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cDepartamento de Matemática Aplicada, Universidad Complutense de Madrid,

28040 Madrid, Spain.

Abstract

We study the stability of attractors under non-autonomous perturbations that are
uniformly small in time. While in general the pullback attractors for the non-
autonomous problems converge towards the autonomous attractor only in the Haus-
dorff semi-distance (upper semicontinuity), the assumption that the autonomous at-
tractor has a ‘gradient-like’ structure (the union of the unstable manifolds of a finite
number of hyperbolic equilibria) implies convergence (i.e. also lower semicontinuity)
provided that the local unstable manifolds perturb continuously.

We go further when the underlying autonomous system is itself gradient-like, and
show that all trajectories converge to one of the hyperbolic trajectories as t → ∞.
In finite-dimensional systems, in which we can reverse time and apply similar ar-
guments to deduce that all bounded orbits converge to a hyperbolic trajectory as
t → −∞, this implies that the ‘gradient-like’ structure of the attractor is also pre-
served under small non-autonomous perturbations: the pullback attractor is given
as the union of the unstable manifolds of a finite number of hyperbolic trajectories.

Introduction

In autonomous systems the theory of global attractors is well-developed for
both ordinary and partial differential equations (e.g. Chepyzhov & Vishik,
2002; Hale, 1988; Stuart & Humphries, 1996; Temam, 1988). Nevertheless,
there are only detailed results on the structure of such attractors for gradient-
like systems: in this case the attractors are formed from the union of the un-
stable manifolds of the equilibrium points. While results on the upper semi-
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continuity of attractors under perturbation (no ‘explosion’) hold for a wide
class of equations, these gradient-like examples are the only systems for which
full continuity results are available.

Here we show that similar results hold even when the perturbations are non-
autonomous. The key assumption is that the local stable and unstable man-
ifolds of hyperbolic equilibria perturb in a smooth way, and we present our
main results in an abstract form which we believe serves to keep both the
hypotheses and the arguments clearer than they would be in particular exam-
ples.

In gradient-like systems every trajectory tends to one of the equilibria. Ball
& Peletier (1977) showed that a similar result holds for systems that are
asymptotically autonomous, with a limit system that is gradient-like. Here we
show a similar result for small non-autonomous perturbations of gradient like
systems, namely that all solutions tend to distinguished hyperbolic trajectories
corresponding to the equilibria of the unperturbed system. Ball & Peletier’s
result is then a corollary of ours.

In finite-dimensional systems one can reverse the sense of time. It follows
in this case that every trajectory defined for all time also tends to one of
these hyperbolic trajectories as t → −∞ . In this situation we can show that
the structure of the autonomous attractor is also preserved under small non-
autonomous perturbations: the pullback attractor is the union of the unstable
manifolds of the hyperbolic trajectories.

To end the paper we discuss the application of our results to finite and infinite-
dimensional semilinear equations on Banach spaces, making use of recent re-
sults on the stability on local stable and unstable manifolds due to Carvalho
& Langa (2006).

Standing assumptions

Throughout the paper we will assume that all of the conditions in this section
are satisfied.

Let B be a Banach space with norm ‖·‖. Suppose that we have an underlying
autonomous dynamical system {S0(t)}t≥0 defined on B, where

lim
t↓0

S0(t)x = S0(0)x = x, x ∈ B S0(t + s) = S0(t)S0(s) for all t, s ≥ 0,

and for each t ≥ 0 the operator S0(t) is continuous from B into B. We assume
that this system has a global attractor A0, i.e. a compact invariant set that
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attracts the orbit of all bounded subsets X of B,

dist(S0(t)X,A0) → 0 as t →∞,

where

dist(A,B) = sup
a∈A

inf
b∈B

‖a− b‖.

Our main object of study will be a family of non-autonomous dynamical sys-
tems on B with solution operators Sη(t, s) satisfying

lim
t↓s

Sη(t, s)x = Sη(s, s)x = x, x ∈ B

and

Sη(t, s) = Sη(t, r)Sη(r, s) for all t ≥ r ≥ s,

that converge to S0(t) in the strongly uniform sense that

sup
s∈R

‖Sη(t + s, s)u0 − S0(t)u0‖ → 0 (1)

as η → 0 uniformly for t ∈ [0, T ] and u0 ∈ X (with X any bounded subset of
B). We will write ‘Sη ⇒ S0’ as a shorthand for this convergence.

We assume that for each Sη with η small enough there exists a pullback at-
tractor Aη(·): this is a family of compact sets Aη(t) that is invariant in the
sense that

Sη(t, s)Aη(s) = Aη(t) for all t ≥ s,

and attracts all bounded sets in the pullback sense, i.e.

dist(Sη(t, s)X,Aη(t)) → 0 as s → −∞.

See, for example, Chepyzhov & Vishik (2002), Crauel, Debussche, & Flandoli
(1997), Schmalfuss (2000), Kloeden & Schmalfuss (1998).

Outline of results

Under the condition that the attractors Aη(t) are uniformly bounded (in both
η and t) we first prove (Theorem 1.1) that the attractor of S0(·) is upper
semicontinuous under non-autonomous perturbations, i.e. that

sup
t∈R

dist(Aη(t),A0) → 0 as η → 0.

