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Abstract. The structure and formation mechanism of a to-

tal of five Flux Transfer Events (FTEs), encountered on the

equatorward side of the northern cusp by the Cluster space-

craft, with separation of ∼5000 km, are studied by apply-

ing the Grad-Shafranov (GS) reconstruction technique to the

events. The technique generates a magnetic field/plasma map

of the FTE cross section, using combined magnetic field

and plasma data from all four spacecraft, under the assump-

tion that the structure is two-dimensional (2-D) and time-

independent. The reconstructed FTEs consist of one or more

magnetic flux ropes embedded in the magnetopause, suggest-

ing that multiple X-line reconnection was involved in gener-

ating the observed FTEs. The dimension of the flux ropes

in the direction normal to the magnetopause ranges from

about 2000 km to more than 1 RE . The orientation of the

flux rope axis can be determined through optimization of the

GS map, the result being consistent with those from various

single-spacecraft methods. Thanks to this, the unambiguous

presence of a strong core field is confirmed, providing evi-

dence for component merging. The amount of magnetic flux

contained within each flux rope is calculated from the map

and, by dividing it by the time interval between the preced-

ing FTE and the one reconstructed, a lower limit of the re-

connection electric field during the creation of the flux rope

can be estimated; the estimated value ranges from ∼0.11 to

∼0.26 mV m−1, with an average of 0.19 mV m−1. This can

be translated to the reconnection rate of 0.038 to 0.074, with

an average of 0.056. Based on the success of the 2-D model

in recovering the observed FTEs, the length of the X-lines is

estimated to be at least a few RE .
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1 Introduction

A flux transfer event (FTE) (Russell and Elphic, 1978;

Haerendel et al., 1978), observed by a spacecraft situated

near the magnetopause, is characterized by a bipolar pulse

in the magnetic field component, Bn, normal to the average

magnetopause surface. FTEs have attracted much interest

because they are thought to be a consequence of dynami-

cal (time-dependent) magnetic field reconnection and to be

an essential part of the solar wind-magnetosphere interac-

tion. Several models have been put forward to explain the

observed properties of FTEs, such as the bipolar signature

in Bn and an enhancement of the field magnitude: (1) in the

original interpretation by Russell and Elphic (1978), the sig-

nature is due to the passage of a bundle of reconnected flux

tubes, produced by patchy and impulsive reconnection near

the subsolar magnetopause. At least in the initial stage, the

resulting flux tubes are strongly curved near the region where

they cross the magnetopause. They are pulled generally pole-

ward under the influence of magnetic tension and the magne-

tosheath flow. This poleward motion of the tubes along the

magnetopause can explain the positive-to-negative (negative-

to-positive) Bn perturbation seen in the northern (southern)

hemisphere magnetosheath (e.g. Rijnbeek et al., 1984). (2)

Lee and Fu (1985), on the other hand, suggested that the FTE

signature may be associated with plasmoids or magnetic flux

ropes formed between two or more reconnection X-lines that

are active simultaneously and are roughly parallel to each

other. (3) Southwood et al. (1988) and Scholer (1988) sug-

gested that the FTE signature may result from an impulsive

burst of reconnection along an extended X-line, without in-

voking a localization in local time of the reconnection pro-

cess, as in the Russell-Elphic model. In this scenario, a tem-

poral variation in the reconnection rate leads to the forma-

tion of a bulge in the magnetopause, which is observed by a

spacecraft as the bulge propagates along the boundary into an

unperturbed reconnection layer. (4) By contrast, the model
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proposed by Sibeck (1990) does not even require reconnec-

tion to occur. Instead, it is proposed that a solar wind pres-

sure pulse causes a traveling wrinkle in the magnetopause

surface which causes the observed bipolar FTE signature.

In a recent global MHD simulation by Raeder (2006), the

FTE formation involves both a multiple X-line formation and

time dependence of the reconnection activity, but in a manner

different from the above reconnection-based models: when

the interplanetary magnetic field (IMF) is strongly south-

ward, an X-line forms at low latitude and becomes active.

In the presence of a significant tilt of the magnetic dipole

in the GSM x–z plane, this X-line does not sit still but is

swept poleward by the magnetosheath flow with the recon-

nection rate decreasing to nearly zero. A new X-line then

forms near the location of the old X-line formation, the result

being the creation of a flux rope between the old and new X-

lines. Since this process repeats itself, this model accounts

for the quasi-periodic occurrence of FTEs seen in observa-

tions (e.g. Rijnbeek et al., 1984). Raeder’s results also indi-

cate an exclusive preference for FTEs to occur in the winter

hemisphere.

FTEs inherently involve 2-D or 3-D structures, thus their

details may be studied by use of the Grad-Shafranov (GS) re-

construction technique, which can produce a cross-sectional

map of space plasma structures under the assumption that

they are approximately 2-D and time-independent. The tech-

nique was first developed by Sonnerup and Guo (1996), and

Hau and Sonnerup (1999), for use with data from a sin-

gle spacecraft. It was recently extended to ingest data from

multi-spacecraft missions such as Cluster (Hasegawa et al.,

2005). It has been successfully applied to encounters by

spacecraft with magnetic flux ropes in the solar wind (Hu

and Sonnerup, 2001, 2002; Hu et al., 2003) and with the mag-

netopause (Hu and Sonnerup, 2000, 2003; Hasegawa et al.,

2004, 2005). Recently, GS reconstruction has been success-

fully applied to an FTE seen by Cluster (Sonnerup et al.,

2004).

The GS method also allows us to discuss which of the

above FTE models is plausible to explain observed FTE

properties. The Russell-Elphic model inherently has a three-

dimensional (3-D) aspect, since it involves creation of a bent

magnetic flux tube. At first sight, the resulting flux tube may

not seem suitable for GS reconstruction. But a local segment

of the tube may well be sufficiently elongated in some direc-

tion to be approximated by a 2-D structure. Then its structure

may be recovered by the technique, although the orientation

of the flux tube would depend on the location of the observ-

ing spacecraft relative to the elbow of the flux tube. In fact,

an FTE studied by Walthour et al. (1994) was analyzed us-

ing a 2-D model (Walthour et al., 1993), but was also inter-

preted by models that have a 3-D aspect in a global sense.

The third FTE model (e.g. Southwood et al., 1988) involves

bursty (time-dependent) reconnection and hence, in princi-

ple, the resulting time-evolving structure cannot be treated

by the GS method. But once the structure has reached an

approximate equilibrium state, it may satisfy the GS model

assumptions. The similar situation would apply to the sec-

ond model (e.g. Lee and Fu, 1985), which requires simulta-

neous multiple X-line formation, and also to the FTEs seen

in the Raeder’s global MHD model. On the other hand, the

pressure pulse model (Sibeck, 1990) can be verified or ruled

out by simultaneous observation of FTEs from both sides of

the magnetopause. Such an observation was in fact made by

ISEE 1 and 2, when they were separated by a few thousand

km (Farrugia et al., 1987). It confirmed that the observed

FTE structure bulged out on both sides of the magnetopause,

consistent with the reconnection-based models.

