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The structure of free algebras

Joel BERMAN

Abstract

This article is a survey of selected results on the structure of free algebraic systems
obtained during the past 50 years. The focus is on ways free algebras can be decomposed
into simpler components and how the number of components and the way the components
interact with each other can be readily determined. A common thread running through
the exposition is a concrete method of representing a free algebra as an array of elements.

1 Introduction

Let V be a variety (or equational class) of algebras. By FV(X) we denote the free algebra

for V freely generated by the set X . The algebra FV(X) may be defined as an algebra in V
generated by X that has the universal mapping property: For every A ∈ V and every function

v : X → A there is a homomorphism h : FV(X) → A that extends v, i.e., h(x) = v(x) for all
x ∈ X . It is known that FV(X) exists for every variety V and is unique up to isomorphism.

In this article we investigate the structure of free algebras in varieties. We present a very
concrete, almost tactile, representation of FV(X) and some algebras closed related to FV(X)

as a rectangular arrays of elements. The rows of such an array are indexed by the elements
of the algebra and the columns are indexed by a set U of valuations, where a valuation is
any function v from X to an algebra A ∈ V for which the set v(X) generates all of A. This

array is denoted Ge(X, U).

In Section 1 we prove some general results about Ge(X, U). We are interested in finding

small tractable sets U of valuations that can be used to represent FV(X). Several such U
are described. The section also contains a detailed description of how a software package de-

veloped by R. Freese and E. Kiss can be used to explicitly construct the array Ge(X, U) for
finitely generated varieties V and finite X . The remaining three sections deal with decompo-

sitions of FV(X) into well-behaved substructures, and how these substructures are organized
among themselves in a systematic way. In Section 2 the substructures considered are con-

gruence classes of the kernel of a canonical homomorphism of FV(X) onto FW(X) for W a
well-behaved and well-understood subvariety of V . In Section 3 varieties V are described for

which FV(X) can be decomposed into overlapping syntactically defined substructures that
are very homogeneous and code, in various ways, families of finite ordered sets. Because of
the way these subsets fit together, an inclusion-exclusion type of argument can be used to

determine the cardinality of FV(X). The final section deals with direct decompositions of
FV(X) into a product of directly indecomposable factors. Some specific general conditions

on a variety V are provided that allow for the determination of the structure of the directly
indecomposable factors and of the exact multiplicity of each factor in the product.
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For general facts about varieties, free algebras and universal algebra used in this paper

the reader may consult [8] or [18]. For the most part we follow the notation and terminology
found there.

For a set X of variables and a variety V of similarity type τ , a typical term of type τ
built from X is denoted t(x1, . . . , xn), where the xi are elements of X . If n and X are clear

from the context we simply write t. The set of variables that actually appear in a term t
is denoted var(t). For a term t(x1, . . . , xn) and an algebra A in V , by tA we denote the

the term operation on A corresponding to t. Thus tA : An → A and for a1, . . . , an ∈ A,
tA(a1, . . . , an) is the element of A obtained by interpreting t to the fundamental operations

of A and applying the resulting operation to a1, . . . , an. The universe of FV(X) is denoted
FV(X) and we use the following notation for elements of FV(X): For x ∈ X we write x for

the element of FV(X) obtained by applying xFV(X) to the generator x of FV(X) and for a
term t(x1, . . . , xn) we write t for tFV (X)(x1, . . . , xn). Note that x = x for every x ∈ X , every
element of FV(X) is of the form t for some term t, and that for distinct terms s and t we can

have s = t. A crucial fact about free algebras used repeatedly throughout this paper is that
V satisfies the identity s ≈ t for terms s and t if and only if the elements s and t are equal in

FV(X). Written more succinctly this is the familiar

V |= s ≈ t iff s = t.

See, for example §11 of [8] for further details.

For an algebra A and a set X we view each element v in the direct power AX as a
function v : X → A. Given v ∈ AX we denote the algebra A by Alg(v). If v ∈ AX and

t(x1, . . . , xn) is a term in the variables of X , then v(t) denotes tA(v(x1), . . . , v(xn)). We say
v is a valuation if v(X) generates the algebra Alg(v). The set of all valuations from X to an

algebra A is denoted val(X, A). For K a class of algebras, val(X,K) denotes the collection
of all v ∈ val(X, A) for A ∈ K. Valuations will play a central role in our exposition.

If an algebra B is the direct product
∏

j∈J Bj , then we denote by prj the projection
homomorphism from B onto Bj. For K ⊆ J the projection of B onto

∏

j∈K Bj is denoted
prK .

Let K be a set of algebras of the same similarity type, X a set, and U a subset of
⋃

(AX : A ∈ K). For x ∈ X let x ∈
∏

v∈U Alg(v) denote the element given by prv(x) = v(x)

for all v ∈ U . We let X = {x : x ∈ X}. The subalgebra of
∏

v∈U Alg(v) generated by X is
denoted Ge(X, U).

1.1 Lemma Let V be a variety and U ⊆
⋃

(AX : A ∈ V). If val(X, V) ⊆ U , then Ge(X, U)

is isomorphic to FV(X).

Proof The algebra Ge(X, U) is generated by X. The set U contains valuations to separate
the elements of X , so X and X have the same cardinality. So it suffices to show that Ge(X, U)
has the universal mapping property for X over V . Let w be any function from X into an

algebra A ∈ V . Let v ∈ val(X, SgA(w(X))) be defined by v(x) = w(x) for every x ∈ X. By
assumption v ∈ U . Then prv is a homomorphism from Ge(X, U) into A that extends w since

prv(x) = v(x) = w(x). 2

1.2 Definition For a variety V and a set X , we call U ⊆ val(X, V) free for V if Ge(X, U)

is isomorphic to FV(X). The set U is called independent for V if Ge(X, U) is isomorphic to
∏

v∈U Alg(v).
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We are very much interested in concrete representations of Ge(X, U) when U is free for

V . To this end we first consider sufficient conditions on a set U ⊆ val(X, V) that force U to
be independent.

1.3 Lemma Let V be a variety and suppose U ⊆ val(X, V) is such that for every pair of terms

s and t for which V 6|= s ≈ t there exists v ∈ U such that v(s) 6= v(t). Then Ge(X, U) ∼=
FV(X), that is, U is free for V.

Proof By virtue of the previous lemma it suffices to show that the projection homomorphism

prU from Ge(X, val(X, V)) onto Ge(X, U) is one-to-one. If s(x1, . . . , xn) and t(x1, . . . , xn) are
distinct elements of Ge(X, val(X, V)), then V 6|= s ≈ t. So there exists v ∈ U for which v(s) 6=
v(t). Then prv(s(x1, . . . , xn)) = s(v(x1), . . . , v(xn)) = v(s) 6= v(t) = t(v(x1), . . . , v(xn)) =
prv(s(x1, . . . , xn)). Thus, prU(s(x1, . . . , xn)) 6= prU(t(x1, . . . , xn)). 2

1.4 Corollary Let V be a variety and X a set.

(1) If VSI is the class of (finitely generated) subdirectly irreducible algebras in V and if
U = val(X, VSI), then U is free for V.

(2) If V is generated by the finite algebras A1, . . . , Am and if U =
⋃

(AX
i : 1 ≤ i ≤ m),

then U is free for V and |FV(n)| ≤
∏m

i=1 |Ai|
|Ai|n.

The second part of this Corollary is presented in Birkhoff’s 1935 paper [7].

1.5 Definition Let V be an arbitrary variety and X a set. Given two valuations v and v′

with A = Alg(v) and A′ = Alg(v′) algebras in V , we say that v and v′ are equivalent, written
v ∼ v′, if there exist homomorphisms h : A → A′ and h′ : A′ → A such that v′ = hv and

v = h′v′. For any set U ⊆ val(X, V) let E(U) denote any transversal of ∼ over elements of
U . That is, E(U) is any subset of U that consists of exactly one valuation taken from each

equivalence class of ∼.

1.6 Lemma If U is any set of valuations, then Ge(X, U) ∼= Ge(X, E(U)).

Proof The set E(U) is a subset of U , and the projection prev(U ) : Ge(X, U) → Ge(X, E(U))
is an onto homomorphism. It suffices to show prE(U ) is one-to-one. Let s 6= t in Ge(X, U).

So there is a v ∈ U for which v(s) 6= v(t). Let v′ ∈ E(U) be such that v ∼ v′. Then there is a
homomorphism h′ for which v = h′v′. If v′(s) = v′(t), then v(s) = v(t), which is impossible.

So v′(s) 6= v′(t) and hence prE(U )(s) 6= prE(U )(t). 2

1.7 Corollary If a set U of valuations is free for V, then so is E(U).

Henceforth in this paper, unless otherwise indicated, X will denote the set {x1, . . . , xn}.
Under this convention FV(X) and FV(n) are the same.

A variety V is locally finite if every finitely generated algebra in V is finite. For a locally
finite variety, if f(n) is the cardinality of FV(n), then every at most n generated algebra in

V has cardinality at most f(n). The number of valuations v from a set X of size n to a
particular algebra A is bounded above by |A|n, which is at most f(n)n.
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Let V be a locally finite variety, X = {x1, . . . , xn}, and U ⊆ val(X, V). We present a

concrete representation of Ge(X, U) as a rectangular array of elements from Alg(v) for v
ranging over U . Each v ∈ U determines a column in this array and each element of Ge(X, U)

determines a row. The first n rows are indexed by x1, . . . , xn. If t(x1, . . . , xn) is any term, then
t denotes tGe(X,U )(x1, . . . , xn). Since the xi generate Ge(X, U), every element of Ge(X, U)

is of the form t for some term t. For v ∈ U and t = t(x1, . . . , xn) ∈ Ge(X, U), the entry in
row t and column v is v(t) ∈ Alg(v). Note that v(t) = tAlg(v)(v(x1), . . . , v(xn)). In column

v, every element of Alg(v) appears at least once since v is a valuation. Moreover, column v
codes the projection prv of Ge(X, U) onto the algebra Alg(v).