All of our remaining results are for perturbations of systems with what we
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term gradient-like attractors, i.e. in which

A0 =
n⋃

j=1

W u(ej),

where W u(ej) denotes the unstable manifold of a hyperbolic equilibrium point
ej.

We also make a key additional assumption that the local unstable manifolds
of hyperbolic equilibria perturb continuously. In particular, the hyperbolic
equilibria ej of the autonomous system are replaced by bounded complete
(i.e. defined for all t ∈ R) trajectories eη

j (t), the linearisation around which
enjoys an exponential dichotomoy.

Under these conditions we can also prove (Theorem 2.3) that the attractor is
lower semicontinuous, and so

sup
t∈R

distH(Aη(t),A0) → 0 as η → 0,

where distH is the Hausdorff metric,

distH(A,B) = max(dist(A, B), dist(B,A)). (2)

Next we consider in more detail the possible limits of trajectories in small
non-autonomous perturbations of gradient systems (which, of course, have
gradient-like attractors). For the underlying autonomous system it is known
that all trajectories converge to an equilibrium as t → +∞, and that all
bounded orbits defined for all t ∈ R (which in fact form the elements of the
attractor) also converge to an equilibrium as t → −∞.

In Theorem 3.7 we obtain similar behaviour of the perturbed systems, show-
ing that every trajectory is asymptotic as t → +∞ to one of the complete
trajectories eη

j (t).

In finite-dimensional systems one can simply reverse the sense of time, and
deduce that every bounded complete trajectory is also asymptotic to one of
the eη

j (t) as t → −∞. It follows that in this case the pullback attractors for
the perturbed systems have the same ‘gradient-like’ form as for the underlying
autonomous equation, namely

Aη(t) =
n⋃

j=1

W u(eη
j )(t).

In the final section we show how our results apply to semilinear equations on
Banach spaces, also discussing the case of equations that are asymptotically
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autonomous with a gradient-like limit. Here we recover a result due to Ball &
Peletier (1977), showing that every trajectory tends to one of the equilibria of
the limit system.

While this paper leaves open the significant problem of proving a similar ‘struc-
ture theorem’ for infinite-dimensional systems, it does give the first examples
of pullback attractors in non-autonomous equations that have a non-trivial
but well-understood structure. A proof of the infinite-dimensional version of
the structure theorem is given in Carvalho et al. (2006).

1 Upper semicontinuity

The argument showing upper semicontinuity of attractors is very simple, and
follows that in the autonomous case (e.g. Theorem 10.16 in Robinson, 2001;
Theorem I.1.2 in Temam, 1988). We note that the main assumption in the
theorem, that the pullback attractors are uniformly bounded, is a strong one.
There are, however, interesting non-autonomous systems for which the pull-
back attractor is unbounded as |t| → ∞, see for example Langa, Robinson,
& Suárez (2002). However, restricting to such uniformly bounded attractors
does eliminate the possibility of certain pathologies (see the comment after
Lemma 2.1).

Theorem 1.1 Suppose that Sη ⇒ S0 as η → 0 (in the sense of (1)). Then
the following two statements are equivalent: (i) there exists a bounded subset
B of B such that

Aη(t) ⊆ B for all t ∈ R and all 0 ≤ η ≤ η0 (3)

and (ii) the attractor A0 perturbs ‘upper semicontinuously’:

sup
t∈R

dist(Aη(t),A0) → 0 as η → 0. (4)

In the proof we denote by N(U, ε) the ε neighbourhood of U , i.e.

N(U, ε) = {x ∈ B : dist(x, U) < ε}.

Proof. It is clear that (4) implies (3), so we concentrate on showing that (3)
implies (4). Given an ε > 0 there exists a T > 0 such that

S0(T )B ⊆ N(A0, ε/2).

5



Now choose η0 such that

sup
s∈R

‖Sη(T + s, s)u0 − S0(T )u0‖ < ε/2.

Then given any u ∈ Aη(t) we have u = Sη(t, t − T )v, where v ∈ Aη(t − T ).
Since v ∈ B, it follows that

S0(T )v ∈ N(A0, ε/2) and ‖Sη(t, t− T )v − S0(T )v‖ < ε/2,

and so u ∈ N(A0, ε) and the result follows. ¤

A related result, weakening the requirement that Aη(t) is uniformly bounded
in t and obtaining convergence uniformly for t in bounded subsets of R is given
in Caraballo & Langa (2003); see also Cheban (2004).

2 Gradient-like attractors and lower semicontinuity

In order to proceed further, we consider the case of a gradient-like attractor:
We assume that the attractor A0 is given as the closure of the union of the
unstable manifolds of a finite number of hyperbolic stationary points {ej}n

j=1,

A0 =
n⋃

j=1

W u(ej).

Central to our argument is the persistence of hyperbolic fixed points and the
continuity of their stable and unstable manifolds under small non-autonomous
perturbations.

We say that x(·) : R→ B is a complete trajectory of Sη(·, ·) if

Sη(t, s)x(s) = x(t) for all t ≥ s.

