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Abstract. We have considered the thermal equilibrium in pre-protostellar cores in the approximation where the dust tempera-
ture is independent of interactions with the gas and where the gas is heated both by collisions with dust grains and ionization by
cosmic rays. We have then used these results to study the stability of cores in hydrostatic equilibrium in the limit where thermal
pressure dominates over magnetic field and turbulence. We compare the density distribution derived in this manner with results
obtained in the isothermal case. We find that for cores with characteristics similar to those observed in nearby molecular clouds,
the gas and dust temperatures are coupled in the core interior with densities above ∼3×104 cm−3. As a consequence, one expects
that the gas temperature like the dust temperature decreases towards the center of these objects. However, the regime where gas
and dust temperatures are coupled coincides approximately with that in which CO and many other molecular species deplete
onto dust grain surfaces. At larger radii and lower densities, the gas and dust temperatures decouple and the gas temperature
tends to the value expected for cosmic ray heating alone. The density structure which one computes taking into account such
deviations from isothermality are not greatly different from that expected for an isothermal Bonnor-Ebert sphere. It is impossi-
ble in the framework of these models to have a stable equilibrium core with mass above ∼5 M� and column density compatible
with observed values (NH > 2 × 1022 cm−2 or AV > 10 mag). We conclude from this that observed high mass cores are either
supported by magnetic field or turbulence or are already in a state of collapse. Lower mass cores on the other hand have stable
states where thermal pressure alone provides support against gravitation and we conclude that the much studied object B68
may be in a state of stable equilibrium if the internal gas temperature is computed in self-consistent fashion. Finally we note
that in molecular clouds such as Ophiuchus and Orion with high radiation fields and pressures, gas and dust temperatures are
expected to be well coupled and hence in the absence of an internal heat source, one expects temperatures to decrease towards
core centers and to be relatively high as compared to low pressure clouds like Taurus.
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1. Introduction

It has long been presumed that during the formation of a star,
there is an intermediate phase in which the “protostar” is at
least approximately in a state of hydrostatic equilibrium or
magneto–hydrostatic equilibrium (see e.g. Shu et al. 1987).
While this idea in origin was merely based on plausibility argu-
ments, it has received support from the discovery that in least
some nearby molecular clouds, one finds embedded “cores”
of higher density than the surroundings where the observed
linewidths are thermally dominated. That is to say, while there
may be local subsonic turbulence, there is no evidence for col-
lapse onto a point mass and it appears that thermal pressure is
capable of balancing gravity. On the other hand, comparisons
of the gravitational, thermal, magnetic and turbulent energies
of such cores show that all these quantities are equal to within
the (considerable) uncertainties (Myers & Goodman 1988a,b;
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Myers et al. 1991; Crutcher 1999). These data suggest though
they do not prove the existence of equilibrium structures which
are an intermediate state in the evolution of a prestellar core.

This picture has received more observational support with
the advent of high quality maps of the millimeter continuum
emission of the dust grains within such cores as well as the
possibility to study their extinction in the near and mid infrared
(Johnstone et al. 2000, 2001; Bacmann et al. 2000; Lada et al.
1994). These have allowed a more unbiased view to be obtained
of the density distribution in prestellar cores. In particular, they
have shown that the early molecular line data was highly biased
because above a critical density of ∼5 × 104 cm−3 (see Tafalla
et al. 2002; Caselli et al. 2002a,b; Kramer et al. 1999) most
molecular tracers including CO condense out onto dust grain
surfaces. This depletion has the consequence that in molecular
lines one sees mainly a lower density outer shell, whereas the
dust emission (or absorption) offers a more unbiased view of
the density distribution.
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The results from the millimeter continuum and infrared ab-
sorption studies have been compared with a variety of the-
oretical models of hydrostatic cores (Bacmann et al. 2000).
One result of such studies has been evidence for a “flatten-
ing” in the density distribution for radii below a critical value
of rcr � 2000–8000 AU implying a steeper fall off in radius
above rcr. Thus for example, Bacmann et al. (2000) model
L1544 with a roughly uniform density inside 1900 AU but
a rapid fall off outside this radius. Structures whose support
against gravitational collapse is mainly due to the magnetic
field are plausible both because the observed dust continuum
maps show large departures from spherical symmetry and be-
cause of time scale arguments. Collapse on a free fall time scale
would produce a larger star formation rate than that observed.

There are however some cores where thermal pressure may
dominate magnetic pressure and spherical symmetry may be
a good assumption. Particularly worthy of note is B68 where
Alves et al. (2001) have recently demonstrated that the density
distribution derived from their NIR measurements is consistent
with a purely thermally supported hydrostatic model. In fact,
they find results consistent with the equilibrium structures dis-
cussed by Ebert (1955) and Bonnor (1956), which we will re-
fer to in the following as Bonnor-Ebert spheres. To what extent
B68 is exceptional is presently unclear but we note that a large
number of cores in the Ophiuchus and Orion clouds (Johnstone
et al. 2000, 2001) appear to have characteristics compatible
with Bonnor-Ebert spheres at temperatures of 15–30 K.

This accord between theoretical expectation and observa-
tion suggests that a study of the theoretical assumptions may be
worthwhile. One of these assumptions has been that of isother-
mality which is often based on the concept of “low optical
depth for the cooling transitions”. In reality, the gas in prestel-
lar cores is thought to be cooled mainly by optically thick CO
transitions (Goldsmith 2001) although, as mentioned above, the
CO seems to disappear at high densities. Moreover, the typical
density for which dust grains and gas become thermally cou-
pled is roughly of the same order as that observed in prestellar
cores (see, e.g. Krügel & Walmsley 1984). Thus, we decided
that a new look at the gas temperature distribution to be ex-
pected in such cores seemed warranted.

