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Abstract. One of the most important problems of coding theory is to construct codes with best possible minimum
distances. Recently, quasi-cyclic (QC) codes have been proven to contain many such codes. In this paper, we
consider quasi-twisted (QT) codes, which are generalizations of QC codes, and their structural properties and
obtain new codes which improve minimum distances of best known linear codes over the finite fields G F(3) and
G F(5). Moreover, we give a BCH-type bound on minimum distance for QT codes and give a sufficient condition
for a QT code to be equivalent to a QC code.
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1. Introduction

The class of quasi-cyclic (QC) codes have been shown to be promising to solve one of the
most important problems in coding theory: to construct codes with the best possible param-
eters. Therefore a larger class of linear codes, called quasi-twisted (QT) codes, deserves
a careful study. We have investigated this class of codes very closely, determined some
of their structural properties, and found a BCH-type bound on minimum distance, in the
special case of 1-generator QT codes. Moreover, we have found sufficient conditions for a
QT code to be equivalent to a QC code. Finally, we made use of these results to develop an
efficient method to search for new linear QT codes over the fields G F(3) and G F(5) and
we have been able to find many such codes.

Following the convention, a linear code C of length n, dimension k, and minimum
distance d over Fq will be denoted by [n, k, d]q . The following map is useful in defining
some important classes of codes.

Let n = lm where l, m ∈ N, a ∈ F×
q := Fq − {0} and

µa,l : C → V

µa,l((c0, . . . , cn−1)) = (a · c0−l , . . . , a · c(l−1)−l , cl−l , . . . , cn−l−1)

where the subscripts are taken modulo n.
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Definition 1.1. A linear code C is called l-quasi-twisted (l-QT) if µa,l(C) = C .

In words, a constacyclic shift of a codeword by l positions is still a codeword, where a
constacyclic shift of a codeword (c0, . . . , cn−1) is (acn−1, c0, . . . , cn−2). Some of the most
important classes of codes can be realized as special cases of QT codes. For example the case
a = 1 gives quasi-cyclic codes, l = 1 gives constacyclic codes (also known as pseudocyclic
codes), l = 1 and a = 1 yields cyclic codes.

Since a code C is l-QT if and only if it is (l, n)-QT (an immediate generalization of the
corresponding fact for QC codes in [9]), where (l, n) denotes the greatest common divisor
of n and l, we will assume, without loss of generality, that l | n, so that n = ml for some
integer m. Note that if (l, n) = 1, the code is constacyclic.

Recently, there has been much research on quasi-cyclic codes. Some of the important
facts that have motivated the researchers are the following:

1. Quasi-cyclic codes meet a modified version of Gilbert Varshamov bound unlike many
other classes of codes [21].

2. Some best quadratic residue codes and Pless symmetry codes are quasi-cyclic [24].

3. They enjoy a simpler algebraic structure compared to arbitrary linear codes (which makes
the search process much simpler).

4. A large number of record breaking codes come from quasi-cyclic codes. Among these,
there is a significant number of optimal codes (the best possible minimum distance that
a code can achieve), etc.

5. They are natural generalizations of important class of cyclic codes.

Due to the facts mentioned above and many more, researchers worked on quasi-cyclic
codes and have been able to discover new record breaking codes over finite fields of orders
2, 3, 5, 7, 8, and 9 which were quasi-cyclic. Most of the work can be found in [2, 5, 7–17,
19, 27] and [29]. Aside from [8] and [19], there has not been quite as much search on QT
codes as on QC codes. Since the class of QT codes is larger, it would be no surprise to find
“good” linear codes which are QT. That is part of the reason we search over QT codes.
We first review constacyclic codes in the next section and then obtain structural properties
of QT codes in the following sections. Finally, we present new codes and their generators
together with (Hamming) weight enumerators.

2. Constacyclic Codes and a BCH Bound

Constacyclic codes have algebraic properties similar to cyclic codes [1, 20, 22]. For example
they can also be specified through the roots of their generator polynomials. In studying cyclic
codes the factorization of xn − 1 was crucial. Now, we are interested in factorizing xn − a
over Fq . Before looking at this factorization, we remark that in certain cases constacyclic
codes are equivalent to cyclic codes.