In the special case that V is generated by a finite algebra A and U = AX , then U is free
for V by Corollary 1.4, the number of columns of Ge(X, U) is |A|n, and the number of rows

of Ge(X, U) is |FV(n)|.
We next present three examples of how Ge(X, U) may be used to describe the structure

of free algebras.

1.8 Example Let S be the variety of semilattices. We show how to find a normal form for an
arbitrary term and how to use this normal form to determine the structure of free semilattices.

If t(x1, . . . , xn) is any semilattice term, then by associativity we may ignore the parentheses
and write t as a string of variables. By commutativity we may sort the variables in the string
by increasing subscripts. Idempotence allows us to conclude S |= t ≈ xi1xi2 . . . xik where

1 ≤ i1 < i2 < · · · < ik ≤ n and var(t) = {xi1, xi2, . . . , xik}. Thus a concrete representation of
FS(X) as a join semilattice is the set of nonvoid subsets of X with the operation of union.

In particular |FS(X)| = 2n − 1.

The variety S is generated by the 2-element semilattice S2 with universe {0, 1}. Without

loss of generality S2 is a join semilattice. The set val(X, S2) has 2n − 2 elements. Thus,
FS(X) is isomorphic to Ge(X, val(X, S2)). If we view Ge(X, val(X, S2)) as an array, then

it has 2n − 2 columns and 2n − 1 rows. If U ⊆ val(X, S2) consists of the valuations vi for
1 ≤ i ≤ n where vi(xj) = 1 if and only if i = j, then U is free for S. To see this, it suffices to

show that the projection prU is one-to-one. Suppose t = t(x1, . . . , xn) and s = s(x1, . . . , xn)
are distinct elements of Ge(X, val(X, S2)). Let v be any valuation into S2 that separates s

and t, with say v(t) = 1. So there exists xi ∈ var(t) − var(s). Then vi(xi) = 1 = vi(t) while
vi(s) = 0. So a valuation vi in U separates t and s. Hence U is free for S. The array for

Ge(X, U) has n columns and 2n − 1 rows. A cardinality argument shows that no proper
subset of U is free for S. Although U is free for S, it is not independent since there is no t
having v(t) = 0 for all v. However, if S were the variety of join semilattices with constant 0,

then U would be both free and independent for S with FS(n) ∼= Sn
2 for S2 the 2-element join

semilattice with constant 0.

1.9 Example Let B be the variety of Boolean algebras. This variety is generated by the 2-

element Boolean algebra B2 = 〈{0, 1}, ∧,∨, ′, 0, 1〉, which is the only subdirectly irreducible
algebra in the variety. Note that val(X, B2) = BX

2 . For v ∈ val(X, B2) let tv be the term

x
v(x1)
1 ∧ · · · ∧ x

v(xn)
n , where x0

i = x′
i and x1

i = xi. Then v(tv) = 1 but w(tv) = 0 for every

valuation w 6= v. The array for Ge(X, val(X, B2)) has 2n columns. By considering joins of the
2n different tv we see that there are 22n

rows. So val(X, B2) is free for B and is independent

but has no proper subset that is free for B. Thus FB(n) ∼= Bn
2 . The tv are sometimes called

minterms. The array for Ge(X, val(X, B2)) may be viewed as the collection of all truth
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tables for Boolean terms involving the variables from X . The only difference being that in

truth tables the result of applying all valuations to a given term is given as a column vector
whereas in the array for val(X, B2) this is presented as a row vector.

1.10 Example Let C2 be the 2-element implication algebra 〈{0, 1, },→〉 and I the variety
it generates. In C2 we have 1 → 0 = 0 and a → b = 1 otherwise. Algebras in I have an order

defined on them by x ≤ y if and only if x → y = 1. The term operation (x1 → x2) → x2

is the join operation for this order. We consider Ge(X, CX
2 ), which is isomorphic to FI(X).

For t ∈ Ge(X, CX
2 ) we have xi ≤ t if and only if v(xi) ≤ v(t) for all v ∈ CX

2 . For 1 ≤ i ≤ n
let T i = {t ∈ Ge(X, CX

2 ) : xi ≤ t}. Then T i is a subuniverse of Ge(X, CX
2 ) since y ≤ x → y

holds for all elements in algebras in I. Moreover, every t is in at least one T i. Let Ui

consist of all v ∈ CX
2 for which v(xi) = 0. The array for Ge(X, Ui) has 2n−1 columns. For

t ∈ Ge(X, Ui) and v ∈ Ui we have that v(t → xi) = t′ for ′ the complementation operation
on B2. Thus, on Ge(X, Ui) we have term operations that are the Boolean operations ∨ and
′. The element xi serves as the Boolean 0 here. So Ge(X, Ui) contains all Boolean term

operations that can be generated by the n − 1 elements x1, . . . , xi−1, xi+1, . . . , xn. Thus T i

contains 22n−1

elements. If Ti is the algebra with universe T i, then Ti and (C2)2n−1

are

isomorphic. From the facts that Ge(X, CX
2 ) = T 1 ∪ · · · ∪ T n, all the Ti are isomorphic, and

|T 1 ∩ · · · ∩ T k| = 22n−k

for every 1 ≤ k ≤ n, it follows from a standard inclusion-exclusion
argument that

|FI(n)| = |Ge(X, CX
2 )| =

n
∑

k=1

(−1)k

(

n

k

)

22n−k

.

In the previous examples we considered a finite algebra A that generates a variety V and
we determined the free algebra FV(X) by means of an analysis of the array Ge(X, U) for

some U ⊂ AX that is free for V . The algebras A considered have a 2-element universe and
a particularly transparent structure. For more complicated finite algebras A, it is usually

more difficult to analyze Ge(X, U). However, the array for Ge(X, U) can, in principle, be
computed mechanically since it is a subalgebra of AU generated by the row vectors x1, . . . , xn.
The natural algorithm for finding a subuniverse of an algebra generated by a given generating

set can be implemented as a computer program.

Emil W. Kiss and Ralph Freese have developed a software package for doing computations
in universal algebra. The package is the Universal Algebra Calculator (UAC) and is freely

available from either author’s webpage [11]. The menu of programs allows the user to compute
all congruence relations of an algebra, view and manipulate the congruence lattice, find factor

algebras for a given congruence relation, and answer questions about the algebra that arise
from commutator theory and tame congruence theory. Two programs in the package are

extremely useful for work on the structure of free algebras. One is a program that with
the input of a finite algebra A and positive integer n, determines the free algebra FV(n)

for V the variety generated by A. The second takes as input a finite collection of finite
algebras A1, . . . , Am of the same similarity type and a set of vectors z1, . . . , zn, with each
zi ∈ A1 × · · · × Am, and produces as output the subalgebra of A1 × · · · × Am generated by

z1, . . . , zn. This program can of course be used to compute Ge(X, U). These programs are
especially useful for analyzing examples and for conducting computer experiments on specific

algebras. We next present a detailed example of how the Universal Algebra Calculator might
be used in this experimental manner to investigate free algebras in a finitely generated variety.
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1.11 Example For every finite poset 〈P,≤〉 with a top element 1 define a finite algebra

P = 〈P, ·〉 by

x · y =

{

1 if x ≤ y
y otherwise.

Let V be the variety generated by all such P. The general problem is to determine the
structure of FV(n) for all positive n. A more specific problem is to determine the free

algebras in a variety generated by a single algebra P ∈ V .
If A is any algebra in V , then it is not hard to show that the binary relation ≤ on A

given by x ≤ y if and only if x · y = 1 is an order relation. Note that although 1 is not in the
similarity type of V , the term x · x will serve in its place.

If P is the algebra arising from the two element chain 0 < 1, then P = C2 as in Example
1.10, and we have described there the structure of the free algebras in the variety generated

by C2. So let us next consider the algebra arising from the 3-element chain 2 < 0 < 1. If C3

denotes this algebra, then the operation x · y on C3 is given by the following table.

· 0 1 2

0 1 1 2

1 0 1 2

2 1 1 1

We can use this table as input for the Universal Algebra Calculator. The UAC can then

calculate the free algebra on two free generators for the variety V generated by this input
algebra. A tabular printout for the result of this computation is given in Table 1.

. . The 2 generators:

. . G 0: ( 0, 0, 0, 1, 1, 1, 2, 2, 2)

. . G 1: ( 0, 1, 2, 0, 1, 2, 0, 1, 2)

. . > Newly generated elements:

. . > V 2: ( 1, 1, 1, 1, 1, 1, 1, 1, 1)

. . = f0( 0, 0)

. . > V 3: ( 1, 0, 1, 1, 1, 1, 2, 2, 1)

. . = f0( 1, 0)

. . > V 4: ( 1, 1, 2, 0, 1, 2, 1, 1, 1)

. . = f0( 0, 1)

. . > V 5: ( 0, 1, 0, 1, 1, 1, 1, 1, 2)

. . = f0( 3, 0)

. . > V 6: ( 0, 0, 1, 1, 1, 1, 2, 2, 2)

. . = f0( 4, 0)

. . > V 7: ( 0, 1, 2, 0, 1, 2, 1, 1, 2)

. . = f0( 3, 1)

. . > V 8: ( 0, 1, 1, 1, 1, 1, 0, 1, 2)

. . = f0( 4, 1)

. . > V 9: ( 1, 1, 0, 1, 1, 1, 1, 1, 1)

. . = f0( 6, 0)

. . > V 10: ( 1, 0, 0, 1, 1, 1, 2, 2, 1)

. . = f0( 8, 0)

. . > V 11: ( 1, 1, 2, 0, 1, 2, 0, 1, 1)
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. . = f0( 5, 1)

. . > V 12: ( 1, 1, 1, 1, 1, 1, 0, 1, 1)

. . = f0( 7, 1)

. . > V 13: ( 0, 1, 1, 1, 1, 1, 1, 1, 2)

. . = f0( 4, 5)

Table 1

The algebra FV(2) is represented as a subset of (C3)32

. The elements are represented

as 9-tuples with the two generators having the label G and numbered 0 and 1. The other
elements in the free algebra are labeled with the letter V and are numbered 2 through 13.