In this paper we replace the assumption of an isothermal
gas with the more realistic condition of thermal balance in the
gas, and we evaluate the consequences of an external heat-
ing source (the interstellar radiation field) on the structure of
the cloud (density and temperature profiles) and its stability
properties. Recent studies of the dust temperature distribution
in such objects (Evans et al. 2001; Zucconi et al. 2001) have
shown that the dust temperature typically falls by a factor of 2
from edge to center. It seems reasonable to ask how the gas
temperature will react in such circumstances. One might also
ask whether the density distribution in hydrostatic equilibrium
will depart appreciably from that expected under the isother-
mal assumption. Will the expected density contrast differ for
example from that expected for a Bonnor-Ebert sphere when
one calculates the gas temperature in self–consistent fashion?
This article represents an attempt to answer such questions.

The outline of this paper is as follows. In Sect. 2 we give
a brief introduction to the theory of structures in hydrostatic

equilibrium including the results for an isothermal equilibrium
Bonnor-Ebert sphere. In Sect. 3 we discuss the input to our
calculations and the simplifications which we have made. In
Sect. 4, we present our results for the gas temperature distri-
bution in two model cores whose density distribution has been
assumed similar to that observed in L1544 and B68. In Sect. 5
we present our results for non-isothermal hydrostatic equilibria
for a variety of conditions. Here we show among other things
that the equilibria obtained depend relatively sensitively on the
external radiation field. In Sect. 6 we discuss the observational
consequences of our results, and compare the properties of our
model clouds to isentropic polytropes. In Sect. 7 we summarize
our conclusions.

2. Theoretical background

An isothermal gas sphere embedded in an external medium
of given pressure pext has a critical Bonnor-Ebert mass above
which no state of equilibrium can exist (Ebert 1955; Bonnor
1956; McCrea 1957),

MBE � 1.182
a4√

G3 pext

� 2.6
(

Tg

10 K

)2 ( pext

2 × 104 K cm−3

)−1/2
M�, (1)

where a = (kTg/µmH)1/2 is the sound speed in the gas, Tg the
gas temperature and µ the mean molecular weight (see Fig. 2).

Below this critical value, the equation of hydrostatic equi-
librium admits single or multiple solutions, characterized by
different degrees of density concentration. It has been shown
by Bonnor (1956) and Ebert (1957) that equilibrium configu-
rations with center-to-boundary density contrast ρc/ρb < 13.98
are stable, whereas equilibrium solutions with ρc/ρb > 13.98
are unstable to radial collapse. Stable isothermal equilibria can
also be characterized by the condition

ξmax ≡ R
a

√
4πGρc < 6.451, (2)

where R is the cloud’s radius.
Recently, Lombardi & Bertin (2001) have re-examined the

classical Bonnor-Ebert problem relaxing the assumption of
spherical shape of the cloud. The result is that for non-spherical
isothermal clouds, the critical Bonnor-Ebert mass is larger than
the value given by Eq. (1); a sphercal shape is more prone to
gravitational instability than clouds of other shapes. The den-
sity contrast ρc/ρb for marginally stable non-spherical clouds
is different from the Bonnor-Ebert value 13.98 for spherical
clouds, but, remarkably, the condition for stability, when ex-
pressed in terms of the ratio of the average density ρ̄ to the
boundary density ρb, i.e. ρ̄/ρb < 2.465, is independent of cloud
shape.

To express the condition for stability (M < MBE and
ρc/ρb < 13.98) in terms of observable quantities one can elim-
inate the external pressure writing pext = a2ρb > 13.98−1a2ρc,
obtaining, for a given cloud’s mass M,

ρc < 19.53
a6

G3M2
, (3)
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that, for a cloud of molecular hydrogen with mean molecular
weight µ = 2.33 becomes

nc < 1.6 × 105

(
Tg

10 K

)3 (
M
M�

)−2

cm−3. (4)

Thus, stable isothermal equilibria are only possible provided
the central density is relatively low (in the absence of magnetic
fields): this causes a conflict with observations if one attempts
to model observed molecular cores with such equilibrium con-
figurations. For example, if dense cores with M > 4 M� and
Tg = 10 K are modeled as stable Bonnor-Ebert spheres, their
density according to Eq. (4) will fall below the critical value
of ∼104 cm−3 reqired to excite the molecular lines observed in
these regions. Moreover, the central densities inferred in many
pre–stellar cores based on the observed mm–submm dust emis-
sion (e.g. Ward–Thompson et al. 1999) is often above 105 cm−3

and hence for gas temperatures of ∼10 K, only cores of mass
below 1 M� can be in stable equilibrium.

Many of the observed objects however have higher masses
(see the discussion of Bacmann et al. 2000) and also col-
umn densities of up to 1023 cm−2 in molecular hydrogen or
100 visual magnitudes of extinction. One can express the sta-
bility condition for Bonnor-Ebert spheres as a condition on the
cloud’s total (from edge to edge) extinction through the center
AV,tot = N(H2)/1021 cm−2, obtaining

AV,tot <∼ 29
(

Tg

10 K

)2 (
M
M�

)−1

mag. (5)

This is clearly much less than often observed and provides a
strong argument for the support of many observed structures
being due to forces other than pure thermal pressure (though
there are also cases of thermal support, e.g. Alves et al. 2001;
Johnstone et al. 2000, 2001). In the following, we consider “ob-
served cores” as having a minimum AV of 10 mag, and thus
exclude processes such as UV photoelectric effect from con-
sideration. We do not moreover in this work compute models
including magnetic fields and turbulence, but briefly mention in
the next sections how these agent of support modify the picture
outlined above.