In the study reported here, the GS reconstruction technique

is applied to a total of five FTEs identified by the four Clus-

ter spacecraft when they were separated by about 5000 km.

The purpose is to gain information about the FTE structure

and behavior, such as its shape, size, orientation, motion, and

magnetic topology. Based on the reconstruction results, we

discuss the nature of the magnetopause reconnection process

that led to the observed FTEs, such as the orientation, lo-

cation, and length of X-lines. Implications for component

and antiparallel merging are also discussed. Section 2 gives

a brief description of the GS reconstruction technique. The

results of the FTE reconstructions are shown in Sects. 3 and

4; the orientation of the FTE flux rope axis, determined by

several different methods, is in Sect. 5; and our study is sum-

marized in Sect. 6.

2 Method

The assumptions underlying the GS reconstruction are as fol-

lows: (1) the spatial gradient of the structure in some di-

rection, z, which we refer to as the invariant axis, is much

smaller than that in the other directions, x and y, perpendic-

ular to the z direction, i.e. ∂/∂z≪∂/∂x, ∂/∂y; (2) as seen in

a frame moving with the structure, it is approximately time

independent; (3) the structure is in an approximate magne-

tohydrostatic equilibrium, i.e. inertia effects are negligible.

This is the case when the plasma velocities in the co-moving

frame are sufficiently small compared to the Alfvén speed

and the sound speed, and also, in the presence of higher

plasma speeds, when the field-line (and hence the stream-

line) curvature and the variation of the field magnitude along

field lines are small.

Under the above assumptions, the MHD force balance

equation is reduced to j×B=∇p, the equation describing the

balance between magnetic tension and force from the gradi-

ent of total (magnetic plus plasma) pressure. It can be fur-

ther reduced to the so-called Grad-Shafranov (GS) equation,

in the x–y Cartesian coordinate system:

∂2A

∂x2
+

∂2A

∂y2
= −µ0

dPt

dA
, (1)
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where A is the partial vector potential, A(x, y), and Pt is the

transverse pressure, Pt=(p+B2
z /(2µ0)). The magnetic field

is expressed by B=(∂A/∂y, −∂A/∂x, Bz(x, y)). The field

lines projected onto the reconstruction (x–y) plane are then

represented as equi-A contour lines, and the axial field, Bz,

as well as the plasma pressure, p, are functions of A alone. It

follows that Pt and the axial current density, which is given

by jz=dPt (A)/dA, are also functions of A alone. Because of

this property, the right-hand side of the GS equation is known

at all points along a field line (defined by a certain value of

A), once Pt and its derivative dPt/dA are known at one point

on that field line. Since the observing spacecraft encounters

many field lines as it traverses a structure, the right-hand side

of the GS equation is known in the entire region of the x–y

plane occupied by these field lines.

In general, the structure to be reconstructed is moving past

the observing spacecraft. A proper frame of such a structure

is the deHoffmann-Teller (HT) frame, in which the plasma

flow is as nearly field-aligned as the velocity and magnetic

field measurements permit. The frame velocity, VHT , rela-

tive to the spacecraft can be determined by a least-squares

procedure (e.g. Khrabrov and Sonnerup, 1998a).

Since time independence of the structure is assumed, tem-

poral information obtained by a spacecraft can be converted

to spatial information along the trajectory of the spacecraft

moving through the structure. Consequently, all spatial in-

formation needed for the reconstruction becomes available

at each point on the trajectory. When the HT velocity re-

mains constant and hence the spacecraft trajectory relative to

the moving structure is a straight line during the event, the

values of A along the x axis, which is the projection of the

spacecraft trajectory onto the x–y plane, can be calculated

from the measured field component, By , by spatial integra-

tion,

A(x, 0) =

∫ x

0

∂A

∂x
dx = −

∫ x

0 By(x, 0) dx. (2)

The spatial integration can be transformed into time integra-

tion via the relation, dx=−VHT ·x̂dt (see Hu and Sonnerup,

2003, and Hasegawa et al., 2004, for discussion of cases

where the HT frame velocity is temporally varying). The

outcome of the integration depends on the choice of the in-

variant (z) axis. In a single-spacecraft application, this choice

is made by searching for an axis for which Pt becomes equal

for any field line, defined by a specific A value that is en-

countered more than once along the spacecraft trajectory (Hu

and Sonnerup, 2002). In the present study, which is based on

multi-spacecraft measurements, we determine the axis in a

different way (see below). The above integration allows us

to determine Pt (A) from plasma pressures and fields mea-

sured along the spacecraft trajectory, and thus to calculate

the right-hand side of the GS equation in all regions of the

x–y plane threaded by field lines crossing the trajectory. In

other parts of the x–y plane, the field must be recovered via

suitable extrapolations of the function Pt (A).

Once the function Pt (A) has been determined, the integra-

tion of the GS equation proceeds as follows: field compo-

nents, Bx and By , measured at points along the trajectory are

used as spatial initial values. New A and Bx values at grid

points that are away from the x axis by small steps, ±1y, are

calculated via the GS equation. The integration is continued

until a 2-D map of A(x, y), in the reconstruction domain is

obtained. For details of the integration procedure, suppres-

sion of numerical instabilities, and validation against exact

solutions of the GS equation, see Hau and Sonnerup (1999)

and Hu and Sonnerup (2003). This single-spacecraft version

of the GS method has also been validated by use of multi-

spacecraft data (Hu and Sonnerup, 2000; Hasegawa et al.,

2004).

Hasegawa et al. (2005) have developed a simple way to

construct an optimal field map and to determine the invari-

ant axis by use of data from all four Cluster spacecraft. It

proceeds in the following steps: (1) determination of a joint

HT frame is made by combining Cluster 1 (C1) and C3 mea-

surements of the velocity by the CIS/HIA instrument (Rème

et al., 2001) and of the magnetic field by the FGM instrument

(Balogh et al., 2001) (C2 and C4 lack CIS/HIA measure-

ments). (2) When electron density data are available from the

EFW instrument (Gustafsson et al., 2001), the plasma pres-

sure, required for the reconstruction, is estimated not only

for C1 and C3 but also for C2 and C4, via a relationship, es-

tablished from C1 and C3 data, between the pressure and the

electron density. (3) Choice of a joint trial invariant axis is

made. This establishes a joint reconstruction coordinate sys-

tem, allowing determination of functions Pt (A) and Bz(A)

that are common to all four spacecraft. (4) Four magnetic

field maps are produced, one for each spacecraft. In each

map, the magnetic field measurements by one spacecraft are

used to initiate the GS integration. (5) In each map, the A

value at each grid point is weighted by a Gaussian function

of y, which has its maximum at the y-value of the spacecraft

trajectory. The four weighted A values are then added at each

point of a joint grid, the result being a combined map of A,

i.e. of the magnetic field projected onto the x–y plane. The

map of Bz(x, y) is based on the joint function Bz(A). (6)

The correlation coefficient between the three field compo-

nents predicted by the composite map along each of the four

spacecraft trajectories and the corresponding actually mea-

sured field components is calculated. It is then optimized,

by trial and error, by varying the choice of the invariant axis,

the needed extrapolation of the functions, Pt (A) and Bz(A),

and the width of the Gaussian weight function. The opti-

mal map and invariant axis result only after a large number

(more than one hundred) of trial reconstructions have been

performed. The optimal map no longer obeys the GS equa-

tion precisely but preserves ∂/∂z=0 and ∇·B=0. It accommo-

dates deviations from the model assumptions, for example,

it may incorporate inertia effects to some extent (Hasegawa

et al., 2005). Once the optimum has been found, one can

also produce maps showing the plasma pressure, p, number
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Fig. 1. Cluster data on 8 March 2003, 06:50–07:15 UT. The pan-

els, from top to bottom, show: number density, ion temperature,

magnitude and GSE components of the magnetic field, field com-

ponent normal to the magnetopause, and GSE velocity components.