The binary operation on the algebra is denoted f0. Information about how each generated
element is obtained is explicitly given. Thus, in the last two lines of the table we see that

element 13 is obtained by applying f0 to elements 4 and 5. A printout of this data in a more
streamlined form is given in Table 2. Here we see a representation of FV(2) as we view the

array Ge(X, U) for X the two generating elements and U the 9 functions {0, 1, 2}X. This
illustrates how the UAC program gives a concrete representation of the array Ge(X, U) for

an algebra A and a set U ⊆ AX .

[ Creating an algebra in a subproduct.

. [ Reading vectorlist file ‘C:\algebras\join3f2.uni’.

. . < Number of vectors: 14

. . Length of vectors: 9

. . V 0: ( 0, 0, 0, 1, 1, 1, 2, 2, 2)

. . V 1: ( 0, 1, 2, 0, 1, 2, 0, 1, 2)

. . V 2: ( 1, 1, 1, 1, 1, 1, 1, 1, 1)

. . V 3: ( 1, 0, 1, 1, 1, 1, 2, 2, 1)

. . V 4: ( 1, 1, 2, 0, 1, 2, 1, 1, 1)

. . V 5: ( 0, 1, 0, 1, 1, 1, 1, 1, 2)

. . V 6: ( 0, 0, 1, 1, 1, 1, 2, 2, 2)

. . V 7: ( 0, 1, 2, 0, 1, 2, 1, 1, 2)

. . V 8: ( 0, 1, 1, 1, 1, 1, 0, 1, 2)

. . V 9: ( 1, 1, 0, 1, 1, 1, 1, 1, 1)

. . V 10: ( 1, 0, 0, 1, 1, 1, 2, 2, 1)

. . V 11: ( 1, 1, 2, 0, 1, 2, 0, 1, 1)

. . V 12: ( 1, 1, 1, 1, 1, 1, 0, 1, 1)

. . V 13: ( 0, 1, 1, 1, 1, 1, 1, 1, 2)

. ] End of reading vectors.

. [ Reading algebra ‘C:\algebras\join3.alg’.

Table 2

A first approach to understanding the structure of FV(2) would be to draw the order
relation on the 14 elements of the algebra. This can be done using Table 2 by ordering the

vectors coordinatewise by 0 < 1. The diagram shows that the two generators are the only
minimal elements of this order, that is, every element is greater than or equal to at least one
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generator. This is reminiscent of the situation for the free algebras in the variety I generated

by C2 described in Example 1.10. The entire ordered set is quite complicated, but if we look
a single generator and all of the elements greater than or equal to it, we get the ordered set

drawn in Figure 1. This ordered set is C2
3 with two additional elements labelled 8 and 12.

Note that in FI(2) the ordered set of elements above either generator is order isomorphic to

C3
2. So a natural question to ask is how do 8 and 12 differ from the other eight elements that

are above the generator 0?
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Figure 1

By means of Table 1 we can represent each element in terms of the two generators 0 and

1. The element 8 is (01)1 and the element 12 is ((10)1)1. The other elements in Figure 1 all
have the property that each of them can be written as a term involving the generators 0 and

1 with 0 being the rightmost variable that appears. Thus 13=(01)((01)0). The elements 8
and 12, at least in the representation given by Table 1, have rightmost variable 1. One can
argue that in any representation of 8 and 12 as a term operation t applied to 0 and 1 the

rightmost variable of t will be 1. This can be done by observing that if v is any valuation
of X into C3 and t(x1, . . . , xn) is any term with rightmost variable xi, then v(t) = v(xi) or

v(t) = 1.
For the valuation v that sends generator 0 to 2 and generator 1 to 0, an examination of

the appropriate column in Table 1 shows that v(8) = 0. So 0 could not be the rightmost
variable for any representation of element 8. A similar argument works for element 12. This

analysis suggests that for a given generator xi, rather than look at the set of elements that
are greater than or equal to xi, we look at those elements that can be written in some way

with a term having xi as its rightmost variable. There are 8 = 23 elements representable with
terms having 0 as the rightmost variable, and by symmetry there are 8 elements having 1 as
rightmost variable, and two elements, 2 and 13, that can be written with either variable as

a rightmost variable. We have 14=8+8-2 and appear to have a decomposition of FV(2) into
well-structured overlapping blocks.

We next want to find a small set of valuations that can be used to separate those elements
of FV(n) that have a representation by means of a term with rightmost variable xi. In the
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case of FI(n) we considered only those valuations v that have v(xi) = 0. Could this same

condition work for the variety V? We experiment with FV(2). There are three valuations
with v(x1) = 0. Let U be this set of valuations and consider Ge({x1, x2}, U). The UAC

program allows us to generate a subalgebra of product by inputting the algebra, the number
of coordinates, and the generating vectors. Thus we can generate the array corresponding to

Ge({x1, x2}, U). This is given in Table 3 We see that there are 10 elements generated. Those
vectors that contain a 2 cannot be written as a term with rightmost variable x1. This leaves

8 = 23 vectors that contain only 0 and 1. For any such vector v we have (v · 0) · 0 = v, so
all 23 of these vectors can be represented by terms in which the rightmost variable is x1. So

the three valuations in U serve to separate those elements that can be represented by terms
with rightmost variable x1, and the number of such elements is {0, 1}|U |.

This algebra is the subalgebra of the 3-th power of the algebra

C:\algebras\hilbert3.alg generated by:

0 : [0, 0, 0]

1 : [0, 1, 2]

. > The generated subpower contains 10 vector(s).

> The generated universe is:

0 : [0, 0, 0]

1 : [0, 1, 2]

2 : [1, 1, 1]

3 : [1, 0, 1]

4 : [1, 1, 2]

5 : [0, 1, 0]

6 : [0, 0, 1]

7 : [0, 1, 1]

8 : [1, 1, 0]

9 : [1, 0, 0]

Table 3

On the basis of these computer experiments with FV(2) we form this conjecture: For
FV(n) the subalgebra Ti, whose universe consists of those elements that can be written using

a term having rightmost variable xi, is isomorphic to Cm
2 , where m is the number of v ∈ CX

3

for which v(xi) = 0. Thus Ti
∼= (C2)2n−1

. If this conjecture were true, then an inclusion-

exclusion argument as used for the variety V of implication algebras could be used to find
the cardinality of FV(n).

We can use the UAC software to check the conjecture for n = 3. If we just run the program
we discover that FV(3) has 1514 elements. The algebra is too big, however, to carry out the

analysis as we did for n = 2. We can compute with the program the array corresponding
to Ge(X, U) for X = {x1, x2, x3} and U consisting of all v ∈ CX

3 with v(x1) = 0. Note
that |U | = 9. The computation shows that there are 558 rows in the array Ge(X, U). An

examination shows that 46 of these rows contain the element 2, which leaves 512 rows in
{0, 1}9. Thus, there are at least 29 elements of FV(3) in T1. Likewise if we let U be those

v for which v(x1) = 0 and v(x2) = 0, then we see that there are at least 8 elements in
T1 ∩ T2. We also compute that T1 ∩ T2 ∩ T3 has at cardinality at least 2. By symmetry
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we have |T1| = |T2| = |T3|. An inclusion-exclusion argument shows that we have counted

3 ∗ 29 − 3 ∗ 23 + 21 = 1514 elements. Since 1514 is the cardinality of FV(3), we see that Ti

does indeed have 232

elements, as predicted by the conjecture. So we have used the UAC

software to verify the conjecture for n = 3. In Section 3 we will give a proof of the conjecture
in a more general context. The proof will essentially be a formalization of the analysis that

we used in our computer experiments in this example.

2 Structure via decomposition

We wish to understand the structure of free algebras in a variety. For some varieties the free

algebras have a fairly transparent structure. For example, the structure of free semilattices
is reasonably clear and is presented in Example 1.8. But for most varieties the structure of

the free algebras is too complex to discern in a single view. In some cases one can decompose
the free algebras into manageable blocks, and describe how the blocks fit together. If the

structure of the blocks is clear and if the manner in which the blocks are related to one another
is understood, then a good analysis of the structure of the free algebras in the variety may be

provided. In this section we consider a standard and useful method for such decompositions
of free algebras. The basic situation is that we are interested in the free algebras in a variety

V and we know that V has a subvariety W for which we have some understanding of the
algebras FW(n). Let g : FV(n) → FW(n) be the canonical map that sends each generator
xi to xi. Then the kernel of g is a congruence on FV(n) whose congruence classes partition

FV(n). We want V and W in which the structure of FW(n) and information about the
individual congruence classes of the kernel of g may be used to describe FV(n). We present

several concrete examples of this approach.

2.1 Example The analysis of the free bands by J. A. Green and D. Rees [13] is an excellent
example of this method. Let V be the variety of bands, that is, the variety of semigroups

given by the idempotent law x2 ≈ x. The variety S of semilattices, which is the class
of commutative bands, is a subvariety of V . Let γ be the kernel of the canonical map
g : FV(n) → FS(n) in which g(xi) = xi for 1 ≤ i ≤ n. Recall that for any term t, we

let var(t) denote the set of variables that appear in t. It is easily seen that for s ∈ FS(n)
the congruence class g−1(s) consists those t ∈ FV(n) for which var(t) = var(s). Moreover,

g−1(s) is a subuniverse of FV(n). It can be argued that for a, b and c in FV(n), if (a, c) ∈ γ
and var(b) ⊆ var(a) = var(c), then abc and ac are in the same γ class. This means that

each γ class is a rectangular band, that is, the elements in the class satisfy the identity
xyx ≈ x. Thus, the classes of γ partition FV(n) into rectangular bands and these classes

interact together as elements of the free semilattice on n generators. Further structure of the
γ classes is presented in [13]. It is shown that if t ∈ FV(n) with |var(t)| = i, then

|t/γ| =

i
∏

j=1

(i − j + 1)2j

,

and hence the variety of bands is locally finite with

|FV(n)| =

n
∑

i=1

(

n

i

) i
∏

j=1

(i− j + 1)2j

.
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In this type of decomposition in which FV(n) is partitioned by a canonical map onto

FW(n), it is critical that the structure of FW(n) be well understood. In the band example
the map is onto a free semilattice, which as we have seen has a very transparent structure.