In summary, non-magnetic stable isothermal cores repre-
sent only moderate enhancements (a factor ∼2.5 in the av-
erage density) of the ambient gas density, quite independent
on cloud shape and the turbulent field. This limited density
range represents a serious limitation when modeling molecu-
lar cloud cores as non-magnetized hydrostatic equilibria. For
example Boland & de Jong (1984) were able to reproduce col-
umn density, brightness temperatures and abundances of sev-
eral chemical species measured in dark clouds like L134, L183
and TMC-1 only with models characterized by density contrast
ρc/ρb � 2000. Hasegawa (1988) however verified that these
models were well into the unstable regime. The same criti-
cism was made by Chièze & Pineau des Fôrets (1987) to the
hydrostatic models computed by Falgarone & Puget (1985).
Hasegawa (1988) concluded that stable spherical, hydrostatic
models able to satisfy all observational constraints on extinc-
tion, external pressure, mass, and chemical composition of
molecular cloud cores, could no be constructed. In this respect,

it is interesting to recall that when molecular cloud cores are
fitted by Bonnor-Ebert spheres, the best fit is obtained for mod-
els that are in the unstable regime: ξmax = 6.9 for B68 (Alves
et al. 2001), ξmax = 12.5 for B335 (Harvey et al. 2001, although
B335 is not a starless core).

2.1. Magnetic fields

The additional support provided by a large-scale magnetic
fields can be evaluated by a virial-theorem analysis or with the
help of detailed calculations (see e.g. McKee et al. 1987, for a
review). The maximum value of a cloud mass for the existence
of stable equilibria is approximately equal to

Mcr �
1 −

(
0.13
λ

)2
−3/2

MBE, (6)

where λ is the magnetic mass-to-flux ratio of the cloud in units
of G−1/2 (Mouschovias & Spitzer 1976; Tomisaka et al. 1988).
For magnetically subcritical clouds (λ <∼ 0.13), no amount
of external compression can induce the collapse of the cloud
(as long as the magnetic field remains frozen in the matter).
Magnetically supercritical clouds (λ >∼ 0.13) can exist in sta-
ble equilibrium for masses larger than the Bonnor-Ebert criti-
cal mass, and can reach values of ρc/ρb much higher than 13.98
(up to ∼100, see Figs. 4 and 6 of Tomisaka et al. 1988).

2.2. Non-uniform turbulence and temperature
gradients

If the turbulent motions of the gas are characterized by a uni-
form (three-dimensional) mean square velocity 〈u2turb〉, the ef-
fects of a turbulent pressure, in addition to the thermal pres-
sure, can be trivially incorporated in the classic Bonnor-Ebert
picture summarized above. The condition for the existence
of stable equilibria is the same expressed by Eq. (1) with
the sound speed a2 replaced by an “effective” sound speed
a2

eff = a2 + 〈u2turb〉/3, allowing the existence of stable equilib-
ria for values of the central density (or peak extinction) larger
than for clouds supported by thermal pressure alone. Notice,
however, that (as in the purely thermal case) marginally stable
clouds are characterized by a density contrast ρc/ρb = 13.98 or
ρ̄/ρb = 2.465, where ρ̄ is the average density, irrespectively on
the cloud’s effective temperature.

One should remember also that the observed line widths
(which in some cases are close to being thermal) place lim-
its on possible values of uturb. In dense cores, as well as in gi-
ant molecular clouds, turbulent linewidths are often observed
to increase at larger scales (see discussion in Barranco &
Goodman 1998; Goodman et al. 1998), suggesting that these
objects can be modeled as negative-index polytropes (de Jong
et al. 1980; Dickman & Clemens 1983; Maloney 1988). This
is easily understood comparing the polytropic equation of state
P ∝ ρ1+1/n with the expression for the thermal pressure of a
gas, P ∝ ρT , implying T ∝ ρ1/n. Since the density is always a
decreasing function of radius, negative index polytropes repre-
sent equilibrium configurations in which the effective tempera-
ture increases outward. However, from the point of view of the
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stability properties, our models show a behavior similar to
polytropes with n	 1. We will return to this point in Sect. 6.2.

The logatropic equation of state analyzed by McLaughlin &
Pudritz (1996) to incorporate the contribution of non-thermal
motions to the support of molecular clouds (and cloud cores)
makes possible the existence of stable equilibria for large den-
sity constrasts (ρc/ρb � 100) but the resulting configurations
are much more extended than Bonnor-Ebert spheres and are
characterized by a maximum ratio ρ̄/ρb = 3/2, even smaller
than for critical Bonnor-Ebert spheres. Indeed, the observed
column density distributions (Bacmann et al. 2000) of cores
do not fit well to logatropes.

3. Model assumptions

Following the approach outlined by Goldsmith (2001), we
compute the gas thermal equilibrium assuming that the dust
temperature is unaffected by collisions with gas particles (see
Evans et al. 2001, for estimates of the validity of this).
Moreover, we have used the analytical fit of Zucconi et al.
(2001) to determine dust temperature as a function of radius
in our spherically symmetric model cores. The justification for
this is simplicity. We are interested here in understanding quali-
tatively to what extent departures from isothermality may affect
the properties of pre-stellar cores. High precision in determin-
ing the gas cooling rates and the dust temperature distribution
is unlikely to fundamentally affect our results.

