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THE STRUCTURE OF A RANDOM GRAPH
AT THE POINT OF THE PHASE TRANSITION

TOMASZ LUCZAK, BORIS PITTEL, AND JOHN C. WTERMAN

Abstract. Consider the random graph models G(n, # edges = M) and
G{n, Prob(edge) = p) with M = M (ri) = (1 + Xn~ll3)n/2 and p = p(n)
= (1 +Xn~ll*)/n . For / > -1 define an /-component of a random graph as a
component which has exactly / more edges than vertices. Call an /-component
with / > 1 a complex component. For both models, we show that when A
is constant, the expected number of complex components is bounded, almost
surely (a.s.) each of these components (if any exist) has size of order n2^ ,
and the maximum value of / is bounded in probability. We prove that a.s.
the largest suspended tree in each complex component has size of order n2/3,
and deletion of all suspended trees results in a "smoothed" graph of size of
order n1'3, with the maximum vertex degree 3. The total number of branch-
ing vertices, i.e., of degree 3, is bounded in probability. Thus, each complex
component is almost surely topologically equivalent to a 3-regular multigraph
of a uniformly bounded size. Lengths of the shortest cycle and of the shortest
path between two branching vertices of a smoothed graph are each of order
n1/3 . We find a relatively simple integral formula for the limit distribution
of the numbers of complex components, which implies, in particular, that all
values of the "complexity spectrum" have positive limiting probabilities. We
also answer questions raised by Erdös and Rényi back in 1960. It is proven
that there exists p(k), the limiting planarity probability, with 0 < p(k) < 1,
p(-oo) = 1 , p(oo) = 0 . In particular, G(n, M) (G(n, p), resp.) is almost
surely nonplanar iff (M - n/2)n-2/3 —» oo   ((np - l)/?-1/3) -» oo , resp.).

1. Introduction
Since the seminal work by Erdös and Rényi (1960), there has been consider-

able interest in the evolution of random graphs. A principal object of study is
the random graph model G(n, M), constructed on n labeled vertices with a
set of M edges chosen randomly, equally likely among all possible

(8)
sets of edges. The number of edges, M, typically varies as a function of n ,
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with M(n) —► oo as n —> oo. A property is said to hold almost surely if the
probability that the property is true converges to one as A —> 00 .

We may view G(n, M) as the (M + l)th stage of the random graph process
G = (G(n, A/))M=0     /*\ , which is a Markov chain whose states are graphs on
n vertices. G(n, 0) is the empty graph, and for each M = 1, 2, ... , (¿), the
graph G(n, M) is obtained from G(n, M - 1) by adding a new edge, where
all possible choices for the new edge are equiprobable.

In a well-known alternative model, the random graph is constructed on n
labeled vertices with each of the (") possible edges present independently
with probability p, 0 < p < 1. The G(n, M) and G(n, p) models are ex-
pected to have a similar asymptotic behavior provided that M is near p(").
G(n, p = 1 - e~') may be viewed as a tth state of another random graph pro-
cess G* = (G„(x))x>o which is a continuous time Markov process, such that
Gn(0) is the empty graph, and the birth times of the (!|) edges are indepen-
dent, exponentially (with parameter 1) distributed random variables (see, e.g.,
Stepanov (1970b)).

Most important results on the evolution of random graphs determine a thresh-
old function f(n) for M(n) (p(n), respectively) such that the almost sure be-
havior of the random graph changes dramatically when we switch from M(n) -c
f(n) to M(n) » f(n) (from p(n) < f(n) to p(n) > f(n), respectively).

A spectacular phenomenon in the evolution of random graphs is the "phase
transition" or "double-jump threshold" which occurs at M = n/2 and p = l/n
respectively. If M(n) = cn/2 (and p = c/n) where c < 1 then almost surely
G(n, M) (G(n, p) respectively) has no components which contain more than
one cycle, and the size of the largest component is of order log n . When c > 1,
this size jumps to the order of magnitude n (Erdös and Rényi (1960), Stepanov
(1970a), (1970b)). However, when c = 1 + dn~xl3(logn)x/2, it is of order
«^(logw)1/2 (Bollobás (1984a)).

We consider the case when c = 1 +/«-1/3 where A is a constant, identi-
fied by the work of Bollobás (1984b). At this threshold, one expects the first
appearance of component which are neither trees nor unicyclic. We define an /-
component of a graph G as a component of G which has exactly / more edges
than vertices. Since a component must be connected, we must have / > -1.
The cases / = -1 and / = 0 correspond to tree components and unicyclic com-
ponents, respectively. Since trees and unicyclic components are fairly abundant
at this stage of the evolution, we focus on the presence of /-components with
/ > 1, which we call complex components. Let X(n ; /) be the total number of
/-components, and call {X(n; /)}/>i the complexity spectrum of the random
graph.

In this paper, we find an unexpectedly simple formula for the limiting dis-
tribution of the complexity spectrum. It involves the limiting probability h(x)
that the random graph with M(n) = (1 + xn~x/3)n/2 (p(n) = (1 + xn~xf3)/n
resp.) does not have complex components. (The integral formula for h(') was
obtained in Flajolet, Knuth, and Pittel (1989).) This formula implies, in partic-
ular, that the complexity spectrum assumes every possible value with positive
limiting probability for each X.

The limiting distribution is obtained in §2, using a rough almost sure de-
scription of the complex components established by means of Cayley's formula
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RANDOM GRAPHS NEAR PHASE TRANSITION 723

for the number of labeled trees, plus asymptotic estimates of Wright (1980) and
bounds of Bollobás (1984a) for the number of connected graphs with k labeled
vertices and k + l edges. We show in §2 that ¿s(£/>i X(n ; /)) is bounded, that
max{/ > 1 : X(n ; /) > 0} is bounded in probability, and that almost surely (a.s.)
each one of the complex components (if any exist) has size of order m2/3 . Us-
ing this information, in §3 we show that a.s. the largest suspended tree in each
complex component has size of order n2/3, and deletion of all suspended trees
results in a smoothed graph of size of order n1/3, with maximum vertex degree
3. Furthermore, the total number of branching vertices (of degree 3) in the
smoothed complex components is bounded in probability. Thus, almost surely
every complex component is topologically equivalent to a 3-regular multigraph
of a bounded size. Almost surely the lengths of the shortest cycle and of the
shortest path between any two branching vertices in a smoothed complex com-
ponent are each of order «'/3.

An additional motivation for this work was to clarify results about the
planarity threshold of random graphs. Erdös and Rényi (1960) claimed that
G(n, n/2) contains a cycle with three diagonals with positive limiting proba-
bility. Since approximately 1/15 of all such cycles contain a topological copy
of A^3,3, their claim implies that G(n, n/2) is nonplanar with positive lim-
iting probability. However, Luczak and Wierman (1989) found a flaw in the
proof of Erdös and Rényi, and showed that almost surely there are no cycles
with diagonals in G(n, n/2). The planarity of random graphs was also con-
sidered by Stepanov (1987), who proved that when X < 0, the probability that
G(n,p = (1 + Xn~x/3)/n) is nonplanar is larger than some positive constant
asymptotically. Notice that 1 - h(X), the limiting probability that the random
graph has a complex component, is an obvious upper bound for the nonpla-
narity probability. (1 - h(0) = 1 - i/2/3 « 0.18). In this paper, we show
existence of p(X) = lim„^oo Prob(G(A) is planar), such that p(X) £ (0, 1) and
p(-oo) = 1, p(oo) = 0. (Here and below G(X) stands for both of the ran-
dom graph models.) Consequently, lim^oo Prob(G(n, M) is nonplanar) = 1
iff (M - n/2)n~2^ —> oo, and lim,,-,^Prob(G(n, p) is nonplanar) = 1 iff
(np - l)«1/3 —»■ oo .

