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THE STRUCTURE OF BIVARIATE POISSON DISTRIBUTION
By Kazuromo KawaMura

0. Summary.

In this paper we consider the structure of two dimensional Poisson distribu-
tion. In section 1 the famous Poisson’s theorem and an example are stated, in
section 2 two dimensional Bernoulli distribution is defined and by the # inde-
pendent convolution, two dimensional binomial distribution is defined as in one
dimensional case and in section 3 the main result of this paper is stated that
under some conditions the two dimensional binomial distribution approaches to
two dimensional Poisson distribution and adding another condition it approaches
to the distribution of independent type.

1. Poisson’s theorem.

It is well known fact as Poisson’s theorem that for given sequence of pro-
babilities (p,) such that p,—0 (n—c0) we have

2 m
P(m)— 7’;‘ e >0  as m—co

for all non-negative integer m where
n m(1 __ n—m
=t Patm)=( 1 ) b0y
Furthermore if np,—2 (n—co) then we have

Pa(m)— % et (noo).

As an example of this theorem we consider a Bernoulli trial that event S
occurs on a given unit space with probability p and S doesn’t occur on this
space with probability 1—p. If we have » independent observations of the Bernoulli
trial and we put the number of occurence of S in the » observations as X then the
random variable X takes the value 0,1, ---,# and the distribution is binomial:

POC=B)=0lk 1, )=( ) ) HUL-pr O=k=n).
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We assume that the number # of trials increases to infinity while the mean
value np converges to A. The probability of occurence of the event S and the area
of the space or the length of the time interval of the Bernoulli trial are propor-
tional. This assumption is natural one: we devide the whole space to »# subspaces
which are of same quality, then the probability of occurence of S becomes A/n. By
the Poisson’s theorem the distribution of the number X of occurence of S as n—co

under the condition is given by
k
1

P(X=k)= 24 el (k=0,1,2, --).

2. Definition of bivariate binomial distribution.

1. Bivariate Bernoulli distribution.
Consider a pair of random variables (X, Y) which has a joint distribution
P(X=0, Y=0)=p0, P(X=1, Y=0)=p,,
P(X=0, Y=1)=pnn and P(X=1, Y=1)=pu
where
Doo+D10+Po1+p1=1.

In such case we say that this distribution has bivariate Bernoulli law.

The marginal distribution of X is given by P(X=0)=po+pn and P(X=1)
=pio+p1, that is, X is distributed by univariate Bernoulli law with parameter
Pro+p1; then the mean value of X is given by pi+p1; and similarly we have the
marginal distribution of Y is given by P(Y=0)=pe+pic and P(Y=1)=poi+p11,
that is, Y is distributed by univariate Bernoulli law with parameter po,+p1; then

the mean value of Y is given by poi+pii:

EX)=pw+pu,  E(X)=pu+pu.
The covariance of the pair (X, Y) is given by
Cov(X, V)=E[(X—EX)(Y—-E(Y))]
=EX-Y)-EX)E(Y).
The first term of this equation becomes

E(X‘ Y): Z i'jpi]=0'0poo+1‘0p10+0‘1p01+1'1p11
1=0,1

J=0,1

=p11-

Then we have
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Cov(X, Y)=pu—(pro+p11)(pos+P1)
=poob11—P1oPos.
The coefficient of the correlation R(X, Y) of the pair (X, Y) is defined by

_ Cov(X, Y)
RE =" 5ar(x0) VVar(v) °
We have
Var(X)=(pio+ 1)L —(Pr0+011) = (D10 +D11)(Poo +Dor),
Var(Y)=(po1+51) 1 = (Po1+511)) = (Po1 +p11)( oo +D10)-
and

poopu“plopox
R X, Y -_— e — e je———— .
( ) '\/(Plo‘hbu)(ﬁoo-f‘ﬁm) V(Pm#‘ﬁu)(ﬁoo‘i’ﬁw)

LemmMma 1. If a pair of random vanable (X,Y) has a bivariate Bernoulli
law with parameters poo, Pro, Dor and P11 summing up to unity and the covaviance
Cov(X, Y) equals to zero: the two random variables X and Y are uncorrelated,
then the two rvandom variables X, Y are independent.