The GSE location of Cluster was approximately (6.9, 2.3, 7.1) RE .

Time interval between the first pair of vertical lines was used for

determining the normal to the magnetopause from the minimum

variance analysis of the magnetic field (MVAB) measured by the

Cluster 1 spacecraft (C1). The following three intervals, each in-

cluding one flux transfer event, were used for the reconstruction.

density, N , and temperature, T , by determining optimal func-

tions p(A), N(A), and T (A), the assumption being that N

and T are both constant along any field line, i.e. are functions

of A alone. The current density in the reconstruction plane,

jt , is parallel to the transverse field lines and is given by

jt=(1/µ0)(dBz/dA)Bt , where Bt=(Bx, By). In the present

paper, only the field and pressure maps will be presented but

the axial current associated with FTEs will also be discussed.

3 Cluster event on 8 March 2003

3.1 Background information

Figure 1 shows an overview of the plasma and magnetic field

measurements by Cluster for the period 06:50–07:15 UT

on 8 March 2003. The spacecraft separation was about

5000 km. At the start of the interval, all four spacecraft

resided in the dayside magnetosphere equatorward of the

northern cusp. Three of the spacecraft, Cluster 1 (C1), C2,

and C4, then crossed the magnetopause at ∼06:55 UT and

exited into the magnetosheath, as is clear from changes in

the direction and intensity of the magnetic field. But C3 re-

mained in the magnetosphere throughout the interval. Five

FTEs occurred consecutively at ∼06:58 UT, ∼07:03 UT,

∼07:07 UT, ∼07:11 UT, and ∼07:14 UT, as seen from the

field magnitude enhancement and positive-then-negative Bn

perturbation (3rd and 7th panels of Fig. 1). They appeared

quasi-periodically with a period of 4–5 min, roughly consis-

tent with a mean period of 8 min found in the ISEE events

(e.g. Rijnbeek et al., 1984). In the present study, three promi-

nent FTEs, marked as FTEs 1–3 in the figure, will be re-

constructed and studied in detail, since at least one of the

spacecraft saw substantial field perturbations and appears to

have penetrated into the core portion of each FTE. For these

FTEs, electron density data were not available from the EFW

instrument. Therefore, the plasma pressure, needed to deter-

mine Pt (A), was calculated solely from the CIS/HIA mea-

surements on board C1 and C3. For each FTE, the interval

sandwiched between a pair of vertical lines in Fig. 1 is used

in the reconstruction. The magnetopause interval (06:53:11–

06:55:49 UT) is also shown in the figure.

3.2 FTE 2

We first revisit FTE 2, which has already been studied by

Sonnerup et al. (2004). The HT frame velocity, VHT , cal-

culated from the combined C1 and C3 data, is (−234, 51,

166) km s−1 in GSE, indicating that the structure was mov-

ing mainly anti-sunward and northward. The correlation co-

efficient between the GSE components of v×B (v denotes

measured velocity) and the corresponding components of

VHT ×B is ccHT =0.938, and the slope of the regression line

in the Walén plot of the combined C1 and C3 data (in which

GSE velocity components, transformed to the HT frame, are

plotted against the corresponding components of the local

Alfvén velocities), hereafter referred to as the Walén slope, is

−0.16. The latter means that the flow speed in the HT frame

was small relative to the Alfvén speed, indicating that no ac-

tive local reconnection was occurring at the time of the FTE

encounter. In the present study, the Walén slope is always

derived from the combined C1 and C3 data.

Figure 2, which was not shown by Sonnerup et al. (2004),

shows the transverse pressure Pt and axial magnetic field Bz,

as functions of A, for an optimal choice of the invariant (z)

Ann. Geophys., 24, 603–618, 2006 www.ann-geophys.net/24/603/2006/
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magnetic field component Bz (bottom) versus partial magnetic vec-

tor potential A for FTE 2. The fitted curves are polynomial func-

tions of A; Pt (A) is determined using the data points from C1 and

C3 for which the CIS/HIA and FGM instruments were both opera-

tive, while Bz(A) is determined using those from all four spacecraft.

The black branch of the curves is used for reconstructing the mag-

netic flux rope and magnetosheath region (seen in the upper part of

the maps in Fig. 3), while the gray branch is for the magnetospheric

region (lower part).

axis orientation, z=(−0.3296, −0.7434, 0.5820) (GSE). Bz

values from different spacecraft are similar at a fixed A value,

as they should be when the structure is approximately 2-D

and magnetohydrostatic. The left part of the figure, where

the fitted curves have only one branch, corresponds to the

core part of the FTE, while the right part corresponds to the

regions away from the FTE core, where there is a magneto-

spheric and a magnetosheath branch. It is the slope of the

curve, dPt (A)/dA, representing the axial current, that deter-

mines the structural characteristic of the FTE. The extrapo-

lated lines on the right side are simply taken to be horizontal

(no axial current); they have no significant influence on the

reconstructed structure. The bottom panel shows that the data

points from C2 and C4 reach a smaller A value (∼−0.08 Tm)

than the C1 data points. This suggests that C2 and C4 were

the closest to the center of the FTE structure at their closest

approach, consistent with what can be seen from the optimal

map, which is shown in Fig. 3.
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Fig. 3. The top two panels show magnetic field and pressure maps

for FTE 2. Reconstructed field lines (in black) are projected onto

the plane perpendicular to the invariant (z) axis, with axial field (top

panel) or plasma pressure (second panel) in color. In the top panel,

Cluster tetrahedron and measured transverse field, Bt=(Bx , By ) are

shown in white. Colored line segments in the upper-left part are

GSE unit vectors, X (red), Y (green), and Z (yellow), projected onto

the x–y plane. In the middle panel, white arrows represent mea-

sured transverse velocity, transformed into the deHoffmann-Teller

frame. The equatorward edge of the map is to the right, with the

magnetosphere on the bottom. The bottom panel shows magnetic

field components along reconstruction coordinates axes (x, y, z),

predicted from the field map, versus those actually measured along

the four spacecraft trajectories.
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Fig. 4. Field and pressure maps and associated scatter plot for
FTE 1. The format is the same as in Fig. 3.

