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1. Introduction. Let M be an n-dimensional connected complete Rieman-
nian manifold of class C* admitting a parallel field of -dimensional tangent
vector subspaces. Then, M admits the parallel field of s-dimensional tangent
vector subspaces, where s = n — 7, orthogonal to the given field. M is also
regarded as a Riemannian manifold whose homogeneous holonomy group
fixes an 7- (or s-) dimensional tangent vector subspace. The purpose of this
note is to treat of the global structure of M. In a case where 7 =n — 1,
i.e. s =1, the author [3] already attempted to clarify geometrically the global
structure. Hare let us discuss the structure in the case where 1 =<7,
s=<n—1, from the view-point of fibre bundle. For the main results, see
Theorems 1—7. Especially Theorem 3 shows a geaeral structure of M and
fcom the othar theorems we may know structures in respective cases. Notice
that these theorems all hold good even if R and S in these theorems are
exchanged for each other (see Remark 1).

From now on the word “k-dimensional” is abbreviated as “k-”, say like
k-space (but, such a prefix doss not nscessarily mean dimension). Let us
suppose that indices rua as follows: a, b6 =1,2,.., r; 4, j=r+ 1,r+ 2,...,
n;a=1,2,..,n The following conventions in a Riemannian manifold X are
also applied to all of Riemanaian manifolds: The parallelism in X means
the one of Levi-Civita. A neighborhood in X is always an opan set homeo-
morphic to Euclidean space. Take any x,y € X. Let [, y] denote a geodesic
arc joining x to y. And further, take a unit tangent vector v at z. Given a
real number ¢, ¢g(x, v, c) is defined to be the geodesic arc issuing from =z,
whose length is |c¢| and whose initial vector is v or —v according as ¢ > 0
or < 0. Let (x, v, c) denote its terminal point. Note that a geodesic arc is not
necessarily simple and somatimes may be closed. Let a curve a:x{t) (say,
0=<t=1) be given in X. At z, = z(0) we take a unit vector v, tangent to
X. Corresponding to each #, let v(¢) denote the unit vector at x(¢) parallel to
v, along a. Moreover, if a geodesic arc ¢(x,, vy, c) is given, each geodesic
arc g(x(2), v(¢), c) is said to be parallel to ¢(x,, v,, c¢) along a. And to displace
tha latter arc parallelly along a is to obtain the former arcs. A covering
manifold C(X) of X is defined to be a connected covering manifold of X
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with the Riemannian metric naturally induced from X by the covering map
p. Especially, if p7(x) (x € X) consists of just %2 points, C(X) is called a
k-covering manifold of X. The notation “X” always means the operation of
metric product.

For models of RS-manifolds in Remarks 2—6, cf.[3].

2. Preliminaries. As already defined, let M be a connected complete
Riemannian n-manifold (z > 1) of class C® admitting a parallel field of tan-
gent vector r-subspaces (1 <7 <<n — 1). More precisely, to each point of M
a tangent vector r-subspace is assigned so that all of them form a parallel
field. We call it the R-field over M. Let us take the field of tangent vector
s-subspaces, s = n — r, which is orthogonal to the R-field at each point of M.
It is obvious that the field forms a parallel field over M. We call it the S-field
over M. Throughout the whole discussion, M is such a manifold which will
be called an RS-manifold of dimension 7n. In M the following fact is very
well-known :

At any x, € M there is a coordinate neighborhood U wilh coordinate
system (z%) which satisfies the following properties:

1) The transformation from the system (x*)to an admissible coordinate
system of M at z, is of class C?;

2) The Riemannian metric in U is expressed by the form completely
decomposed as follows :

where 9., and §;; are functions of class C' independent of z' and z°
respectively;

3) A system of equations x' = const. expresses an integral manifold of
the R-field and a system of equations x° = const. expresses one of the S-field.

For the proof, see [1], say.

A coordinate neighborhood of x° € M with the same property as U above
is called a reduced coordinate neighborhood of x,, if its coordinate system
(%) consists of all of (z*)’s such that a* < z* < b*(a®, b* are constants).

Let U,U’ be two reduced coordinate neighborhoods of x,. Let (x*) and
(2'*) be their coordinate systems respectively. Let W be the connected com-
ponents of U N U’ containing x,. In W the coordinate systems (x*) and
(£'*) are combined by the relations completely decomposed as follows :

% =fYxl,...... , ), =™ , ")
where £° and f* are functions of class C* independent of z' and z°
respectively. Moreover we can see that through x, € M there passes a pair
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of the maximal coanected integral manifolds of the R-and S-fields. Let R(x,)
and S(z,) denote the ones respectively, We give them the Riemannian metric
which is naturally induced from M and call them R-and S-submanifolds
of M respectively. They form Riemannian manifolds of class C'. The follow-
ing fact is well-known : All of the R- and S-submanifolds are totally geodesic,
and complete as Riemannian manifolds. Let I(x,) denote the set R(x,) N S(xy).

In M, suppose that there exists a connected open submanifold M° which
satisfies the following conditions 1) and 2), or 1) and 3):

1) M’ is a union set of R-submanifolds and the closure of M° is M;

2) M is the maximal subset in which each point x is a limit point of
I(x) relative to S(x), or

3) M’ is a maximal subspace which becomes a fibre bundle where each
fibre is an R-submanifold. (By the word “maximal” it is meant that there
are no subspaces, D M?° 3= M", which have the same property.)

When M° satisfies 1) and 2), M is said to be of almost R-clustered type
with kernel M°. In this case, if M = M°, M is simply said to be of R-clustered
type. .

When M° satisfies 1) and 3), M is said to be of almost R-fibred type
with kernel M°. In this case, if M = M’, M is simply said to be of R-fibred

type.