Free finitely generated Boolean algebras are also well understood and so for many of the
varieties of algebras arising in algebraic logic that contain Boolean algebras as a subvariety,

this method of describing the structure of free algebras has been used with some success.

The method may also be used for locally finite varieties of lattices. If V is any nontrivial

variety of lattices, then the variety D of distributive lattices is a subvariety of V . The free
distributive lattice has been the object of intensive study and its structure is understood,

although not as thoroughly as that of free semilattices or free Boolean algebras. Thus, an
analysis of the partition of FV(n) induced by the kernel of the canonical map g : FV(n) →
FD(n) might reveal the structure of this free lattice.

We first discuss some the known structure of the free distributive lattice FD(X) for

X = {x1, . . . , xn}. There is a normal form for distributive lattice terms, as every element
can be written as

∨

i(
∧

Xi) where the Xi are pairwise incomparable subsets of X . This
is, of course, the well-known conjunctive normal form. The lattice FD(X) has a concrete

representation as the lattice of down-sets in the ordered set consisting of all proper nonvoid
subsets of X . An equivalent representation is the set of proper nonvoid anti-chains in the

ordered set {0, 1}X. Yet another representation is as the set of all n-ary operations on {0, 1}
that preserve the order relation 0 < 1. The ordered set of join-irreducible elements of FD(X)

is order isomorphic to the set of proper nonvoid subsets of X ordered by inclusion.

Despite all this structural information the problem of actually determining the size of

FD(n) remains a difficult one. An 1897 paper of Dedekind gives |FD(4)| = 166. In the
years that have followed the cardinalities of free distributive generators on n generators have

determined, but with the time interval between successive values of n being 15-20 years.
Thus, the exact values of FV(n) are known only for n ≤ 8, with value for n = 8 being a 23
decimal digit number found in 1991. This suggests that unlike the case for bands, for lattice

varieties the decomposition of FV(n) into congruence classes of the canonical map onto FD(n)
will not provide a usable general formula for |FV(n)| as a function of n.

Nonetheless, the method has been used to determine the structure and cardinality of free
lattices on a small number of generators in some varieties of lattices. The next paragraphs

present some of the results from [6] where such an analysis has been performed.

Let V be any variety of lattices and let g : FV(n) → FD(n) be the homomorphism in

which g(xi) = xi for all variables xi ∈ X . The kernel of g is the congruence relation γ. For
any lattice term p we wish to describe the class p/γ. It can be argued that g is a bounded ho-

momorphism in the sense that the interval p/γ has a top and bottom element. An argument
in [6] shows that if p∗ is the disjunctive normal form of p and p∗ is the conjunctive normal

form, then p/γ is the interval [ p∗, p∗ ]. Let U be all those valuations v ∈ AX , as A ranges
of the subdirectly irreducible algebras in V , with v(p∗) 6= v(p∗). Then the interval p/γ is
lattice isomorphic to a sublattice of

∏

v∈U Alg(v) with the embedding given by prv(q) = v(q)

for every q ∈ p/γ. The structure of p/γ is analyzed by determining the collection of join-
irreducible elements in this interval lattice. Note that in any finite lattice L, the set J(L) of

join-irreducible elements generates all of L. The following result of R. Wille [22] is useful here.

Let the finite lattice L be a subdirect product of the lattices Li (i ∈ I). Then J(L) =
⋃

i∈I{
∧

pr−1
i (c) : c ∈ J(Li)}.
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With this result and the fact that p/γ is the interval [ p∗, p∗ ], one can, in principle de-
termine the structure of each congruence class p/γ if one knows

∧

pr−1
v (c) where v is an

arbitrary valuation in U and c is a join-irreducible element of Alg(v). We present a concrete
example illustrating this using the variety V generated by the 5-element non-modular lattice

N.

Let the elements of the lattice N be 0, 1, 2, 3, 4 with 4∨2 = 4∨3 = 1 and 4∧2 = 4∧3 = 0.
This lattice is generated by the set {2, 3, 4} and any generating set must contain this set of

elements. If V is the lattice variety generated by N, then the only subdirectly irreducible
lattices in V are N and the 2-element chain C2 with elements 0 < 1. So the variety V
covers the variety of distributive lattices in the lattice of all lattice varieties. Now C2 is a
homomorphic image of N, so if p and q are lattice terms in the variables X and if v is a
valuation to C2 for which v(p) 6= v(q), then there is a w ∈ NX for which w(p) 6= w(q). So

there is a set U ⊆ NX for which FV(X) is lattice isomorphic to Ge(X, U).

In order to apply Wille’s result we need a description of
∧

pr−1(c) for c a join-irreducible

element of N . The following is proved in [6]:

Let h : FV(X) → N be an onto homomorphism. For i ∈ N define i =
∧

{x ∈ X : h(x) ≥ i}.
Then h is a bounded homomorphism with a lower bound given by h(p) ≥ i if and only if
p ≥ i ∧ (2 ∨ 4) in FV(X).

We view FV(X) as Ge(X, U) and we let v be any valuation in U . Then the projection prv

is the homomorphism of FV(X) onto N that extends v. For a nonsingleton congruence class

p/γ we have that a typical join-irreducible element will be of the form p∗∨ (i∧ (2∨4)) where
i is join-irreducible in N. If p is a lattice term for which g(p∗) = g(p∗), then the class p/γ is

a singleton since D |= p∗ ≈ p∗. If v ∈ NX is such that v(p∗) 6= v(p∗), then {v(p∗), v(p∗)} =
{2, 3} since N/θ is a distributive lattice for θ the congruence relation generated by identifying

2 and 3. So for every q ∈ p/γ we have v(q) ∈ {2, 3} since v(p∗) ≤ v(q) ≤ v(p∗). Hence the
entire congruence class p/γ is embedded in a product of copies of the 2-element chain 2 < 3.
This implies that p/γ is a distributive lattice. Any finite distributive lattice is uniquely

determined by its ordered set of join-irreducible elements.

We consider the simplest case in which |X | = 3 and g : FV(3) → FD(3). The cardinality of

FD(3) is 18. So γ = ker g has 18 congruence classes. An examination of the 18 elements shows
that 11 have the property that p∗ = p∗ and so their γ classes are singletons. The remaining

seven classes p/γ have as p∗ either the lower median term (x1 ∧ x2)∨ (x1 ∧ x3)∨ (x2 ∧x3) or
the six duals or permutations of x1∨(x2∧x3). There are six valuations of {x1, x2, x3} into N,
so FV(X) is in N6 and each class p/γ is a sublattice of the distributive lattice C6

2. The join-

irreducible elements in the γ class of the lower median term can be shown to form a six-element
antichain. So this class is lattice isomorphic to (C2)6. Each of the other six congruence classes

has a two-element antichain for the ordered set of join-irreducible elements. So each of these
congruence classes is isomorphic to C2 × C2. So all the 18 congruence classes are Boolean

lattices of cardinality 1, 4 or 64. Thus, the cardinality of FV(3) is 11 + 64 + 6 ∗ 4 = 99. The
classes interact with one another as in the 18-element free distributive lattice. This analysis

provides a reasonably good description of the the structure of FV(3).

If we next consider FV(4), then the basic analysis is the same. The distributive lattice
FD(4) has 166 elements. Of the 166 congruence classes of γ there are 26 for which p∗ = p∗.
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The 140 classes that are not singletons can be grouped by duality and permutation of variables

into 12 families. For each of these 12 the ordered set of join-irreducibles can be determined.
These ordered sets range in size from 6 to 36 elements. Unlike the case for FV(3), these

ordered sets are not particularly well-behaved. Even though the distributive lattices that
have these ordered sets as their set of join-irreducible elements can be found, the structure of

each class is not very transparent. So although the cardinality of FV(4) can be determined
by this method, it is 540,792,672, the structure of this lattice can only be described in fairly

general terms because of the lack of regularity in the structure of the congruence classes of
γ.

If we consider the variety W generated by the 5-element modular nondistributive lattice,

then a similar analysis leads to similar results. The lattice FW(3) has 28 elements and each of
the nonsingleton classes of γ well-behaved. But for FW(4), although the method of mapping
down to FD(4) allows us to find the cardinality, which is 19,982, the structure of each class

of γ is far from transparent.

One difficulty with the method used in Example 2.1 and with the more general technique
of partitioning FV(X) into congruence classes determined by the canonical map of FV(X)

onto FW(X) for a subvariety W of V is that the congruence classes are not ‘free’ in any
obvious sense. We conclude this section with a discussion of a method in which FV(X) is

decomposed into congruence classes and each class is a free object in a variety intimately
related to V .

Let W be an arbitrary variety in which there are no constant symbols. As in Example
2.1 we consider an equivalence relation

v
∼ defined on a free algebra FW(X) by p

v
∼ q if and

only if var(p) = var(q). When is
v
∼ a congruence relation? A sufficient condition is that if

W |= s ≈ t, then var(s) = var(t). Identities of this form are called regular and a variety that

is presented by regular identities is called a regular variety. If
v
∼ is a congruence relation

of FW(X), then the quotient algebra S = FW(X)/
v
∼ can be represented as an algebra

whose universe is the set of nonvoid subsets of X and if f is an k-ary operation symbol, then
fS(S1, . . . , Sk) = S1∪· · ·∪Sk for S1, . . . , Sk ⊆ X . So S is term equivalent to a join semilattice.