A parallel study of the two models is indispensable since it allows us to
establish some of the necessary estimates for the (arguably) more important
and difficult model G(n, M) by proving first their versions for G(n, p).

Note that some aspects of the near critical behavior of G(n, p) were earlier
studied by Stepanov (1987) (see also Kolchin (1986)). In particular, Stepanov
proved that, when Xnxl24 —> -oo, a.s. the maximum vertex degree of each com-
plex component is 3. If X < 0 then, for every fixed m , a.s. there is no complex
component with at most m branching vertices in its smooth part whose maxi-
mum vertex degree is at least 4. Our results show that both statements hold when
X is simply 0(1), unconditionally with respect to m . Furthermore, Stepanov
suspected that closer to X = 0 the random graph would a.s. contain more com-
plex components, so that max{/ > 1 : X(l ; n) > 0} would be unbounded in
probability and that the most complex components would have branching ver-
tices of degree at least 4. We know now that neither of these conjectures is
true.

For more comprehensive discussions of the evolution of random graphs, we
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refer the reader to the review papers by Grimmett (1980) and Karoñski (1982),
the introductory volume by Palmer (1985), and the research monograph by
Bollobás (1985).

2. The number and size of /-components
For integers / > -1, and n > k > 1, define the random variable X(n; k, I)

as the number of /-components of size k in the graph G(X). (Recall that
G(X)  is the shorthand for the two models of the random graph G(n, p =
(l+Xn~x/3)/n) and G(n,M = (I + Xn~x/3)n/2), and X is fixed.) Note that
X(n;k,l) = 0ifl>(n2)-k.

Clearly,
n

X(n;l):=Y,X(n;k,l),
k=\

and
n

r(«;/):=5>A(« ;£,/),
k=\

are respectively the total number and the total size of /-components.
The exact expression for the expectation of X(n ; k, I) is

(2.1) EM[X(n-k,l)\=(^C(k,k + l)(Jj)_^(®}   '

for G(n, M), and

(2.2) Ep[X(n; k, I)] = (fyC(k,k + l)pk+lq(ï)-(k+l)+k(n-k)

for G(n, p) (q = 1 -p). In these expressions, C(k, k + l) denotes the number
of connected graphs with k labeled vertices and k + l edges. A well-known
formula due to Cayley states that C(k, k - 1) = kk~2, and Rényi (1959) es-
tablished that

(2.3) C(k ,k) = \ J2[k]jkk-J-> „ (|) "2 fc*-i/2

where [k]j = k(k - 1) • • • (k - j + 1).
As for / > 1, Wright (1980) proved that for 1 < / = o(k1'3) as k -> oo,

(2.4) C(k,k + l) = yikk+3l'2-l'2(l + O^Ar1'2)).

Note that C(k, k - 1) and C(k, k) also obey (2.4), with y_i = 1 and yo =
(n/%)xl2. Bollobás (1984a) was able to show that the principal factor in (2.4)
limits the growth of C(k, k + /) for larger values of /. Namely, he proved
existence of absolute constants cx, c2>0 such that

(2.5) C(k,k + l)<(cx/l)x/2kk+W-x)/2,        l<l<k,

and

(2.6) C(k, k + /) < (c2k)k+l,        l<l<(^\-k.
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The key estimate is (2.5), while (2.6) directly follows from C(k, k + l) < (fc^,),
where A = (*).

We shall estimate the expectation of X(n;k; I) sharply for k = o(n3/4),
and more crudely for the remaining Ac's. In the latter case, we first bound
Ep[X(n ; k ; /)] and then Ent[X(n ; k ; /)] by means of a general inequality (An-
gluin and Valiant (1979), Pittel (1982), Bollobás (1985)):

(2.7)    EM[Z]< (GHEAZ].. p' = M (Z = Z(G) > 0)\2
This bound is instrumental on several other occasions, as well.

Note. If M — 0(h), the quadratic factor can be replaced by const«1/2.
We shall frequently use the "exponential approximation"

(2.8) [b]a/ba = [1 + 0(ab~x) + 0(a4b-3)]exp(-a2/2b - a3/6b2)
for a = o(b3/4), and the uniform bound

(2.9) [b]a/ba = 0(exr)(-a2/2b-a3/6b2-ca4/b3)),       c>0.
Lemma 2.1. For both models of G(X), if I > -1 is fixed then

E[X(n ; k; /)] = [1 + Xln'x<3 + 0(n~2'3) + 0(k/n) + 0(k4/n3)]
• n~'(C(k, k + l)e~k/k\) exp(-F(xk)),

provided that k = o(n3l4), and for all k
(2.11) E[X(n ;k,l)] = 0(n2~l(C(k, k + l)e~k/k\)exp(F(xk) - ck4/n3)).
Here x^ = k/n2/3 and

(2.12) F(x) = (x3 - 3x2X + 3xX2)/6.
Proof, (a) Using the exponential approximation (2.8),

(2.10)

CD-"+ 0(kn~x) + 0(k4n-i)]TJexp   -— -
Ac!

k2      k3
2n     6n2

if k = o(n3l4), and from the uniform bound (2.9), for all 1 < k < n .

CMW-£-£-£))-
The exponential approximation also yields

ln-k\       \    / (n\\-

(
(V)

M-k-l

1 + 0   -
n

(")
M

1 ("!*)
M-k-l

(M -A:-/)!
exp (M-k-l)2     '

(n-k)(n-k- 1),

(")
M

M\ exp
/       M2
\   n(n-l)

since

O M_
(2).+ 0 §H§)-^
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and similarly for the other error term. The product of the exponential factors
is 1 + 0(kn~x), since

M2 (M-k-l)2
«(72-1)     (« - k)(n - k - I]

= M2 1 1
Kn(n-l)     (n-k)(n-k-l

Thus, by rearrangement,
(2.14)

M{Xll)(MY = ̂  + 0^-^M^(n~2k

+ 0(kn~x) = 0(kn~x).

M-k-l
")

M

By the exponential approximation, then eliminating / in the exponential, we
may replace [M]k+! in (2.14) by

(2.15)
1+0|LtA+0^ + '>'

M M3
;R'-(-^-^

= [i+0{kn-') + 0(k'n-')}M^^(-^~^p)

We also compute

(n-k\M(n\~M     (n^k\2M\}_k 1
\   2   )    \2J       ~" \   «    )     [      n2-nk-n + k\

Í      k\2Ml-£j     [l + OÍAc«-1)],

M

(2.16)

« - AC -k-l -k-l'n
2   ) \2)        \      n

Combining these approximations, we find that
(n-k^      "v    / m\ \ -

-2k
\l + 0(kn~x)\.

Kk)\M-k-l)\M
k+l

n ' I Mn \
x

= [1 + 0(ac«-1) + 0(ac3«-4)]

n-'(Mn\      /,     k\2(M-k)       \   k2 (I       l\     k3 ( 1        1\]^\w)  I  »J    exp{-TU+Ä/J""6-U+^J/
A straightforward calculation shows that

Mn /Of) =l+Xn~xl3 + 0(n~x).