3.1. Dust and gas temperature

Thus we determine the gas temperature Tg by solving the equa-
tion of thermal balance of the gas in the presence of dust grains
heated by the external radiation field,

Γcr − Λg − Λgd = 0, (7)

where Γcr is the cosmic-ray heating rate, Λg the gas cooling
rate by molecular and atomic transitions, and Λgd the gas-dust
energy transfer rate. We follow Goldsmith (2001) and adopt a
cosmic-ray heating rate

Γcr = 10−27
(

ζ

3 × 10−17 s−1

) [n(H2)
cm−3

]
erg cm−3 s−1. (8)

The gas cooling rate Λg for typical conditions of molec-
ular cloud cores has been computed by Goldsmith (2001)
in the LVG approximation (assuming a velocity gradient
of 1 km s−1 pc−1) for various degrees of depletion of
molecules from the gas phase onto grain surfaces. We adopt
the parametrization of Goldsmith (2001)

Λg = α

(
Tg

10 K

)β
erg cm−3 s−1, (9)

where α and β are parameters that depend on the H2 density and
the molecular depletion factors. When not explicitly noted, we
assume that molecular abundances in the gas have their stan-
dard (undepleted) values. As for the the gas-dust energy trans-
fer rate we adopt the expression given by Goldsmith (2001)

based on calculations of Burke & Hollenbach (1983),

Λgd = 2 × 10−33
( n
cm−3

)2
(

Tg − Td

K

)

×
(

Tg

10 K

)1/2

erg cm−3 s−1. (10)

To determine the dust temperature Td we ignore the gas-dust
coupling and we solve the equation of thermal balance of the
dust

Γext − Λd = 0, (11)

where Γext is the dust heating rate by the external radiation field
and Λd the dust cooling rate by radiation. In practice, we use
the analytical solution of Zucconi et al. (2001) to compute Td

as function of extinction from the cloud’s boundary.
As in Zucconi et al. (2001), we have adopted as a standard

the interstellar radiation field (ISRF) in the solar neighborhood
given by Mathis et al. (1983) and Black (1994). It consists of
four components: the V-NIR component, peaking at λ � 1 µm,
the MIR and FIR components, peaking at λ � 100 and 140 µm
respectively, and the cosmic background radiation, peaking at
λ � 1 mm. We allow for variations of the ISRF, assuming, for
simplicity, that the spectral shapes of these components are the
same as the local ISRF, and we scale the intensity of the V-NIR,
MIR, and FIR components by a factor G0 (with G0 = 1 for the
local ISRF).

The existence of a cloud radius leads to the necessity of an
external pressure to keep the system in equilibrium. We em-
bed our model cloud cores in a spherical envelope that repre-
sents the ambient molecular cloud. We do not need to specify
the physical properties of this envelope; we just assume that
it provides the needed external pressure and a shielding from
the ISRF directly incident on the cloud cores. We set the lat-
ter at the value Aenv

V = 1 (McKee 1999), sufficient to absorb
the UV and most of the V-NIR radiation. We define AV,c to
be the centre-to-edge extinction of our model cloud cores. The
range of masses and densities of interest here corresponds to
the range 5 <∼ AV,c <∼ 100, where the central dust temperature
is determined mostly by optically thick absorption of V-NIR ra-
diation and optically thin absorbtion of MIR and FIR radiation.

The fundamental parameters of our models are the external
pressure pext and the intensity of the external radiation field G0.
In this paper, we consider independent variations of these two
quantities, and we analyse separately the dependence of the
critical mass for increasing pext and fixed G0 (Sect. 5, Fig. 2),
and the effect of varying G0 for a given value of pext (Sect. 6,
Fig. 6).

3.2. Effects of molecular depletion

We include in our models the effect of molecular depletion onto
dust grains, parametrized for simplicity by the single parame-
ter fd (depletion factor), defined as the ratio of the “standard”
abundance of CO isotopes and CS to the actual abundances.
The corresponding abundances of other molecular species are
given in Table 3 of Goldsmith (2001). Gas-phase cooling rates
for several values of fd in the range 1–100 were computed and
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tabulated by Goldsmith (2001) for H2 density from 103 cm−3

to 106 cm−3. We assume the dependence of fd on density given
by Tafalla et al. (2002),

fd = exp
(

n
ndep

)
, (12)

where the critical density for CO depletion is taken to be ndep =

5.5 × 104 cm−3.
Although we are mainly interested in applications to molec-

ular cloud cores of moderate to high extinction, where molec-
ular depletion is effective only in a region of limited spatial ex-
tent, one should keep in mind that large fraction of the cloud’s
mass is contained in the outer parts (roughly M(r) ∝ r), and
therefore the overall stability of the cloud may be modified by
the thermal properties of these external layers.

In our models we find in general that the effects of de-
pletion on the temperature of the gas are significant only for
densities n <∼ 105 cm−3. At higher density, gas-dust coupling
overwhelms the reduction of the cooling rate of the gas, and
the gas temperature becomes insensitive to depletion. This is
in qualitative agreement with the results of Goldsmith (2001).
We conclude with Goldsmith (2001) that molecular depletion
in the central, dense regions of molecular cloud cores (n >∼
104.5–105 cm−3) is not associated with an increase in the gas
temperature.

In the extreme case where CO (and other molecules con-
taining C, N, O, S, etc.) depletes out onto grains causing Eq. (7)
to reduce to Γcr = Λgd. Then using Eqs. (8) and (10), one finds

Tg − Td

Tg
� 5

(
ζ

3 × 10−17 s−1

) ( n
104 cm−3

)−1
(

Tg

10 K

)−1.5

· (13)

This shows that in the extreme case where all heavy species
deplete out, coupling between gas and dust temperatures will
be assured for densities larger than 5 × 104 cm−3 if the cosmic
ray ionization rate is standard or lower. Since it is essentially at
densities above this value that CO is observed to deplete out,
we conclude that a rough equality between gas and dust tem-
peratures in the depleted region is a reasonable assumption. In
this context, it is interesting to note that Bergin et al. (2002)
suggest that even such relatively volatile species as molecular
nitrogen have depleted out in the central core of B68.