2. Bivariate binomial distribution.

We shall derive the distribution of the sum of » mutually independent random
vectors (X, Y1), (X,, Y2), -+, (Xa, Y.) which have the same bivariate Bernoulli dis-
tribution law. We shall calculate the probhabilities P(X7.,.X,=k, Yr.,Y,=[) for
all & and / satisfying 0=k=n, 0=/=#n. If we assume the events (0,0), (1,0), (0,1)
and (1,1) occur respectively «, B, r and ¢ times with a+pB+y+d6=n then the sum
of pairs (X7, X, X7, Y)) equals to (8+4, y+9).

The probability of the event described above equals to

7! N
Paﬁra= W?oo Ploﬂpoxrpu"
by the notion of multinomial distribution. Then the probability
P( L %=k % vi=l)
1=1 1=1

is given by the sum of the probabilities P.ss where «, 8, 7 and d take all over
the values of non-negative integral values satisfying the conditions p+d=k,
r+d=[ and a+p+y+o=n:

n n n! .
P<§1X’=k’ Z Y’:l): pﬁ\::k ol gl ot Do P bor P’

7
atf+rto=n
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where £ and / are non-negative integers satisfying 0=k, [=n.

For an example of this bivariate binomial distribution we consider the experi-
ment that for given #n spaces of same quality we distribute the following four
events independently, a) neither white nor black ball exists, b) one white and no
black ball exists, c) one black and no white ball exists and d) both white and
black ball exist. The given four events have the pattern

—  — o |

‘o ; o |

| o e

I

with probabilities poo, P10, po1r and py;. The probabilities of the # independent sam-
ples, for example,

is given by the product of » probabilities pio, Poo, P11, **+, Do1, Poo. Lhe probability
that the sum of the while ball and the sum of the black ball in first #» independent
samples equal £ and / is given by the bivariate binomial distribution.

We shall derive the marginal distributions of the bivariate binomial distribu-
tion as follows:

P(z}; Xt:k>: 51 —— Doo " D10°Por P11?

st alfl 9|1

atpirto=n
— n! w1
- ﬁ§ k ,3' 5' P p”) al 7 R! A P o
" _(n—R)
k!(n—k)! (Plo +1>11)k a+7§z B a‘ ' Poo pl)l

<Z>(p10+p11)k(ﬁ00+P01)"4k 0=k=mn).

The marginal distribution of 7., X, is binomial distribution b(%; %, p1o+2p11)
with parameter pi,+ pi;. We can immediately understand this fact from the
white and black ball model described above. Similary we have the fact that the
marginal distribution of X 7.,Y, is binomial distribution &(/; %, po: +p1;) With para-
meter po;+pirt

P( 5 v=t)=(] ) putpa bt syt O=1=m).

The expected value of 7., X, and X} 7.,Y, is given by
EiX)=nEX)=n(pw+pn) and FE(X7-Y)=nE(Y)=n(poi+p11)

respectively. The covariance of };7., X, and }7.,Y, is given by
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Cov (2 X, 22 Y)=E( L Xi—E[2 Xi)(X Yi—E[ ) Yi))]

=E((X X)X Y)I-E[D XE[ Y]

B £ xvi+ 2 X |-@ECNEET)

1%y

= ST EX.Yi+ S EX,Y,— 3 EX.EY.,— 3 EX.EY,
1=1 ixy 1=1 1%

= S EX.Yi—EX.EYi+ 3 [EX.Y,~EX:EY,].
1=1 %)

If iy then (X, Y, and (X,, Y;) are mutually independent random vectors,
that is, if ixj then X, and Y, are mutually independent random variables.
Therefore if ixj the expected value E(X,Y;) becomes E(X,)E(Y;): if i=j then
EXY;)—E(X,)E(Y;)=0. Then we have

n

Cw(i X, i Yz>: [EX,Y,—EX;EY].
1=1 1=1 1=1

The inside of the bracket [ ] on the right side of the equality above is the
covariance of X, and Y,. X, and Y, (1=1,2,---,#) have the same covariance
Cov(X, Y). Then we have