The top panel in Fig. 3 shows the optimal field map in
which magnetic field lines in the x–y plane are shown by
black curves and the axial (z) field component by colors.
In this map, the equatorward side, where the observed FTE
was presumably generated, is to the right and the poleward
side to the left. Also, the magnetosphere is in the lower part
and the magnetosheath is in the upper part of the map. This
arrangement is used in all maps shown in this paper. The
Cluster spacecraft were moving to the right in the frame of
the map, that is, the structures were advected to the left in

the spacecraft rest frame. White arrows, with their tails an-

chored to points along the four spacecraft trajectories, repre-

sent measured transverse fields. These are nearly perfectly

aligned with the reconstructed field lines and, indeed, the

correlation coefficient between the three components of the

magnetic field measured by the four spacecraft and the cor-

responding components predicted from the map is very high

(cc=0.9903), as shown in the bottom panel of Fig. 3.

A prominent magnetic flux rope is seen in the map. The

flux rope cross section is roughly circular but is somewhat

elongated along the magnetopause. The axial field, Bz,

shown in color, is stronger close to the center of the flux rope.

The yellow field-line loop in the map contains a transverse

magnetic flux per unit length along the z axis of 0.0518 Tm,

an axial magnetic flux of 1.96×106 Tm2, and an axial current

of −0.64×106 A. The size of the flux rope along the normal

to the magnetopause is ∼1 RE , consistent with the dimension

estimated long ago from the coordinated observations by the

ISEE 1 and 2 spacecraft (Saunders et al., 1984). The yellow

loop also shows that the FTE bulge is somewhat larger on the

magnetosheath side than on the magnetosphere side.

The middle panel in Fig. 3 shows a color map of the ther-

mal pressure. The white arrows in this map represent trans-

verse velocities, vt
′=(v−VHT )t , seen in the HT frame. These

arrows are larger in the magnetosphere, while they are much

smaller in the magnetosheath, indicating that the HT frame,

i.e. the flux rope, was moving approximately with the magne-

tosheath plasma. No high-speed flow is seen within the flux

rope, meaning that no signature of active local reconnection

was present. The velocity arrows should, strictly speaking,

be precisely parallel to the magnetic field lines. In reality

there are deviations from this behavior, indicating the pres-

ence of some time variations. The pressure is seen to be en-

hanced in a ring-shaped region around the center of the flux

rope, but interestingly has a minimum at the center, an in-

terpretation of which has been discussed by Sonnerup et al.

(2004).

3.3 FTE 1

The top panel in Fig. 4 shows the optimal field and pres-

sure map for FTE 1, which occurred prior to FTE 2. The

HT frame is fairly well determined with an HT velocity

of (−256, 62, 168) km s−1 in GSE, and ccHT =0.976. The

Walén slope is very small (−0.09), suggesting that no lo-

cal reconnection-associated flow was present. The optimal

invariant (z) axis is determined to be (−0.4732, −0.6430,

0.6021) in GSE. For this axis orientation, the correlation

coefficient between the measured and predicted magnetic

field components is 0.9840, as shown in the bottom panel

of Fig. 4. This is somewhat lower than that for FTE 2, but

still very high, lending credence to the accuracy of the map.

A prominent flux rope is seen but is somewhat smaller in size

than FTE 2. It is also evident, as in FTE 2, that the flux rope

bulge is much larger on the magnetosheath side than on the
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magnetospheric side and that the core field component, along
the flux rope axis, is strong. The total circumferential trans-

verse magnetic flux per unit length, axial magnetic flux, and

axial current, inside the yellow field-line loop are 0.045 Tm,

1.05×106 Tm2, and −0.39×106 A, respectively. An X-point

is embedded in the magnetopause on the poleward and on the

equatorward side of the flux rope, suggesting that multiple

X-line reconnection was involved in its creation. The bottom

map of Fig. 4 shows that the pressure is again enhanced in

a ring around the core of the flux rope, but the reduction at

the center is not as strong as in FTE 2. As for FTE 2, the

velocity, seen in the HT frame, is very small on the magne-

tosheath side, meaning that the flux rope was well anchored

to the magnetosheath plasma.

3.4 FTE 3

For this FTE, the GSE components of the HT velocity are

(−249, 35, 205) km s−1 and ccHT =0.976, indicating the

presence of a good HT frame. The Walén slope is −0.08,

meaning that there were no significant field-aligned flows at

the location of the spacecraft. The maps in Fig. 5 show the

optimal field and pressure maps for an optimal invariant axis,

z=(−0.4333, −0.7720, 0.4650) (GSE). As seen in the bot-

tom panel, there is a good correlation (cc=9869) between the

measured and predicted magnetic field components, indica-

tive of the accuracy of the map. A pronounced flux rope,

again having a strong core field, is present with its center at

(x, y)=(11 000, −1500) km, although its size is about one-

half of that in FTE 1. A second, more elongated flux rope

is embedded in the magnetopause on the left (poleward) side

of the primary flux rope, although the presence of the two

FTE bulges cannot be seen the time plot (Fig. 1). The two

bulges are separated by an X-point located at (x, y) ∼(8000,

−1000) km. Since none of the spacecraft crossed the smaller,

flattened flux rope on the left, we cannot discuss the details

of its internal structure, but since curved field lines were re-

motely sensed by the spacecraft, the presence of the struc-

ture itself should not be doubted. Unlike FTEs 1 and 2, the

plasma pressure in FTE 3 appears to be reduced below the

magnetosheath values throughout the main flux rope. But

its actual behavior near the center of the flux rope remains

unknown since none of the spacecraft actually sampled this

region. The velocities seen by C1, transformed to the HT

frame, are generally small, but are somewhat enhanced when

C1 was near to, but somewhat to the right of, the main flux

rope. This enhancement may possibly indicate that C1 de-

tected flows associated with reconnection that occurred on

the right (equatorward) side of the flux rope. Although the

Walén slope is small, Fig. 1 shows that Vz is appreciably

enhanced relative to its magnetosheath value during this in-

terval. The spacecraft C3 observed dense (>1 cm−3) ions

with a magnetosheath-like velocity at the start of the interval

(along the orbit in the left region of the map), while later on

it detected low-density, magnetospheric ions. This indicates
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Fig. 5. Field and pressure maps and associated scatter plot for

FTE 3.

that C3 was initially in a boundary layer present earthward of

the magnetopause, and then moved into the magnetosphere

proper. This behavior is consistent with what is shown by

the map.

4 Cluster event on 26 January 2003

4.1 Background information

The two FTEs discussed in the following subsections oc-

curred equatorward of the northern cusp, as in FTEs 1–3, but

further duskward. Figure 6 shows Cluster data for 20:49–

www.ann-geophys.net/24/603/2006/ Ann. Geophys., 24, 603–618, 2006
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Fig. 6. Cluster data on 26 January 2003, 20:49–2:101 UT. The
format is the same as in Fig. 1. The average GSE location of Cluster
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lines were used for the FTE reconstruction, while those between the
green vertical lines were for determining the magnetopause normal
for FTEs 4 and 5, respectively, from MVAB with constraint 〈Bn〉=0,
using C3 magnetic field measurements.