4. Temperature distributions for L1544 and B68

Before considering what one expects for theoretical equilib-
rium cores, it is useful to consider what one predicts for the
temperature variation within an object whose density structure
is similar to those observed. Specifically, we will consider the
case of L1544 (Caselli et al. 2002a, 2002b) and B68 Alves et al.
(2001), two well studied prestellar cores.

To model L1544 we assume G0 = 1 and the density struc-
ture of Tafalla et al. (2002), which, in turn, is based on the
1.3 mm dust emission and absorption maps of Bacmann et al.
(2000). Thus, we assume the H2 density distribution n(r) to be
given by

n(r) =
nc

1 + (r/r0)2.5
, (14)

where the central H2 density is nc = 1.4 × 106 cm−3 and
r0 = 0.014 pc. It is worth noting that we have on purpose
taken here a somewhat extreme case with large density con-
trast relative to the surroundings and large central column den-
sity (6.0 × 1022 cm−2 corresponding to 60 mag of extinction,
from Bacmann et al. 2000). One should also be aware that the
aspect ratio of the core based on the dust emission contours
is ∼0.6 and hence spherical symmetry is a crude assumption.
Nevertheless, the case is of interest in that it is a model which
approximates the actually observed density distribution and in
which, one expects that the central temperature will be rela-
tively low (due to the large extinction).

For B68 we assume the density structure of a Bonnor-
Ebert sphere with the physical parameters given by Alves et al.
(2001). The central density nc = 2.4 × 105 cm−3 is a factor ∼6
lower than in the case of L1554, and consequently the amount
of CO depletion at the center of B68 is about two orders of
magnitude lower than at the center of L1544. The intensity of
the IRSF incident on B68 can be estimated as follows. We first
estimate the external UV radiation field based on the 90 µm
data of Ward-Thompson et al. (2002) and the conversion be-
tween FIR intensity and incident field found by Boulanger &
Perault (1988). Another approach is to use the 7 µm intensity
from Bacmann et al. (2000) and the results of Boulanger et al.
(1996) to infer G0. Combining these, we conclude that the radi-
ation field incident on B68 is ∼2.5 times larger that the standard
ISRF.

In Fig. 1, we show the inferred gas temperature dependence
for L1544 and B68, computed with cosmic ray ionization rate
ζ = 1.3×10−17 s−1 and accomodation coefficient = 0.3. The as-
sumed CO depletion factor (cut off at a value of 100) is shown
for comparison. In the inner part of both cores (densities above
3 × 104 cm−3), the gas temperature is coupled to that of the
dust and thus decreases gradually towards the core center. This
coupling is more effective in the case of L1544, which has a
higher central density. The gas is slightly hotter than the dust
however due to cosmic ray heating and this difference increases
as the density decreases. The CO depletion appears to have
only small effects on the gas temperature profile because while
at high density, gas–dust coupling dominates, at densities be-
low 105 cm−3, the depletion is not very large (and the optically
thick nature of CO cooling causes the dependence of CO cool-
ing on abundance to be minor). We draw the conclusion from
this study that in the depleted core nucleus (densities above
105 cm−3) where many molecular species may be unobservable
because they are in solid form, the gas temperature may be ex-
pected to be close to that of the dust. In outer regions where the
density is below 105 cm−3 and where shielding from the exter-
nal radiation field is much less, the gas and dust temperatures
become uncoupled and one may find gas temperatures lower
than that of the dust.

It is worth pointing out that the scenario depicted in Fig. 1
yields gas temperatures in conflict with observation. Tafalla
et al. (2002) find based on their NH3 observations a temper-
ature of 8.7 K throughout the L1544 core with no evidence for
temperature gradients (40′′ HPBW equivalent to 0.03 parsec),
whereas Bourke et al. (1995) give Tg = 16 K for B68, also de-
rived from NH3 data. These are in rough agreement with the
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Fig. 1. Upper panel: inferred gas (long-dashed curve) and dust tem-
perature dependence (short-dashed curve) for the model of L1544 dis-
cussed in the text (with G0 = 1). The assumed density distribution
from Eq. (14) is shown for comparison (solid curve). The assumed
CO depletion factor fd (multiplied by 104, dotted curve) is also shown.
Lower panel: same as above, for the model of B68 (with G0 = 2.5).
One sees that for n > 3 × 104 cm−3 the gas temperature follows the
dust temperature and decreases towards the core center. Outside this
region, gas and dust are decoupled and the gas heating is determined
solely by cosmic ray ionization.

values in Fig. 1 though the L1544 data do not show evidence
for increasing temperature with radius as predicted.

Another conclusion that one can draw from Fig. 1 is that
the gas temperature and hence pressure in the high density core
nucleus depends somewhat on the external radiation field even
for cores of extremely high visual extinction. Thus one can
expect cores in Taurus for example (where the incident radi-
ation field appears to be average) to have different characteris-
tics than Ophiuchus cores where the radiation field appears in
general to be an order of magnitude higher. Of course, there are
other effects such as the external pressure which may differ in
the two cases also but we stress that the radiation field alone
may cause core temperatures and hence accretion rates to be
higher in Ophiuchus than in Taurus.