REMARK 1. Throughout this note, R-field and S-field, so R-submanifold
and S-submanifold, can not be intrinsically distinguished. Accordingly, the
statements all hold good even if we exchange the roles of them. If for ex-
ample a definition is given, the new definition is obtained by exchanging R
and S in it for each other. Of course it holds good. Let us suppose that the'
new definition is given there, although it is not explicitly stated. This is also
applied to notations, lemmas, theorems, and so on. Besides, it is a matter of
course that definitions, notations, and so on, in M are used for any RS-manifolds
under the same senses.

3. Fundamental lemmas. Take any x, € M. An R-neighborhood of
xy is a neighborhood in R(x,). An R-normal vector at x, is a unit iangent
vector at x, orthogonal to R(x,). Take a connected open subset Oz of R(x;)
(o € Ox) and an R-normal vector n, at x,. At each x € Op we plant an
R-normal vector n(z) where n(x,) = n,. If for any z,, z, € On, n(x,) is parallel
to n(x,) along any of curves of class D' in O; joining x, to x,, the set
{n(z)|x € O} is called the R-normal wvector field over Oz parallel to n,
(= n(xy)).

Again take x; € M and an R-normal vector n, at x,. For a constant c,
put y, = (x, 7y, ¢). Then we have
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LEMMA 3.1. There is an R-neighborhood Uxr at x, which satisfies the
Sfollowing conditions :

1) Over Ur the R-normal vector field {n(x)|x € Ug} parallel to n,
does exist ;

2) (x,n(z),c) € R(y,) for all x € Ug;

3) The map

F:Ur— R(yy) defined by f(z) = (x, n{x), ¢)

is an isometric into-homeomorphism of class C®.

PROOF. First let us consider the case where the geodesic ¢(x,, n,, ¢) is
contained in a reduced coordinate neighborhood U. Let Uy be the connected
component of U N R(x,) containing x,. In U, let (xf), (%), and (n}) denote
Zo, ¥y, and n, respectively. Here, nf = 0. It is verified that all of the vectors
n{x), * € Up, which have in U the same components as #n,, form the
R-normal vector field parallel to 7n,. So, 1) holds good. In U let (z*) denote
any x € U Here, z' = zi. Moreover we can see that a point (z, n(x), ¢) is
denoted by (z°, yi). As x5 = 3§, (z, n(x), c) € R(y,), i.e., 2) holds true. 3) is
now obvious by § 2.

Next let us consider the case where the geodesic ¢(xy, 7y, ¢) is not con-
tained in a reduced coordinate neighborhood. Take a finite system of reduced
coordinate neighborhoods U,(A = 1, 2,...... , h) such that each U, contains a
geodesic arc [x,.1, x,] where the product curve [xy, z.]* [y, Zsl*-. [Lr-1, T4)
becomes ¢(xy, 7y, ¢). For each pair U, and [xs_,, x,], there is an R-neighborhood
of z,.1 which satisfies the conditions 1)—3), as already proved. Hence, it is
easy to find an R-neighborhood U, which satisfies our conditions 1)—3).

Under the same notations as Lemma 3.1, let z(¢) (¢ =<t < b), z(a) = x,,
be a curve of class D' in R(x,). For each ¢, let n(¢) be the R-normal vector
at x(¢) parallel to 7, along the curve. We put y(£) = (x(z), n(t), c). Let n'(z) be
the vector at y(¢) parallel to »n(t) along the geodesic g{x(2), n(£),c). Since
9(z@) , n(t), ¢) < S(x(t)), n'(t) is an R-normal vector. Then we have

LEMMA 3.2. 1) The curve y(¢) (@ <t =<b) is a curve of class D' in
R(yo);

2) {n'(t)|a <t < b} consists of R-normal vectors parallel to one another
along the curve y(2).

PROOF. For any ¢, (@ =< t, < b) if we cover the geodesic ¢(x(t,), n(¢,),c)
by a finite number of reduced coordinate neighborhoods, it is seen that in a
suitable interval of # containing £,, 1) and 2) hold good (cf. Proof of Lemma
3.1). Accordingly, 1), 2) are proved.
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In M, let R, S be any R-, S-submanifolds respectively. Then we have
LEMMA 3.3. The set R 1 S is at most countable and non-empty.

PROOF First note that the second countability axiom holds in M, R, S
respectively. Now take a countable (or finite) system of reduced coordinate
neighborhoods U, which cover M. Then U, N R consists of a system of
non-intersecting R-neighborhoods, which is at most countable. (Of course the
system may be empty). For Uy N S, too, it holds good. These properties are
obvious by the second countability axiom.

Accordingly, Uy N R 1 S is at most countable. Hence R N .S is at most
countable. For the assertion that R 1 § is non-empty, see [2], p. 23.

4. A general structure. For any two points x;,xr, of the same R-sub-
manifold in M, let dg{x,, x,) denote the length of a minimizing geodesic [z,
x;] in the R-submanifold. Take any x, € M and a constant @ > 0. Let
Cr{xy; a) denote the part of R(x,) defined by the subset {z|x € R(x,), dalzy,x)
< al. f a set {z]x € Rx,), dxy, x) < a} forms an R-neighborhood of =z,
which can be covered by a normal coordinate system in R(x,) with center
Zy, this neighborhood is called a normal R-neighborhood of z, and denoted
by Nx{xy; a). Moreover such a constant a is called a normal R-radius at x,.
Let Ti(x,) denote the Euclidean vector r-space tangent to R(x,) at x,. The
map expr at T, € M is defined to be the map Tx(x,) = R(x,) such that expz
v = x, for the zero vector v € Ty(x,) and expr v = (x4, v/|v]|, |v]) for any
non-zero vector v € Tx(x,), where |v| denotes the length of v.

Again at xy € M let ex(x,) denote the greatest lower bound of {dx(z,, x)
lx € Kxy) — xo} if Kxy) — xp is non-empty. If Kx,) — x, is empty, we put
ex(xy) = co. Accordingly, 0 <X ex(x) < oo for any = € M.