Definition 2.1. [24] Let C1 and C2 be codes of length n over Fq . We say that C1 and C2

are equivalent if there are n permutations π0, π1 . . . , πn−1 of Fq and a permutation σ of n
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coordinate positions such that

If (c0, . . . , cn−1) ∈ C1 then σ(π0(c0), . . . , πn−1(cn−1)) ∈ C2.

For linear codes only those πi ’s which are the compositions of a scalar multiplication with
a field automorphism are allowed. The scalar multiple may vary for each coordinate, but
the field automorphism must be the same.

There are some important special cases: when all πi ’s are identity permutations, we
say that C1 and C2 are permutation equivalent and when each πi is a multiplication by a
non-zero scalar, C1 and C2 are said to be scalar multiple equivalent [26] or monomially
equivalent [4] pp. 18. (For prime fields such as G F(p) for a prime p, there are no non-trivial
field automorphisms.) Monomially equivalent codes have the same weight enumerator, in
particular they have the same minimum distance [4] pp. 18.

THEOREM 2.1. Let C be a constacyclic code of length n, generated by g(x) | (xn − a)

over Fq. The constacyclic code Cδ generated by the same polynomial over K := Fq [δ] (the
smallest field containing Fq and δ), where δ is an nth root of a ∈ Fq, is equivalent to a
cyclic code of the same length over K .

Proof. First, we embed the field Fq in K by the inclusion map ι : Fq ↪→ K . The image
ι(C) of C need not be an ideal in K [x]

〈xn − a〉 but it is contained in the ideal Cδ generated by
g(x) in K [x]

〈xn − a〉 . Consider the map ψ : K [x] �−→ K [x]
〈xn − 1〉 , where ψ(p(x)) = p(xδ), for any

p(x) ∈ K [x], p(x) denotes p(x) mod(xn − 1) in K [x]
〈xn − 1〉 . Then ψ is a ring homomorphism

which is surjective because for any p(x) ∈ K [x]
〈xn − 1〉 , p(xδ−1) belongs to K [x]. Therefore,

| K [x]
Kerψ | = | K [x]

〈xn − 1〉 |.
Since ψ(xn − a) = (δx)n − a = a(xn − 1) = 0̄, xn − a is in the kernel (Ker(ψ)) of this

homomorphism. But Ker(ψ) is an ideal, so 〈xn − a〉 ⊆ Ker(ψ). Hence | K [x]
Kerψ | ≤ | K [x]

〈xn − a〉 |.
Also, | K [x]

〈xn − 1〉 | = | K [x]
〈xn − a〉 |. Therefore we obtain the following chain of inequalities.

∣∣∣∣
K [x]

〈xn − 1〉
∣∣∣∣ =

∣∣∣∣
K [x]

Kerψ

∣∣∣∣ ≤
∣∣∣∣

K [x]

〈xn − a〉
∣∣∣∣ =

∣∣∣∣
K [x]

〈xn − 1〉
∣∣∣∣

which implies that | K [x]
Kerψ | = | K [x]

〈xn − a〉 |. Together with 〈xn − a〉 ⊆ Ker(ψ), we conclude that
Ker(ψ) = 〈xn − a〉. Consequently, the rings K [x]

〈xn − a〉 , K [x]
〈xn − 1〉 are isomorphic. Hence the ideals

of these rings are in one-to-one correspondence given by ψ . This means that the equivalence
is given by the permutations πi (α) := δiα, α ∈ K , of K and σ, the identity permutation, in
Definition 2.1 and in fact this is a scalar multiple equivalence.

Remark 1. Note that we have the following relations between the quotient rings under
consideration:

Fq [x]

〈xn − a〉 ↪→ K [x]

〈xn − a〉
∼= K [x]

〈xn − 1〉 .

Remark 2. The code C in the last theorem is actually subfield-subcode [24] of Cδ , which
is the restriction of Cδ to Fq .
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COROLLARY 2.1. When Fq contains an nth root δ of a, a constacyclic code of length n over
Fq is equivalent to a cyclic code of length n over Fq .

The following lemma from finite field theory tells us exactly when an element a ∈ Fq

has an nth root in Fq (hence a sufficient condition for a constacyclic code to be equivalent
to a cyclic code).

LEMMA 2.1. [25] Let a = αi where α is a primitive element of Fq . Then the equation
xn = a has a solution in Fq if and only if (n, q −1) | i , where (n, q −1) denotes the greatest
common divisor of the integers n and q − 1.