The unstable manifold of such a complete trajectory x(t), W u(x(·))(t), is de-
fined as

W u(x(·))(s) = {v ∈ B : Sη(t, s)v is defined for all t ≤ s

and ‖Sη(t, s)v − x(t)‖ → 0 as t → −∞}.

We will require the following simple result, guaranteeing that the unstable
manifold of any complete trajectory that is bounded as t → −∞ must be
contained in the pullback attractor.
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Lemma 2.1 Suppose that x(t) is a complete trajectory of Sη, such that for
some M > 0, ‖x(t)‖ ≤ M for all t ≤ 0. Then W u(x(·))(t) ∈ Aη(t) for all
t ∈ R.

Proof. Take v ∈ W u(x(·))(s). Then by definition we have

‖Sη(t, s)v − x(t)‖ ≤ M for all t ≤ t∗(s, v)

and hence ‖Sη(t, s)v‖ ≤ 2M . It follows that for every t ≤ t∗, Sη(t, s)v is
contained in the fixed bounded set

B = {x : ‖x‖ ≤ 2M}.

Since

dist(S(s, t)B,Aη(s)) → 0 as t → −∞,

it follows that v ∈ Aη(s) as claimed. ¤

We note that the counterexample in Section 5 of Langa et al. (2002) shows
that the requirement that x(t) is bounded in the past is necessary.

2.1 Lower semicontinuity

We now show that gradient-like attractors are lower semicontinuous under
non-autonomous perturbations. The argument is based on the autonomous
proof of Humphries (see Stuart & Humphries, 1996; and see also Hale &
Raugel, 1989), for which the main additional ingredient is an assumption on
the behaviour of the local unstable manifolds of the original equation under
perturbation.

Since this assumption is key to all that follows, we give it a formal status. We
use B(x, δ) to denote the open ball in B of radius δ centred at x.

Definition 2.2 Let the standing assumptions hold. If e is an equilibrium point
of S0 we say that the manifold structure near e is stable under perturbation
if there exists a δ > 0 such that for any ε with 0 < ε < δ there exists an η0

such that for all 0 < η < η0: (i) there is a complete trajectory eη(·) of Sη with

‖eη(t)− e‖ < ε for all t ∈ R,

and this is the unique complete bounded trajectory lying entirely within B(e, δ),
(ii) the local unstable manifold of e perturbs continuously:

distH(W u(e) ∩B(e, δ), W u(eη(·))(t) ∩B(e, δ)) < ε for all t ∈ R,
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and (iii) if for some t∗ we have

Sη(t, s)us ∈ B(e, δ) (5)

for all t ≤ t∗ then

‖Sη(t, s)us − eη(t)‖ → 0 as t → −∞,

while if (5) holds for all t ≥ t∗ then

‖Sη(t, s)us − eη(t)‖ → 0 as t → +∞.

We are now in a position to prove a general lower semicontinuity result.

Theorem 2.3 Suppose that A0 is gradient-like and Sη ⇒ S0. Assume further
that the manifold structure near each equilibrium ej, j = 1, . . . , n, is stable
under perturbation. Then

sup
t∈R

dist(A0,Aη(t)) → 0 as η → 0.

Note that in the proof we in fact only use parts (i) and (ii) of the regularity
assumption.

Proof. We have to show that there exists an η0 such that

sup
t∈R

dist(A0,Aη(t)) < ε for all η < η0. (6)

Since A0 is compact we can find a finite set of points {xj}M
j=1 ∈ A0 such that

A0 ⊂
M⋃

j=1

B(xj, ε/4).

To prove (6) it suffices to show that for each j = 1, . . . , M , every η < η0 and
every t ∈ R we can find a point yj(t) ∈ Aη(t) such that

‖xj − yj(t)‖ < 3ε/4. (7)

Since xj ∈ A0 and

A0 =
n⋃

k=1

W u(ek),

there exists a point zj ∈ W u(ekj
) (for some integer kj with 1 ≤ kj ≤ n) such

that ‖xj−zj‖ ≤ ε/4. Since zj ∈ W u(ekj
), there exist tj > 0 and ζj ∈ W u(ekj

)∩
B(ekj

, ρ/2) such that zj = S0(tj)ζj. Since there are only a finite number of the
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xj there exists a fixed time T such that tj ≤ T for all j = 1, . . . ,M . Note that
the choices of ζj, tj, and T depend only on the autonomous system, i.e. are
independent of t and η.

Since S0 is continuous and A0 is compact there exists a µ > 0 such that

sup
t∈[0,T ]

‖S0(t)z − S0(t)u‖ < ε/4

for all u ∈ A0 and all z with ‖z − u‖ < µ.

By assumption the local unstable manifolds near the hyperbolic stationary
points {ej} of A0 perturb continuously. Let δj > 0 be the δ occurring in
Definition 2.2 applied near ej, and let δ = minj δj. For simplicity of notation
we write eη

j for the time-dependent complete trajectory, and set

W u
loc(e

η
j ) = W u(eη

j (·)) ∩B(ej, δ)

(and similarly for e0
j = ej). Then there exists an η1 > 0 such that for each j

and for every η < η1 there exists a complete trajectory eη
j (·) such that W u

loc(e
η
j )

lies within µ of W u
loc(ej).