Cov <fl X, i Yz> = f Cov(X, Y).
1=1 1=1 1=1

In section 2—1 we have derived the result
COV(X, Y):Poopu_ploﬁm

then we have
Cov <Zn: X, i Y1> =2n(PooP11—P10Po1)-
1=1 1=1

We shall show the modification of the joint distribution of »7.,X, and X7, Y%

min(k, )

P<ﬁ X.=k, 3 x:z):
1=1 1=1

= d=max(k+1—n,0)

7!
(n—CF+D+o) (k=) ({—0d

)_'_5i_p00n- k+D +5p10k~5p01l—6p1 1,).

If we assume poo, P10, Po1 and p;; are positive and Cov(X, Y)=0 then we have X
and Y are independent by lemma 1. The sum (X7.,X,, 27.,Y,) of # independent
vectors (Xi, Y1), (Xs, Ys), -+, (Xu, Y) has
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Cov ( S X, Y Y) — 3 Cov(X,, Yi)=nCov(X, Y).
1=1 =1 1=1
Therefore if we assume Cov(X™. X, >.*.,Y,)=0 then we have Cov(X, Y)=0. If
Doo, D10, Por and py; are positive then X, and Y, are independent for all i=1,2, .-, n.
We have concluded that X7.,X, and X7.,Y, are mutually independent under the
assumption described above.

LEMMA 2. If the covariance Cov(3 7. X, 2.7 Y.) of the sum of n independent
random pairs (X1, Y1), (Xs, Ya), -+, (Xy, Yu) of same bwariate Bernoulli distvibution
with positive parameters poo, Pro, Por and pui equals to zero then 37X, and ¥7.\Y.
are mutually independent random wvaviables. In another words if (X, Y) has
bivariate binomial law and if the covariance Cov(X,Y) equals to zero then X and
Y are mutually independent under the assumption poo, P10, Por and P >0.

Next we shall derive the bivariate generating functions of the bivariate
Bernoulli distribution and the bivariate binomial distribution. Let us define the
generating function of (X, Y) of bivariate Bernoulli law as

9(s1,2)= 2, DapSi"Ss
a=0,1,5=0,1
=$0051°S2" + P1051"52° + P0151°Sa’ +P1151" S
=poo+P10S1+Do1S2 +P11515e.

If we assume that peg, P10, Po: and py, are positive and Cov(X, Y)=pooP11— D100
=0 then we have poop11=p10pn and

9(s1, $3)=Poo+ 1051+ LorSs+P11SsSe
=[P(X=0)+P(X=1)s:][P(Y=0)+P(Y=1)s.]
=[(Poo+p0) +(Pro+P11)$:][(Poo+Pro) + (o1 +D11)se]-
The generating function of # independent sum (}7..X,, >.2.,Y,) is given by
[9(s1, 52)]* = (Poo+D1051+ D15z +P115152)".
If Cov(X, Y)=0 and peo, p10, po: and p;; are positive then we have
l9(s1, s)1"=[(Doo+ Do)+ (Pro+P11)$11"[(Doo+ P1r0) + (Lor + P1r)sa]"

3. Bivariate Poisson distribution.

1. In this section we consider the limiting distribution of bivariate binomial
distribution as #—oco when the probabilities are expressed as pio=210/%, Po1=2R01/7
and p;;=2Au/n. In the section 1 we have observed the famous Poisson’s theorem.
In this section we shall discuss the consideration of introduction to multivariate
Poisson distribution. First we shall construct the bivariate binomial distribution
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having the condition that for any = the probabilities pio, pox and p,;, are expressed
by pro=210/%, por=20u/n and p;;=2/n then the joint distribution of the sum vector
of »n independent vectors (X, Y1), -, (X, Y,) of bivariate Bernoulli law is given
by the definition of the bivariate binomial distribution

min(k, 1)

P(}"j X,=k, 3 1@:1):
1=1 1=1 6=max(k+1—n,0)

nl (1_ Riot Za A >"*<""‘””<il_o.>""’< o >H< A >’5
(0= Rt 1) +0)! (k—0)l (I—0)! 3 " " " w )

The term of the right side converges to

21079201 70 21°

(k—o)l (I—a) ol

e~ (ot o1 -1

as n—oo. See Kendall and Stuart [3]. And the sum of the right side becomes to
o varying 0,1,2,---,min(k, /) as » increases to infinity. Then we have the main
theorem.