Using the definition of M throughout, a two-term Taylor expression for
log(l + Xn~xl3) and a three-term expansion for log(l - Ac/«)2(A/_fc), then com-
bining exponents simplifies the above expression to

1 + A/«-'/3 + 0(«"2/3) + O ß\ + O (!£\   ^— exp(-F(xk ))■

(A conscientious referee has checked our calculations and noticed, correctly,
that besides the error terms 0(k/n) and 0(k4/n3) there appears an error term
0(k3/n1!3).   There is, in fact, yet another error term,  0(k2/n5/3).   Both of
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RANDOM GRAPHS NEAR PHASE TRANSITION 727

these terms were dropped because Ac2/«5/3 and Ac3/«7/3 are each of the order
0(k/n) + 0(k4/n3) uniformly over all Ac > 1.) So, the formula (2.10) is proved
for G(n, M).

(b) The case of G(n, p) is much simpler. First of all,

pM _ n-k-i (I + Xn-x'3)k+>

= [1 + Xln~xl3 + 0(n-2'3)]n~k-l(l + Xn~xl3)k .

Also
q(ï)-(k+l)+k(n-k) = ri + 0(k/n)]qkn~k2/2.

So, using the two-term expansion for log(l +A«-1/3), and the one-term expan-
sion for log(l - p), we have [see (2.2)]

(2.17)
fn\pk+lq(k2)-(k+l)+k(n-k) =\l+ ¿,„-1/3 + 0(„-2/3) + 0ß\+0 f^\

•(n-'e-k/k\)exp(-F(xk)).

(c) Using the uniform bound (2.9), we get similarly

(l\pMq®-(M)+k(n-k) = 0 (^^exp (-F(xk) - ^)) •

This and (2.7) imply the bound (2.11).   D
Using this lemma, we now establish the asymptotic formula for the expec-

tation of Y(n ; > 1) = X)/>i Y!k=\ kX(n ; k, I), which is the total size of all
complex components.

Lemma 2.2. For both models,

(2.18) E[Y(n; -l)] = n - n2'3[f-X(X) + 0(n~x'3)],
(2.19) E[Y(n ; 0)] = «2/3[/oW + 0(«"1/3)].

So, since Y(n; -1) + Y(n; 0) + Y(n; > 1) = n,
(2.20) E[Y(n;>l)] = n2'3[f>x(X) + 0(n-x'3)],

where f>x(X) = /_,(/) - f0(X). Here
/•OO

f-X(X) = (2n)~xl2 /    jc-3/2[l-exp(-.F(jc))]ä!x + A,
Jo

/•OO

/o(A) = 4-1 /    exp(-F(x))dx.
Jo

In addition, if ko = co(n)n2/3 and co(n) -» oo arbitrarily slowly,

(2.21) Y,X(n;k,-\)
k>ko

= 0(1).

Note. (1) In particular,
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(Erdös and Rényi (1960), Bollobás (1985, Theorem V.23)) and
(•OO

/_1(0) = (2^)-'/2 /    x-3/2(l-e-x¡/6)dx,
Jo

so, integrating by parts,

/_,(0) = (27r)-1/265/6r(5/6)/3.

(2) The relation (2.21) was proved by Bollobás (1985) for G(n, p) and ar-
bitrary p = p(n).

Proof. We prove only (2.18), which is a genuinely new result even for X = 0.
We write

n

E[Y(n;-l)] = YJkE[X(n;k,-l)]= £ + £>
k=\ k<na     k>na

where a e (2/3, 3/4). By Lemma 2.1 (2.11),

£ = O I «3 exp(-cn4-3) £ ^f^ W(-F(xk))
k>n" \ k>\

= 0(n3 exp(-cn4a~3)),

since F(x) = [(x - X)3 + X3]/6 > 0, for all x > 0, and
^^  Uk-lp-k(2-22) £ k-^- = 1 •

k>l

Using (2.10),
kk~x

k\£ = ( 1 - /»-,/3 + 0(n~2l3))n Y, >ï-^— e*J>(-F(xk)) + R„ ,
k<n" k<na

where

R» = ° \ ¿Z k^-F[Xk) + n-2 ¿Z ̂ V^>
\k>\ ' k>\

By Stirling's formula,

Y V^-e-™ = O \ Y,k-Xl2e-F^k\
k>\ \k>\

= otnl'3'Exk~lße~F{Xk)Axk

= O (nx'3 Hx"'/2rfW dx\ = O («'/3)

Similarly,
kk+3e~kn-2 J2 ^J¡—e-F^ = O (nxl3 H xV2e-F^ dx\ = 0(nx'3),
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so that Rn = 0(«1/3). Also,

kk~xe-k _„„., .    v- kk~xe

k>na k>na

= O I « exp
("=£)) •

since jcfc > «" 2'3 -» oo for k > na, a > 2/3, and F(x) > x3/I for x
sufficiently large. Collecting the estimates, we get

E[Y(n ; -1)] = (1 - A«"1/3 + 0(«~2/3))

(2"23) • « £ !^le-F^) + 0(nx'3).
k>\

Next,

*:>1 ' Ar>l

by (2.22). Since the /cth term in the last series is

(2n)-x'2k-3/2(l - e-F^)[l + 0(k~x)],

a simple argument shows that its sum equals
/•OO

(2.24) n-x'3(2n)-1'2       x~3'2(l - e~F{x))dx + 0(n~2l3).
Jo

Combining (2.23) and (2.24) yields (2.18).   □
Corollary 1. The size of the largest component of G (X) is Op(n2l3), i.e., for every
œ(n) -> oo, a.s. all the components are smaller than a>(n)n2l3.

Note. According to Bollobás (1985), for A of order (log«)1/2, the largest com-
ponent has size Op(«2/3(log«)1/2).

Define -25i = max{/ > 1 : X(n ; /) > 0} , which is the maximum excess of the
number of edges over the number of vertices, taken among all the components,
in each of the two versions of the random graph G(X).

Theorem 1. Jz?n is bounded in probability, i.e., 3'n = Op(l) as « —» oo.

Notice that the total number of simple cycles in an /-component cannot
exceed 3'. (For / > 1, an /-component with c cycles can be obtained by
inserting an additional edge into an (/ - 1 )-component with c' cycles, and this
insertion may create (quite crudely) at most 2c' new cycles; thus c <3c', and
the bound 3' follows.) So, we immediately get the following result.

Corollary 2. The maximum number of cycles of a component is bounded in prob-
ability.
Proof of Theorem 1. In view of Corollary 1, it suffices to show that E(n), the
expected number of /-components of size k satisfying conditions

(2.25) l>lQ:=co(n),    k < ko := cox(n)n2'3       (cox(n) := co(n)1'4),

tends to 0, provided that a>(n) -» oo , and co(n) = 0(n4/3~â), S > 0.
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I. Consider first G(n, p). By definition,

(2.26) Ep(n)=      Y       (1\c(k,k + l)pk+lq{$-(k+lWn-k\

Here (see (2.9))

k<ko
k<i<(k2)-k

(2.27) if) =0((nk/k\)e-k2'2n),

and, denoting e = A«-1/3,

pk+l = ((l+ e)/n)k+l < p'e£k/nk ,

and
g(*)-(k+l)+k(n-k) _ o(q-'(l -p)k"~k2/2)

= 0(q~l exp((k2/2 - kn)( 1 + e)/«))
= 0(q~l exp(-(l +e)k + (l+ e)k2/2n)).

Notice that, by the definitions of ko and e = A«-1/3,

k2\e\/n < k$\e\/n = lA^«)2 = \X\co(n)x'2.