We let S denote the variety of join semilattices but presented with the similarity type of
W . Then the canonical homomorphism g : FW(X) → FS(X) determined by g(xi) = xi is

such that the congruence relation ker g is
v
∼. Note that each congruence class is in fact a

subuniverse of FW(X). The classes of ker g interact with each other according to the join
semilattice structure on FS(X). This interaction is very well-behaved and transparent since

it can be viewed as the operation of union on the set of nonvoid subsets of X . We describe
a general situation in which the individual classes of ker g will have well-behaved internal

structure as well. In this situation the structure of FV(X) admits a reasonable description.

If V is an arbitrary variety, then we can form the regularization of V , denoted R(V), which
is the variety axiomatized by all the regular identities of V . The variety V is a subvariety of

R(V). We investigate the structure of the free algebras of R(V) by considering the canonical
map of FR(V)(X) onto FV(X).

Let V be a finitely generated variety that is not regular and that has no constant symbols
in its similarity type. Since V is not regular, there is an n ≥ 2 and there are terms s and t with

var(s) = {x1, . . . , xn} and var(t) = {x1, . . . , xi} for i < n such that V |= s ≈ t. Identifying
x1, . . . , xi with x and identifying xi+1, . . . , xn with y, we have V |= s(x, . . . , x, y . . . , y) ≈
t(x, . . . , x). If we restrict our investigation to the case that V |= t(x, . . . , x) ≈ x, then this
situation we then have a binary term p(x, y) = s(x, . . . , x, y, . . . , y) for which V |= p(x, y) ≈ x
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witnesses that V is not a regular variety.

The following theorem of J. P lonka [19] gives the structural decomposition of free algebras
in a variety that is the regularization of an irregular variety.

Let V be a variety with no constant symbols that satisfies an irregular identity of the form

p(x, y) ≈ x. Let W = R(V) be the regularization of V. Then for p ∈ FW(X) the congruence
class of p/

v
∼ is a subalgebra of FW(X) that is isomorphic to FV(var(p)).

An immediate corollary of this theorem is that if V is also locally finite then

|FR(V)(n)| =

n
∑

i=1

(

n

i

)

|FV(i)|.

We present a constructive proof of P lonka’s theorem in the case that the variety V is

finitely generated. We do this by representing FR(V(X) as Ge(X, U) for a suitable set U of
valuations.

If A is an algebra and 0 6∈ A, then A∗ denotes the algebra having the same similarity
type as A, with universe A ∪ {0}, and operations given by

fA∗

(a1, . . . , ak) =

{

0 if 0 ∈ {a1, . . . , ak}
fA(a1, . . . , ak) otherwise.

The element 0 is called an absorbing element of A∗.
Let A be a finite algebra with no constant symbols in its similarity type and suppose

A |= p(x, y) ≈ x for a term p with var(p) = {x, y}. If V is the variety generated by A, then
V satisfies the hypotheses of P lonka’s theorem. By results of H. Lakser, R. Padmanabhan,

and C. Platt [17], the variety R(V) is generated by the algebra A∗. Therefore, the algebra
FR(V)(X) is isomorphic to Ge(X, U) where U consists of all v : X → A∗. Let Z be any

nonvoid subset of X . Without loss of generality we let Z = {x1, . . . , xm}. Form

UZ = {v ∈ U : v(xi) ∈ A for all xi ∈ Z }.

For 1 ≤ i ≤ m let yi denote the term p(xi, p(x1, p(x2, p(. . . , p(xm−1, xm) . . . )))). Then V |=
xi ≈ yi and var(yi) = Z. For v ∈ UZ and xi ∈ Z we have v(xi) = v(yi). If w ∈ U − UZ ,
then there is an xj ∈ Z for which w(xj) = 0. Hence w(yi) = 0 for all 1 ≤ i ≤ m. Let

t be any term with var(t) = Z. We write t as t(x1, . . . , xm). For all v ∈ UZ we have
v(t) = v(t(x1, . . . , xm)) = v(t(y1, . . . , ym)) ∈ A. For all w ∈ U − UZ we have w(t) = 0. From

these observations it follows that the congruence class and subuniverse t/
v
∼ is generated

by y1, . . . , ym. Moreover, t/
v
∼ can be embedded in Ge(X, UZ) since w(s) = w(t) for every

w ∈ U−UZ and s having var(s) = Z. Now yi and xi agree on all v ∈ UZ . So the subalgebra of
Ge(X, UZ) generated by y1, . . . , ym is isomorphic to the subalgebra of Ge(X, UZ) generated

by Z = {x1, . . . , xm}. This latter algebra is isomorphic to Ge(Z, AZ). Since Ge(Z, AZ) ∼=
FV(Z) we conclude that t/

v
∼ is isomorphic to FV(Z).

For example, let B be the variety of Boolean algebras considered in Example 1.9. The

variety B is generated by the 2-element Boolean algebra B2. We can eliminate the constant
symbols 0 and 1 by using the unary terms x1∧x′

1 and x1∨x′
1 in their stead. If p(x, y) denotes

the term (x∨ y) ∧ x, then B |= p(x, y) ≈ x. If W denotes the regularization R(B) of Boolean
algebras, then as seen in the previous paragraph, W is generated by the 3-element algebra
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obtained by adjoining an absorbing element to B2. Each congruence class t/
v
∼ in FW(X) is

isomorphic to the free Boolean algebra FB(var(t)). For s, t ∈ FW(X) and term q(x, y), we
have q(s, t)/

v
∼ = r/

v
∼ where r is any term with var(r) = var(s) ∪ var(t). As observed in

Example 1.9 |FB(m)| = 22m
. Thus,

FR(B)(n) =

n
∑

i=1

(

n

i

)

22i

.

3 Structure via inclusion-exclusion

In the previous section we investigated the structure of a free algebra by decomposing it

into the disjoint blocks of a congruence relation that is the kernel of a homomorphism onto
a free algebra in a particular subvariety. In this section we decompose a free algebra into
overlapping canonically defined subalgebras. The homogeneity of these subalgebras allows

for the inclusion-exclusion principle to be used to express the cardinality of the free algebra
in terms of the cardinalities of these subalgebras. We present some examples of varieties in

which the subalgebras have some interesting structure of their own and for which we can
either determine their cardinality or else express the cardinality in terms of the cardinalities

of some sets of some familiar combinatorial structures.
Throughout this section we let X = {x1, . . . , xn} be a finite set of variables. For a language

(or similarity type) L let TL(X) denote the set of all terms that can be built from X using
operation symbols from L. We often write T(n) for TL(X). In this section L will always be

a language in which there are no constant symbols. Since a nullary constant operation can
always be represented by a constant unary operation, this restriction on L does not result in
any loss of generality.

3.1 Definition For t ∈ TL(X) we define the right-most variable rv(t) of t inductively as

follows:

rv(t) =

{

xi if t = xi ∈ X
rv(tm) if t = f(t1, . . . , tm) for f ∈ L and t1, . . . , tm ∈ TL(X).

For 1 ≤ i ≤ n, let Ti(n) = {t ∈ T(n) : rv(t) = xi} and let Ti(n) be the set of elements
{t ∈ FV(n) : t ∈ Ti(n)}. It is easily seen that each Ti(n) is a subuniverse of FV(X); we write

Ti(n) for the corresponding subalgebra of FV(n).

Note that the algebras Ti(n) need not be disjoint. We use the Ti(n) in our decompo-

sition of FV(X). The intersections of the Ti(n) will also play a role. We write T≤`(n) for
⋂

1≤i≤` Ti(n). Each T≤`(n) is a subuniverse and T≤`(n) denotes the corresponding subalge-
bra.

All the Ti(n) are isomorphic to each other. Every permutation of X extends to an
automorphism of FV(X). From this it follows that if 1 ≤ i1 < · · · < i` ≤ n, then Ti1(n) ∩
Ti2(n) ∩ · · · ∩ Ti`(n) ∼= T≤`(n).

3.2 Theorem Let V be a locally finite variety in a similarity type that has no constant
symbols. For every positive integer n we have

|FV(n)| =

n
∑

`=1

(−1)`−1

(

n

`

)

|T≤`(n)|.
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Proof First note that V is locally finite, and hence FV(n) is a finite set. Every element of

FV(n) is of the form t for some t ∈ T(n). There are no constant symbols in the similarity
type of V and so t has a right–most variable rv(t), that is, t ∈ Ti(n) for some i. Thus,

FV(n) =
⋃

1≤i≤n

Ti(n).

Applying the inclusion-exclusion principle, we have

|FV(n)| =
∑

{(−1)`−1|Ti1(n) ∩ Ti2(n) ∩ · · · ∩ Ti`(n)| : 1 ≤ i1 < · · · < i` ≤ n}.

As we have observed, Ti1(n) ∩ Ti2(n) ∩ · · · ∩Ti`(n) is isomorphic to T≤`(n) so

|Ti1(n) ∩ Ti2(n) ∩ · · · ∩ Ti`(n)| = |T≤`(n)|.

For each 1 ≤ ` ≤ n there are
(

n
`

)

sets of the form Ti1(n) ∩ Ti2(n) ∩ · · · ∩ Ti`(n), each of size
|T≤`(n)|, thereby yielding the desired formula for |FV(n)|. 2

Although the formal appearance of Theorem 3.2 is appealing, it is not immediately clear
if the result has any content. For example, in any variety of groups or lattices, Ti(n) = FV(n)

for every 1 ≤ i ≤ n. For such varieties the theorem tells us nothing. For other varieties,
although the Ti(n) are proper subsets of FV(n), the structure of the subalgebra Ti(n) is

difficult to determine. Nonetheless, there are varieties in which the algebras Ti(n) have an
interesting describable structure and for which Theorem 3.2 can be used to provide significant

information about the cardinalities of finitely generated free algebras. In what follows we
present two varieties in which this is the case. Each is based on an algebraic coding of

ordered sets as presented in [3] and [4].