THEOREM 3.1. The sum of n independent bivarviate Bernoulli vectors (X, Y,),
< (X, Yo) of the same distvibution peo, Pio, Por and pi1y where npor=2Ae1, MP1o=210
and npyy=An are fixed values them the limiting distribution of the sum vector
(X, Y) of the n vectors is given by the form

min(k, 1) Zwk«ﬁxolkaznﬁ

iz (k=0 ({—0d)a!

e~ (ot 201 +211) |

P(X=k, Y=I)=
The marginal distribution of the bivariate Poisson distribution is given by the
following lemma.

Lemma 3.1. We have
(Aro+ An)* e

P(X=k)= 7 =10+ 210 £=0,1,2, -,
P(Y=[)= M9~<xowll) [=0,1,2, .

I
And the expected values and the variances of X and Y arve given by
E(X)=210+ 21, Var(X) =20+ 411,

E(Y)=2u+2,  Var(Y)=2u+2.
Proof. We have

P(X=k)= 3 P(X=Fk, Y=10)
i=0

mil1

(k, 1) k-5 1—d L}
A" Aox " Ay o~ (o Ro1+ A1)

=§0 520 F—o) (I—d) ol
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The sum is expressed such that if /=0 then 6 =0 only and if /=1 then §=0,1
and if --- and if /=% then 6=0,1,---,k and if /=k+1 then 6=0,1, -+, %k and
if .- then the sum becomes to if =0 then /=0,1,2, .-,k k+1,--- and if §=1
then /=1,2,---,k, E+1,- and if --- and if 6=k then /=%, k+1,-- and if ---

: - —15 1 0y I-k
A10% 201" 211° & 210" 201 A0 A10°015 7% 211 F

= _‘°° = - —(210+201+211)
P(X'k)‘[‘é mro tA —nia=n T Y S =R A Je e

=1

:L;!X“_)k_e—mwm, £=0,1,2, .
And similarly we have
P(Y=10)= g,‘oP(sz, Y=0)

£ 20E 0 Rert0A00

Z@ (B—a)l (I—a) ol

= Qo 2ot A1

min(

o
=2
k=0

The sum is expressed as if £=0 then §=0 only and if £=1 then ¢=0,1 and if ---, and
if k=/[ then 6=0,1,.--,/ and if k=/+1 then 6=0,1,---,/ and if .-- then the sum
becomes to if 6=0 then k=0,1,---,/, /[+1,-- and if 6=1 then k=1, .-/, [+1, -
and if --- and if §=/ then k=/, /+1, .- and if --

N\ — A10%20:'211° 2108 202" M Ary? 57 A Ao J ~ (10 A01 + 211
Blr=0= [kzq, Aol & G-ne= T S oo |
:[ 'Zo;’l/:),’lo e+ ?ZG 11*11;1_;' el et 206:/11?[ ¢ [ ot i
— ﬁ'}_—;__ll.}_)ie~(iorln)’ [:(), ]_, 2,

Hence the marginal distribution of X is Poisson with parameter A,+4;; and the
marginal distribution of Y is Poisson with parameter 2,,+A.. Then the mean
values and the variances of X and Y equales to the parameters respectively.
The covariance of bivariate Poisson distribution is given by the following lemma.

LemMA 3. 2. If the vandom variables X and Y have the jownt probability
distribution given in the theovem 3.1, then we have the fact that the covariance of X
and Y equals to A,,.