So, from (2.26) we obtain

(2.28)

where

Ep(n) = O ,\X\co(n)ll2 Y      Ep(n;k,l)
k<ka

lo<l<(k2)-k

Ep(n; Ac, /) =
C(k,k + l)e-k (p

k\
Pi)

Now, break the sum in (2.28) into $2i and £2 according to whether Ac < / or
Ac > /. By the bound (2.6), and the inequality Ac! > (k/e)k ,

k=\ \l>max(k,l0) \i /   J

k„

lt=l        \l>max(k,l0)

(2.29) *o (cjkp\ max(fc, /o)

= ° E
^=1

= 0/0
c2kop\l

0((2cfa>(/i)1/4/«1/3)<B(,l)) = 0((2c2«-<5/4)tt'W),
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because <y(«) = 0(n4/3 s). (We may, and do, assume that c2 > 1.)
Next, by the key bound (2.5), and Stirling's formula for Ac!,

■2Z<-tC{i(Tf^-'''^f
!=%(&)''2^''(f)'))-

In the innermost sum, the ratio of the (/ + l)th term and the /th term equals

(ci/(/+Q)'/+1>V2g < /£A x>2 ky2P_ = 0 (%l) m 0(fti(n)-i/8)
(cx/l)'l2 q-\l)     K    q \lxJ2n)        {()      >'

Therefore,

(2.30)

E,-ote(îr^©*)-o(*(îr^(o*)
= 0 'c|/2*o3/2P = 0 2c1/2   \ ft'(")N

\ co(n)x/*J

Collecting the estimates (2.28), (2.29), and (2.30) we obtain

Ep(n) = O   eVM'y"   2c2«"5/4 + 2c1/2

ftj(«)!/8
0(1).

Note. Thus, the order of the expected total number of components satisfying
the conditions (2.25) is determined by those components for which, in addition
k>l.

II. Turn now to G(n, M). In this case,

/ \

EM(n) = S G)C(k,k + l)
k<ko

\k<l<(k2)-k

(Y)
M-k-l A/

/
Define

p' = M
") = 1+A'«-'/3,        A' = A + 0(«-2/3),

Using (2.7) and (2.28), (2.29), we obtain that the total contribution of the terms
with Ac < / is

0(«VÂ>W'/^2c22"~<5/4r(")) = o(l).

So, it remains to estimate the sum of the terms with Ac > /. By (2.14)—(2.16),
(2.31)

r2k) ven-1_J(^\M(, k\2{M-k-\_( (k+ir
M-k-lu(:^,)($r^(")>r^-^)
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Here

(2.32)
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(£f *<££«- <"*-">.
and, since Ac3/«2 < w(«)3/4 (see (2.25)),

2(M-k-l)'i-*Y
n)

(2.33)

< exp

= exp

2(M-k-l) «      2«:
2Mk     2(k + l)k     Mk2+ + 0(œ(n)3'4)

e kexp _ek    2(k + l)k_P 3ß)
n 2«

Besides,
(Ac + /)2/2M = (Ác + /)2/« + 0(œ(n)x'2),

so, collecting the estimates (2.27), (2.31)—(2.33), we show that, for k > I, the
generic term is at most

O

(2.34)

C(k,k + l)e~k fl+e\l       (   I2     _.   , ,3/4.\
k\     {—)exp {-?+ 0{co{n)/ V

= 0 ,C(0(
n)y*C(k,k + l)e-k /1+eV

k\ m
c > 0 being an absolute constant.  Therefore, as in part 1(a), the sum of all
these terms is bounded by

O[ecw{n)3l\2c\/2/co(n)x's)0){n)] = o(l),        n^oo.   D

Lemma 2.3. For fixed I > I,

(2.35) lim E[X(n ; /)] = j^-^ [°° x3ll2-xe~F^ dx,
«—oo (2nyi¿ Jo

and

(2.36) Y,X(n;k,l)
k<k{

= <9(w(«)-3//2),

if kx = [«2/3/<y(«)] and co(n) -* oo arbitrarily slowly.
Proof. The first relation follows from (2.10), Lemma 2.1, and approximating
the resulting sum by the integral. The second part is similar, via a bound

/   ra(n)--°[LxyHi-ye-F(X)dxY,X(n;k,l)
_k<k¡

(The integrand is monotone increasing for all sufficiently small x > 0.)   D

In combination, Lemma 2.2 (2.20), Theorem 1, and Lemma 2.3 (2.36) mean
that a.s. the total size of all complex components is at most n2l3œ(n), while
the smallest complex component has size at least «2/3/<y(«), if co(n) -+ oo
arbitrarily slowly.
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Corollary 3.  W(n), the total number of complex components, is bounded in prob-
ability.

However, we can prove a stronger result.

Theorem 2. Let
g(x) = (2n)-x/2Y/7,x3"2-x.

/>i
Then (for both versions of G(X))
(2.37) XimE[%(n)] = I(X),
where

I(X) = jf g(x)e~F^ dx<oo,        (f(x) = *3-3*26A + 3^2) .

Proof. Fix d > 1 and write
&(n) = Wx(n) + ff2(n) + %3(n),

where Wx(n), W2(n),and ^(«) are the number of complex components of size
at most i/-1«2/3, between d~xn2/3 and dn2!3, and at least dn2!3, respectively.

(a) By Lemma 2.2 (2.20),

(2.38) E\%(n)\ < (dn2'3)~xE[Y(n ; > 1)] = 0(d~x).

(b) Let us bound E\f?x(n)\. Consider G(n,p) first. Similarly to (2.28) (but
with Ac2|e|/« < £J?~2|A| = 0(1) uniformly for d > 1, this time), we have

Ep[Wx(n)] = 0

( \

]T       Ep(n;k,l)
4<A:<d"'n2/3

£,, the sum of Ep(n ; k, I) with k < I, is bounded (crudely) by

(2.39)
»2/3 n-k /

\k+l
d-'n1'3    _ke K /N

¿ç(D^(i)>0f(E(f)';k=4 ^l>k

= 0 Y,(c22d-Xn-X'3)M
k>4

= 0(n-5'3).

Yj2 , the sum of Ep(n ; k, I) with k > I, is bounded (according to (2.5)) by

E    ^"^""('¡j'sEtf)"2^'^1"")™
l</<fc<d-'/i2/3 V    ' />1 V    '

<J](2Cli/-3)'/2 = 0(rf-3/2),
/>i

provided d > 1 is such that 2cxd~3 < 1, which we may, and do assume. Thus,

(2.40) Ep[Wx(n)] = 0(d-3/2).
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Turn to £m[^i(«)]. The overall contribution of the components with k < I
is bounded by 0(nx/2n~5/3) = 0(«~7/6) (see (2.39) and the note following
(2.7)). The bound (2.34) implies that for k < d~xn2l3 (d > 1) the expected
number of components with k vertices and / edges is of the order

/C(k, k + l)e~k (l+e\l
k\ \   n

So the total expected number of all those components with k > I is at most

0(      y-        C(k,k + l)e~k fl + e\1'
\K/<Â:<d-'n2/3

o(   E    (t)">-2)'2 (^

= 0(d~3'2),

so that

(2.41) EM[Wx(n)] = 0(d~3l2).

(c) Now consider E\%i(ri)\. Define i^*(«) as the total number of com-
ponents with sizes between d~xn2¡3 and dn2l3 such that I < d4, and let
A^(«) = %fn) - ^{(n). While proving Theorem 1, we actually demonstrated
that the expected number of components of size < dn2¡3 such that I > d4 is
0[eWd\2c\'2/dxl2)d*] provided that d is sufficiently large (see (2.25), (2.29)
and (2.30)). Hence,

(2.42) E[AW2(n)] = 0[e^d2(2c\,2/dx'2)di].