5. Self consistent hydrostatic equilibrium results

The equation of hydrostatic equilibrium for a spherically sym-
metric cloud is

dp
dr
+ ρ

dV
dr
= 0, (15)

where p is the gas pressure and V the gravitational potential.
The latter satisfies Poisson’s equation, which in spherical sym-
metry reads

1
r2

d
dr

(
r2 dV

dr

)
= 4πGρ. (16)

Fig. 2. Sequences of model clouds with M = 1 M� and Aenv
V = 1 in the

radius–pressure diagram, for various scaling factors G0 of the ISRF
(solid lines). For comparison, the dotted line shows a Bonnor-Ebert
isotherm with Tg = 10 K for the same cloud mass.

The gas pressure p, neglecting the contribution of turbulent
pressure, is

p =
ρ

µmH
kTg, (17)

where Tg is the gas temperature, computed as described in
Sect. 3, and µ = 2.33 the mean molecular weight.

The behavior of our model clouds with respect to an ex-
ternal compression is qualitatively similar to that of isothermal
spheres. Figure 2 shows the locus in the radius-external pres-
sure diagram of cloud models with M = 1 M�, for different val-
ues of the ISRF intensity G0. For large radii the cloud follows
closely the Tg = 10 K Bonnor-Ebert isotherm, independent of
the radiation field (the effect of gas-dust coupling is negligible
for these diffuse configurations). At higher values of the ex-
ternal pressure the cloud radius is smaller and the central (and
average) density becomes larger. As a result, the central gas
temperature increases and the sequence of equilibria departs
from the Bonnor-Ebert isotherm. Eventually, a critical value of
the pressure is reached above which no equilibria exist, and the
curve turns down. Past this critical point, equilibria are char-
acterized by an increasing central density and density contrast,
and are unstable (see following section). For clarity, in Fig. 2
we truncate the curves of equilibrium slightly after the critical
point.

Figure 3 shows the density of H2, the temperature of the
gas and the temperature of the dust as function of radius for
the marginally stable clouds of mass M = 1 M� with G0 = 1
(central H2 density nc = 2.7 × 105 cm−3). The density pro-
file is very close to that of an isothermal sphere with the same
values of the central density, shown for comparison in Fig. 3
for temperatures equal to the central and boundary temperature
of the model. The gas temperature decreases from the outer
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Fig. 3. Density of H2 (solid line), temperature of the dust (short-
dashed line), temperature of the gas (long-dashed line), and visual
extinction (dash-dotted line) as function of radius for the marginally
stable clouds with M = 1 M� and G0 = 1. The dotted lines show for
comparison the density profile of an isothermal sphere with the same
values of nc and T = Tg,c or Tg,b. The visual extinction at the cloud’s
center is AV,c = 14.

Table 1. Properties of marginally stable clouds with M = 1 M�.

G0 nc ρc/ρb Tg,c Td,c AV,c

(cm−3) (K) (K)
0.1 1.5 × 105 10.0 9.2 6.2 9
1 2.7 × 105 12.0 8.7 10.3 14
10 5.8 × 105 14.4 12.7 12.0 22
102 1.3 × 106 15.1 17.0 16.8 38

regions to the center of the cloud. For marginally stable clouds
with M = 1 M� the central density is sufficient to ensure a
modest gas-dust coupling, but the gas temperature is mainly
determined by the balance of cosmic-ray heating and gas cool-
ing.

Figure 4 shows the H2 density, the gas and dust tempera-
tures and the extinction profile of the marginally stable cloud in
thermal equilibrium with an ISRF with G0 = 100 and bounded
by an external pressure pext = 1 × 106 K cm−3. These roughly
correspond to the structures observed by Johnstone et al. (2001)
in the ρOph and Orion clouds. For comparison, the figure also
shows the density profiles of marginally stable Bonnor-Ebert
spheres with the same central density and uniform temperature
equal to the gas temperature at the center and at the boundary
of the cloud.

In Tables 1 and 2 we list the values of central H2 density,
gas and dust temperature, density contrast, and optical extinc-
tion at the center for marginally stable clouds with M = 1 and
5 M� and various scaling factors for the ISRF. In these models
we have varied pext until we find the marginally stable model.

Fig. 4. Same as in Fig. 3, but for a marginally stable cloud bounded by
an external pressure pext = 1 × 106 K cm−3 and with G0 = 100. The
mass of the cloud is M = 1.6 M� and the extinction from the center to
the edge of the cloud is AV = 29.

Table 2. Properties of marginally stable clouds with M = 5 M�.

G0 nc ρc/ρb Tg,c Td,c AV,c

(cm−3) (K) (K)
0.1 9.9 × 103 19.2 10.0 9.4 3
1 1.1 × 104 20.0 10.0 14.2 3
10 1.5 × 104 24.2 10.0 21.4 4
102 2.4 × 104 34.4 10.5 32.3 5

A comparison of the results for the two different masses
is instructive. Small mass clouds (M � 1 M�) exposed to the
average ISRF behave like isothermal spheres with Tg � 10 K,
and are characterized by a maximum density contrast and crit-
ical central density very close to those of the corresponding
Bonnor-Ebert values. Increasing the ISRF (G0 = 10) has the
effect of raising the dust temperature, and of increasing slightly
the gas temperature in the central regions. This increase in the
central gas temperature causes a higher central density in the
marginally stable core and this, in turn, increases the efficiency
of dust-gas coupling. A further increase of the ISRF (G0 = 100)
establishes the approximate equality of the gas and dust tem-
peratures at the center. Thus, the fact that small mass clouds
are dynamically stable for larger values of the central density
than their more massive counterparts (see Eq. (4)), has the con-
sequence that they are “stabilized” by an external ISRF simply
because they are able to become warmer if the dust does. Their
gas temperature profiles, however, remain quite uniform, and
therefore the maximum density contrast cannot deviate signif-
icantly from the Bonnor-Ebert value ρc/ρb � 13.98, as shown
in Table 1.

