmark suite, we first simulate
instructions and memory references to identify the source and na-
ture of all processor stalls. Using this same simulation technique
for several compiled programs allows us to compare those programs
to our interpreters; the goal is to determine whether significant dif-
ferences exist between interpreted and directly-executed programs
with respect to hardware resource utilization. We then focus on the
behavior of the memory system and explore how different cache
parameters affect interpreter performance.

4.1 Simulation Results

To evaluate overall execution behavior,we use a detailed instruction-
level simulator of a modern microprocessor based on the design of
the DEC Alpha 21064 [Tullsen et al. 95]. The simulator processes
all instructions and memory references of an executing program,
and accountsfor the sourcesof all processorstalls during instruction
execution. Table 3 lists the sources of these stalls and the penalties
they impose2.

With the simulator, we measured the overall execution behavior
of the four interpreters running the programs in our benchmark
suite. We also simulated a subset of the SPECint92 benchmarks as
a basis for comparing the performance of well-understood compiled
programs to interpreted programs.

Figure 3 shows the results of our simulations. For each bench-
mark, we show the percentageof issue slots that are filled (processor
busy) and the distribution of unfilled issue slots due to delays im-
posed by various architectural components. The larger the size of
a component bar, the more the component contributed to delays in
instruction execution. For example, the Tcl interpreter running the
ical benchmark had a processor utilization of 32%, while 16% of
its issue slots were unfilled because of instruction cache misses.

From this figure we draw three conclusions:

1. For each interpreter, performance was generally independent
of the benchmark being interpreted.

2. The interpreters that define high-level virtual machines (Perl
and Tcl) have relatively poor instruction locality, while those

2The simulator predicts slightly fewer stalls than a real Alpha 21064 system for
three reasons. First, only the user-level instructions of the program are simulated,
thus ignoringthe effects of executingoperatingsystem instructions or context switches
to other programs. Second, the execution units in the simulator are uniform and can
executeany instruction, whereas the issuing rules of the 21064are less flexible. Finally,
to support the simultaneous issuing of two load instructions, the first-level data cache is
modeled as a banked cache as opposed to one that restricts the processor to one access
per cycle. We do not believe that these minor differences affect our conclusions.
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Figure 3: Overall execution behavior. This figure shows the distribution of stall cycles in a 2-issue superscalar processor. Processor busy
show the percentage of filled issue slots. The remaining categories show the percentage of unfilled issue slots.

that define low-level virtual machines (MIPSI and Java) tend
to have good instruction locality.

3. Data cache behavior for the interpreted programs is roughly
similar to that of the SPEC programs.

The rest of this section addresses these points in more detail.

General trends

Considering the performance of the benchmarks for each interpreter
as a group, it is evident that while the interpreters differ from onean-
other, each interpreter exhibits similar performance behavior across
benchmarks. In other words, application-specific behavior is over-
whelmed by the performance of the interpreter itself. This can be
seen, for example, by comparing the performance of the SPEC pro-
grams when run directly on the Alpha, and when interpreted by
MIPSI. When run directly, there is a great deal of variation in the
impact on the architecture (for example, contrastC-compress and
C-li). But when interpreted by MIPSI, the performance profiles
for all of the programs are quite similar. The large number of native
instructions executed to interpret one virtual command dilute the
performance behavior of the original application instruction stream.

The performance profiles for Perl and Tcl are also similar across
benchmarks. Comparing their behavior to that of the SPEC bench-
marks, we see that these two high-level interpreters behave much
like gcc. They have relatively poor instruction and data locality, and
similar instruction TLB behavior.

Cause Latency Description
(cycles)

other variable control hazards, memory bank conflicts, floating
point and integer multiply instructions

short int 2 integer shift and byte instructions
load delay 3 pipeline delay with first-level cache hit
mispredict 4 branch misprediction
dtlb 40 miss in the data tlb
itlb 40 miss in the instruction tlb
dmiss 6 or 30 miss in first-level data cache or the second-level

unified cache
imiss 6 or 30 miss in first-level instruction cache or the second-

level unified cache

Table 3:Causes of processorstalls. This table describes the sources
of stall cycles in our machine simulator. The simulated memory
system uses 8 KB pages, first level direct-mapped 8 KB caches for
instructions and data, a unified second level direct-mapped 512 KB
cache, an 8 entry instruction TLB, and a 32 entry data TLB. The
simulated branch logic includes a 256 entry 1-bit branch history
table, a 12 entry return stack, and a 32 entry branch target cache.