It follows that for each t ∈ R and for each η < η1 there exists a ζη
j (t) ∈ W u

loc(e
η
k)

with
‖ζη

j (t)− ζj‖ < µ.

We also know that Sη ⇒ S0; since A0 is bounded so is N(A0, µ), and thus
there exists an η2 > 0 such that

sup
u0∈N(A0,µ)

sup
0≤t−s≤T

‖Sη(t, s)u0 − S0(t− s)u0‖ < ε/4

for all η < η2. Set η0 = min(η1, η2).

Our candidate point in Aη(t) close to xj is yj(t) = Sη(t, t− tj)ζj(t− tj). This
is contained in Aη(t) since ζj(t− tj) ∈ W u(eη

j )(t− tj) ⊂ Aη(t− tj) and Aη(·)
is positively invariant.

Since tj ∈ [0, T ] it follows for every j that for η < η0 we have

‖yj(t)− zj‖= ‖Sη(t, t− tj)ζj(t− tj)− S0(tj)ζj‖
≤‖Sη(t, t− tj)ζj(t− tj)− S0(tj)ζj(t− tj)‖

+‖S0(tj)ζj(t− tj)− S0(tj)ζj‖
< ε/4 + ε/4 = ε/2,

and since ‖xj − zj‖ < ε/4 we obtain (7). ¤

Combining the previous two results we obtain continuity of gradient-like at-
tractors under perturbation:

9



Corollary 2.4 Suppose that A0 is gradient-like and that Sη ⇒ S0. Assume
further that there exists a bounded subset B of B such that

Aη(t) ⊆ B for all t ∈ R and all 0 ≤ η ≤ η0

and that the unstable manifolds near the stationary points {ej} are stable under
perturbation. Then

sup
t∈R

distH(Aη(t),A0) → 0 as η → 0.

3 Asymptotic behaviour of individual trajectories and the struc-
ture of the non-autonomous attractor

We now show that for sufficiently small perturbations of gradient-like systems
every trajectory is asymptotic (as t → ∞) to a complete trajectory that
corresponds to an equilibrium point of the unperturbed autonomous system.
We also show that in finite-dimensional systems a similar result holds for
complete bounded trajectories as t → −∞. This latter result is perhaps more
significant, since it enables us to show that the perturbed attractors still have
a ‘gradient-like’ structure, at least in the finite-dimensional case.

We say that S(·) is gradient-like (cf. Hale, 1988) if there exists a continuous
Lyapunov function V : B → R such that

(i) V is bounded below and V (u) →∞ as ‖u‖ → ∞,
(ii) V (S(t)u0) ≤ V (u0) for all t ≥ 0, and
(iii) if V (S(t)u0) is constant for all t ≥ 0 then u0 is an equilibrium.

A semigroup S(·) is said to be asymptotically compact (cf. Ladyzhenskaya,
1991; and the ‘asymptotically smooth’ systems of Hale, LaSalle, & Slemrod
1972) if given any bounded subset X of B and sequences xk ∈ X and tk →∞
there exists a subsequence

S(tkj
)xkj

that converges. Any finite-dimensional semigroup with a bounded absorbing
set is asymptotically compact; in an infinite-dimensional system this is much
weaker than the existence of a compact absorbing set.

3.1 Properties of gradient-like autonomous systems

In the proof of our result on omega (and alpha) limit sets we will need some
more detailed properties of the dynamics of gradient-like autonomous systems.
In all the results that follow we assume that
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• S(·) is asymptotically compact;
• S(·) is gradient-like (as above);
• there are only a finite number of equilibria {ej}; and
• all of the equilibria are hyperbolic.

We begin with the following theorem which, given our terminology, is unsur-
prising. For a proof see Theorem 3.8.5 in Hale (1988).

Theorem 3.1 The attractor A0 of a gradient-like system S(·) is gradient-like.

We quote the following standard result, guaranteeing that forwards and back-
wards in time all trajectories are asymptotic to equilibria (for a proof see
Lemmas 3.1.2 and 3.8.2 in Hale, 1988).

Lemma 3.2 Given any u0 ∈ B we have

S(t)u0 → ej

as t → +∞ for some j. If in fact u0 ∈ A0 and is not an equilibrium point
then we also have

S(t)u0 → ek

as t → −∞, for some k 6= j.

We now show that all trajectories enter a neighbourhood of one of the equi-
libria in a uniform time.

Lemma 3.3 Given any bounded set B and any δ > 0 there exists a time
TB,δ such that if u0 ∈ B then for some 0 ≤ t ≤ TB,δ and some k we have
S(t)u0 ∈ B(ek, δ).

In the proof we write Nδ(E) for ∪jB(ej, δ) (the δ-neighbourhood of the equi-
libria).

Proof. Suppose that the result is not true. Then there must exist a sequence
un ∈ B and tn →∞ such that S(t)un /∈ Nδ(E) for all t ≤ tn.

Since S(·) is asymptotically compact, it follows that S(tn/2)un → u∗. However,
it cannot be the case that S(T )u∗ ∈ Nδ/2(E) for any T > 0: for n large enough
T < tn/2 and one can use continuous dependence on initial conditions to
ensure that

‖S(T )u∗ − S(T )[S(tn/2)un]‖ < δ/2.