21:01 UT on 26 January 2003, during which the two FTEs,
called FTEs 4 and 5, were identified. For these FTEs,
positive-then-negative Bn perturbation, typical of FTEs seen

in the Northern Hemisphere, and the usual field intensifica-

tion, were observed. Three of the spacecraft, C1, C2, and C4,

were mostly in the magnetosheath, while C3 was skimming

the magnetopause, sometimes crossing the boundary, for ex-

ample, at ∼20:54 and ∼20:57 UT. The measured magnetic

field and plasma density from C3 were highly perturbed,

switching between the magnetosheath and magnetospheric

values. Intermittent and substantial increases in Vz were
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Fig. 7. Field and pressure maps and associated scatter plot for

FTE 4.

seen, presumably because of reconnection that was occurring

at lower latitudes. The plasma density observed inside the

magnetopause was often intermediate between the magne-

tosheath and magnetospheric values (>0.5 but <4.0 cm−3),

suggesting that C3 was in a boundary layer for a significant

fraction of the time. For FTEs 4 and 5, the electron density

data from EFW are available and were used for estimating

the plasma pressure at C2 and C4, for which plasma mea-

surements from CIS/HIA are not available.

4.2 FTE 4

We apply the GS method to the interval 20:53:03–

20:53:56 UT during which FTE 4 occurred. The HT ve-

locity for this interval is (−386.7, −12.2, 267.6) km s−1,

with ccHT =0.9696. This indicates that this FTE was mainly
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moving anti-sunward, northward, and, interestingly, weakly

dawnward, despite the fact that Cluster was substantially

duskward of the noon-midnight meridian. The Walén slope

is significantly positive (0.3894), with a correlation coeffi-

cient in the Walén plot of 0.8356, implying the possibility

of some ongoing local reconnection activity. The map for

this event (Fig. 7) shows a magnetic flux rope that is strongly

elongated in the direction tangential to the magnetopause. As

shown in the scatter plot, the correlation coefficient between

the measured and predicted field components is 0.9689, for

an optimal choice of the invariant axis, z=(0.4055, −0.8945,

0.1884), indicating that the GS method works fairly well. As

in the previous FTEs, the flux rope has a strong core field

and plasma pressure enhancement in a ring around its center.

The transverse magnetic flux, axial magnetic flux, and ax-

ial current, contained within the yellow loop, are 0.0619 Tm,

−1.92×106 Tm2, and −0.63×106 A, respectively. The pres-

sure map shows that, contrary to the previous FTEs, the

magnetosheath plasma (with velocities measured by C1 and

transformed to the HT frame) was streaming parallel to the

magnetic field lines at a substantial speed. This field-aligned

flow leads to the significantly positive Walén slope and to the

entry of magnetosheath plasmas into the magnetosphere, as

a result of the magnetosheath field lines being connected to

the magnetospheric side. This feature, as well as the flatness

of the flux rope shape, implies that, at the time of observa-

tion, reconnection was going on, and that the flux rope had

not yet reached an equilibrium: it was still temporally evolv-

ing toward a final, more rounded cross section. This inter-

pretation explains why the correlation between the measured

and predicted magnetic fields (the bottom panel of Fig. 7) is

less good than in the previous FTEs. The lower correlation

is indicative of some breakdown of the model assumptions.

The minor dawnward component of the HT velocity can be

explained by still active reconnection that would accelerate

the plasma dawnward for the observed magnetosheath field

condition (By>0), on the northern side of an X-line. Note

that, as shown in Table 2, the HT velocity component per-

pendicular to the invariant axis is somewhat larger for FTE 4

than for FTE 5 (discussed below). This is consistent with

the plasma acceleration due to reconnection that is present in

FTE 4 but not in FTE 5. The latter FTE had no reconnec-

tion signatures and was well anchored in the magnetosheath

plasma (see Fig. 8).

Examination of ion distribution functions seen by C3

shows the presence of two distinct magnetosheath-like ion

populations, streaming in the field-aligned, but opposite, di-

rections in the HT frame. In addition, the two populations

were occasionally D-shaped, i.e. had a cutoff in the distribu-

tions at a certain field-aligned velocity (e.g. Cowley, 1982).

These features may be associated with the above-mentioned

reconnection activity: they appear consistent with the inter-

pretation that two X-lines were present, as inferred from the

map, and that the two populations came from the X-line on

each side of the primary flux rope.

4.3 FTE 5

This FTE occurred about 4 min later than FTE 4. For the in-

terval 20:57:00–20:57:57 UT, the HT velocity is (−377, 94,

240) km s−1, with ccHT =0.974. No significant field-aligned

velocity was present at either C1 or C3; the Walén slope

based on the combined C1 and C3 data is 0.12. The optimal

field map for FTE 5 in Fig. 8 indicates that a fairly large flux

rope was present. The size of the whole flux rope structure

in the normal direction is comparable to, or somewhat larger

than, that of FTE 2. The elongation of the flux rope in the

tangential direction is more pronounced than in FTEs 1 and

2, implying that this flux rope was still in a phase of defor-

mation. For an optimal invariant axis orientation of (0.3639,

−0.9145, 0.1768) (GSE), the measured and predicted mag-

netic field variations have a good correlation (cc=0.9794),

indicating the accuracy of the map. As in all of the other

flux ropes, the axial field and plasma pressure are intense in

a region around the center. However, the center region itself

was not encountered by any of the four spacecraft, so that the

slight depression of the plasma pressure, shown in Fig. 8 near

the center itself, is the result of extrapolation of the function

p(A) and may not be real. The transverse magnetic flux, ax-

ial magnetic flux, and axial current, inside the yellow loop,

are 0.0621 Tm, −3.59×106 Tm2, and −0.70×106 A, respec-

tively. As in FTEs 1 and 2, the FTE bulge is larger on the

magnetosheath side than on the magnetosphere side. The ve-

locity in the HT frame is negligible on the magnetosheath

side, meaning that the flux rope was well anchored to the

magnetosheath plasma.

5 Orientation of flux rope axis

We now compare the orientation of the invariant (z) axis de-

termined from optimal GS reconstruction with those from

various single-spacecraft methods. We also examine the

relation of the axis orientation to the direction of the

magnetosheath magnetic field, the objective being to infer

the geometry of magnetopause reconnection that led to the

FTEs. Polar plots for the five FTEs are shown in Fig. 9. In

these diagrams the directions of the flux rope axes from sev-

eral methods are plotted. The bull’s-eye represents the vec-

tor n×(k×n), where n is the magnetopause normal from the

minimum variance analysis of the magnetic field (MVAB)

for the intervals denoted in Figs. 1 and 6, and k is the orien-

tation of the invariant axis from optimal GS reconstruction.