Java occupies an intermediate point in the spectrum between the
low- and high-level interpreters, and this is reflected in its archi-
tectural behavior. When applications spend relatively little time
in the native runtime libraries (des, javac, mand), they behave
much like programs interpreted by MIPSI. On the other hand, the
applications that use native runtime libraries heavily (asteroids,
hanoi) have a performance profile similar to gcc and the high-level
interpreters.
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Figure 4:Instruction cache behavior. This figure shows the instruction miss rates of Java, Perl, and Tcl programs as a function of cache size
and associativity. Miss rate is the number of misses per 100 instructions. The miss rate is shown as a function of cache size within a graph
and as a function of cache associativity among graphs.

Examining Figure 3 more closely reveals that major sources of
stalls for some interpreters include the instruction and data caches.
Load delays are also a significant source of stalls; these stall cycles
primarily reflect the effectiveness of the compiler and processor in
instruction scheduling. Other important architectural components,
such as the branch prediction hardware and TLB, do not have as
large an impact on performance. The poor instruction TLB behavior
exhibited by the interpreters and the SPEC benchmarks is due to
the Alpha 21064’s exceptionally small 8-entry iTLB; increasing
the size of the simulated iTLB to 32 entries (the same size as the
dTLB), effectively eliminates iTLB stalls. The stalls in the “short
int” category are also primarily Alpha-specific, resulting from the
absence of byte load/store instructions on the 21064.

Instruction Cache

In Figure 3, we see that the instruction cache performance cor-
responds to the type of the virtual machine implemented by an
interpreter. For MIPSI, with a low-level virtual machine, only 2%
of the issue slots are lost to instruction cache misses, whereas for
Perl and Tcl, 18% and 17% of issueslots are lost to instruction cache

misses, respectively. The Java interpreter also implements a low-
level virtual machine, and hence many of the Java programs have
good instruction cache behavior. Theasteroids andhanoi
benchmarksare exceptions, but this is explained by Figure 2, which
shows that these benchmarks spend the majority of their time in
native runtime libraries. Hence, the graph reflects more the perfor-
mance of the native runtime library rather than the Java interpreter.

The measurements in Section 3.2 provide insight into the rela-
tionship between the level of the virtual machine and instruction
cache behavior. Recall that as the level of abstraction of virtual
commands increases, interpreters execute more native instructions
to interpret the virtual command (Table 2). The interpretation loops
of MIPSI and Java execute on average fewer than 100 instructions
per virtual command, and therefore each iteration of the loop easily
fits inside the instruction cache. Moreover, the instructions that are
used for fetching and decoding are shared on each iteration, and
remain in the cache and contribute to the low miss rate for these
two interpreters. Thus MIPSI, with a higher percentage of instruc-
tions devoted to fetching and decoding than Java, has more shared
instructions between iterations and a lower cache miss rate. Perl



and Tcl, on the other hand, execute thousands of instructions per
virtual command, and consequently one iteration of the interpreter
loop flushes the cache of the shared instructions from the previous
iteration.

Figure 3 shows that Perl, Tcl, and theasteroids andhanoi
benchmarks in Java have a large number of instruction cache stalls
for the 8 KB direct-mapped instruction cache in our baseline archi-
tecture. To explore how the instruction cacheperformance improves
with increasing first-level cache size,we simulated these interpreters
executing on four cachesizes (8, 16, 32, and 64 KB) each with three
types of associativity (direct-mapped, 2, and 4 way set associative).

Figure 4 shows the results of this experiment. The graphs indicate
that the instruction working set size of the Perl interpreter is in
the 32 KB to 64 KB range, and the working set size of the Tcl
interpreter is in the 16 KB to 32 KB range. Interestingly, the Tcl
applications and onePerl application (des) also benefit significantly
from higher associativity. Once the cache is large enough to hold
much of the working set of the interpreters (16 KB and larger),
the i-cache continues to suffer from conflict misses. This effect
can be seen by comparing the graphs for 2-way associativity to
4-way associativity. For example, with the 2-way set-associative
32 KB cache,tcltags has a miss rate of 1.2 misses per 100
instructions, but with the 4-way set-associative 32 KB cache the
miss rate drops to 0.4 misses per 100 instructions. The explanation
for this behavior is that the average number of instructions per
virtual command executed by the interpreters for these applications
is in the 4,000-11,000 range, which corresponds to 16-44 KB of
instruction data for each loop iteration. With low associativity, once
the cache is large enough to hold this many instructions, some of
the instructions shared across iterations are being flushed out of the
cache due to conflicts. With increased associativity, however, the
conflicts are removed and the interpreters achieve good instruction
cache performance.