LEMMA 4.1. 1) If ex,) = 0, ex) = 0 for all x € S(x,) (so, if exx,)
>0, exx)> 0 for all x € S(xy)).

2) If edz,) > 0, there is a constant a > O such that the parts Cxlz;a)
for all x € S(x,) do not intersect one another.

3) A necessary and sufficient condition for exx,) >0 is that the
topology of S(xy) coincides with the relative one induced from M.

PROOF. 1) is evident by Lemma 3. 1. To prove 2), at x, take a
normal R-radius ¢ < ex(x;). Then for any z € S, = S(z,), Czx; ) NS,
consists of x only. For, otherwise, there is x € S, such that Cx{z; ¢c) N S,
contains a point z'(=x). Let [x, 2] be a minimizing geodesic in R(x). And
let [x,, ] be the geodesic parallel to [x,z] along a curve in S,. Hence,
z €8, by Lemma 3.2, [x,, "] < Celzy; ¢), and x,<=x”. Here, dlxy, ) <c
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< en(xy). These results contradict with the definition of exx,). So, Clx;c) NS,
for each x € S, consists of x only. Now, put @ = ¢/2. Then it is obvious
that the constant a is a constant a in 2). 3) is easily proved by using 2).

Let x, be a point of M. Take a closed curve 8 of class D' in Ry=R(x,)
starting from x,. For any v € T(x,), we obtain the vector v’ at the terminal
point x, by displacing v parallelly along 8. Of course, v' € Ts(x,). Then the
map f3 of Ty(x,) onto itself, defined by fi(v) = v/, is a congruent transfor-
mation in Ts(x,). This is said to be the congruent transformation induced
from B. All of such transformations form a group. We denote it by G(R,, x,)
or G(R,) (it being independent of x, as abstract group).

LEMMA 4.2. G(R,, zy) is isomorphic with a factor group of the funda-
mental group m(R,,x,). Hence the order of G(R,, x,) is at most countable.

PROOF. Let B, be a closed curve of class D' in R,, starting from x,
and in R, homotopic to x,. Then the congruent transformation fs, in Ts(x,)
induced from B, is the identity. For, otherwise, we can find a unit vector
v € Ts(xy) such that fp(v)+v. Let ¢ be a normal S-radius at x,. So, for
a constant 8(0 < & < ¢), ¢(xy, v, 8) is parallel to ¢(xy, fo(v), 8) along B,. Here
if we deform B, to z,, we obtain a curve in Ns(x,; ¢) joining yg, =(xy, falv),0)
to y = (x,, v, 8) as the locus of yg,. This curve is contained in Iy). As yg,+y,
this is contrary to Lemma 3. 3. The fact above gives rise to the homomorphic
map of 7 (R,, x;) onto G(R,, x,) naturally. So the former part is proved. The
latter part is clear because 7,(R,, x,) is at most countable.

In M, let x,, y, be two points of an S-submanifold. Let [x,.y,] be a
geodesic arc in S(x,). Put [z, yo] = 9¢(xy, 1y, ¢). If R(x,) admits the R-normal
vector field {n(z)|xz € R(x,)} parallel to #n,, we can consider the map

S R(xy) — R(yy) defined by f(z) = (z, n(x), c)
by Lemma 3.2. f is said to be the map induced from [z, y,).

LEMMA 4.3. f is locally an isometric homeomorphism of class C* and
f is also a covering map.

PROOF. From Lemmas 3.1 and 3.2, the map f is onto and locally an
isometric homemorphism of class C*. For any y € R(y,) the subset f~*(y) of
R(x,) is at most countable by Lemma 3.3. Let (A = 1,2,...... ) denote all of
the points of f~'(y). Here, f~(y) is contained in a compact subset Cy(y; |c|).
By covering Cy(y;|c|) by a finite number of reduced coordinate neighborhoods,
we can find an R-neighborhood Wi(y) of ¥y and the R-neighborhoods Wi(x,)
of x, for all A, such that all Wi(x)) are isometrically homeomorphic to Wi(y)
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under f. Then, all of Wi(x,) do not intersect one another. For, suppose that
Wxz,) N Wr(z,) =0 for z,, z, € f¥y) (.= z,).

If we take a curve a C Wiz, U Wxz,) joining z, to z,, then we have
Aa)© Wxy). This gives rise to a contradiction. Accordingly, our lemma is
proved.

In M suppose that R, is an R-submanifold such that G(R,) consists of
the identity only. Then R, is said to be R-maximal in M. Here, note the
following property : Take x, € Ry, yo € S(xy). Lel [xy,v5] be a geodesic in
S(xy). Put R, = R(y,). Then, there exists the map f: R, = R, induced from
[xes yo). By Lemma 4. 3, R, is regarded as a covering manifold of R, under
f- Moreover, if R, is R-maximal, it is easy to see

LEMMA 4.4. The map f is an isometric homeomorphism of class C?,
of Ry onto R,.

Let V be a Euclidean vector d-space which is topologized by regarding
as Euclidean space. Let G be an effective group of congruent transformations
in V, which is at most countable. We denote all of the elements of G by
aAr=0,1,2,...... ), where ¢, is the identity. For each g\(A==0), put V, =
{v|gw = v}. V,forms a subspace of dimension < d in V. Let V° denote
V — U uV. Then, V° is non-empty. For any v € V?°, the vectors

V, §10, J2T)-e----

are all distinct from one another. This is easily verified. Such a vector v is
said to be completely variant under G. It follows that V° consists of all of
the vectors completely variant under G.

First, suppose that G is finite. Then we have

LEMMA 4.5. 1) V° is an open set of V and the closure of V° is V.
2) For any unit vectors u, u' € V°, there is a sequence of unit vectors :
ul(: u)’ Ugyennens ’ uk(zu’)’ < VO
such that u,, t.., belong to the same connected component of V° or are G-

connected (u =1,2,...... , B—1).

By the word “G-connected” it is meant that u,., = ¢(p)u, for a suitable
9(u) € G. k suffices to be an integer > 1.