2.1. Factorization of xn − a and a BCH Bound

We review factorization of the polynomial xn − a for the sake of completeness. This can
be found in [20] for example. Let a ∈ F×

q be such that it does not have an nth root in Fq .
We also assume that (n, q) = 1 so that the polynomial xn − a does not have multiple roots.
The roots of xn − a are δ, δζ, δζ 2, . . . , δζ n−2 and δζ n−1 where ζ is a primitive nth root
of unity and δn = a. Then ζ lies in Fqm where m = ordn(q), the (multiplicative) order of
q modulo n. Since δn = a, δnr = ar = 1, where r is the order of a in the multiplicative
group F×

q which is equal to q − 1
(i,q − 1)

, a = αi and α is a primitive element of Fq . Hence δ

is an nrth root of 1. Therefore, δ ∈ Fqs where s = ordnr (q). Now, qs − 1 ≡ 0 mod nr so
qs − 1 ≡ 0 mod n. This implies that m | s. Consequently, Fqm ⊆ Fqs . Hence, the field Fqs

contains both ζ and δ and we may take δ = wt and ζ = wrt where w is a primitive element
of Fqs (therefore a primitive (qs − 1)-st root of unity) and qs − 1 = ntr , for some integer
t . So ζ = δr , and xn − a factors as follows:

xn − a =
n−1∏
i=0

(x − δζ i ) =
n−1∏
i=0

(
x − wt (1+ir)

) =
n−1∏
i=0

(x − δ1+ir ).

Each irreducible factor of xn − a corresponds to a cyclotomic coset modulo nr (not nec-
essarily modulo n) i.e., the degree of each irreducible factor is the same as size of a cyclo-
tomic coset modulo nr . Since all the roots of xn − a are nrth roots of unity, we have
(xn − a) | (xnr − 1), and (xnr − 1) | (xn(q−1) − 1) | (xqs−1 − 1).

EXAMPLE 1. Let q = 5 and n = 6 and let us consider the polynomial x6 −3 over F5 (hence
constacyclic codes of length 6 over F5 with a = 3). A primitive element of F5 is 2, 3 = 23

in F5, order of 3 in F5 is 4 and (n, q − 1) = (6, 4) = 2 � | 3 so that there is no 6th root of 3
in F5. According to the discussion above,

x6 − 3 =
5∏

i=0

(x − δ4i+1) = (x2 + 3x + 3)(x2 + 2x + 3)(x2 + 3)

where δ is a primitive 6 · 4 = 24th root of unity. The powers of δ that appear in this
factorization are 1, 5, 9, 13, 17, and 21, and these are precisely union of three (the same
as the number of irreducible factors over F5) cyclotomic cosets modulo 24: cl1 = {1, 5},
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cl9 = {9, 21}, and cl13 = {13, 17}. On the other hand, x24 − 1 and x6 − 1 factor over F5

as follows:

x24 − 1 = (x2 + 3x + 3)(x2 + 2x + 3)(x2 + 3)(x2 + 4x + 1)(x2 + x + 2)

(x2 + 2x + 4)(x2 + x + 1)(x2 + 4x + 2)(x2 + 3x + 4)(x2 + 2)

(x + 3)(x + 4)(x + 2)(x + 1), and

x6 − 1 = (x2 + 4x + 1)(x2 + x + 1)(x + 1)(x + 4).

The factors of x6 − 1 correspond to the following cyclotomic cosets modulo 24:

cl0 = {0}, cl4 = {4, 20}, cl8 = {8, 16}, and cl12 = {12},
which are obtained by shifting the cosets corresponding to x6 − 3 by 1.

Now, using Theorem 2.1 we give an alternative proof of the well-known BCH bound.

THEOREM 2.2 [22](BCH Bound for Constacyclic Codes). Let C be a constacyclic code of
length n over Fq and let the generator polynomial g(x) have the elements {δζ i : 1 ≤ i ≤
d − 1}, where ζ is a primitive nth root of unity and δ is an nth root of a, among its roots.
Then the minimum distance of C ≥ d.