A different behaviour characterizes more massive clouds
(M � 5 M�), as they become dynamically unstable before an
efficient gas-dust coupling can be established, for any value of



282 D. Galli et al.: Cloud cores in external radiation fields

Fig. 5. Value of the central-to-boundary density ratio (ρc/ρb)cr as func-
tion of the cloud’s mass for different scaling factors G0 of the ISRF
(dots and solid lines). The dashed lines show the corresponding values
of (ρc/ρb)cr = 13.98 for marginally stable isothermal and polytropic
spheres of index n.

the intensity of the ISRF (see Table 2). Their central extinction
is low (AV,c � 3–5), and hence they do not correspond to “real
observed cores”. Nevertheless, it is interesting that they can de-
velop significant inward temperature gradients, because molec-
ular cooling is less efficient than cosmic-ray heating in the
central regions, characterized by densities n � 104–105 cm−3

(where Λg ∝ n0.5) than in the outer parts where n � 103 cm−3

(and Λg ∝ n, as cosmic-ray heating). An inward temperature
gradient stabilizes the cloud (see Sect. 6), and allows large de-
viations in the maximum density contrast ρc/ρb, up to 30–40,
as shown in Table 2. Notice that any molecular depletion effect,
ignored in these calculation, would make the central tempera-
ture even higher, and thus increase the slope of the temperature
gradient.

In Fig. 5 we summarize our results for the maximum den-
sity contrast ρc/ρb allowed for clouds in the mass range M = 1–
10 M�. Again pext has been varied until the marginally stable
model is found. Deviations of ρc/ρb from the Bonnor-Ebert
value 13.98 indicate deviations from a condition of uniform
gas temperature in the cloud. As anticipated in the above dis-
cussion, the largest deviations from isothermality are obtained
for masses M � 4–6 M�. Marginally stable clouds of small
mass (M <∼ 2 M�) are characterized by relatively large values
of the central density, and by a sufficiently good coupling of
gas and dust: they are uniformly warmer or colder according
to the intensity of the external ISRF, but because of this cou-
pling they do not develop significant temperature gradients, and
therefore behave essentially as isothermal spheres. Marginally
stable high-mass clouds (M >∼ 8 M�) also are similar to isother-
mal spheres, but for a different reason: they are characterized
by relatively low values of the central density (nc � 103 cm−3)
and also have low AV,c (unlike observed cores), which implies
an uniform value of the gas temperature since both cosmic-ray
heating and radiative gas cooling depend approximately

linearly on density (and gas-dust coupling plays no role at these
densities). In the intermediate mass range, both because of the
different dependence of heating and cooling rates from density
and partial gas-dust coupling, the deviations from uniform gas
temperature are larger, and the maximum density contrast ρc/ρb

has a peak for M � 4–5 M�. Figure 5 also shows, for compar-
ison, the values of the density contrast for marginally stable
polytropic spheres of index n, discussed in the next section.

6. The effect of the external radiation field

The presence of an external ISRF affects the stability of clouds
bounded by an external pressure. In the first place, it makes the
dust (and therefore the gas) warmer on average, thus increas-
ing the critical mass for gravitational instability (proportional
to T 2

g ); in the second place, it enforces a temperature gradient
in the cloud which modifies the value of the classic Bonnor-
Ebert critical mass.

The latter point is best investigated by the so-called static
method originally devised by Zeldovich (1963) for white
dwarfs and neutron stars (see Tassoul 1978). This method al-
lows one to perform a stability analysis for axisymmetric mo-
tions on the basis of the properties of the equilibrium models
only. The static criterion asserts that a turnover in the M(ρc)
curves at fixed Pext, occurring at say ρc = ρ

cr
c (pext), marks the

onset of dynamical instability to radial motions. The condition
(∂M/∂ρc)pext = 0 is both a sufficient and necessary condition
for a stability transition: equilibria with ρc < ρ

cr
c (pext) are sta-

ble, while equilibria with ρc > ρ
cr
c (pext) are unstable to at least

one normal mode.

In Fig. 6 we show how the intensity of the external ISRF
may affect the stability of a cloud bounded by a given ex-
ternal pressure. For this particular example, we have chosen
pext = 2 × 104 K cm−3 (McKee 1999). The three curves la-
belled with G0 = 1, 10 and 100 show the mass versus central H2

density for externally heated clouds, compared with the simi-
lar quantities for isothermal spheres. According to the static
method, continuous (dashed) lines represent stable (unstable)
equilibria. The dotted lines indicates the boundaries of the sta-
bility domain for isothermal spheres with arbitrary tempera-
tures (only the case Tgas = 10 K is shown) and non-isothermal
spheres in thermal equilibrium with the external ISRF. The fig-
ure shows that for a given external pressure the condition of
thermal equilibrium allows the existence of stable cloud con-
figurations for values of mass and central density not permitted
under the condition of uniform gas temperature.

Although not very large, this effect may resolve in part
the problem posed by objects like B68 which are well fit-
ted by slightly unstable Bonnor-Ebert spheres (magnetic fields
are of course another possibility). For example, for the three
marginally stable non-isothermal clouds of Fig. 6 the central-
to-boundary density ratio are (ρc/ρb) = 19, 25 and 39, for
G0 = 1, 10 and 100, compared with the corresponding ratio
13.98 for isothermal spheres, and 16.5 inferred for B68 (Alves
et al. 2001).
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Fig. 6. Instability in model cloud cores for isothermal and non-
isothermal models. The cloud’s mass is plotted as function of the
central H2 density nc for pext = 2 × 104 K cm−3 (solid curves, sta-
ble equilibria; dashed curves, unstable equilibria). Instability sets in
at the maximum of M(nc). The curves are labelled with the values
of G0. The dotted lines separate the regions of stability and instability
for this value of pext and arbitrary values of the temperature (in the
isothermal case) and G0 (in the non-isothermal case). The thick curve
show the mass versus central density relation for an isothermal sphere
with Tg = 10 K.