Proof. The generating function /(s,, s;) of (X, Y) is given by
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A(s1, $2)= lim [g(s1, $2)]"

N—s00

= lim [ poo+P10S1 +Po1Se +P115152]"

N—co

. Ao+ Ao +2 A A 2 1
=lim [1— SRR TN b S s s+ sy
n 7 n n i

n—00

=lim

n—oo

[1_ Ao + Ao+ A11— 21081 — A01S2 — 4115152 ]n
n i

— g~ (410201 211) 21081 - 0182 "1118132;
see Feller [1]. Then we have generally
12(31,52): Z P(X:k, Y:l)slkSZL
k.l

and

0°h
831632

= > kI P(X=k, Y=[)s," 15,01,
k,l
We put s,=s,=1 then

o0*h
_— = klP(X=k Y=)=EX-Y
[351332 ]sl=52=1 ; ( ) ( )

Therefore we have

ggfg = [(R10+ 21152)(Ao1 + A1151) + Ars]e™ Cro+AortAiD “lorset QoS duisisy,
If we put s;=s,=1 then
E(XY)=(o~+ 21001+ 211)+ 211
and by the lemma 3.1 E(X)=2X0+241, E(Y)=21+24: we have
Cov(X, V)=EXY)-EX)E(Y)=1.

And we have easily obtain the value of correlation coefficient of the bivariate
Poisson distribution.

LemMA 3.3. If the vandom vector (X, Y) has the joint probability distvibution
given in the theovem 3.1, them we have that the coefficient of correlation of the
vector equals to A/V Ao+ 211)Aor 4 A11).

Proof. The coefficient of correlation of the vector (X, Y), R(X, Y) 1s defined
by
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_ Cov(X, Y)
R V)= Nar(X)WVar(Y)

Then by the fact Var(X)=2A,0+ 41, Var(Y)=2,+2,; and Cov(X, Y)=41,, we have

A1
R X’ Y = e — S ——
( ) V (A104211)(R01 +211)

as to be proved.

Then we have the following theorem.

THEOREM 3.2. If the vandom vector (X,Y) has the joint probability distvibu-
tion given in the theorem 3.1 and if we assume X, Y are uncorrelated then we
have the joint distribution

A10F2o0rt

R

P(X=k, Y=I)= e~ 10+ 20D
for any wnteger k=0,1,2,.--, [=0,1,2, - that 1s X and Y ave independent random
variables of Poisson laws.

Proof. In the definition of the joint distribution we put in the sum
0=0,1,2, ---, min(k, /) then the sum remain 6=0 only and we generally consider
0°=1.

2. In the preceding section §3.1 we have discussed the limit distribution of
the bivariate binomial distribution consists of # independent bivariate Bernoulli
distribution

P(X=0, Y=0)=pu, P(X=1, Y=0)=p,
P(X=0, Y=1)=p, and P(X=1, Y=1)=pu

as n—oo where we assume #p;o = Ay, #po1 = Aon and np,; = A, are fixed numbers.
We assume the two random variables X, Y of the bivariate Bernoulli random
vector (X, Y) are independent and if we put #np,o =2 and #npe =2, are fixed
variables and #p,, is bounded then if we put mp;; =2 then we have 2,,—0
as n—oo. Then we have pio=0(/%n), po=01/n) and p;;—0 as n—oo. Since
Doo=1—p1o—por —pun We have py—1 as n— co.

By the independence of X, Y we have seen poopii=pipor that is pii=piopoi/Doo
=0(1/n?), if we put np;; =2, then we have 2;,=0(1/n): 2;,—0 as n—oo. Therefore
we have the fact that the limit distribution of the bivariate binimial distribution
approaches to the bivariate Poisson distribution of 2,,=0 as to be proved.

Then we have the next theorem.

THEOREM 3.3. The limit distributiwn as n—>oco of biwarate binonmual distribu-
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tion of the sum of n independent bivariate Bernoulli vectors (X, Y1), -, (X, Ya)
which have the same distvibution poo, Pro, Por and pri is gwen by the following form

lll)kxﬂll — N
P(X=k, Y=1)= 25 e

for any k,1=0,1,2, -+ where we assumed that npio = i, Npor = An are fixed values
and np,, is bounded.
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