Proof. (We assume the setting and the notations of Theorem 2.1) {δζ, δζ 2, . . . , δζ d−1} =
{δr+1, δ2r+1, . . . , δ(d−1)r+1}. Consider the constacyclic code Cδ of length n over K with gen-
erator polynomial g(x) | (xn −a) having these elements among its roots. The corresponding
cyclic code ψ(Cδ) (over K ) generated by g(δx) | (xn − 1) has the elements ζ, ζ 2, . . . , ζ d−1

among its roots. By the classical BCH bound, the minimum distance of ψ(Cδ) ≥ d. Since
Cδ and ψ(Cδ) are equivalent, d(Cδ) ≥ d as well. Finally, C is a subfield-subcode of Cδ ,
and therefore has also minimum distance ≥ d.

As the following example shows, the BCH bound is sometimes very useful and sharp.

EXAMPLE 2. We assume the notation of Theorem 2.1. Let q = 3 and n = 28 and consider
constacyclic codes of length 28 over F3 with a = 2. We remark that the condition (n,

q − 1)� | i implies that it suffices to consider only even lengths over F3 (to possibly obtain
constacyclic codes not equivalent to cyclic ones). We find that r = 2 and therefore (x28 −
2) | (x56 − 1). The factorization of x28 − 2 over F3 is as follows:

x28 − 2 =
27∏

i=0

(x − δζ i ) =
27∏

i=0

(x − δ2i+1)

= (x6 + 2x4 + x3 + x2 + 2)(x6 + 2x5 + 2x + 2)(x2 + x + 2)

× (x6 + x5 + x + 2)(x6 + 2x4 + 2x3 + x2 + 2)(x2 + 2x + 2)

where δ is a primitive 56th root of 1 and ζ = δ2 is a primitive 28th root of 1 over F3.
The exponents of δ in this factorization are exactly odd integers modulo 56 and they are
partitioned into the following cyclotomic cosets:

{1, 3, 9, 19, 25, 27}, {5, 13, 15, 23, 39, 45}, {7, 21}, {11, 17, 33, 41, 43, 51},
{35, 49}, and {29, 31, 37, 47, 53, 55}.
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Let g(x) be the polynomial of smallest degree which contains δi , i = 5, 11, 29, and 35
among its roots. Then

g(x) = x20 + 2x19 + x17 + 2x16 + 2x13 + 2x12 + 2x11 + x10 + x9 + 2x8

+ x7 + 2x4 + 2x3 + x + 1

and the elements δζ i , 14 ≤ i ≤ 27 are among the zeros of g(x). Therefore, by the BCH
bound for constacyclic codes, the constacyclic code of length 28 generated by g(x) has
minimum distance at least 15 (and its dimension is 8). It turns out that these are the
parameters of an optimal linear code over F3 of length 28 and dimension 8 [3].

3. Structure of 1-Generator QT Codes

Let

G0 =




g0 g1 g2 . . . gm−1

agm−1 g0 g1 . . . gm−2

agm−2 agm−1 g0 . . . gm−3
...

...
...

...

ag1 ag2 ag3 . . . g0




m×m

. (1)

An (m × m) matrix of the type G0 is called a twistulant matrix of order m or simply a
twistulant matrix.

It is shown in [29] that the generator matrices of QC codes can be transformed into blocks
of circulant (twistulant with a = 1) matrices by suitable permutation of columns. We can
adopt a similar proof for QT codes here: Let C be QT code over Fq . Let c1, c2, . . . , cr be
the rows of the generator matrix of C . Form another generator matrix for C by taking all
possible µa,l(ci ) (l quasi-twisted shifts). Thus we form an rm × n generator matrix for C .
Next permute the columns C1, C2, . . . , Cn of the generator matrix so that they appear in
the order

C1, Cl+1, . . . , C(m−1)l+1, C2, C2+l , . . . , C(m−1)l+2, . . . , Cl , C2l , . . . , Cml .

Then, the resulting matrix will be in the blocks of twistulant matrices. Therefore, generator
matrices of an r -generator and 1-generator QT codes can be assumed to be in the following
forms:



G11 G12 . . . G1l

G21 G22 . . . G2l
...

...
...

Gr1 Gr2 . . . Grl




rm×n

, and [ G1 G2 . . . Gl ]m×n,

respectively, where each Gi j (or Gk) is a twistulant matrix of the form (1).
Similar to quasi-cyclic case, an l-QT code over Fq of length n = ml can be viewed

as an Fq [x]/〈xm − a〉 submodule of (Fq [x]/〈xm − a〉)l . Then an r -generator QT code
is spanned by r elements of (Fq [x]/〈xm − a〉)l . In this paper we restrict ourselves to
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1-generator QT codes. 1-Generator QC codes and their structural properties have been
studied in [27] and [6], respectively. Recently, in [23] the structure of r -generator QC codes
has been investigated by use of Gröbner basis.