As for ^*(«), by Lemma 2.1, Wright's formula (2.4) and Stirling's formula
for factorials,

E[W2*(n)] = [l + 0(n-xl3)}

■   E   (4172 i""'        E        k3«2-xe-F^
\<l<d* V      ; \        d->nVi<k<dn2P

Consequently

(2.43) lim£[£f2*(«)]=   £   t^tttj /   x3ll2-xe~F^ dx.

The relations (2.38)-(2.43) lead directly to

hm E[&(n)] = 0(d~x)+   Y   7^77?/   x3¡'2-xe~FMdx,
n^oo ^     (27t)l/¿ Jd-í

KKd

lim E[W(n)] = 0(d~x)+   Y   -^-j, [   x3ll2-xe~FWdx,
x¿ídA2*y/2 Jd->

for all d sufficiently large. Letting d Î 00 completes the proof of (2.37).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RANDOM GRAPHS NEAR PHASE TRANSITION 735

Let us show that the integral /0°° g(x)e~FW dx converges.   According to
Wright (1980),

(2 44) 7l = >frW-m
1       ' 7l       25//2r(3//2)

where S, î S = .159155... (Voblyi (1987) identified ô as (2n)~x. Bender,
Canfield, and McKay (1989) found a three term asymptotic expansion for S¡
using a method suggested by Meertens. We are aware of at least two other
independent proofs of ô = (2n)~x, one by the first author and another by
Knuth (private communication).)

Thus, using Stirling formula for the gamma function we can estimate y¡ from
above by
(245) y/ = <y/(3jr)1/2(e/12/)//2(l + 0(/-1))

<ô(^n)xl2(e/l2l)ll2(l+0(l-x)).

Consequently, there exists a constant a > 0 such that for all x > 0

(2.46)E^"!-4E(Ä)">2
/<i />i

< £o+*3/2) e (^r*3*1 * x{i+^3/2)^3/i6 - o.
m>l

since w! < (m/2)m and 16 < 48/£. It remains to notice that F(x) =
(x3 - 3x2A + 3xA2)/6 > x3/l for all sufficiently large x.   D
Notes. ( 1 ) Extending the above argument, we can prove the existence of a fi-
nite lim,,-.!*, E[W(n)k] for each k > 1, but the explicit formulae are more
complicated, cf. Theorems 3 and 5.

(2) Only minor changes of the above argument are necessary to show that
/•OO

E[Y(n ; > 1)] = «2/3 /    xg(x)e~F{x) dx + 0(nx'3) ;
Jo

here  Y(n ; > 1)  is the total size of all complex components.   But we have
already estimated this expected value, see Lemma 2.2 (2.20). Comparing the
two estimates we obtain a remarkable integral identity

/•oo /*oo

(*) /    xgo(x)e-F(x)dx = X + (2n)-xl2 /    x"3/2[l - e~F^]dx,
Jo Jo

where
go(x) = (2n)-xl2Y,yixVI2-X,

/>o
(recall that y0 = (7t/8)1/2). What happens if we let A -> oo ?

Let c > 0 be fixed.   The series YX=x(c£,/k)kl2 converges for all i > 0.
Furthermore, (cÇ/k)k/2 achieves its maximum at k = k = cÇ/e . For £ -> oo,

— — —2/3we have k -> oo and if k - k = o(k    ) then
:\k/2'ciY'       „        „«        /tf      (AC-Ac)2
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The overall contribution of these leading terms to the sum is therefore asymp-
totic (as £ —► oo) to

exp )£exp(- 4cÇe~ ^,§)0f"2
This expression provides a sharp asymptotic formula for Sitli^A)^2 since
the remaining terms contribute negligibly little to its value. (The reader has
probably identified the above computations as an application of Laplace's
method for asymptotic estimation of sums and integrals.) So, according to
the definition of go(x) and (2.45),

(2.47) go(x) = (l+o(l))ô(n/2)xl2exil24xxl2,        x^oo.

Getting back to the integral identity (*) break the integral on the left-hand
side into IX(X) and I2(X), over x £ [0, Xx/2] and x £ [A1/2, oo) respectively.
Clearly (see 2.46)),

Ix(X) = ol I     exp(-ijcA2)i£c) = 0(X~2).

Next,
x
24

3     x3 - 3jc2A + 3xX2

x(x - 2X)7
8 dx,

. _     i   2     /-OO

/2(A) = (l+o(l))<?(|)     /i/2*3/2exp

= (l+o(l))iï(|)     /Ai//3/2exp

so, applying Laplace's method to the last integral obtains

I2(X) = (l+o(l))<f (!)1/2(2A)3/2/" exp (-*£) di

= (I + o(l))4nXS.

dx

Therefore, as A —> oo ,
(•OO

/    xgo(x)e-F{x)dx = (l+o(l))4nXÔ.
Jo

Integrating by parts the integral on the right-hand side of the integral identity
(*), we get (omitting some simple intermediate estimates)

/•OO

(2n)-1'2       x~3l2{l - e~F^]dx
Jo

/»OO

= (27t)-1/2 /   (jc - X)2x-x'2e~F{x) dx
Jo

/•OO

= (1 +o(l))(27r)-1/2A2 /    x-xl2e~xXll2dx
Jo

= (1 + o(l))A7r-'/2r(l/2) = (l+o(l))/.
Comparing the estimates of both integrals, and using the integral identity (*),
we obtain Ano = 2, so that ô = (2n)~l . (!) Thus, we have obtained an entirely
new proof of Voblyi's result, a proof that is based on the structural properties
of the random graph at the critical stage.
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(3) The estimate (2.46) and the dominated convergence theorem imply that
lim^.oo I(X) = 0. Intuitively, we should have expected this, since for
n~2l3(M- n/2) —> -oo the graph G(n, M) a.s. does not have complex compo-
nents (Kolchin (1986)). We also know that for n~2/3(M -n/2) —> oo the graph
G(n, M) a.s. has exactly one complex component (Bollobás (1985), Luczak
(1989)). So, we should be able to prove that linu_+001(X) = 1. It is easy!
Analogously to the estimate in the preceding argument,

/•OO

I(X)=  /    g(x)e~F{x)dx
Jo

= (l+o(l))ô£)l/\2X)x'2J\xp(-^dz

= (I + o(l))2nô = l+o(l),

as A —» oo, since 2nd = 1.
We conjecture that I(X) is monotone increasing. If this is so, then, for each

X, the limiting expected number of complex components is less than /(oo) = 1.
Theorems 1 and 2 make it plausible that there must exist a limiting distri-

bution of the complexity spectrum X(n) = {X(n ; /)}/>■. This is indeed the
case.

Let hn(x) stand for the probability that the random graph G(x) (i.e.,
G(n,M = (1 +x-'/3)«/2) or G(n,p = (1 + xn~x'3)/n)) does not have a
complex component.