PROOF. As 1) is obvious, we prove 2). If V° is connected, the sequence:
= u), u(= '), satisfies our condition. Accordingly we consider the case
where V* is not connected. Then, among V(A = 1,2,...... , h — 1; h = the order
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of G), there is at least one of dimension d — 1. Let us suppose V', to be such
one. Take v € V°. The vector is represented by wu, + v, where #,(3=0) is
perpendicular to V, and v, € V,. Then we have ¢,(u; + v = — u; + v..
I. e., the vector v is G-connected with v* = — u, + v,. The vector v’ belongs
to the side distinct from v with respect to V,. Here, if v € V° is suitably
chosen, v" belongs to V° From this fact, 2) is proved.

Next, suppose that G is infinite (i.e., countable). Let V' be the set of all
of v €V such that the vectors v (A =0.1,2,...... ) indeed consist of a
finite number of vectors distinct from one another. Any vector of V — V' is
said to be infinitely variant under G.

LEMMA 4.6. 1) IfveV, 6 gveV';

2) V' forms a vector subspace of V;

3) For the dimension d of V', 0=d <d —1;
4) V — V' is a connected open subset of V.

PROOF. 1) and 2) are obvious. To prove 3), suppose that d =d — 1.
By 1), 9.-V =V’ for any g, € G. Hence, for a vector e normal to V', ge
=¢or —e So,ec€ V. 1Le, V' =V. This is contrary to the existence of
vectors completely variant under G. Accordingly, 3) holds good. From 3), 4)
follows immediately. This completes the proof.

THEOREM 1. In M suppose that the topology of every R-submanifold
coincides with the relative one induced from M. Then there are R-maximal
R-submanifolds. In all of them let M® be the subspace of M which is their
union set. Then M° is a connected open submanifold of M whose closure
is M and a maximal subspace which becomes a fibre bundle where each
fibre is a R-submanifold. In other words, M is of almost R-fibred type with
kernel M°.

PROOF. 1) For any R-submanifold R, G(R) is finite. In fact, suppose
that it is infinite (i. e., countable by Lemma 4. 2). Denote all of the elements
of GR, ), r € R, by 9\ =10,1,2,...... ) where ¢, is the identity. Then we
can find a unit vector v € Ts(x) completely variant under G(R, z). Let a be
a normal S-radius at z. For a constant 6 (0 < & < a) put z, = (z, ¢,v, ). Then
xaA=0,1,2,...... ) are distinct from one another. And, z, € R(x,) N Cs (x;b).
Cs(z;b) being compact, we have es(x,) = 0. This contradicts with the assumption
of our theorem by Lemma 4.1. So, G(R) is finite.

2); Take an R-submanifold R, = R(xz,). Let k, be the order of G(R,, z,).
By 1), &, is finite. Denote all of the elements of G(R,, x,) by ¢ (A = 0,1,...... ,
ky — 1) where ¢, is the identity. We have es(z,) > 0. Let a be a normal
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S-radius at x, such that 0 < a < el(xy)/2. Let vy be a unit vector of T(x,)
completely variant under G(R,, x,) For a constant §(0 < § < @) put y, =
(x4, 9avp, 8). Let 9(v,, uy, 8) denote the geodesic [y,, x,] in Ns(z,;a). Put
R, = R(y,). Then, R, N Ndxg;a) ={y\|An=0,1,......, ky — 1}. For, take y €
R, N Ny(xy;a) and displace [y,, x,] parallelly along a curve of class D' in
R, joining y, to y. At y, we obtain the geodesic [y, x;] in S(xy). Here

dl(zo, x0) = d(zp, y) + ds(y, x0) < a + 8 < es(xy).

So, x, = x;. From this manner, we can see that y € {y,|A =0, 1,...... , ko — 1}
by Lemma 3. 2. Accordingly, R, N Ng(x,;a) consists of y\(A =0, 1,...... ke — 1)
only.

Now over R, there is the R-normal vector field parallel to u, For,
otherwise, by displacing #, parallelly along a suitable closed curve in R, we
can obtain a vector uy at y, distinct from w, Of course, u, € T(y,). By
Lemma 3.2, x; = (y,, s, 8) € R(x,). So x; € Kx,). Here, x, == 2y and we have

ds(l'o, xn) = ds(xo; yo) + d-s(yo, xé) =28< 68(3’30)-

This is contrary to the definition of es(x;). So our assertion is true. Hence
there is the map f: R, = R, induced from the geodesic [y, x,]. By Lemma
4.3, R, is a ky-covering manifold of R, under f.

2), We prove that R, is R-maximal. Denote all of the elements of G(R,, ¥,)
by h (e =0,1,...... , B, — 1) where h, is the identity and k, is the order. By
1), 1 < %k, < oo, Now suppose %k, > 1. We take a constant & < es(y,)/2, which
becomes at each y, a normal S-radius, such that all N«y,;&) are contained
in Ny(xy;a) and do not intersect one another. Here we can find a unit vector
wy, € Ts(y,) completely variant under Gs(R;, y,) and perpendicular to z, All
of the vector h,w, are perpendicular to u, Put 2, = (y,, w,, &) for a constant
&, 0 < & < & Then there is a map f : R(z,) — R, induced from the geodesic
[20, ¥ol in Ns(y9;€). Under ', R(z,) is the k,-covering manifold of R,. This
is verified by the same way as 2),. Let [z,, x,] be the geodesic in Ny(xy;a).
Then, there is a map £ : R(z)) = R, induced from [z,, x,]. Under the map
7, R(z,) is a kok,-covering manifold of R, This is easily verified, too. These
resulis implies that G(R,, x,) has order == kyk,, so > k,. This being a cont-
radiction, 2, must be one. lLe., R, is R-maximal.

2); In the case where R, is R-maximal, we can see by 2), that the R-
submanifolds R(y) for all ¥ € Ns(x; ; a) are R-maximal.