The normal for FTEs 1–3 is determined based on C1 data to

be (0.6444, 0.2446, 0.7245) (GSE), with the intermediate to

minimum eigenvalue ratio of 8.6. From this ratio, the angular

uncertainty of the normal is estimated to be ∼3.5◦ based on

Eq. (8.23) in Sonnerup and Scheible (1998). As for FTEs 4

and 5, the intermediate to minimum eigenvalue ratio is 3.3

(based on C3 data for the interval 20:53:40–20:54:53 UT)

and 1.6 (for 20:56:33–20:57:51 UT), respectively, indicating
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Fig. 8. Field and pressure maps and associated scatter plot for
FTE 5.

a large uncertainty in the normal. Therefore, we determine
the normal with constraint 〈Bn〉=0 (MVABC), the result be-

ing (0.4534, 0.5151, 0.7274) for FTE 4 and (0.3964, 0.1180,

0.9105) for FTE 5. It must be kept in mind, however, that

even these normals may not be accurate, because the two

intervals somewhat coincide with the corresponding FTE,

which is found to have a significant 2-D structure, and the

two normals have a substantial angle (∼25◦) to each other.

Here the normals are used simply to define a reasonable co-

ordinate system for the polar plots.

The GS axis is marked by a white dot, along with white

contour lines on which the correlation coefficient between

the measured and predicted field components (see, for ex-

ample, the bottom panel of Fig. 3) is equal. The interval

between the neighboring contour lines represents the corre-

lation coefficient difference of 0.001. It is seen that, except

for FTE 4, the contour lines are elongated horizontally in the

polar plots, i.e. in the direction perpendicular to the mag-

netopause normal. This indicates that the axis is less accu-

rately determined for rotation about the normal vector, con-

sistent with the result obtained by Hasegawa et al. (2004).

It may be worth noting that one magnetopause event, iden-

tified by Cluster on 5 July 2001, and studied by Hasegawa

et al. (2004), also did not show the horizontal elongation of

the angle domain having high correlations (see their Fig. 15).

In this event there was substantial reconnection activity, even

more so than in FTE 4. It may be that the correlation coeffi-

cient becomes more sensitive to the rotation of the invariant

axis about the normal direction when significant reconnec-

tion activity is present. For FTEs 1 and 2, the GS axis is

perpendicular to the magnetopause normal within the range

of uncertainty, as expected. For FTEs 3–5, the angular scale

in the polar plots is more coarse and the perpendicular con-

dition is less well satisfied. It is likely that the orientation of

the magnetopause normal at the time FTE 3 was encountered

tipped by about 8◦ from that observed near 06:55 UT. Fur-

thermore, in particular for FTE 5, where the deviation from

the perpendicular condition is the largest (slightly more than

10◦), the normal may not be accurately determined since, as

Fig. 6 shows, the interval to which MVAB has been applied

nearly coincides with that of the FTE. This interval, there-

fore, contains outstanding 2-D structures, leading to a viola-

tion of the one-dimensional assumption that forms the basis

of MVAB. Therefore, it is not easy for FTEs 3–5 to conclude

whether the flux rope was lying flat on the magnetopause or

was sticking into the magnetosphere/magnetosheath at a fi-

nite angle. We cannot exclude the possibility, as expected in

the Russell-Elphic model, that it was penetrating into/out of

the magnetosphere.

We now turn to the various single-spacecraft determina-

tions of the axis orientation. Hu and Sonnerup (2002) deter-

mined the invariant axis in such a manner that the transverse

pressure, Pt , became as nearly equal as their data permit-

ted, at certain A values for which more than one data point

was available. This method is based on the condition that,

in a magnetohydrostatic equilibrium, Pt and Bz should be

constant on a field line. In Fig. 9, the axis thus determined

is marked by the orange asterisk, and the background col-

ors show a map of a residue associated with the fitting of

Bz(A), as defined by Eq. (5) in Hu and Sonnerup (2002).

The residue is computed using the data from C1, which ap-

proached the flux rope center more than C3. We used the

axial field Bz, not the transverse pressure Pt , to compute the

residue, since the measurements of the magnetic field are, in

general, more accurate than those of pressure. The residue

reaches zero when Bz values measured at different times are

precisely equal over a range of A in which more than one
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Fig. 9. Polar plots of axis directions for the five FTEs. The bull’s-eye represents the vector n×(k×n), where n is the magnetopause normal

determined from MVAB(C) and k is the orientation of the invariant axis from optimal GS reconstruction. In each plot, the magnetopause

normal vector is directed upward along the vertical axis. The k axis is denoted by a white dot. By definition, it falls on the vertical axis but

coincides with the bull’s-eye only when it is strictly perpendicular to the normal vector. White contour lines surrounding the white dot are

curves on which the correlation coefficient between the predicted and measured field components (as shown in the bottom panel of Fig. 3) is

equal. The background color shows the residue map associated with the fitting of Bz(A) in Fig. 2, as defined by Eq. (5) in Hu and Sonnerup

(2002), the orange asterisk represents the axis direction for which the residue has a minimum, and the orange line the directions in which the

residue reaches two times the minimum. For FTEs 1, 2, and 5, the axis from a new method for axis determination (Sonnerup and Hasegawa,

2005) is shown by the yellow cross and the axis from MVA of the leftover electric field in the HT frame by the green plus sign. The red open

square marks the axis derived by applying the remote sensing method (Khrabrov and Sonnerup, 1998b) to C3 data of FTE 2. Statistical error

ellipses are from Eq. (8.23) in Sonnerup and Scheible (1998). A simpler version of the figure was presented for FTEs 1 and 2 by Sonnerup

and Hasegawa (2005).
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Table 1. Parameters for reconstructed FTEs seen by Cluster on 8 March 2003.

FTE 1 FTE 2 FTE 3

8 March 2003 (07:02:37–07:03:46 UT) (07:07:18–07:08:23 UT) (07:10:42–07:11:56 UT)

GSE components of optimal GS axes

x (0.6692, −0.7069, −0.2290) (0.7338, −0.5896, −0.3375) (0.6339, −0.2678, −0.4517)

y (0.5729, 0.2946, 0.7648) (0.5940, 0.3158, 0.7399) (0.6406, 0.0991, 0.7614)

z (−0.4732, −0.6430, 0.6021) (−0.3296, −0.7434, 0.5820) (−0.4333, −0.7720, 0.4650)

Bt in rope [Tm] 0.0450 0.0518 0.0268

Rec. E-field [mV m−1] 0.150 0.173 0.112

Reconnection rate 0.041 0.058 0.038

BzA [MWeber] 1.05 1.96 N/A

JzA [MA] −0.39 −0.64 N/A

VHT [km s−1] (−256, 62, 168) (−234, 51, 166) (−249, 35, 205)

|VHT ⊥| [km s−1] 254 258 273

ccHT 0.976 0.938 0.976

Walén slope −0.09 −0.16 −0.08

Bsheath [nT] (7.4, −23.3, −2.9)

Bsphere [nT] (−32.5, 6.1, 22.4)

Magnetic shear [deg.] 117

Bt in rope: Total transverse magnetic flux inside the flux rope.

Rec. E-field: Average reconnection electric field at the time of the creation of FTE, calculated by dividing the total reconnected flux (Bt in

rope) by the occurrence period of FTEs (4 or 5 min).