Let 1 ≤ i ≤ l. For fixed i consider the following i th projection map on an l-QT code C
of length n = ml:

�i : Fn
q → Fm

q(
c0, c1, . . . , c(ml−1)

) → (
c(i−1)m, c(1+(i−1)m), . . . , c(m−1+(i−1)m)

)
.

In view of the structure of QT codes described above, �i (C) is a constacyclic code for all i .
This will yield the following theorem.

THEOREM 3.1. Let C be a 1-generator l-QT code over Fq of length n = ml. Then, a
generator g(x) ∈ (Fq [x]/〈xm − a〉)l of C has the following form

g(x) = ( f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x)),

where

gi (x) | (xm − a) and ( fi (x), (xm − a)/gi (x)) = 1 for all 1 ≤ i ≤ l.

Proof. Since �i (C) is a constacyclic code for every i we have the result.

The following is the main theorem which plays an important role in our research.

THEOREM 3.2. Let C be a 1-generator l-QT code of length n = ml with a generator of the
form:

g(x) = ( f1(x)g(x), f2(x)g(x), . . . , fl(x)g(x)) (2)

where g(x) | (xm −a), g(x), fi (x) ∈ Fq [x]/〈xm −a〉, and ( fi (x), h(x)) = 1, h(x) = xm−a
g(x)

for all 1 ≤ i ≤ l. Then l · (d +1) ≤ d(C), where {δζ i : s ≤ i ≤ s + (d −1)} are among the
zeros of g(x) for some integers s, d (d > 0) and dimension of C is equal to n − deg(g(x)).

Proof. Observe that �i (C) is a constacyclic code generated by fi (x)g(x) for all 1 ≤ i ≤ l.
We have that one of the components becomes zero if and only if all the others do because
p(x) fi (x)g(x) = 0 if and only if h(x) | (p(x) fi (x)) (if p(x) �= 0), which implies that
h(x) | p(x) since ( fi (x), h(x)) = 1. So, p(x) f j (x)g(x) = 0 for all j . Therefore if c is
a nonzero codeword in C, then �i (c) �= 0 for all i . Since 〈 fi (x)g(x)〉 = 〈g(x)〉, �i (C)

is a constacyclic code with generator polynomial g(x), and every nonzero codeword has
weight >d (by BCH bound). Hence, a nonzero codeword in C has a weight larger than
or equal to l · (d + 1). Moreover, it can be shown, similar to the cyclic code case, that
elements g(x), xg(x), . . . , xn−(deg(g(x)−1)g(x) form a basis for the code. In fact, if a relation∑degg(x)−1

i=0 ai xi g(x) = 0 with ai ∈ Fq exists (with m-dimensional vectors), then a similar
relation

∑degg(x)−1
i=0 ai xi g(x) = 0 holds in Fn

q . Also, if
∑

i bi x i g(x) �= 0, then neither is∑
i bi x i g(x) = 0.

THEOREM 3.3. Let a = αi where α is a primitive element of Fq . If (m, q − 1) | i , a QT code
of length n = ml over Fq is equivalent to a QC code of length n over Fq .
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Proof. Let C be such a QT code with a generator matrix G of the form described in the
beginning of the section. Then to each vertical block j , 1 ≤ j ≤ l, of m columns of G apply
the permutations πi 1 ≤ i ≤ m in the proof of the Theorem 2.1. Then the resulting code is
equivalent to a QC code.

We end this section with the remark that the results of [23] about 1-generator QC are
special cases of the results in this section.

4. New Codes and Their Generator Matrices

4.1. The Search Method

Our method is based on the Theorem 3.2. We have restricted our search to 1-generator QT
codes with generators of the form:

(g(x), f2(x)g(x), . . . , fl(x)g(x)).