Data Cache and TLB

Figure 3 shows that the percentage of wasted issue slots due to data
cache stalls for the interpreters typically is as high as 18%, but is
not significantly larger than for the compiled SPEC benchmarks.
This suggests that storing the program as data, as occurs in an inter-
preted environment, does not carry a penalty in terms of data cache
performance. Unlike compiled programs, where code is accessed
on every cycle, the code for interpreted programs is accessed once
every iteration of the interpreter loop. Compared to the total num-
ber of instruction and data references during a loop iteration, the
accessesto program codeare a small percentageof all data accesses.

The data TLB measurements emphasize that the behavior of the
interpreter can overwhelm the behavior of the program being in-
terpreted. Thecompress program provides a good example: the
native version has a data working set too large for the 32 entry data
TLB, resulting in 49% of issue slots going unfilled, while when in-
terpreted by MIPSI, dTLB misses are inconsequential, accounting
for less than 1% of the unfilled issue slots. (Of course, the program
runs much more slowly when interpreted.)

4.2 Architecture Summary

In this section we explored the interaction of interpreted programs
with architecture. The importance of the instruction cache depends
on the complexity of the virtual machine defined by the interpreter.

MIPSI and Java define low-level virtual machines, with an inter-
preter loop that generally fits well within even a 8 KB instruction
cache. For Perl and Tcl, a 64 KB first-level instruction cache is
sufficient to effectively capture the working set. Finally, from an
architectural perspective, interpreter performance is largely inde-
pendent of the program being interpreted.

5 Conclusions

With increased processor performance and demand for portability,
security, and ease of use, interpreted languages have become a
major part of today’s computing environment. In this paper, we
studied the behavior and performance of four interpreters executing
a range of programs and microbenchmarks. We showed that the
performance of an interpreter cannot be attributed solely to the
frequently executed command dispatch loop. Performance is also
linked to (1) the expressivenessof the virtual command set and how
effectively these virtual commands are used, (2) the use of native
runtime libraries, and (3) the way that the virtual machinenamesand
accessesmemory. We also showed that the “architectural footprint”
of an interpreted program is primarily a function of the interpreter
itself and not of the programs being interpreted, and that the high-
level interpreters behave similarly to large SPECint92 applications,
such as gcc.

It is always tempting to propose specialized hardware
to support specific language environments, interpreted or
not, as has been done in the past with mixed suc-
cess [Smith et al. 71, Ditzel & Patterson 80, Flynn 80, Meyers 82,
Moon 87, Ungar & Patterson 87]. For the interpreters we studied,
however, it is clear that significant potential still exists for improve-
ment throughsoftware means. For example, future implementations
of Java and Tcl may involve more sophisticated compiling and run-
time code generation [Symantec Corporation 96, Ousterhout 96].
Instruction fetch/decode overhead could be reduced by using
threaded interpretation, by dynamically compiling portions of
the interpreted program into native code, or by compiling to
host machine level during load-time or through binary transla-
tion, thereby eliminating the fetch/decode overhead altogether
[Bell 73, Klint 81, Deutsch & Schiffman 84, Andrews & Sand 92,
Sites et al. 92, Cmelik & Keppel 94, Adl-Tabatabai et al. 96,
Afzal et al. 96, Wilkinson 96]. These optimizations will have vary-
ing degrees of success, depending on the interpreter and interpreted
program. We therefore believe that efforts to build specializedhard-
ware for interpreters may be premature; the greatest advance will
come as the designers of interpreters realize that performance, as
well as portability, flexibility and safety, are crucial goals.

More measurements, including those of Java on the Intel x86 ar-
chitecture running the Windows NT operating system, are available
at http://www.cs.washington.edu/research/interpreters.
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