3.3 Definition Let P = 〈P,≤, 1〉 be a ordered set with a top element 1. We form the algebra
H(P) = 〈P, ·〉 with universe P and binary operation · given by

x · y =

{

1 if x ≤ y

y otherwise,

and the algebra J(P) = 〈P, ·〉 with universe P and binary operation · given by

x · y =

{

y if x ≤ y

1 otherwise.

By H and J we denote the varieties generated by all H(P) and all J(P), where P ranges
over all ordered sets with a top element.

The variety H is a subvariety of the variety of all Hilbert algebras, which is the vari-
ety generated by all {→, 1}-subreducts of the varieties of Brouwerian semilattices. Hilbert
algebras have received considerable attention in the algebraic logic literature. A standard

reference on the basic properties of Hilbert algebras is A. Diego’s monograph [9]. A Hilbert
algebra includes the constant 1 in the similarity type. However, since Hilbert algebras satisfy

the identity x → x = 1, this constant can be omitted from the similarity type. For H we
write · for the binary operation symbol → and omit the constant 1 from the similarity type.
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Members of J are called join algebras. The only work on join algebras that I am aware of is

[4].
It is not hard to argue that every algebra in H or in J has an equationally definable order

relation. For elements in an algebra in H we have x ≤ y if and only if xy = xx while for
algebras in J the order is given by x ≤ y if and only if xy = y.

3.4 Definition An algebra A in H is called pure if it is of the form H(P) for some ordered

set P having a top element. A pure algebra in J is defined analogously.

Both H and J are generated by their pure members. Both H and J are known to

be locally finite varieties. The subdirectly irreducible algebras in each variety have been
characterized: they are the pure algebras with underlying ordered set P of the form Q ⊕ 1,

where Q is an arbitrary ordered set.
There are some differences between H and J . Notably, H is a congruence distributive

variety and its type set, in the sense of tame congruence theory, is {3} while J satisfies no
nontrivial congruence identities and its type set is {5}.

Another important difference between H and J is that the variety J of join algebras is
generated by J(C ), where C is the 3-element chain. The only proper nontrivial subvariety of

J is the variety of semilattices. These results are proved in [4]. The variety H on the other
hand, is not finitely generated and has 2ℵ0 subvarieties. The least nontrivial subvariety of H
is the variety I of implication algebras discussed in Example 1.10. These results and others

for H are also given in [4].
We investigate the structure of free algebras FH(n) and FJ (n) by describing the subal-

gebras Ti(n).

3.5 Definition Let t ∈ TL(n) be an arbitrary term for L = {·}.
The binary relation re(t) on var(t) is defined inductively by:

re(t) =

{

{(xi, xi)} if t = xi

re(p) ∪ re(q) ∪ {(rv(p), rv(q))} if t = p · q.

The transitive closure of re(t) is denoted qo(t).

A quasi-order on a set Z is any reflexive transitive binary relation on Z. If σ is a quasi-

order on Z, then the quotient Z/σ is an ordered set in which a/σ ≤ b/σ if and only if
(a, b) ∈ σ. The ordered set Z/σ has a top element if and only if there is a z ∈ Z such that

(a, z) ∈ σ for all a ∈ Z. If t ∈ TL(n), then qo(t) is a quasi-order on the set var(t) in which
rv(t)/qo(t) is the top element of the ordered set var(t)/qo(t).

3.6 Lemma Let σ be any quasi-order on a set Y ⊆ X such that Y/σ has a top element.
Then there exists t ∈ TL(X) such that qo(t) = σ.

Proof Let (xi1, xj1), (xi2, xj2), (xi3, xj3), . . . , (xik, xjk
) be any list of the elements of σ subject

only to the constraint that xj1/σ is the top element of Y/σ. Let

t = (xikxjk
)(. . . (xi3xj3)((xi2xj2)(xi1xj1)) . . .).

Clearly var(t) = Y . It is immediate from the recursive definition of the operator qo that
qo(t) = σ. 2
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We now restrict our discussion to the variety J . The next lemma is proved by considering

valuations of X into the 3-element pure join algebra H(C ), which generates J .

3.7 Lemma Let s, t ∈ TL(n).

(1) J |= s ≈ t iff qo(s) = qo(t).

(2) J |= st ≈ t iff qo(s) ⊆ qo(t).

We have Ti(n) = {t ∈ FJ (n) : rv(t) = xi} and that Ti(n) is the subalgebra of FJ (n)

with universe Ti(n). It can be argued that J is a regular variety (in the sense of the previous
section), that is, if J |= s ≈ t, then var(s) = var(t). In particular, if s ∈ Ti(n), then

xi ∈ var(s).
For 1 ≤ i ≤ n let

Qi(n) = {σ : ∃Y ⊆ X, xi ∈ Y, σ is a quasi-order on Y,

and xi/σ is the top element of Y/σ}.

For σ1 and σ2 ∈ Qi(n) with σk defined on Yk ⊆ X for k = 1, 2, let σ1 · σ2 denote the smallest
quasi-order on Y1 ∪ Y2 that contains both σ1 and σ2. Then necessarily σ1 · σ2 ∈ Qi(n) and

σ1 · σ2 is the transitive closure of σ1 ∪ σ2. Let Qi(n) denote the algebra 〈Qi(n), ·〉. We
note that the algebra Qi is, in fact, a semilattice since the operation · on Qi is idempotent,

commutative, and associative.

3.8 Theorem The map t 7→ qo(t) is an isomorphism from Ti(n) onto Qi(n).

Proof Lemmas 3.6 and 3.7 show the map is well-defined, one-to-one and onto Qi(n). It
remains to show that qo(s · t) = qo(s) · qo(t) for all s and t in Ti(n). Let rv(s) = x`

and rv(t) = xm. By the definition of qo we have that qo(s · t) is the transitive closure of
qo(s) ∪ qo(t) ∪ {(x`, xm)}. We have (x`, xi) ∈ qo(s) since s ∈ Ti(n). Also (xi, xm) ∈ qo(t)

since t ∈ Ti(n) and rv(t) = xm. So (x`, xm) is in the transitive closure of qo(s)∪qo(t). Hence
the transitive closure of qo(s) ∪ qo(t) ∪ {(x`, xm)} is the same as the transitive closure of
qo(s) ∪ qo(t), which is qo(s) · qo(t). 2

From Theorem 3.8 it follows that Qi(n) is a join algebra. The induced order on Qi(n)

is that of containment. Therefore, s ≤ t in Ti(n) if and only if qo(s) ⊆ qo(t). Actually,
from Lemma 3.7 we see that for arbitrary s, t ∈ Ti(n) it is the case that s ≤ t if and only if

qo(s) ⊆ qo(t).
Let qk denote the number of quasi-orders on {1, 2, . . . , k}. It is known that qk is also equal

to the number of topologies on {1, 2, . . . , k}. For example, the values of qk for k = 1, 2, 3, 4
are 1, 4, 29, 355 respectively. We let q0 = 1.

3.9 Theorem

|FJ (n)| =

n−1
∑

i=0

qi

(

n

i

)

(2n−i − 1).

Proof We have

|FJ (n)| =

n
∑

`=1

(−1)(`−1)

(

n

`

)

|T≤`(n)|
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by Theorem 3.2. The cardinality of T≤`(n) is equal to |Q1(n)∩ · · ·∩Q`(n)| by Theorem 3.8.

Let σ be a quasi-order on a set Y ⊆ X for which Y/σ has a top element. Let Z ⊆ Y be be
the set of all xi for which xi/σ is the top element in Y/σ. Then σ = τ ∪ (Y ×Z) where τ is a

quasi-order on Y − Z. Conversely, if ∅ 6= Z ⊆ Y ⊆ X and τ is a quasi-order on Y − Z, then
σ = τ ∪ (Y × Z) is a quasi-order on Y for which Y/σ has a maximal element consisting of

xk/σ for every xk ∈ Z. For σ ∈ Q1(n)∩ · · · ∩Q`(n) there are
(

n−`
i

)

choices for the set Y −Z
if |Y − Z| = i. For a given i, with 0 ≤ i ≤ n − `, there are qi choices for a quasi-order on

Y −Z. The set Z must contain {x1, . . . , x`} so there are 2n−`−i ways to choose the remaining
elements of Z. Therefore

|Q1(n) ∩ · · · ∩ Q`(n)| =

n−
∑̀

i=0

qi

(

n − `

i

)

2n−`−i.

This implies

|FJ (n)| =

n
∑

`=1

(−1)(`−1)

(

n

`

)

(

n−
∑̀

i=0

qi

(

n − `

i

)

2n−`−i

)

.

We interchange the order of summation and use the formula
(

n
`

)(

n−`
i

)

=
(

n
i

)(

n−i
n−`−i

)

to obtain

|FJ (n)| =

n−1
∑

i=0

qi

(

n

i

)

(

n−i
∑

`=1

(−1)`−1

(

n − i

n − ` − 1

)

2n−`−i

)

.

The inner summation simplifies to 2n−i − 1. Thus,

|FJ (n)| =

n−1
∑

i=0

qi

(

n

i

)

(2n−i − 1).

2

For example, if we use the previously mentioned values of qi for 1 ≤ i ≤ 4, then we see

that the values of |FJ (n)| for 1 ≤ n ≤ 5 are 1, 5, 28, 231 and 3031 respectively.
The formula in Theorem 3.9 involves qn, the number of quasi-orders on an n-element set.

Although no simple formula for the value of qn is known, asymptotic estimates do exist. By
means of these asymptotics we can obtain the following bounds on the cardinalities of free

join algebras.