Flajolet, Knuth, and Pittel (1989) proved existence of h(x) = lim„_00 hn(x),
given by

(2.48) h(x) =      l  2. I zi/2é>(2Z-x)(Z+x)Jdz(

where 5? is a certain contour in the half-plane Re(z) > 0.
It is possible to obtain a series-type formula for h(x), namely

The derivation is based on an identity for the graph G(n, p) :

hn(x) = «!^"2/2(p^-3/2)"[x"]exp (iW-úx) + Wo(x)\ ,

(cf. Flajolet, Knuth, and Pittel (1989)). Here W^x(x), W0(x) are the exponen-
tial generating functions for the (unrooted) trees and the unicyclic graphs, that
is

W_x(x) = T(x)-T2(x)/2,
and

WQ(x) = \
i ! TV  ^     T2(x)
logT3rw-r(x)--T-

(T(x) = ¿2j>x JJ~lxJ/j\) (Moon (1970), Wright (1977)). To estimate the coef-
ficient [xn] exp(') we use the Cauchy integral formula for a contour x - e~x+,e ,
—it < 6 < n.  (Recall that T(e~x) — 1 .)  The dominant part of the integral
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corresponds to the values 6 = 0(n~2/3+ô), ô £ (0, 2/3), since (see Britikov
(1988), for instance)

W_x(e~x+ie) = 1/2 + id - (4/3V2)ein/4e3/2 + 0(92)       (9 > 0).

Rotating the segment [0, n~2l3+ô] in the complex plane 6 counterclockwise
at the angle n/6, changing the variable of integration in order to linearize the
leading exponent in the integrand, and then Taylor-expanding the remaining
exponent factor, we arrive at the above series for h(x).

The function h(x) is strictly decreasing, «(-oo) = 1, «(oo) = 0 and
«(0) = (2/3)1/2. It comes in handy in the next theorem concerning the lim-
iting distribution of the complexity spectrum.

Theorem 3. Let r = {r¡}¡>x be a sequence of nonnegative integers with only
finitely many nonzero terms, a finitary sequence in short. Then, for both models
of the random graph G(X), there exists p(r) = lim,,-^ P(X(n) = r), where

p(0) = h(X),
and, for r ^ 0,
(2.49)

*"=fjàm (n«f^j £e-F^2-xh(x-x)dx

(L := £)/1 ri) ■ Furthermore, Y¿rp(r) = 1 ; so, in terms of the finite-dimensional
distributions, X(n) converges to a random finitary sequence X = {X(l)} such
that P(X = r)= p(r).
Notes. (1) p(r) > 0 for all r. Thus, the limiting distribution of the complexity
spectrum is supported by the whole set R of finitary sequences of nonnegative
integers !

(2) Consider a Banach space /■ of all finitary sequences r = {r¡} of integers
with the norm ||r|| = Yli>x \ri\ • From the proof of Theorem 2, and Theorem
3, it follows that X £ /• almost certainly, and that X(n) converges weakly
to X in lx . In particular, W(n) = £/>.*(«;/) =*> T,i>\X(l). (In fact,
E[W(n)] -♦ £[£,>. X(l)], too; so, by Theorem 2,

5>(r)J> = /(A).)
r />1

Proof of Theorem 3. For each / > 1, let k¡m (1 < m < r¡) stand for possible
sizes of all /-components. Set k = {k¡m : 1 < m < r¡, I > 1}, and k =
111 m hm ■ m the case of G(n, p), we have

P(X(n;l) = r¡,l>l)

nl       ITT l   I Í TT C{klm ' klm + Z) vk,„+la(k>?)-lklm+l) |
(«-AC)!

k

. ¿VV E(;,m)Ai-,m, k-k''-'+k(n-k)Yin^k(p)

Here, moving backward, Hn_k(p) is the probability that the graph G(n -k,p)
does not have complex components; the next factor is the probability that there
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are no edges joining the designated subsets of vertices either to each other or to
the remaining n-k vertices;

C(klm , klm + l)pk^q(\m)-(k^i)

is the probability that the set of k¡m vertices induces a connected subgraph with
Âc/m + / edges; the remaining factors account for the total number of partitions
with the parameter k . Notice at once that

-       E       kimki-m' = -jk  - 2 / , klm.
(I,m)¿(V ,m<) (l,m)

So, rearranging factors,

(2.50) P(X(«;/) = r/;/>!) = £P(£),

(2-51)

The summands P(k), which satisfy the conditions 1 < I < d4, d~xn2l3 <
kim < dn2/3, account for almost all the value of the probability in question,
except for a remainder of order 0(d~x). (See the proof of Theorem 2.) Let us
determine a sharp asymptotic formula for a leading generic term P(k). First,

(2.52) "! kv4kn~k2/2 = nke~k exp
r3     ; v2

-Hw-^-^ + ^ + Ot«-1/3)
6 2

(xk := Ac/«-2/3).    The double-product factor in (2.51) is asymptotic, via
Wright's formula (1980), to

[l + 0(«-'/3)]n
,*,m+3//2-<
v/m

k,J
v,k3l/2~x f\ +;»-i/3\/c""+/

=[1+0(„-^n2^_r(i±^)

= [1 + 0(n-x/3)]n-kek (u ""^"'j (1 + Xn~x'3)k

y,x3l/2~l
= [1 + 0(«-1/3)]«-^fcexp(AcA«-1/3 - A2x,,m/2) J] -J^—Axkh

l ,m

(xk¡m := k¡m/n2/3, Axklm = n~2l3). Furthermore, since

p = (1 + A«-'/3)/« = [1 + (A - xk)(n - k)~x'3 + 0(n-2'3)]/(n - k),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



740 TOMASZ LUCZAK, BORIS PITTEL, AND J. C. WIERMAN

we have

(2.53)    Hn_k(p) = hn_k(X-xk + 0(n-x/3)) = h(X-xk) + o(l)       («-co).
Collecting (2.50)-(2.53) yields

P(X(n ; I) = r, ; / > 1) = [1 + 0(n~x'3)] £ (]} 1

-3//2_1 N        r   (x3-3x2A + 3xfcA2)
n^èrTTT

i/,m
(2rt)V2 (h(X-xk) + o(l))

+ 0(d~x),

So, letting « —> oo and then d -* oo ,

lim P(X(« ;/) = r/; / > 1)

3//2-1

(2.55) =/:ittSà IS2^K^^g*-
x .— / y X/w .

In view of the identity

(2.56)

t-1 * (i*Mii#)
o<x„<L   v=x  i v=>   i
\<p<v

dxx ■ ■ • dxv

y^+x\r¥(X)x^^dx.
(£>„ + i))y°

the relation (2.55) immediately leads to (2.49).
In the case of G(n, M), the analogous formula for P(k) is

(n-k\

P(k) «!      \M
(V)    ï
-k-Lj
(

1S^!
M

J] C(fc/7¿ ^7 + /} j
l,m (klmy.

Here L = £/^/> and %t(p) is the probability that G(v, p) does not have
complex components. As in the part (a) of the proof of Lemma 2.1, for the
dominating Ac's,

r2k)( r2k) \
Vm:Í:l;=íi+o(«-'/3)i«-¿«!      \M-k

(«-fc)!        f("2)
M

[1 + 0(n-x/3)]n-Le~ke~F^.
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Also,
%n_k(M - k - L) = h(X - x) + o(l).

Using Wright's formula for C(k¡m , k¡m + l) and Stirling's formula for Ac/m!, we
obtain (2.49).

To finish the proof, it remains to notice that

Yp(r) = lim P(W(n) < oo) = 1,
^—' n—>oo

r

since E(W(n)) = 0(1). (W(n) is the total number of complex components.)   D

Note. The identity (2.56) can be established as follows.   Its right-hand side
equals /0°° y/(x)(j)(x) dx , where

<t>(x) =        IJxa/\ (dxx ■ ■ ■ dxv_x)        \xv = x - Y^xß

and xx, ... , x„_i are subject to restrictions xx > 0, ... , xv-X > 0, ]£«Ii xp ^
x (that is xv > 0, too). Clearly,

(2.57) 0(x) = x^=ia"+1/"V(l)-

Applying this to y/(x) = e~x , we have then

L exp ( ~¿ZxA nx? dxi '"dxv
(Ka^-coo \     p=\       I    \/i=l

(2-58) ^érnTe-'x^Uf"-*"-'7•/O
= ̂ (i)r[ ^(a^ + i)) .

u=i
But the integral (2.58) also equals

e-^xa/dx^j = \{Y(afl + l),
"   / rc0(i

hence

n;=,rK + i)
(2.59) 0(1) = rXE^K + i))"
The relations (2.57), (2.59) imply (2.56).