Let us consider the case where R, is not R-maximal and where there is a unit
vector v € T(x,) which is not completely variant under G(R,, x,). Put y =
(xy, v, 8) where 0 < 8 < a. Then, R(y) is not R-maximal. To prove this, at y
take a normal S-radius & < es(y)/2. On the other hand, there is g (&= 9y) €
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G(R,, x;) such that gv = v. Hence, we can find a unit vector v* € T(x,)
such that y* #=y; and y*, y; € Ny(y; &) for y* = (z,, v*, 8), y& = (a, gv*, §).
Let [3*, y] be the geodesic in Ny ; b). Displace [y*, v] parallelly along a
curve of class D' in R(y¥) joining »* to yi. At yf we obtain the geodesic
[vi, y'] Of course [y, y] < S(xy). As ds(y, y) < efy), we have y = y. This
means that the order of G(R(y), y) is not one. So, R(y) is not R-maximal.

3) Take an S-submanifold S of M. In S let S° be the subspace consisting
of all x € § such that R(x) is R-maximal. By 2),, S° is open in S. We
prove that in S the closure of 8° is S. It suffices to consider the case only
where S — S° is non-empty. Take x;, € S — S° and at x, a normal S-radius
¢ < efxy)/2. We put R, = R(x,). The order of G(R,, x,) is greater than one.
Leit V° be the set of all vectors of T«(z,), each of which has length < ¢
and is completely variant under G(R,, z,). Then, expsV°® = 8 Ny(xy: ¢)
by 2)s, 2);. From Lemma 4.5, we can see that in Ns(z,; ¢) the closure of
expsV? is Nz, ; ¢). So, x, is contained in the closure in S of 8°. Accordingly
our assertion is proved.

Now, by Lemma 3.3 M° is regarded as the union set of {R(x)|x € S°}.
From the above facts and Lemma 3.1, M° is an open submanifold of M whose
closure is M.

Next, we prove that AM° is connected. For this, it suffices to show
that any two points x,, £, € S° are joined by a curve in M’ Let &« be a
curve in S joining x; to x,. Cover a by a finite number of normal S-neighbor-
hoods N.(yx: a) W =1,2,...... , h) where y, € a, ay < ef{y,)/2. For some \ ;
if yo € 8% Ns(yr; ay) ©S° by 2),. If y\ & S°, we denote by W, the subspace
of M which is the union set of {R(z){x € 8" N Ns(y,; ar)}. Moreover let
V% be the set of all vectors of T«(y,), each of which has length < @, and
is completely variant under G(R(y,), y,). Here, expsV% = S° N No(yr; an) If
we give T'(y,) the topology by regarding as FEuclidean space, V% has the
same property as the part of V° in Lemma 4.5. Hence, we can see that W,
is open in M and connected. These facts, together with the property that in
S the closure of §° is S, show that z,, x, are joined by a curve in M°. So,
M?® is connected.

4) Take x, € S° and at x, a normal S-radius a < es(x,)/2. Then, Ns
(xo; @) = S® by 2),. For 2 € Ny ; a) let [z,, 2] be the geodesic contained
in Nz, ; a). Then there is the map f.: R(xy) — R(2) induced from [z,, z].
This map f, is an isometric homeomorphism by Lemma 4. 4. Denote R(x,) X
Ngx, ; a) by V(x,). Hence, any x € V(x,) is represented by a pair (y, 2)
where y € R(x,), = € Ns(xy ; a). Define a map

fi Vixo) = M° by flx) = fAy)

The map f is one-to-one. For, otherwise, there are z,, x, € V(x,), x,== x,,
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such that f(z,) = f(x,). Represent x; by (y,, ;) and x, by (y,, z;). Hence
Fulyy) = Fulys), so R(z1) = R(z,). As 2, 2, € Ns(zo ; a) and R(z,) N Nz ; a)
consists of z, only, we have z; = z,. It follows that y, =y,. lLe, x;= 2,
This is a contradiction. So, f is one-to-one. It is verified that £ is an isometric
into-homeomorphism such that f(R(x,), z) = R(z) for all z € Ns(x, ; a),
Sy, Nfzo; a)) < S(y) for all y € R(xy).

In S° if , y € S° belong to the same R-submanifold, we say that they
are equivalent to each other. By this equivalence relation, we construct the
quotient space of S° and denote it by B. Then, B becomes a manifold and
over B a Riemannian metric is naturally indued from S° Thus B is regarded
as a connected Riemannian s-manifold of class C'. Next, for any x € M°, let
[x] denote the point of B representing R(x) 1 S°. Then the map

7 : M° — B defined by =(zx) = [x]

is an onto-map. Thus we can prove that AM° becomes a fibre bundle where
each fibre is an R-submanifold, the base space is B, and the projection is .
The proof is omitted, as it is too long to give here (cf. [5]).

5) If M = M°, our theorem holds good, M being of R-fibred type. So it
remains to consider the case where M == M°. For x € M — M°, the order of
G(R(x), x) is not one. Hence by 2), it follows that any S-neighborhood of x
contains at least two points of an R-submanifold which is contained in M°.
This shows that there is no subspace, D M°, == M° which is a union set of
R-submanifolds and a fibre bundle where each fibre becomes an R-submanifold.
Accordingly, M is of almost R-fibred type with kernel M?°. This completes
the proof of our theorem.

THEOREM 2. In M suppose that the topology of at least one R-sub-
manifold does not coincide with the relative one induced from M. In all
of such R-submanifolds let M° be the subspace of M which is their union
set. Then M° is a connected open submanifold of M whose closure is M,
and the maximal subset of M in which each point x is a limit point of
I(x) relative to S(x). In other words, M is of almost R-clustered type with
kernel M°.