By assumption ‖S(T +tn/2)un−ej‖ > δ for each j, and so ‖S(T )u∗−ej‖ > δ/2
for each j, contradicting Lemma 3.2. ¤

The next result (whose proof follows that of Lemma 3.8.4 in Hale (1988) very
closely) shows (essentially) that if a trajectory moves out of a neighbourhood
of one of the equilibria then it can never return.
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Lemma 3.4 For each equilibrium ej there exist ρj and σj with 0 < ρj < σj

such that if for some t0 > 0

u0 ∈ B(ej, ρj) and S(t0)u0 /∈ B(ej, σj)

then S(t)u0 /∈ B(ej, ρj) for all t ≥ t0.

Proof. Choose σj > 0 such that S(t)u0 ∈ B(ej, σj) for all t ≤ 0 implies that
u0 ∈ W u

loc(ej). There exist K, α > 0 such that

dist(S(t)u0,W
u
loc(ej)) ≤ Ke−αt (8)

while S(t)u0 ∈ B(ej, σj).

For any δ with 0 < δ < σj there exists a t2(δ) such that

S(t)B(ej, δ) ⊆ B(ej, σj) for all 0 ≤ t ≤ t2.

Define

Wη = {x : δ ≤ ‖x− ej‖ ≤ σj, dist(x,W u
loc(ej)) < η},

and choose η such that

sup
x∈Wη

V (x) < V (ej).

Now choose t1 such that Ke−αt1 < η, and choose ρj small enough that

S(t)B(ej, ρj) ⊆ B(ej, δ) for all 0 ≤ t ≤ t1 (9)

and

sup
x∈Wη

V (x) < inf
y∈B(ej ,ρj)

V (y). (10)

Now suppose that u0 ∈ B(ej, ρj) but S(t0)u0 /∈ B(ej, σj). Then there must
exist a t∗0 ≤ t0 and an ε > 0 such that

‖S(t)u0 − ej‖ ≤ σj for all 0 ≤ t ≤ t∗0

and

‖S(t)u0 − ej‖ > σj for all t∗0 < t < t∗0 + ε.

In particular it follows from (9) that t∗0 > t1, and so, using (8), for some t3
with t1 < t3 < t∗0 we have S(t3)u0 ∈ Wη. It follows from (10) and the fact that
V is non-increasing that we must have

V (S(t)u0) < inf
y∈B(ej ,ρj)

V (y)
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for all t ≥ t3, and in particular for all t ≥ t0. Therefore S(t)u0 /∈ B(ej, ρj) for
all t ≥ t0. ¤

The following corollary is closer to the statement in Hale (1988), but contains
an additional observation that will be important in the proof of Lemma 3.6.

Corollary 3.5 If u0 ∈ B(ej, ρj) \W s
loc(ej) and un → u0 then there is a time

t0 and an n0 such that for all t ≥ t0

S(t)u0 /∈ B(ej, ρj) and S(t)un /∈ B(ej, ρj) for all n ≥ n0.

Proof. Note that in the proof of Lemma 3.4 one can decrease σj if necessary
so that S(t)u0 ∈ B(ej, σj) for all t ≥ 0 implies that u0 ∈ W s

loc(ej). It then
follows that if u0 ∈ B(ej, ρj) \W s

loc(ej) then there must exist a t0 such that
S(t)u0 /∈ B(ej, σj), from which it is immediate using Lemma 3.4 that S(t)u0 /∈
B(ej, σj) for all t ≥ t0, while the result for the sequence un follows since
continuous dependence on initial conditions implies that S(t)un /∈ B(ej, σj)
for all n sufficiently large, and one can then apply Lemma 3.4 once more. ¤

Finally, we show that if a trajectory passes from a small neighbourhood of
one equilibrium ej to a small neighbourhood of another (ek) then this is in
fact sufficient to imply that there is a heteroclinic orbit (or perhaps a chain
of heteroclinic orbits) from ej to ek, and so in particular V (ek) < V (ej). This
is a key fact in the proof of the main result.

Lemma 3.6 There exists a γ > 0 such that if for k 6= j

u0 ∈ B(ej, γ) and S(t0)u0 ∈ B(ek, γ)

for some t0 > 0, then there exists a chain of heteroclinic orbits between equi-
libria joining ej to ek. In particular V (ek) < V (ej).

Proof. If for some γ > 0 there are no trajectories joining B(ej, γ) to B(ek, γ)
then the result claimed in the statement is not violated. So we can assume
that there exists a sequence of trajectories un(·) and times tn such that

‖un(0)− ej‖ ≤ 1

n
and ‖un(tn)− ek‖ ≤ 1

n
, (11)

with tn > 0. We show that there must therefore exist a trajectory that is
heteroclinic between ej and ek, and hence that V (ek) < V (ej).

First note that we can assume in addition to (11) that for some η > 0

‖un(t)− ei‖ ≥ η for all t ∈ [0, tn], i 6= j, k,

since otherwise we could find a finite chain of equilibria {ejn} and trajectories
un(·) that move between successive 1/n neighbourhoods of the ejn , avoiding
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the η neighbourhoods of all other equilibria. In this case we would apply the
following argument to each transition from ejn to ejn+1 .