3.10 Theorem There exists a positive constant c such that for all sufficiently large n,

2
n2

4
+n−c lg n ≤ |FJ (n)| ≤ 2

n2

4
+n+c lg n.

We next consider the structure of free algebras FV(n) for V an arbitrary subvariety of
H. As with the variety J we provide a detailed description of the subalgebras Ti(n). From
this description we show that T≤`(n) is a direct power of the 2-element implication algebra

C2, and we determine the exponent in this direct power. So with Theorem 3.2 we can, in
principle, find an expression for the cardinality of FV(n) when V is a subvariety of H.

Recall that a subdirectly irreducible algebra A ∈ H has an element e ≺ 1 with a ≤ e for
all a ∈ A, a 6= 1. The element e is irreducible in the sense that if tA(a1, . . . , an) = e, then
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e appears among the ai. Hence if v is a valuation mapping to the subdirectly irreducible

algebra A, then e ∈ v(X). We also note that the set {1, e} is a subuniverse of A and the
corresponding subalgebra is isomorphic to the 2-element implication algebra C2. The algebra

C2 is a pure algebra in H since it is H(P) for P the 2-element chain.
The following facts about valuations into pure algebras in H are easily established using

nothing more than definitions.

3.11 Lemma Let v be a valuation into a pure algebra A in H and let t be a term in TL(n)
with rv(t) = xi.

(1) v(t) ∈ {1, v(rv(t))}.

(2) If t ∈ Ti(n) ∩ Tj(n) and v(t) 6= 1, then v(xi) = v(xj).

(3) H |= rv(t) ≤ t.

Let V be a subvariety of H and V SI the class of finitely generated subdirectly irreducible

algebras in V . Since V is locally finite, every algebra in V SI is finite. By Corollary 1.4 the set
val(X, V SI) is free for V . Hence E(val(X, V SI)) is also free for V by Lemma 1.7.

Now, from Lemma 3.11, if v is a valuation in E = E(val(X, V SI)) and t ∈ Ti(n), then

v(t) ∈ {1, v(xi)}. If s, t ∈ Ti(n) with s 6= t, then there exists v ∈ E with v(xi) ≤ e and
{v(s), v(t)} = {1, v(xi)}. By composing v with an endomorphism of Alg(v) that maps v(xi)

to e we can find a w ∈ E for which {v(s), v(t)} = {1, e}.

3.12 Definition Let V be a subvariety of H. We adopt the following notation:

E(V) := E(val(X, V SI)).

For 1 ≤ ` ≤ n,
E(V)` := {v ∈ E(val(X, V SI)) : v(x`) = e}

and
E(V)≤` := {v ∈ E(val(X, V SI)) : v(xi) = e for 1 ≤ i ≤ `}.

When the variety V is clear from the context or is not important we write E, E` and E≤`.

Note that E≤` = E1 ∩ · · · ∩ E` follows from the definition and that E = E1 ∪ · · · ∪ En

follows from the observation that e ∈ v(X) for every v ∈ E.
For any subvariety V of H. we know FV(X) is isomorphic to Ge(X, E(V)). Since the val-

uations in Ei serve to separate the elements of Ti(n), we have Ti(n) embedded in Ge(X, Ei).
From Lemma 3.11(3) it follows that if v ∈ Ei and t ∈ Ti(n), then v(t) ≥ v(xi) ≥ e. This

means that the embedding of Ti(n) into Ge(X, Ei) is actually an embedding into CEi

2 . It
can be argued that this embedding is onto CEi

2 . One way this can be done is to construct

for every v ∈ Ei a term tv such that v(tv) = 1 and w(tv) = e for every w ∈ Ei with w 6= v.
The construction makes use of the ordered set of elements v(X) in the subdirectly irreducible
algebra Alg(v) and is similar in spirit to that given in Lemma 3.6. That the valuations in Ei

are pairwise nonequivalent is also used in this argument. Then by means of the term (x ·y) ·y,
which behaves as semilattice join on the ordered set e < 1, it is possible to form for every

element c of CEi

2 a term t ∈ Ti built from the appropriate tv for which w(t) = c(w) for all
w ∈ Ei. Thus we have the following.
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3.13 Lemma For any subvariety V of H the algebra T≤`(n) is isomorphic to C
|E≤`|
2 where

C2 = H(P) for P the 2-element chain e < 1.

A stronger formulation of this lemma is given in [3] where the variety H is replaced by

the variety of all Hilbert algebras.

Theorem 3.2 and Lemma 3.13 provide the following expression for the cardinality of a
finitely generated free algebra FV(n) in a subvariety V of H.

3.14 Theorem For every variety V ⊆ H and every positive integer n

|FV(n)| =

n
∑

`=1

(−1)`−1

(

n

`

)

2|E≤`|.

So, for a variety V in H the problems of describing Ti(n) and of determining the cardinality
of FV(n) reduce to counting the number of elements in Ei and E≤`.

For example, if V is the variety generated by C3 = H(P) for P the 3-element chain, then
the only subdirectly irreducible algebras in V are C2 and C3. Among the valuations in E≤`

there are 2n−` valuations v for which Alg(v) = C2 and 3n−` − 2n−` with Alg(v) = C3. So
we have

T≤`(n) ∼= (C2)3n

and |FV(n)| =
n
∑

`=1

(−1)`−1

(

n

`

)

23n

.

This result may be found in [14].

We use Theorem 3.14 to determine the cardinality of the finitely generated free algebras
for V = H. We first describe E≤`. Let v ∈ E≤` with A = Alg(v). The subdirectly irreducible

algebra A, which is generated by the elements e and the v(xj) for ` + 1 ≤ j ≤ n, has at most
n− ` elements strictly below e. Let R = {xj ∈ X : v(xj) < e} and T = {xj ∈ X : v(xj) = 1}.

We form a quasi-order σv consisting of the union of these sets:

• R × (X − R),

• a quasi-order ρ on R given by ρ = {(xj, xk) ∈ R2 : v(xj) ≤ v(xk)},

• X × T ,

• the diagonal {(xj, xj) : xj ∈ X}.

If |R| = r, then the number of ways the set R and the quasi-order ρ on R can be chosen

is
(

n−`
r

)

qr , where 0 ≤ r ≤ n − ` and qr is the number of quasi-orders on an r-element set.
Having chosen r of the v(xj) to have value strictly less than e there are at most 2n−`−r ways

to choose the set T . Hence

|E≤`| ≤
n−
∑̀

r=0

(

n − `

r

)

qr2n−`−r .

This upper bound is actually obtained since for every set R ⊆ {x`+1, . . . , xn} of cardinality r
and every quasi-order ρ defined on R, and for every choice of a set T ⊆ {x`+1, . . . , xn} − R
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with the quasi-order τ on X given by

τ = {(xj, xk) : xj ∈ X, xk ∈ T}

∪ {(xj, xk) : xj ∈ X, xk ∈ T}

∪ {(xj, xj) : xj ∈ X},

there is a subdirectly irreducible algebra A = H(P) for P the ordered set X /(ρ∪τ). For this
A, the element 1 is T/(ρ∪ τ), the element e is (X − (R∪T ))/(ρ∪ τ), and each xj/(ρ∪ τ) for

xj ∈ R is strictly below e. If v : X → A is defined by v(xi) = xi/(ρ∪τ), then v(X) generates
A, v ∈ E≤`, and σv = ρ ∪ τ . Thus,

|E≤`| =

n−
∑̀

r=0

(

n − `

r

)

qr2n−`−r . (3.1)

An application of Theorem 3.14 gives the following result from [3].

3.15 Theorem

|FH(n)| =

n
∑

`=1

(−1)`−1

(

n

`

)

2
∑n−`

r=0 (n−`

r )qr2n−`−r

.

The values of |FH(n)| for n = 1, 2, and 3 are 2, 14, and 12266 respectively.

4 Structure via direct product decomposition

In this section we describe a wide class of varieties for which the finitely generated free

algebras have a direct product decomposition into directly indecomposable algebras where
the structure of these indecomposables can be described in terms of free algebras of associated

varieties and where the multiplicity of each indecomposable in the product is linked in a strong
way to free algebras in another associated variety.

4.1 Definition A finite nontrivial algebra Q is quasiprimal if every nontrival subalgebra
of Q is simple and the variety generated by Q is congruence permutable and congruence

distributive.

There is an extensive literature on quasiprimal algebras and the varieties that they gen-
erated. We mention [20] and [16] as important sources of information about quasiprimal

algebras and the varieties they generate.

Let Q be a quasiprimal algebra and Q the variety that it generates. It is known that

the variety Q is semisimple, that is, every subdirectly irreducible algebra in Q is a simple
algebra. Moreover, every simple algebra in Q is a subalgebra of Q. If A is any finite algebra
in Q, then from the congruence distributivity of Q it follows that the congruence lattice

Con A is a distributive lattice in which each element is a meet of coatoms, and therefore is
a finite Boolean lattice. From the congruence permutability of Q we have that if α and β

are complements in this lattice, then A is isomorphic to A/α × A/β. If α1, . . . , αr are the
coatoms of Con A, then A ∼= A/α1 × · · · × A/αr and each A/αi is a subalgebra of Q. So
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every finite algebra in Q is a direct product, in a unique way, of simple algebras. In particular

for every positive integer n we may write

FQ(n) =

r
∏

j=1

Bj , (4.1)

where each Bj is a simple subalgebra of Q and the kernel of the projection prj onto Bj is a

coatom, say αj , of the congruence lattice of FQ(n).