BzA: Total axial magnetic flux inside the flux rope; JzA: Total axial current inside the flux rope.

data point was available, i.e. when the structure is in a pre-

cise magnetohydrostatic equilibrium and when the axis has

a right orientation, while it becomes unity when the average

residue is equal to the difference between the maximum and

minimum of the measured Bz values. The figure shows that

the domain where the residue is small is strongly elongated

in the direction perpendicular to the magnetopause normal,

with the elongation being consistent with the result of Hu and

Sonnerup (2002). We also see that this domain roughly over-

laps with that of high correlation coefficients (white contour

lines), except for FTE 4. Note that the elongation is much

larger than that of the white contour lines, indicating a larger

uncertainty for the axis rotation about the normal. There-

fore, it is concluded that the present multi-spacecraft (opti-

mal GS based) axis determination is better than the single-

spacecraft one. But the single-spacecraft method may be

used as a guideline in the search for the optimal GS axis.

For FTE 4, in which reconnection activity appears to have

been present, the high-correlation domain and small-residue

domain are totally separated from each other, contrary to the

other four FTEs. It appears that, when field-aligned flows

and hence inertia effects are significant, the Hu and Sonnerup

method, which is based on the assumption of a precise mag-

netohydrostatic equilibrium, becomes a poor guideline.

For FTEs 1, 2, and 5, certain other single-spacecraft meth-

ods worked fairly well: the results are superposed in Fig. 9.

The yellow cross and green plus represent the axis directions

calculated from a new method for axis determination (Son-

nerup and Hasegawa, 2005), and from the related method of

MVA of leftover electric fields in the HT frame. These fields

are identically zero, and the methods fail, when a perfect HT

frame exists. In reality, there are almost always leftover fields

that may exhibit fluctuations which are highly anisotropic

with the direction of minimum variance close to the axial

direction (see Sonnerup and Hasegawa, 2005, for details).

These two methods gave poor results (not shown) for FTEs 3

and 4. Ellipses in the polar plots represent estimates of purely

statistical errors from the formulas given by Sonnerup and

Scheible (1998). For FTE 2, we also show the axis obtained

from “remote sensing” of the FTE by C3 (Khrabrov and Son-

nerup, 1998b). For FTEs 1 and 3, the field perturbations at

C3 were too small for the remote-sensing method to work

successfully. On the other hand, for FTEs 4 and 5, the per-

turbations were too large to come from remote sensing of the

FTE. The remote sensing result (point “C3” in Fig. 9b) is

remarkably close to the GS and the “New Method” results,

given that the methods from which the orientation was deter-

mined are totally different: the remote sensing method uses

only magnetic field data from a single spacecraft; the “New
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Table 2. Parameters for reconstructed FTEs seen by Cluster on 26 January 2003.

FTE 4 FTE 5

26 January 2003 (20:53:03–20:53:56 UT) (20:57:00–20:57:57 UT)

GSE components of optimal GS axes

x (0.7555, 0.2119, −0.6200) (0.7416, 0.1696, −0.6490)

y (0.5146, 0.3937, 0.7617) (0.5635, 0.3673, 0.7399)

z (0.4055, −0.8945, 0.1884) (0.3639, −0.9145, 0.1768)

Bt in rope [Tm] 0.0619 0.0621

Rec. E-field [mV m−1] 0.258 0.259

Reconnection rate 0.070 0.074

BzA [MWeber] −1.92 −3.59

JzA [MA] −0.63 −0.70

VHT [km s−1] (−387, −12, 268) (−377, 94, 240)

|VHT ⊥| [km s−1] 461 419

ccHT 0.970 0.974

Walén slope 0.39 0.12

Bsheath [nT] (6.7, 19.4, −16.6)

Bsphere [nT] (−12.5, −13.5, 21.2)

Magnetic shear [deg.] 160

Method” uses velocity and magnetic data; and GS uses four-

spacecraft measurements.

On the whole, it is seen that the axes from the various

methods are mostly clustered within a fairly small area, and

are embedded in an elongated domain in which the residue

values are small. Importantly, they have a small angle with

respect to the GS axis and thus can be used for an initial es-

timate of the flux rope axis.

In Tables 1 and 2, we summarize important parameters ob-

tained for each FTE. Note that the axis orientation is similar

among the events that occurred on the same day, indicating

that the observed flux ropes were elongated in a similar di-

rection. The axis bisects the angle (117◦) between the mag-

netosheath and magnetospheric magnetic field directions for

FTEs 1–3; it is between the two directions, which in this

event form an angle of 160◦, but somewhat closer to the mag-

netosheath field for FTEs 4 and 5. The strong core field seen

in the maps appears to indicate that all five FTEs resulted

from component merging, because the core field would have

its origin in the guide-field present at the reconnection site

that created the FTEs. During the period of migration from

the reconnection site to the Cluster location, the reconnected

flux tube might have been stretched in the axial direction or

its radius might have expanded/contracted (Sonnerup et al.,

2004), but neither of these can produce a core field without

nonzero guide field. Antiparallel merging, therefore, could

not have been responsible for the FTEs.

Assuming that the orientation of the flux rope axis repre-

sents that of the X-lines which led to the FTEs, then FTEs 4

and 5 do not seem to have originated from subsolar recon-

nection, while the axes, motion, and observed location of

FTEs 1–3 are all consistent with the subsolar merging model.

Since the magnetosheath field had a southward and duskward

component (see Table 2) when FTEs 4 and 5 were encoun-

tered, an X-line formed at the subsolar point would have

been tilted northward on the dusk side. But the invariant

axis is instead tilted southward on the duskward side of the

spacecraft. Thus, the axes for FTEs 4 and 5 are inconsistent,

with a particular type of component merging model, which

predicts a tilted X-line hinged at the subsolar point in the

presence of significant IMF By (e.g. Gonzalez and Mozer,

1974; Sonnerup, 1974). However, one should consider the

possibility that the orientation of the flux rope axis may be

different from that of the X-line responsible for its forma-

tion. Such is the case at the two ends of the segment of

a flux tube embedded in the magnetopause, where the tube

connects to the ionosphere or to the magnetosheath. Since

the axis for FTEs 4 and 5 is closer to the magnetosheath

field direction, it may be that Cluster encountered the part

of the total flux tube that connected to the magnetosheath. If

this magnetosheath part was located on the dawnward side

of the magnetopause-embedded segment, as expected in the

Russell-Elphic model for the Northern Hemisphere under

the observed magnetosheath field condition, the reconnection

site cannot have been at the subsolar region but would have

been located considerably duskward of the noon-midnight
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meridian. The reason is that Cluster was on the dusk side
and the motion of FTEs 4 and 5 in the y direction was not
significant (see the HT velocity components in Table 2).