Note. Introduce Cn the total number of cycles. Since the total number of com-
plex components and the maximal number of cycles in a component are both
bounded in probability, Cn-C* = Op ( 1 ), where C* is the total number of uni-
cyclic components. This can be used to show that (Cn - 6_1 log«)/\/6_1 log«
is asymptotically standard Gaussian, regardless of the actual value of A. We
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suggest the reader check, however, that E(C„) ~ 6 'log« for A = 0, and
E(CH) ~ 4"1 log« for A = 0, and E(Cn) ~ c(A)«-1/6exp(A2«1/3/2) for A > 0.

3. The inner structure of complex components
Let G be a connected graph with Ac labeled vertices and Ac + / edges, where

/ > 1. Let C(G) denote the maximal subgraph of G with minimal vertex
degree at least two. C(G) is well defined since the union of such subgraphs
also satisfies the condition. (To get G from C(G), one has to grow a number
of disjoint trees each sprouting from its own vertex of C(G).) A basic path
of G is a maximal path in C(G) in which all vertices except the endpoints
have degree two in C(G). Let S(G) be the multigraph obtained from C(G)
by replacing each basic path with a single edge which joins its endpoints. (The
edge induced by a basic path is a loop if the path starts and ends at a vertex of
degree at least three in C(G).) We shall call S(G) the support of G.

Using the previous results, we can obtain a rather complete rough description
of the likely complex components in the random graph.

Theorem 4. Let co(n) -» oo as « —> oo. Then a.s.:
(I) Supports of all complex components of G(X) are 3-regular multigraphs,

each with at most co(n) vertices, and at most co(n) edges and loops.
(II) Each basic path of every complex component of G(X)  has at least

nxl3/w(n) vertices, and at most nxl3co(n) vertices; thus all cycles in the
complex components have lengths of order nxl3.

(Ill) For each complex component G, the largest tree sprouting from a vertex
of C(G) has size at least n2/3/co(n), and at most n2l3œ(n).

Proof. (I) Let G be an /-component, / > 1, with a support S = (V, E).
Denote \V\ = a, \E\ = b. Notice that b -a = /. Indeed, S(G) can be
obtained from G by consecutive deletions of all vertices of degree 1 (together
with the correspondent edges), followed by shrinking every basic path in the
resulting graph C(G) to an edge. For each of these operations, the difference
between the number of edges and the number of vertices remains unchanged.
Furthermore, the degree of each vertex in S is at least 3, since we have assumed
that a loop at a vertex contributes two to this vertex degree. Thus, 2b > 3a and
consequently a<2l, b < 3/. But by Theorem 1, &n = maxG(|£(G)|-\V(G)\)
is bounded in probability, hence a.s.

(3.1) max\E(G)\<co(n),       max\V(G)\ <co(n),
G G

if co(n) —> oo arbitrarily slowly.
It remains to show that a.s. all the supports are 3-regular. For this, we recall

that a.s. each complex component has size between «2/3/<y(«) and n2l3co(n).
So (see (3.1)), it will suffice to prove the following statement.

Lemma 3.1. Let d > 1 and positive integers a, b such that 2b > 3a be
given. Let S be a multigraph with vertex set {I, ... , a] and edges ux, ... , u¡,.
Then E„, the expected number of complex components of G(X) with support
isomorphic to S and with size between d~xn2/3 and dn2¡3, tends to 0 as
« —> oo.
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Proof. Let (ix, ... , i¡,) and Ac be nonnegative integers which satisfy the con-
ditions

b
(3.2) d-xn2'3 <k<dn2'3,        i:=a + ^it<k.

i=i
Define E(n; i,k) as the expected number of complex components G of size
Ac, subject to the conditions:

(1) the support S(G) is isomorphic to S, and
(2) if a basic path in C(G) stripped of its intermediate vertices (an edge

(loop) of S(G), that is) is the image of an edge (loop) ut of the multigraph S,
then the total number of those vertices is /,   ( 1 < t < b).

A little reflection shows (cf. Stepanov ( 1987), for instance) that the total num-
ber of the subgraphs G of the complete graph Kn , which meet the conditions
(1) and (2), is at most

f*\( k \-iírr,-i\.-fc*-í-i    [»Iti**"'"1G)U...\.*> n«K~=(t-OI   •
Here the factor ikk~'~x counts the total number of forests of i trees on k
vertices vx, ... ,vk such that the jth tree contains v¡   (1 < j < i).   ("At
most" is because in the underlying counting scheme a subgraph in question
arises, in general, more than once.)

Consequently, for G(n, p),

(3.3) E(n ; Î, k) < E.(n ; Î, k) := [w)^ ~'~l pk+b-ap(*)-(k+b-a)+k(«-k) _
(AC       I).

We notice that E*(n; i,k) depends only on / and Ac. Since the number of
nonnegative solutions of £i=, it = i -a  (i fixed) equals ('"¿t*_1), we obtain

(3.4) E(n; i, k) := ^E(n; 1, k) < E*(n; i, Ac),

where
£■»(«; i, k) = ^2£■*(«; i, Ac)

(3.5) r
= {n]kikk-i-lpk+b-aq(\)-(k+b-a)+k(n-k) /l - fl + Ô - L\/(jfe _ /}, _

(E(n;i,k) is the expected number of complex components G in question
such that the sizes of G and C(G) are Ac and /' respectively.) Using the
bounds

(3.6)
[n]k = 0(nke-k2/2"),        ('"* + b~ M < i»-\b-a)h-*

(k - /)! > const(Ac - i + l)x'2 (^j1)
k-i

and one term expansions for log(l +A«  */3) and log(l —q), we transform (3.4)
and (3.5) into

exp(H(i,k))\ ,(3.7) E(n;i,k) = 0 nb~ak(k-i+iyi2
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with

(3.8) H(i, AC) = (Ac - i) log 7—- -i + b log i.

A bit of calculus is in order. We have
dH        ,       Ac        b d2H
- = — Ino-1-
di

i i
6 k-i     /'' di2        k-i     i2        k

It follows then that, for each k, H(i, k) achieves its maximum at

u = L(k) = (bk)xl2 + 0(l),

and
//(/»., k) = 0(1) + Mog/» = (o/2)logAc + 0(1).

For i t¿ i», the bound for d2H/di2 implies that

H(i,k)<H(U,k)-(i-it)2/2k.
Therefore,

YdE(n;i,k) = 0
i

(3.9) = o

kb'2~x ^fK    .^n_i/2       /   (i-L(k))2\-¡—^(k-i + l) ^exp^-^-J
n<

flb-a   ¿-~i
i

>kbl2-X

exp   -/   (i-i*(k))2\

= o (Kzpí = 0(n-2l3n-(2b-3a^3).