PROOF. In the case where the topology of every R-submanifold does
not coincide with the relative one induced from M, ed{x) =0 for all x € M
by Lemma 4.1. So, M is of R-clustered type. Our theorem holds good.
Accordingly consider the other case. Then, there is at least one R-submanifold
R, whose topology coincides with the relative one. Let R, denote an R-sub-
manifold whose topology does not coincide with the relative one.

1) For x4 € R,, we have efx,) > 0 by Lemma 4.1. Let us prove that
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G(R,) is infinite, i.e., countable. Take y, € R, N S(xy), so es{y,) = 0. Let [y,,
xy] be a minimizing geodesic in S(x,). Put L = ds(vy, xy). Let a be a normal
S-radius at y,. We denote N«(y,; @) N R, by {y|Ar=0,1,2,...... }, it being
countable. For each M let B\ be a curve of class D’ in R; joining y, t0 y,.
Displace [, x,] parallelly along 8,. As the locus of the terminal point x,
we obtain a curve ar, and at y, the geodesic [y,, x\]. x, is the terminal point
of ay and by Lemma 3.2, ay © R,. Moreover, {z,|A=0,1,2,...... b < Kay),
and C Cy(yy, a + L). From the compactness of Cy(yy, a + L) and Lemma

4.1, the set {x\|A=0,1,2,...... } must be finite. Hence, there is an infinite
subset {A;, Ag,.-.... D VR | of {0,1,2,...... } such that x,, =z, = ...... =
Loy = oenne Displace the geodesic [y., )] = ¢(xs, v, ¢) (c > 0) parallelly

along each product curve a;l]'a;\,(. At z,, = z,, we obtain the geodesic [y,
ZxnJ"% {y,! being however infinite, it follows that the vector v, is infinitely
variant under G(R,, z),). So, G(R,, x,), i.e., G(R,) is infinite.

From this proof, it is seen that if we put [yo, Tl * = 9(xy, v, ), the
vector v, is infinitely variant under G(R,, ).

2) Take any S-submanifold S. Let S° be the maximal subset of S such-
that each point x satisfies edz) = 0. In our case, S° == S. For any z, € S — 5°,
es(xo) > 0 and G(Ry, x,), Ry = R(x,), is infinite by 1). Take a normal S-
radius a at x,. Let V° be the set of all vectors in T«x,) with lengths < a,
infinitely variant under G(R;, x,). Then, expsV°® = Ns(z,; a) N S°. For, it
is obvious that exps V' C Nyxp; a) N S°. Take any y, € Nfxy; a) N S
I g(xy, vy, 8) is the geodesic [xy, y,] in Ndy, ; a), the vector v, is infinitely
variant under G(Ry, z,) by 1). Le., y, € expsV°’. So, our assertion is true.
Here, by using Lemma 4.6, it is shown that expsV° is a connected open
subset of Ny{x, ; @) and its closure in Ns(x; ; @) contains x,. Accordingly,
in S the closure of S° is S.

Moreover, S° is open in S. For, if y, € S§° is not an inner point of S°
relative to S, we can find xy € S — S° and a normal S-radius @ at x, such
that y, € Ns(ay ; a). However, N{x, ; a) N S° is a connected open subset of
Ny{xy ; a) containing y,. This is a contradiction. So, S° is open in S.

Next, we prove that S° is a connected subset of S. In fact take two points
xy, Xy € S Let a be a curve in S joining x, to x,. Cover a by a finite number
of normal S-neighborhoods Ng(y.; @), m €a(A=1,2,...... , h), such that if
vy, € 8 for some A, Ny(yr; a) © S° Then, by the properties above, we can
verify that z,, x, are joined by a curve in S° So, S° is connected.

3) By Lemmas 3.3 and 4.1, M? is regarded as the union set of { R(x)| x € S°}
In other words, M° is the maximal subset of A in which each point £ is a
limit point of I(x) relative to S(x). From 2), it follows that M is a connected
open submanifold of M whose closure is M. Therefore M is of almost R-
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clustered type with kernel M°.
Summing up Theorems 1,2, we have
THEOREM 3. M is of almost R-fibred type or almost R-clustered type.

REMARK 2. There exist RS-manifolds of the following respective type:
R-fibred type ; almost R-fibred type (not R-fibred type); R-clustered types ;
almost R-clustered type (not R-clustered type).

5. Fundamental groups and structures. Take any x, € M and put
R, = R(xy), Sy = S(xy). Let ir: Ry— M be the inclusion map. Let i%:
(Ry, xo) = m(M, x,) be the homomorphism induced by the map iz ([4], p. 75).
It is already known that the map i% is into-isomorphic ([2], p. 22). We denote
the image izm,(R,, xo) by im(R,, ;). This is the subgroup of = (M, z).
Let U(M) denote the universal covering manifold of M. Let p denote the
covering map. So U(M) becomes naturally an RS-manifold of dimension 2.
Take a point 7, € p~x,). For the R-, S-submanifolds R(x,), S(z,) of U(M),
R(z,) X S(x,) is a Riemannian manifold of class C'. Then the following
theorem is well-known : There is the isometric homeomorphism

7 R(Zy) x S(Zy) = UM)

of class C? such that j(x, o) =Z for all T € R(Z,y) and iz, T) =T for
all x € S(x,) [1]. Hence, j(R(Zy), T) = R(x) for T € S(Z,) and iz, S(T,)
= S(Z) for each T € R(Z,). Such a map is always denoted by j. The fact above
shows that U(M) is completely decomposed with respect to the R-, S-sub-
manifolds. Now, using these notations, let us prove the following lemma.

LEMMA 5.1. 1) The R-submanifold R(x,) of U(M) is a wuniversal
covering manifold of Ry, where pr = p|R(xy) is the covering map.

2) The subgroups im(R,, x,), i (S, x,) have no common element
except the identity of m (M, x,).

3) If Kx,) is infinite, m(M) is infinite.