In order to refine the search we looked at cyclotomic cosets of appropriate modulus and
formed generator polynomials having longest possible strings of consecutive integer powers
of ζ among its zeros. After fixing g(x) (hence determining the dimension of the code as well
as the block length m), we searched over fi (x) (by the help of a computer). In most cases
l = 2 or 3. When l = 2, we only search for one f (x) with deg( f (x)) < m − deg(g(x). In
this case the search is exhaustive over the QT codes with the prescribed block length m and
dimension, if the dimension is not too large. For an illustration of the method, we work the
following example in detail.

EXAMPLE 3. Let q = 3, m = 40 and a = 2 and consider constacyclic codes of length 40
over F3. The order of 2 mod 3 is 2 and x40 − 2 factors over F3 as

x40 − 2 =
39∏

i=0

(x − δ2i+1).

The exponents of δ (a primitive 80th root of 1) are odd integers mod 80 which are partitioned
into the following cyclotomic cosets mod 80:

{1, 3, 9, 27}, {5, 15, 45, 55}, {7, 21, 29, 63}, {11, 19, 33, 57},
{13, 31, 37, 39}, {17, 51, 59, 73}, {23, 47, 61, 69}, {25, 35, 65, 75},
{41, 43, 49, 69}, and {53, 71, 77, 79}.

Let h(x) be the polynomial corresponding to cyclotomic cosets containing 1, 7 and 25 and
let

g(x) = x40 − 2

h(x)
= x28 + 2x27 + 2x25 + x24 + 2x23 + x21 + 2x20 + x19 + x18

+ 2x17 + 2x15 + x14 + x13 + 2x11 + x8 + 2x7 + 2x5 + x3 + x2 + 2.

Then g(x) has degree 28 and contains δζ i , 18 ≤ i ≤ 30 among its roots. Therefore,
the constacyclic code of length 40 generated by g(x) has dimension 12 and minimum
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distance ≥14 and a QT code of the form (g, g f1, g f2) with ( fi ,
x40−2

g ) = 1, i = 1, 2 has
length 120, dimension 12 and minimum distance at least 42. Let f1 = 2x10 + x9 + x8 +
x6 + 2x4 + x3 + 2x2 + x + 1, and f2 = x11 + 2x10 + x9 + x6 + x2 + 2x (these are two such
polynomials). A computer search showed that the QT code with these generators has, in
fact, minimum distance 66, 3 units larger than the previously best known linear code over
F3 with parameters [120,12,63].
The weight enumerator of this code is as follows:

016644806914000723608075750087811416081119040849416087498409019552 934480965609980.

4.2. Generators and Weight Enumerators

We conclude by giving the generator matrices and weight enumerators of the new codes.
Since a generator matrix of a 1-generator QT code is determined by the first row alone (and
the constant a), we only present the first row separating the blocks with a comma.

The first 15 codes in the following list are ternary QT with a = 2 except code number
14 which is QC with a = 1. The last 3 codes are QT over G F(5) with a = 4.

1. A [120, 12, 66]3 code:

(2011022210020112021121021202100000000000,

2221120102120202010112101120011220200220,

0122010011220100122002101122022001121211).

The weight enumerator is given in the last example.
2. A [160, 12, 90]3 code:

(2011022210020112021121021202100000000000,

0020110211122211021101120010101002010010,

0201121012012222202012020222001121010120,

1212221011020012120001122220021122122022).

The weight enumerator of this code is

019034729380809622160994640010273440105102320108107280

1118408011449040117247201207408123216012680012980.

3. A [164, 8, 102]3 code:

(100112121211002110220122101222111122202122121121101122012

0122002111111120010000000, 00001110210121200010102011121102

22021201222120102020001111011021200001122220212112).

The weight enumerator of this code is

011021312105131210865611113121141312120328123328.
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4. A [164, 10, 96]3 code:

(102121212120101102201111021012021210101111011011021210210

2101022222222201000000000, 00002002120212102101110110101021

22001102222002112221211222112102211210022221002221).

The weight enumerator of this code is

01961476993444102606810575441081049611110988114104961174428

1203608123500.

5. A [56, 12, 27]3 code:

(122210010200112110000000000, 00000010102111112122012021011).

The weight enumerator of this code is

012731363023520337907236167552391629604278064451601648100851112.

6. A [56, 16, 21]3 code:

(1011100022122010121122000101, 1121021102221000000000000000).

The weight enumerator of this code is

01214002256023196024705625133282632592271004082815305629290864

3071355231870800321366624332744112342690576353381192365419288

374274312384269440395416208403342080412616544422571432431216544

4471181645522928461840164781536484160849914450201651504521685456.