Choose β > 0 such that {B(ej, 2β)}j=1...n are disjoint. Noting that one can
decrease σj in the proof of Lemma 3.4 if required, choose σj < β such that

S(t)u0 ∈ B(ej, σj) for all t ≤ 0 ⇒ u0 ∈ W u
loc(ej),

there are constants K,α > 0 such that

dist(S(t)u0,W
u
loc(ej)) ≤ Ke−αt (12)

as long as S(t)u0 remains inside B(ej, σj), and

S(t)u0 ∈ B(ej, σj) for all t ≥ 0 ⇒ u0 ∈ W s
loc(ej)

(which ensures that Corollary 3.5 also holds). Choose σk < β similarly, so that
Lemma 3.4 and Corollary 3.5 are valid near ek, and let ρk be the corresponding
radius of the inner ball.

Now consider tn such that ‖un(tn) − ej‖ = σj and ‖un(t) − ej‖ < σj for all
t ≤ tn. Then the sequence {tn} cannot be bounded (by T say), for otherwise
one could deduce the existence of a time t ≤ T such that ‖S(T )ej − ej‖ =
σj, which contradicts the fact that ej is an equilibrium. So there exists a
subsequence (which we relabel) such that tn →∞, for which un(t) ∈ B(ej, σj)
for all 0 ≤ t ≤ tn.

Since S(·) is asymptotically compact, there exists a subsequence nj such that
unj

(tnj
) converges to some u∗ with ‖u∗ − ej‖ = σj. Using (12) it follows that

u∗ ∈ W u
loc(ej).

Now relabel and consider again the sequence un that gives rise to u∗ ∈ W u
loc(ej)

via u∗ = limn→∞ S(tn)un. Since W u
loc(ej)∩W s

loc(ej) = {ej}, Lemma 3.4 implies
that there is an n0 and a uniform time t1 such that S(t)un(tn) /∈ B(ej, σj) for
all t ≥ t1, n ≥ n0.

It follows from Lemma 3.3 that ‖S(τn)un(tn) − ek‖ = ρk/2 for some τn ≤
T , where T does not depend on n. Since trajectories converge uniformly on
compact time intervals, there is a subsequence such that τn → τ with τ ≤ T
and S(τn)un(tn) → S(τ)u∗ with ‖S(τ)u∗ − ek‖ = ρk/2.

Now, suppose that v∗ := S(τ)u∗ /∈ W s
loc(ek). Then it follows from Corollary

3.5 that there exists some time t0 such that S(t)v∗ /∈ Uk for all t ≥ t0, and
S(t + τn)un(tn) /∈ Uk for all n ≥ n0 and t ≥ t0.

But this is a contradiction, since the trajectories passing through S(τn)un(tn)
approach ek arbitrarily closely. If these times of closest approach are bounded
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one can easily find a subsequence joining v∗ to ek in a finite time; so these
times must be unbounded, but this contradicts the uniformity of t0 over n.

It follows that there exists a heteroclinic orbit joining ej to ek as claimed, and
so V (ek) < V (ej). ¤

3.2 Limit sets in the non-autonomous system

We are now in a position to prove the main theorem of this section on the
asymptotic behaviour of trajectories forwards in time.

Theorem 3.7 Suppose that S0(·) is gradient-like, that Aη is contained in
some fixed bounded set B for all 0 ≤ η < η∗, that Sη ⇒ S0, and that the
manifold structure near the fixed points perturbs continuously. Then for η suf-
ficiently small, for any initial condition u0 ∈ B and any s ∈ R we have

lim
t→∞ ‖Sη(t, s)u0 − eη

j (t)‖ = 0,

where eη
j (·) is the unique complete trajectory in a neighbourhood of ej.

Proof. The idea of the proof is simple, but the details are a little messy.
Essentially there are two steps: first, since non-autonomous trajectories follow
autonomous trajectories, every trajectory must end in a neighbourhood of a
stationary point (Lemma 3.2). Then, if a trajectory leaves a neighbourhood
of a stationary point it must follow an autonomous trajectory that leaves the
neighbourhood of the same stationary point and hence moves to a different
stationary point (Lemma 3.4). Since the Lyapunov function decreases along
orbits of the autonomous system orbits can only move from one such neigh-
bourhood to another a finite number of times (Lemma 3.6).

Noting that since Aη(t) ⊆ B for all t, it follows (enlarging B if necessary) that
there is a t0 such that for t ≥ t0 we have

Sη(t, s)u0 ∈ B.

Since Sη(t, s)u0 = Sη(t, t0)[Sη(t0, s)u0], we can assume without loss of gener-
ality that u0 ∈ B.

Let δ = minj=1,...,n δj, where the δjs are those from Definition 2.2 (the contin-
uous perturbation of the manifold structure). Fix σ < min(δ/2, γ/2), where
γ is as in the statement of Lemma 3.6. Note that one can choose σj = σ in
Lemma 3.4 (independent of j), giving rise to a corresponding set of ρj (which
may vary from one equilibrium to another) – set ρ = min(σ/4, ρ1, . . . , ρj).
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We therefore know that if an autonomous trajectory moves from within B(ej, ρ)
to outside B(ej, σ), it can never enter B(ej, ρ) again, whatever the value of j.