PROOF. To prove 1) it suffices to show p(R(Z,)) = R,. R(Z,) being
simply-connected. For £ € R(Z,), take a curve & in R(Z,) joining T, to Z.
Then we can see p{a) C R,. Hence p(R(x,)) < R,. Conversely for x € R, if
we take a curve 8 in R, joining Z, to x, we can find the curve E in R(Z,)

with the initial point Z, such that p(8) = B. Hence, p(R(Z,)) D R,. So, p(R(Zy))
= R,. L.e, 1) is proved.
To prove 2) suppose that ¢ 7, (R,, x,), im(S;, x,) have a common element
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A € 7 (M, x,) which is not the identity. Let az, as be iwo closed curves
in R,, S, respectively, starting from x, and representing A. Then the curves
an, Qs starting from T, such that p(ar) = ar plas) = as, must have the same
terminal point. Moreover, this point is not x,, and &=z C R(Z,), as < S(Z).
This contradicts with the fact that U(M) is completely decomposed. So, 2) is
true.

To prove 3) let us denote I(x;) by {xy|A=0,1,2,...... b, Ix,) being
countable by Lemma 3. 3. For each A, take z, € p™%x,) N R(Z,). As z, € S(x)),
p Wxy) N S(Z,) is non-empty. However, all of Zz, are distinct from one another.
Hence all of S(z,) are distinct from one another by the fact that U(M) is
completely decomposed. Accordingly p *(x;) is infinite and so 7, (M) is infinite.

THEOREM 4. In M suppose that m (M) is finite. Then M is of almost
R-fibred type and further almost S-fibred type.

PROOF. For any z, € M, Ix,) is finite by Lemma 5. 1. Hence, ex{x,) > 0
and efx;) > 0. By Lemma 4.1 and Theorem 1, our theorem is evident.

REMARK 3. There exist RS-manifolds, whose fundamental groups are
finite, of the following respective types: R-fibred type and further S-fibred type;
almost R-fibred type (not R-fibred type) and further S-fibred type ; R-fibred
type and further almost S-fibred iype (not S-fibred type).

In M suppose that all the R-submanifolds are simply-connected. Moreover
if M is of almost R-fibred type, we have

LEMMA 5.2. M is of R-fibred type.

PROOF For any R-submanifold R, G(R) consists of the identity only by
Lemma 4. 2. Hence, all the R-submanifolds are R-maximal. As M satisfies the
assumption of Theorem 1, M is of R-fibred type.

THEOREM 5. In M suppose that the order of w (M) is finite and prime.
Then M is of one of the following ithree structures :

1) R-fibred type, where all the R-submanifolds are simply-connected
and w(S,) for at least one S-submanifold S, is isomorphic to = (M).

2) S-fibred type, where all the S-submanifolds are simply-connected and
7,(Ry) for at least one R-submanifold R, is isomorphic to = (M).

3) R-fibred type and further S-fibred type, where all the R-, S-sub-
manifolds are simply-connected.

PROOF. For an S-submanifold .S,, suppose that .S; is not simply-connected.
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Then it follows that 7 7, (Sy, x,) = m,(M, x,) for any x, € S;. So, R(xy) is
simply-connected by Lemma 5. 1. As x, is any point of .S,, all the R-submanifolds
are simply-connected by Lemma 3.3. By Theorem 4 and Lemma 5.2, M is
of R-fibred type. So, M is of the structure 1). Similarly, if we suppose that
an R-submanifold R, is not simply-connected, we have the structure 2).

Finally, suppose that all the R-, S-submanifolds are simply-connecied.
Then, by Theorem 4 and Lemma 5.2, M is of the structure 3). This completes
the proof of our theorem.

REMARK 4. There exist RS-manifolds, in which the orders of the
fundamental groups are finite and prime, such that the conditions 1), 2), 3)

of Theorem 5 hold good respectively. (Especially, for a model in the case 3)
see §4, [2])

THEOREM 6. In M suppose that m (M) is infinite cyclic. Then M is of
one of the following structures :

1) R-fibred type, where all the R-submanifolds are simply-connected and
m,(S,y) for at least one S-submanifold S, is infinite cyclic.

2) S-fibred type, where all the S-submanifolds are simply-connected and
7 (R,) for at least one R-submanifold R, is infinite cyclic.

3) All the R-, S-submanifolds are simply-connected.

PROOF. For any R-submanifold R, 7 (R) is the group of identity only
or an infinite cyclic group, being isomorphic into 7, (M). This holds good for
any S-submanifold, too. Moreover, there is not a pair of R-, S-submanifolds
whose fundamental groups both are infinite cyclic. For, if such a pair (R,, Sp)
does exist, we can find A € 7, (M, x,), , € Ry N S,, which is not the identity
and belongs to both of {7, (R,, x,) and im,(S,, xo). This is contrary to Lemma
5.1. So, by Lemma 3.3 the following three cases are considered :

a) All the R-submanifolds are simply-connected and 7,(S,) for at least
one S-submanifold S, is infinite cyclic.

b) All the S-submanifolds are simply-connected and 7, (R,) for at least
one R-submanifold R, is infinite cyclic.

c¢) All the R-, S-submanifolds are simply-connected.