6.1. Comparison with polytropic models

From the point of view of the stability properties and the max-
imum density contrast, the models shown in this paper have
a behavior similar to polytropes with n 	 1 (see Fig. 5).
Increasing the intensity of the ISRF produces an increase in
the dust temperature which is felt by the gas only in the cen-
tral parts of the cloud, where the coupling of dust and gas is
more efficient. As a result, the central gas temperature Tg,c

increases slightly, whereas the gas temperature at the bound-
ary Tg,b remains unchanged (Tg,b � 10 K), since for densities
n � 103 cm−3 both the gas cooling rate and the the cosmic-ray
heating rate are roughly proportional to n. Thus, one can ex-
tend Eq. (1) to polytropic clouds bounded by the same external
pressure and characterized by the same thermal sound speed ab

at the boundary, and write

Mcr � αn
a4

b√
G3 pext

. (18)

Table 3 shows the value of αn and the density contrast ρc/ρb for
clouds with different polytropic index n. For decreasing posi-
tive n, the coefficient αn increases, indicating a larger critical
mass than an isothermal sphere bounded by the same external
pressure and with the same temperature at the boundary. For
n = 6, for example, the critical mass is expected to be a fac-
tor 2.06/1.18 � 1.75 larger than critical Bonnor-Ebert mass for
the same gas temperature at the boundary (MBE � 2.6 M� for
Tg = 10 K, see Eq. (1)).

Table 3. Critical mass and density contrast as function of polytropic
index.

n αn ρc/ρb

3.5 3.37 88
4 2.85 50
5 2.33 32
10 1.64 19
20 1.39 15
∞ 1.18 14

7. Discussion and conclusions

We have examined the gas temperature distribution to be ex-
pected in interstellar pre–protostellar cores heated by the exter-
nal ISRF. We find that when (as in observed cores), the central
density exceeds 3 × 104 cm−3, there is coupling between the
gas and dust temperatures and hence the gas temperature (like
the dust) decreases with decreasing radius. At larger radii and
smaller densities, the dust and gas decouple and the gas tem-
perature may (for low external pressures as in the Taurus cloud)
decrease towards the values expected for heating by galactic
cosmic rays of around 10 K. The region where gas and dust
temperatures are coupled is somewhat interior to the region
where CO is highly depleted. However, CO depletion does not
seem greatly to affect the temperature distribution mainly be-
cause cooling by gas–grain collisions becomes dominant.

The observed values of the temperature of around 10 K in
many pre-stellar cores allow limits to be placed on the cos-
mic ray ionization rate similar to the standard value of order
10−17 s−1 based on the measured cosmic ray flux. The fact that
measured gas temperatures in cores show so little spatial varia-
tion (Benson & Myers 1989; Tafalla et al. 2002) suggests to us
that the observed thermometers mainly trace layers of moderate
depletion where gas–grain coupling is not playing an important
role.

We have also examined the consequences of such a tem-
perature distribution for the density distribution in hydrostatic
equilibrium cores. The changes caused by the “real temperature
distribution” are minor and the characteristics of a “marginally
stable Bonnor-Ebert sphere” are similar to those in the isother-
mal case.

An interesting point which emerges from these calculations
is that the temperature in the core nucleus is sensitive to the
external radiation field (because the core nucleus as a rule is
heated by small particle MIR emission from the borders of
the surrounding cloud). This is in particular the case for cores
with high external pressure (and hence high density) such as
those studied by Johnstone et al. (2001, 2000) in the Orion B
and ρOph clouds where pext appears to be above 106 cm−3 K.
In these cases, we expect the dust temperature to follow the
gas temperature and thus the behavior should be roughly like
a negative index polytrope. The external radiation fields are
also higher in Orion and Ophiuchus than in Taurus and thus
the core masses may also rise somewhat. For constant exter-
nal pressure, the mass of the marginally stable Bonnor-Ebert
sphere rises with about the 0.35 power of the external radiation
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field. It would be useful to have direct temperature estimates to
confirm these expectations.

Another result of this study is that high mass thermally sup-
ported cores are incompatible with high column density. Thus
it is difficult to imagine observed high column density (greater
than 1022 cm−2) high mass (greater than 10 M�) cores going
through a series of quasi-equilibrium states en route to collapse.
Hence we suspect that higher mass cores are either not stable
or have other (magnetic) means of support. These other means
of support become apparent observationally both because ob-
served cores show large departures from spherical symmetry
and also because the observed line widths in most cores can
only be explained in terms of turbulence and often of super-
sonic turbulence.

Thus thermally supported cores may be the exception rather
than the rule. It is significant nonetheless that cores in regions
such as Taurus where predominantly low mass star formation
is taking place have in general line profiles showing a large
component of thermal broadening. This suggests that where
(as in Taurus), the pivotal state may be a core with predomi-
nantly thermal support, only low mass stars are likely to form.
In clouds such as Ophiuchus and Orion with higher radiation
fields and pressures and with cores having predominantly non–
thermal support, higher mass stars may become possible and
star formation may take another course.

It is also significant that occasionally, one finds cases like
B68 where the data are consistent with hydrostatic equilibrium
(marginally stable) and pure thermal support. In fact, we find
that when one takes the gas temperature dependence into ac-
count, B68 is marginally stable. But irrespective of whether
this is true or not, B68 gives every sign of being close to the
pivotal state from which protostellar collapse will commence.
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