Now using Lemma 3.3 find a T ∗ such that if u0 ∈ B then for some 0 ≤ t ≤ T ∗

and some k we have

S(t)u0 ∈ B(ej, ρ/4) for some j ∈ {1, . . . , n}, 0 ≤ t ≤ T ∗, (13)

and choose η0 such that for every η < η0

‖S0(t)u0 − Sη(t + s, s)u0‖ < ρ/4 for all t ∈ [0, T ∗], u0 ∈ B. (14)

Now take u0 ∈ B. Using the definition of σ and (iii) from Definition 2.2, we
know that if for some j and t∗ we have

Sη(t, s)u0 ∈ B(ej, 2σ) for all t ≥ t∗ (15)

then
‖Sη(t, s)u0 − eη

j (t)‖ → 0 as t →∞. (16)

We show that (15) holds for all u0 ∈ B. Given such a u0, combining (13) and
(14) it follows that for some 0 ≤ t0 ≤ T ∗ we have Sη(t0 + s, s)u0 ∈ B(ej, ρ/2)
for some j. Either Sη(t + s, s)u0 ∈ B(ej, 2σ) for all t ≥ t0, in which case we
are done (using (16)); or the trajectory leaves B(ej, 2σ).

If the non-autonomous trajectory Sη(· + s, s)u0 moves from the interior of
B(ej, ρ/2) to the exterior of B(ej, 2σ) we argue as follows. First, set

t2 = sup{t∗ > t0 : Sη(t + s, s)us ∈ B(ej, 2σ) for all t ∈ [t0, t∗]},

and then

t1 = inf{t∗ < t2 : Sη(t + s, s)us /∈ B(ej, 3ρ/4) for all t ∈ [t∗, t2]}.

We know that for t ∈ [t1, t1 + T ∗] we have

‖Sη(t + s, s)us − u(t)‖ < ρ/4,

where u(·) is a trajectory of the autonomous system which therefore satisfies

• u(t) /∈ B(ej, ρ/2) for all t ∈ [t1, t2];
• u(t1) ∈ B(ej, ρ);
• u(t2) /∈ B(ej, σ).

Since u(t1) /∈ B(ej, σ), it follows that u(t1 + t) ∈ B(ek, ρ/4) for some ek for
some 0 < t ≤ T ∗. However, the trajectory u(t1 + ·) moves from within B(ej, ρ)
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to the complement of the σ neighbourhood of ej, and hence can never reenter
B(ej, ρ). It follows that k 6= j, i.e. within a time T ∗ the autonomous trajectory
enters B(ek, ρ/4) with k 6= j. It follows that the non-autonomous trajectory
must enter B(ek, ρ/2).

Now, by our choice of ρ < γ it follows from Lemma 3.6 that V (ek) < V (ej).
This process cannot continue indefinitely since there are only a finite number
of equilibrium points, and so eventually (15) holds, and it follows that

‖Sη(t, s)u0 − ej(t)‖ → 0 as t →∞.

¤

4 Gradient semilinear equations in Banach spaces

We now consider gradient semilinear equations on Banach spaces, following
Carvalho & Langa (2006) whose recent work provides the continuity of stable
and unstable manifolds under perturbation that we require for the application
of our results.

Given a Banach space B, let A : D(A) ⊂ B → B be the generator of a C0-
semigroup of bounded linear operators and f0 a differentiable function that is
Lipschitz continuous in bounded subsets of B.

We take as our underlying autonomous system the equation

ẏ = Ay + f0(y) y(s) = y0 ∈ B, (17)

and consider in addition the family of non-autonomous problems

ẏ = Ay + fη(t, y) y(s) = y0 ∈ B, (18)

where fη is a differentiable function that is Lipschitz continuous in bounded
subsets of B with Lipschitz constant independent of η and t.

Assume that, for each τ ∈ R and y0 ∈ B, unique solutions of (17) and (18)
exist for all t ≥ s.

If the family of non-autonomous terms fη converge to f0 in the sense that

lim
η→0

sup
t∈R

sup
z∈B(0,r)

‖fη(t, z)− f0(z)‖ = 0, for each r > 0. (19)

then, for each r > 0 and T > 0, it is relatively straightforward to show that

sup{‖Tη(t + τ, τ)z − T0(t)z‖, τ ∈ R, t ∈ [0, T ] and ‖z‖ ≤ r} → 0, (20)
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as η → 0, i.e. that Tη ⇒ T0 as η → 0 in the sense of (1).

Carvalho & Langa (2006) showed recently that if we assume in addition that
for any r > 0 that the derivatives of fη converge to those of f ,

lim
η→0

sup
t∈R

sup
y∈B(0,r)

{‖fη(t, y)− f0(y)‖+ ‖(fη)y(t, y)− f ′0(y)‖} = 0, (21)

then the invariant manifold structure is stable under non-autonomous pertur-
bations near hyperbolic fixed points.