7. A [68, 16, 30]3 code:

(0000000010201112212211010121012112,

1111211120221222121000000000000000).

The weight enumerator of this code is

01309520331116563680566439351124842893499645131090404810726932

5146973045410355725710064060401263136.

8. A [182, 12, 105]3 code:

(01111010120210121222022120101102101000222022100111

12012021201121100001011001011111202100102, 11002111

11110001010021202021011200102012200202221212201212

021010121001222012102100000000000).

The weight enumerator of this code is

01105327610820020111229321144258811778624120101556

12311138412658968129524161321965613520020.
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9. A [182, 14, 99]3 code:

(01020221122200100112012211100012022202120210212221

11212120020221220221022201212210110200211, 10122110

00200222011212002021221202022222212022120211212101

111011022112010220100000000000000).

The weight enumerator of this code is

019939841021384210548174108121746111279462114504714

117766464120893830123842354126647810129384764

1321846041356724613819478141381214462614758.

10. A [82, 17, 36]3 code:

(11200111002202200111002110000000000000000,

01010010121021211001012012210001100111211).

The weight enumerator of this code is

013616403750843885283921648404534641911864217908843327344

4457490245987526461574892472453522483547156494916802

506489480518123330529741436531100489254117977505512005866

56115982445710584888589134882597423706605705806614079664

6227652866317745626410556686557498466297086671434186865436

69255847093487131167265673410.

11. A [70, 17, 29]3 code:

(10202000021121112210000000000000000,

00000001121002222001021020021000021).

The weight enumerator of this code is

01292660303360323955033450103539298236384860382465680

392029790419225160426328340442021131045117469104726081230

48124527205018783100517363790537317520542318680561440410

5734874059130200602422062364063300.

12. A [148, 18, 71]3 code:

(10022221021211002112111010211120101112112001121201

222200100000000000000000, 0000100220212102021212121

0121011100001122010022200022021112110100120012111).

The weight enumerator of this code is

0171740727407316287434047575487617464773137678562407994276
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80154068812854928243586083714988841108964851690752862427052

87352254888480526489654974090852628091108814049213466668

931626238894189633889521626648962373905297256420369826680552

99269484321002640083210124953688102231244081032065695210417888612

10514970200106120378761079520248108721944010953325881103767932

111256202811217169481131092684114658748115395604116231028

11711943611867192119343361201420812160681222516123888124592125444.

13. A [52, 13, 23]3 (quasi-cyclic with a = 1) code:

(01110010121122020010120000, 00101001122021010121122000).

The weight enumerator of this code is

012316122416902616538271690029929763070122322674363316198035372008

361770863824031839850204165104421744644673445119647156.

14. A [52, 10, 26]3 code:

(1021000000000, 0000112100211, 1001211212020, 0102211111220).

The weight enumerator of this code is

0126756276502935883028603292043355903514352366838389048

39299041202842728443904526.

15. A [84, 9, 54]5 code:

(103124242130100000000, 000000014331232342214,

103102220320240142411, 000424123404310023013).

The weight enumerator of this code is

01541344551932564212577140581234859190686032004

61535086275180639690064130032651638006619672867216972

68209580692014327016846871137760729618073645127434188

751713676730877352878126079420808481848416.

16. A [78, 10, 48]5 code:

(133444201330103020123011314301000000000,

000002223404214004211210142102101021034).

The weight enumerator of this code is

0148124849249650390051967252213845338844548158855121992

562240165733633658486408596793806080002061982488621084668

6311143086410420806582149666734604675109006832229669185328
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70936007141964721591273608474202875416761567812.

17. A [42, 12, 21]5 code:

(113044031100000000000, 000013201310322331131).

The weight enumerator of this code is

0121291222112562332844241070722530878426801024271916068

28409693229785912430137271963121197148322908432833353933443437446276

353411508836266156243717248056389098880393731028401109556412152924222792.

Remark. Using the extension theorem in [18] we can extend the codes 11, 13 and 14 to
[71, 17, 30]3, [53, 13, 24]3 and [53, 10, 27]3 codes respectively.

Acknowledgments

We would like to thank the anonymous referees for their useful comments and suggestions.
In particular, for pointing out the reference [18] and the extensions mentioned above.

References

1. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York (1968).
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