The case c) being the same as 3), it suffices to prove that M in the case
a) is of R-fibred type. To prove this, take any z, € S,. Let a be a closed
curve with endpoint x, which is a geodesic arc representing a generator of
(M, zy). As im(S,, xy) is infinite cyclic, we can find an integer m > 0
such that the product curve a™ represents a generator of i m(Sy; z,). Let
Zo € ULM) be a point of p % (x,). Let El be the curve starting from 7z, such
that p(8,) = a™. Here, the terminal point z, of ,51 is contained in the S-sub-
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manifold S(Z,) of U(M) and £~ xy) N El consists of m + 1 points. Accord-
ingly, we can find a part CiZ,; ¢) © R(Z,) such that j(C«F; ¢) X S(Zo))
Dp Y (xe) N El. Next Ez be the curve startinng from Z, such that p(Ez)
= a". The terminal point of Eg is also contained in S(Z;). Hence, j(CxZ; ;
c) XS(Zo)) D p xy) N By, Thus we can verify that j{(CiZy; ¢) X S(z0)

= P—](xo)-
Now suppose that es(x,) = 0. For any constant d >0, we can find a
countable subset {zy|A =0,1,2,...... | of I(x,) such that ddx,, x,) < d. For

each x,, there is z, € S(Z,) N p7! (x.) where d«Zy, 7,) < d. By Lemma 5. 1,
R(Z,) contains a point of p~(x,). Here, all of Z, are distinct from one another.
Hence, all of R(z.) are distinct from one another by the fact that U(M) are
completely decomposed. Accordingly, a part j(Cw(Zo; ¢) X Cs(Zy; d)) of
U(M) contains an infinite subset of p~%x;). It being however compact, this
contradicts with the property of covering. So, exx,) > 0. Since x; is any point
of S, and the R-submanifolds of M are all simply-connected, M is of R-fibred
type by Lemmas 4.1, 5.2, and Theorem 1. This completes the proof of our
theorem.

REMARK 5. There exist RS-manifolds, whose fundamential groups are
infinite cyclic, such that the conditions 1), 2), 3) of Theorem 6 hold good
respectively

In Euclidean d-space E® suppose that there are given a point set Z
= {P,|A = integer} and a congruent transformation 7T leaving P, fixed, such

—_— —_—

that the vector P.P,., is equal to the vector T% Py P, for each A. (P)Js are
not necessarily distinct from one another.) Then we have

LEMMA 5.3. There are two cases where Z is bounded or wunbounded.
In the latter case, P, is not limit point of Z.

PROOF. We take an orthogonal coordinate system in E? with origin P,.
where T is represented by the following matrix :
E,
- E2 0
(6.

0 .
(6:)

where E,, E, denote the unit matrices of degrees r,, r, respectively and

cos 6, — sin 6,
6.)={ .
.sin 8, cos 6
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for 0 <8, <m(=12,... , k; rnn+ r+ 2k =d). So, the matrix represen-

tation of T is immediately obtained. Put v, = P Piir. Let (v2) denote the
vector v, and let (P}) denote the point F,, where m = 1,2,...... , d. Here, if

ASO, Pr=o + ...... +uly; A0, Pr=— (0" + ... + o). Then
for all A, we can verify the following facts: a) PR =X of (B =1,...... , 7), b)
[Pl < N(y=mr+1,... , d) where N is a constant independent of r, A,

Hence, in the case r, +0 ; if v§ = 0 for all B, Z is bounded, and if v5=k0
for some B, Z is unbounded and P, is not limit point of Z. Next, in the case
m = 0, Z is bounded. So our lemma holds good.

THEOREM 7. In M suppose that w(M) is infinite cyclic and that all
the R-submanifolds are Euclidean space forms. Then M is of R-fibred type
or S-fibred type, both having simply-connected fibres.

PROOF. It suffices to prove our theorem in the case 3) of Theorem 6.
Accordingly, suppose that all the R-, S-submanifolds are simply-connected. For
x, € M we take a closed curve a issuing from x, which is a geodesic arc
representing a generator of 7w, (M, x,). Let B~ be the curve in U(M) such that

p(B~) is the product curve

Then p Y (x,) C E WE denote all of the points of p7(x,) by Z\(A = integer),
where the subarc of 8 from Z, to Z.+: is mapped to the arc a by p. Any
Z € U(M) is represented by j(P, Q) where P € R(Z,), Q € S(z,). Define a
map

f: UM) = R(z,) by f(z) = P.

We put P, = f(z,). The curve f (75') contains P, and is a broken line in the
Euclidean 7-space R(x,). (Note that in our case all the R-submanifolds are
Euclidean 7spaces.) Moreover we can see that the point set Z = | P,|A = integer}
satisfies the condition of Lemma 5.3. Here T is the same as the congruent
transformation in Tw(x,) which is induced from the element associated with «
(or a™) of the homogeneous holonomy group of M at ;.

1) The case where Z is bounded. Take a part Ci(x, ; ¢) of R(Z,) which
contains Z. Hence, a part j(CxZ,: c) X S(Z,)) of U(M) contains p~'(x,). Then
es(yo) > 0, for any y, € S(x,). For, otherwise, we can find a countable subset
ImIA=0,1,2,...... b of Ky,) such that dy,, y\) < d for a constant d > 0.
For each y, there is 3\ € S(z,) N p~(y,) such that d(¥,, ) < d. By Lemma
5.1, R(y)) contains a point of p~(v,). Here all of 3, are distinct from one
another. Hence all of R(¥,) are distinct from one another by the fact that
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U(M) is completely decomposed. Accordingly a part j(Cw«(Zy ; ¢) X Cs(5, ; d))
of U(M) contains an infinite subset of p™'(y,). It being however compact, this
contradicts with the property of covering. So, es(y,) >0 for any y, € S(z).
By Lemmas 4.1, 5.2, and Theorem 1, M is of R-fibred type.

2) The case where Z is unbounded. Then by Lemma 5.3, P, is not
limit point of Z. So there is a part Cx(Z,; ¢) of R(F,) such that R(Z,) — Cx(Zo; ¢)
D Z. Take a positive constant d < ¢/3. By using the property of covering,
we can see that ex(x) > 0 for any & € Cx(x, ; d). From Lemma 4. 1, Theorems
1 and 2, and Lemma 5.2, M is of S-fibred type. This completes the proof.

REMARK 6. There exist RS-manifolds, whose fundamental groups are
infinite cyclic and whose R-submanifolds are Euclidean space forms, of the
following respective types: R-fibred type (not S-fibred type) ; S-fibred type (not
R-fibred type) ; R-fibred type and further S-fibred type.

Finally the author wishes to express his sincere thanks to Prof. S.Sasaki
for his kind guidance and encouragement.
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