The continuity of gradient-like attractors follows (Corollary 2.4), and all tra-
jectories in small non-autonomous perturbations of the underlying equation
are forwards asymptotic to one of the hyperbolic trajectories (Theorem 3.7).

4.1 Structure Theorem in finite dimensions

Provided that one can reverse the sense of time, a very similar argument to
that used to prove Theorem 3.7 shows convergence of bounded trajectories
to one of the the convergence of bounded trajectories to one of the eη

j (t) as
t → −∞, and provide a characterisation of the structure of the attractors in
such systems.

However, to do this in general requires the phase space to be finite-dimensional.
We therefore state our ‘Structure Theorem’ for non-autonomous perturbations
of gradient ODEs.

Theorem 4.1 (‘Structure Theorem for gradient ODEs’) Suppose that
V : Rn → R is a C2 function such that

(i) V (x) →∞ as |x| → ∞;
(ii) V has a finite number of critical points {ej}n

j=1, and at each critical point
D2V is of full rank.

Then the attractor of

ẋ = −∇V (x) x ∈ Rn

is gradient-like: A0 = ∪n
j=1W

u(ej).

If g(t, x) : R×Rn → Rn is C1 in x, C0 in t, and uniformly bounded on sets of
the form R×K where K ⊂ Rn is compact, then for ε sufficiently small every
bounded complete trajectory of

ẋ = −∇V (x) + εg(t, x)
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is backwards asymptotic to one of the eη
j (·), i.e.

lim
t→−∞ ‖u(t)− eη

j (t)‖ = 0. (22)

In particular it follows that the pullback attractor for the non-autonomous
system has the same structure as the underlying autonomous attractor:

Aη(t) =
n⋃

j=1

W u(eη
j )(t). (23)

Proof. The argument proceeds exactly as in the proof of Theorem 3.7,
except that one should consider always the time-reversed flow S(−t). In order
to ensure that all autonomous trajectories exist backwards in time, they must
be taken within the attractor A0; but this can be done due to the lower
semicontinuity result of Theorem 2.3. From (22) the characterisation (23) is
immediate. ¤

A proof of the structure theorem valid in the infinite-dimensional case this
case will be given in Carvalho et al. (2006).

4.2 Asymptotically autonomous systems

As a further (infinite-dimensional) application we now consider the asymptot-
ically autonomous equation

ẏ = Ay + f(t, y) y(s) = y0 ∈ B, (24)

i.e. when there exists an f0 such that

lim
t→∞ sup

B(0,r)
‖f(t, y)− f0(y)‖+ ‖fy(t, y)− f ′0(y)‖ = 0. (25)

We write S(·, ·) for the process generated by solutions of (24).

In order to apply our previous results, we consider equation (24) with f(t, y)
replaced by

fτ (t, y) =





f(τ, y) t ≤ τ

f(t, y) t > τ,

i.e.
ẏ = Ay + fτ (t, y) y(s) = y0 ∈ B. (26)

We compare the solutions of this equation, and its corresponding process
Sτ (·, ·), to those of

ẏ = Ay + f0(y) y(s) = y0 ∈ B (27)
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and its semigroup T (·).

Note that in this case a version of (21) holds, namely

lim
τ→∞ sup

t∈R
sup

y∈B(0,r)
{‖fτ (t, y)− f0(y)‖+ ‖(fη)y(t, y)− f ′0(y)‖} = 0.

This allows us to obtain the following result as a corollary of our previous
Theorem 3.7.

Proposition 4.2 Suppose that (25) holds and that the semigroup T (·) is
gradient-like with a finite set of hyperbolic equilibria {ej}n

j=1. Then for every
s ∈ R and u0 ∈ B there exists a j ∈ {1, . . . , n} such that

‖S(t, s)u0 − ej‖ → 0 as t →∞,

where S(·, ·) is the process arising from (18).

Proof. Take ε > 0. Since the manifold structure near the equilibria of T (·)
perturbs continuously, it follows that there exists a τε such that the adjusted
processes Sτε defined above has a set of complete trajectories eτ

j (·) that lie
within ε/2 of the equilibria ej of T (·).

Applying Theorem 3.7, every trajectory of Sτ (for τ ≥ τε) converges towards
one of these complete trajectories. Since trajectories of S agree with those of
Sτ for t ≥ τ , every trajectory of S converges towards one of the complete
trajectories of eτ

j (·), and hence

lim
t→∞ ‖S(t, s)u0 − ej‖ ≤ ε.

Since ε > 0 is arbitrary, it follows that

lim
t→∞ ‖S(t, s)u0 − ej‖ = 0.

¤

We note that Ball & Peletier (1977) have proved the same result, but their
argument is much simpler since they consider only the asymptotically au-
tonomous case and can make strong use of the Lyapunov function for T (·).

5 Conclusion

Generalising results for autonomous systems, we have shown that many of the
properties of gradient-like attractors are preserved under small non-autonomous
perturbations.
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In particular, for the first time we provide a class of examples (perturbations
of gradient ODEs) in which the structure of the non-autonomous pullback
attractor is non-trivial but nevertheless well understood. The important prob-
lem of proving a similar structure theorem for infinite-dimensional examples
will be treated in Carvalho et al. (2006).
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