(The dominant terms in ^¡(k - i)~x/2 exp[-(i - i*(k))2/2k] correspondió i
relatively close to /'»(Ac) and, for those /', (Ac-/)-1/2 is asymptotic to Ac-1/2.
Besides, the function e~x2/2 is Reimann integrable on (-oo, oo).) So,

E(n) = Y, E Ei<n > * > k) = 0(«~(2é_3a)/3) - 0,        « -► oo,
it    i

since 2b - 3a > 1.
The same estimate can be obtained for G(n, M).
(II) Define E'(n) and E"(n) like E(n) in Lemma 3.1, except that for

E'(n) we consider only those complex components G for which \V(G(C))\>
«1/3w(«), and for E"(n)—the complex components for which

min{/', : 1 < t < b} < nx/3/œ(n).

We need to show that E'(n) -> 0, E"(n) —> 0, as « —> oo. Consider G(n, p).
(1) Set /' = nx/3co(n). By the definition of E'(n) and the numbers E(n; i, k)

(see the above proof of Lemma 3.1),

£'(") = E  E  E(n;i,k).
k   i'<i<k

So, arguing as in (3.6)—(3.9), and using

/ - /»(Ac) > /' - /»(ac) > nx/3co(n)/2,
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we have
(/•OO N

„-(26-^/3   / e-z2/2dz
JSoi(n) ,

=°(re z l2dz ] = o(l),        « —> oo
)

(6 = 2-xd~xl2).
(2) Set i" = «1/3/<y(«). The number of nonnegative solutions of Y!¡=x h

i - a such that min{/', : 1 < t < b} < /'" is at most

bi"(Í~ab+_b2~2)<b(b-a-i)b-2i"ib-2.

So (cf. the second inequality in (2.6) and (3.9))

E"(n) = O E ^'"E'-'(* - T"1«* (J±lJ2T)l)
hi \ /Ik i

= 0[n-(2b-3a)/3co(n)-x] = 0[w(n)-1].

The case of G(n, M) is similar.
(Ill) It remains to show that a.s. the largest pendant tree in each complex

component has size at least «2/3/co(n). To this end, we apparently would have
to show that the expected number of complex components without such a large
pendant tree tends to 0 as « -» oo. However, the previous results allow us
to consider only E'"(n) the expected number of "bad" components of size
k £ [d~xn2l3, dn2l3], which also satisfy a condition

(3.10) d~xnxl3 <i<dxnxl3,

where dx > 1 and is otherwise arbitrary.
Introduce &(i, k) a uniform random forest of /' trees on k vertices 1,2,

... ,k such that the 7'th tree contains the vertex j. ConsiderM(i, k) the size
of the largest tree in ¡F(i, k). It should be clear that

E'"(n) = EE^("; r> k)p (^('»k) ^ jj&))

where k, i satisfy (3.2), (3.10); see (3.3) for E(n; i, k). So, all we need to
do is to show that P(M(i, k) < n2l3/œ(n)) —► 0 uniformly over /', k in this
range.

As it happens, Pavlov (1977, 1979) studied the behavior of M(i, k) under
various assumptions regarding the relation of /' and k. In particular, when /
is of order precisely ac1/2 , M(i, k) is of order k , that is M(i, k)/k has a
nondegenerate limiting distribution. But in the case of our /', k, i is of order
ac1/2 , and k is of order «2/3. Hence

P(M(i, k) < n2'3/co(n)) = P (jf(i, k) < -4~^k\ ^0,

as « —> 00 .   D
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4. Planarity of G(X)

The last problem we shall study in this paper is the determination of the
asymptotic probability of planarity for G(n, M) and G(n, p).

Introduce C^\k, k + I) (C(1>(ac, k + I), resp.) the total number of planar
(nonplanar, resp.) connected graphs on k labeled vertices, with k + I edges.
Of course, C(k,k + l) = C^(k, k + I) + C^(k, k + I). Mimicking Wright's
derivation of the asymptotic formula (2.4) for C(k, k+l), we obtain: for every
/ > 1, and / = 0, 1,

C®(k, k + l) = (1 +o())yif)kk+3'l2-xl2,        Ac ̂oo.

Clearly, yf^ + yj^ = y¡. Recall that, by Kuratowski's theorem, a graph is
planar iff it does not contain a topological copy of i33 or K$. Since the
number of edges of K3 3 exceeds the number of vertices by 3, we can assert
that y^ > 0. Likewise, considering X5, y^ > 1. (It is worth mentioning at
once that almost surely G(X) does not contain a topological copy of K¡. So,
the only likely obstacle to planarity is presence of a copy of #3,3.) Needless to
say, Bollobás' inequalities (2.5), (2.6) hold for C^(k, k +1) as well.

Let X(°\n;l), X^x\n;l) denote the total number of planar /-components
and nonplanar /-components, respectively. Repeating almost verbatim the
proof of Theorem 3, we have:

Let r(°) = {/•/(0)}/>i, r(1) = {r\l)}i>i be two finitary sequences and r^+r^ ¿
0. Then
(3.11) lim P(X(°\n) = r(°>, X^(n) = r^)=p(r{0),r^),

where

, ,   f/l) _ _J_ In (7/(0)r(3//2)/(2,)1/2)0(0>
P[r '    > - T(3L/2) \\± r(0),

(y/(1)r(3//2)/(2^)1/2rn
i/>l rl     ■
(•00

Jo    'e-F^x3L'2-xh(X-x)dx,
to

(L := ¿2i /(7/(0) + 7/(1))) • So, we have established the following.
Theorem 5. Denote by P„(X) the probability that G(X) is planar. There exists
lim^oo Pn(X) =p(X), given by
(3.12) p(A) = «(A) + 5>(°>(/-),

r

where
(y¡0)r(3l/2)/(2n)x/2yf

^ = mrm ITT(3L/2) ^1 r(0),
/•OO

• /    e-F^x3L'2-xh(X-x)dx,
Jo

and L = ^¡1^ . (Recall that h(X) is the limiting probability that G(X) does

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RANDOM GRAPHS NEAR PHASE TRANSITION 747

not have complex components.) Furthermore, we have 0 < p(X) < I, the lower
bound following from (3.10), and the upper bound from an observation that, for
instance, y^ > 0.

Note that h(X) —► 1 as A -> -co, and therefore lim/i^_00p(A) = 1.
There are also various ways to check that limi—ooP(X) = 0. We present

here a simple and elegant argument proposed by Svante Janson.
If A = X(n) -» +00 then, with probability 1 -o(l), the graph G(n, n/2) con-

tains at least five tree components C\,... ,C$, each of size at least A-1/3«2/3
(see Erdös and Rényi (I960)). The (conditional) probability that in the graph
G(n, (n + Xn2/3)/2), obtained by adding s = A«2/3/2 randomly chosen edges
to G(n, n/2), the components C,, C¡ are not joined by an edge for some
1 < / < 7 < 5 is smaller than

Q(©-!-*^)/(Oi-!)sl,(I_|¡f0.i0„)'
< exp(-Xx'4)^0.

Thus, almost surely G(n, («+A«2/3)/2) contains a subgraph contractible to K5,
and is therefore nonplanar (Wagner's Theorem). We conclude that lim/l_,00p(A)
= 0.

Consequently,   G(n, M)   (G(n, p)  resp.)    is almost surely nonplanar iff
(M - n/2)n~2l3 —► oo   ((np - l)«-1/3 —* oo, resp.)

Remark. The above argument works just as well for every Kr, r > 5 . Thus,
for G(n, M) say, the contraction clique number (ccl) is bounded in probability
if (M - «/2)«~2/3 is bounded, and the ccl number goes to oo in probability,
if (M - n/2)n~2l3 goes to oo however slowly.
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