Tables 1 and 2 also contain information about the min-

imum values of the reconnection electric field and the re-

connection rate, required to create the FTEs. The elec-

tric field, intrinsic to reconnection, is computed by divid-

ing the total transverse magnetic flux within the flux rope

by the FTE occurrence period of 4 or 5 min, the assump-

tion being that the magnetic flux has been reconnected dur-

ing the period at a constant reconnection rate. It ranges from

0.112 mV m−1 (FTE 3) to 0.259 mV m−1 (FTE 5). The re-

connection rate is then computed via the equation: recon-

nection rate=(reconnection electric field)/(VA sheathBsheath),

where VA sheath and Bsheath are the local magnetosheath

Alfvén velocity and magnetic field, based on the components

perpendicular to the flux rope axis. It ranges from 0.038

(FTE3) to 0.074 (FTE5). Since the magnetosheath field mag-

nitude near the reconnection site, which must have been at

lower latitudes, or possibly even in the Southern Hemisphere,

could have been stronger than the local field magnitude, it

may well be that our lower bound on the actual reconnection

rate could be somewhat smaller than the above values.

6 Summary and discussion

Optimal Grad-Shafranov reconstruction, a technique to gen-

erate a 2-D map of plasma and magnetic field structures using

multi-spacecraft data, has been applied to five FTEs encoun-

tered by Cluster near the northern cusp. The results from our

study are summarized as follows.

1. The reconstructed FTEs consist of one or more mag-

netic flux ropes. Under the assumption that the orien-

tation of the flux rope axis is roughly the same as that

of X-line(s), which led to the FTEs, the result indicates

the existence of an X-line, both poleward and equator-

ward of the flux rope. Thus, it is suggested that two

or more X-lines were involved in the formation of the

observed FTEs, although these X-lines may not have

been active simultaneously. All the FTEs were moving

antisunward and poleward, indicating that the reconnec-

tion which led to the FTEs occurred equatorward of

Cluster. For FTEs 1–3, which occurred on 8 March

2003, it is inferred from the absence of reconnection

activity (small Walén slopes) and high correlation be-

tween the measured and predicted fields (satisfaction of

the model assumptions) that the reconnection site was

far from the Cluster location and that the FTE flux ropes

had reached an approximate, but not complete, equi-

librium by the time Cluster encountered them. On the

other hand, flows associated with reconnection were ob-

served in or near the FTEs on 26 January 2003 (Fig. 6),

in particular in FTE 4 for which the Walén slope was

significantly positive. This may indicate that Cluster

was relatively close to an X-line for FTEs 4 and 5. The

repetitive occurrence of the FTEs and the presence of

multiple flux ropes seen in our data seem consistent with

what has recently been found in a global MHD simula-

tion model by J. Raeder. We are not in a position to

claim that all FTEs are flux ropes created by multiple

X-line reconnection. We have found other FTEs which

could not be reconstructed by the GS method and thus

appear to have involved significant time evolution or

three-dimensionality of the structures. There is a pos-

sibility that the GS reconstruction works better for flux

rope-type FTEs, which may have a more stable struc-

ture. Note that multiple flux ropes have also been found

in the solar wind (e.g. Hu et al., 2003) and that near-

periodic occurrence of travelling compression regions

in the magnetotail, suggestive of multiple X-lines, has

been reported (Slavin et al., 2005).

2. The orientation of the flux rope axis can be determined

more precisely through optimization of a composite GS

map, which uses data from all four spacecraft, than by

use of single-spacecraft methods. However, the result

from single-spacecraft methods can sometimes be used

as a first estimate of the axis orientation. In this manner

the trial-and-error search for the optimal GS axis can be

focussed to a smaller set of directions. Thanks to the ac-

curate axis determination from optimal GS reconstruc-

tion, we have demonstrated that all five FTE flux ropes

had strong core fields, which indicates that component

merging must have been responsible for their genera-

tion. FTEs which occurred on the same day have similar

axis orientations. The axis orientation for FTEs 1–3 bi-

sects the angle between the magnetosheath and magne-

tospheric fields, while that for FTEs 4 and 5 is closer to

the magnetosheath field direction. If one postulates that

the orientation of the flux rope axis is more or less the

same as that of the X-lines which led to the FTEs, the

axes for FTEs 1–3 are consistent, but those for FTEs 4

and 5 are inconsistent with a particular type of compo-

nent merging model which predicts a subsolar X-line

that tilts counterclockwise/clockwise, when seen from

the Sun, for positive/negative IMF By . For FTEs 1–3,

the location of the reconnection site inferred from the

motion and observed location of the FTEs is also con-

sistent with the subsolar reconnection. For FTEs 4 and

5, on the other hand, a possibility is that the local axis

orientation found from the optimal GS method did not

coincide with the X-line orientation but that Cluster en-

countered a portion of the flux tube that was connecting

to the magnetosheath field.

3. A lower bound on the average reconnection electric field

needed to produce the flux rope can be estimated from

the transverse magnetic flux contained within the flux

rope and the quasi-periodicity of the FTE occurrence.

As seen in Tables 1 and 2, the total magnetic flux ranges
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from 0.0268 to 0.0621 Tm. The axial electric field, in-

trinsic to reconnection, at the time when the FTEs were

created, is then calculated by dividing the total flux by

the FTE occurrence period of 4–5 min, the result being

0.112 to 0.259 mV m−1 (Tables 1 and 2). These val-

ues can be converted to the reconnection rate of 0.038

to 0.074, with the values being consistent with those re-

ported in literature (≤0.1). As seen in Tables 1 and 2,

the reconnection rate was higher for FTEs 4 and 5 which

occurred on 26 January 2003 when the local magnetic

shear across the magnetopause was higher (160◦) than

it was for FTEs 1–3 which occurred on 8 March 2003,

when the shear was lower (117◦).

4. The structure of the observed FTEs has been described

reasonably well by the 2-D model. The length of the

flux ropes having a 2-D aspect is estimated to have been

at least a few RE , because the spacecraft separation was

of the order of 1 RE and the FTEs moved ∼2 RE along

the flux rope axis during the interval (∼1 min) of the

event (the component of the plasma velocity along the

axis was about 170 km s−1). Under the assumption that

the length of the 2-D segment of the flux ropes is about

the same as that of the X-lines, the X-lines associated

with the FTEs would have had a length of at least a few

RE .

5. All five FTEs were observed in the Northern Hemi-

sphere during winter/early spring. This fact is consis-

tent with a recent Raeder prediction, based on global nu-

merical simulation, according to which, during strongly

southward IMF, FTEs are expected in the Northern, but

not Southern Hemisphere during winter. FTEs 4 and 5

satisfy these simulation conditions quite well; FTEs 1–

3 not as well. However, we have not examined whether

FTEs were in fact absent in the Southern Hemisphere

during the winter of 2003.

6. The bulge of the flux rope tends to be larger on

the magnetosheath side than on the magnetospheric

side. The result is consistent with 2-D MHD simula-

tions (e.g. Scholer, 1989), showing that the FTE sig-

natures become more/less pronounced on the magne-

tosheath/magnetosphere side of the boundary as the

ratio of the magnetosheath to magnetosphere field

strength decreases. In general, it is expected that the

field perturbation amplitude of FTEs is larger in the

magnetosheath than in the magnetosphere. Unless cau-

tion is exercised, this effect may skew occurrence statis-

tics to show more FTE events in the magnetosheath than

in the magnetosphere.
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