We rephrase (4.1) in terms of Ge(X, R) for X = {x1, . . . , xn} and R a set of valuations
to subalgebras of Q. For xi ∈ X let xi be the r-tuple (xi(1), . . . , xi(r)) in (4.1). For each

1 ≤ j ≤ r let vj be the function from X to Bj for which vj(xi) = xi(j). Then v is a valuation
to Bj. If R = {v1, . . . , vr}, then the array corresponding to Ge(X, R) is identical to

∏r
j=1 Bj

in (4.1). On the other hand, let v ∈ QX be arbitrary. If B is the subalgebra of Q generated by

v(X), then v is a valuation to B, the algebra B is simple, and the kernel of the homomorphic
extension of v to all of FQ(n) is a coatom of Con (FQ(n)). So there is a 1 ≤ j ≤ r and an

isomorphism h : B → Bj such that h(v(xi)) = xi(j) = vj(xi). Thus v and vj are equivalent
in the sense of Definition 1.5. In fact, if v, v′ ∈ QX are valuations that are equivalent in the

sense of Definition 1.5, then the homomorphisms h and h′ between Alg(v) and Alg(v’) for
which v′ = hv and v = h′v′ must be isomorphisms since every subalgebra of Q is simple. So

the transversal of valuations of Definition 1.5 can be chosen to be the set R = {v1, . . . , vr}.

Therefore, the structure of FQ(n) is determined by a transversal, say T , of the pairwise
nonisomorphic subalgebras of Q and for each algebra B in T , the number, say m(B), of factors

in the representation in (4.1) that are isomorphic to B. The value of m(B) is completely
determined by the subuniverses and the automorphisms of B. Namely, consider the set of

all v ∈ BX for which v(X) is not a subset of any proper subuniverse of B, and for this set
of valuations to Q, choose a subset whose elements are pairwise inequivalent with respect to

the equivalence relation of Definition 1.5. This pairwise inequivalence can be determined by
only using automorphisms of B since B is a simple algebra. From T and the values of m(B)

as B ranges over T we have the direct product decomposition of FQ(n) given in (4.1). Note
that in the case that the algebra B is rigid (i.e., no proper automorphisms), then m(B) is
just the number of v ∈ BX for which v(X) is not contained in any proper subuniverse of B.

So by the analysis given in the previous paragraphs, the structure of finitely generated
free algebras in a variety Q generated by a quasiprimal algebra Q can be described. Each

is of the form Ge(X, R) for R a set of valuations that is free for Q and independent in the
sense of Definition 1.2. The set R of valuations can, in principle, be determined from the

collection of subuniverses and automorphisms of Q.

In the remainder of this section we obtain a structure theorem for free algebras that
builds on the quasiprimal construction just given. The full theory is given in [2]. The

presentation that we now give makes use of the Ge(X, R) construction. We first present a
detailed illustrative example.

4.2 Example Stone algebras: The variety V of Stone algebras is the subvariety of the variety

of all distributive pseudocomplemented lattices that satisfy the identity x∗ ∨ x∗∗ = 1. The
only nontrivial subvariety of Stone algebras is the variety B of Boolean algebras. The 3-

element Stone algebra S = 〈{0, 1, 2},∧,∨, ∗, 0, 1〉 has the lattice structure of the 3-element
chain 0 < 2 < 1 with the pseudocomplement operation ∗ given by 0∗ = 1, 1∗ = 0, and
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2∗ = 0. It is known that the variety V of Stone algebras is generated by S. Stone algebras

have been thoroughly studied during the past 50 years. The structure of free Stone algebras
was presented by R. Balbes and A. Horn in [1].

The only subdirectly irreducible Stone algebras are S and the 2-element Boolean algebra
B = 〈{0, 1},∧,∨, ∗, 0, 1〉. Let h denote the homomorphism from S to B given by h(0) = 0

and h(1) = h(2) = 1. If α is the kernel of h, then α is a coatom of the congruence lattice of
S, the congruence lattice of S is 0 < α < 1 with α having {1, 2} as its only nontrivial block.

The free algebra FV(n) is a subdirect product of copies of S and B. Let U be the set
of all valuations of X to S or B. There are 2n valuations to B and 3n − 2n valuations

to S since every valuation to S must have 2 in its range. So FV(n) can be represented as
the array Ge(X, U). We define an equivalence relation ∼B on U by v ∼B w if and only if

h(v(xi)) = h(w(xi)) for all xi ∈ X . Clearly, there are 2n equivalence classes for ∼B. If Z ⊂ U
is an equivalence class of ∼B we wish to describe the projection of Ge(X, U) on Z. That is,
we wish to describe Ge(X, Z). We compute an illustrative example with the UAC program

to see what is going on.
So let n = 4 and suppose Z consists of those valuations v for which hv(x1) = hv(x2) =

hv(x3) = 1 and hv(x4) = 0. Then v(x4) = 0 but v(xi) ∈ {1, 2} for 1 ≤ i ≤ 3. So |Z| = 8.
The algebra Ge(X, Z) is generated by x1, . . . , x4. Table 4 contains the output of the UAC

program’s computation of the subalgebra of S3 generated by x1, x2, x3 and x4.

. . < Number of vectors: 20

. . Length of vectors: 8

. . V 0: ( 1, 1, 1, 1, 2, 2, 2, 2)

. . V 1: ( 1, 1, 2, 2, 1, 1, 2, 2)

. . V 2: ( 1, 2, 1, 2, 1, 2, 1, 2)

. . V 3: ( 0, 0, 0, 0, 0, 0, 0, 0)

. . V 4: ( 1, 1, 2, 2, 2, 2, 2, 2)

. . V 5: ( 1, 2, 1, 2, 2, 2, 2, 2)

. . V 6: ( 1, 2, 2, 2, 1, 2, 2, 2)

. . V 7: ( 1, 1, 1, 1, 1, 1, 2, 2)

. . V 8: ( 1, 1, 1, 1, 1, 2, 1, 2)

. . V 9: ( 1, 1, 1, 2, 1, 1, 1, 2)

. . V 10: ( 1, 1, 1, 1, 1, 1, 1, 1)

. . V 11: ( 1, 2, 2, 2, 2, 2, 2, 2)

. . V 12: ( 1, 1, 1, 2, 2, 2, 2, 2)

. . V 13: ( 1, 1, 2, 2, 1, 2, 2, 2)

. . V 14: ( 1, 2, 1, 2, 1, 2, 2, 2)

. . V 15: ( 1, 1, 1, 1, 1, 2, 2, 2)

. . V 16: ( 1, 1, 1, 2, 1, 1, 2, 2)

. . V 17: ( 1, 1, 1, 2, 1, 2, 1, 2)

. . V 18: ( 1, 1, 1, 1, 1, 1, 1, 2)

. . V 19: ( 1, 1, 1, 2, 1, 2, 2, 2)

Table 4

The generators x1, x2, x3 and x4 of Ge(X, Z) in Table 4 are labelled V0, V1, V2, and
V3 respectively. The elements of each row of Ge(X, Z) are all in the same α class, that is,



26 J. Berman

each row is constant with respect to the homomorphism h. Of the 20 rows in Ge(X, Z), 19

lie in {1, 2}8 and one is in {0}8. The operations ∧ and ∨, when restricted to {1, 2} behave as
lattice operations on the distributive lattice D with 2 < 1. The 8 valuations of {x1, x2, x3}
to D are coded as the eight columns of Ge(X, Z). So the rows generated by V0, V1, and V2
by means of ∧ and ∨ give the 18 elements of the free distributive lattice on 3 free generators.

The operation ∗ applied to {1, 2} gives {0}, but the term ∗∗ sends {1, 2} to {1}. So the row
consisting of all 1’s also appears. This accounts for the 19 rows whose elements are in the

class 1/α. There can only be one row whose elements are in the singleton class 0/α. So all
elements are accounted for. So Ge(X, Z) is isomorphic to 1⊕FD1

(3), where D1 is the variety

of upper bounded distributive lattices.

More generally, for arbitrary n, if Z is an equivalence class of ∼B and n1 is the number of

the elements xi in Ge(X, Z) that have v(xi) ∈ 1/α for all v ∈ Z, then as in the example the
algebra Ge(X, U) is isomorphic to 1⊕FD1

(n1). So the structure of Ge(X, U) is quite clear.

This algebra is also isomorphic to the free bounded distributive lattice on n1 free generators,
but we write it as an ordered sum in order to emphasize the origin of the two components of

the algebra as determined by those n1 variables that are mapped to 1 and those n2 that are
mapped to 0. We shall see that this decomposition is an example of a more general one of

the form FV0
(n0) ∪ FV1

(n1) for two varieties V0 and V1 with n0 + n1 = n.

Next we consider how the different Ge(X, Z) fit together. We view FS(n) as Ge(X, U)

for U the set of all valuations to S and B and we view FB(n) as Ge(X, W ) with W = BX .
Let Z1, . . . , Z2n be a list of all the classes of ∼B. Let g be the canonical onto homomorphism

g : FS(n) → FB(n) that maps generators to generators. Since g is onto, for each ∼B class Z
there is a term mZ(x1, . . . , xn) for which v(g(mZ)) = 1 if v ∈ Z and v(g(mZ)) = 0 otherwise.

Then for any t ∈ Ge(X, Z) the term pZ,t = t ∧ mZ is such that v(pZ,t) = v(t) if v ∈ Z and
v(pZ,t) = 0 if v 6∈ Z. Let (t1, . . . , t2n) ∈ Ge(X, Z1) × · · · × Ge(X, Z2n) be arbitrary. Form

the term

t(x1, . . . , xn) =
∨

1≤k≤2n

pZk,tk.

For every 1 ≤ k ≤ n and every v ∈ Zk we have v(tk) = v(t). Therefore we conclude that
FS(n) ∼= Ge(X, U) ∼= Ge(X, Z1) × · · · ×Ge(X, Z2n).

By combining this with the characterization of Ge(X, Z) given in the previous paragraph
we get the result of [1]:

FS(n) =

n
∏

n1=0

(1 ⊕FD1
(n1))

( n
n1

)
.

The paper [2] grew out of an attempt to understand a number of similar examples in the

literature in which the free algebra FV(n) for a locally finite variety V has the form

FV(n) =
∏

n0+n1=n

(FV0
(n0) ∪ FV1

(n1))
( n

n1
)
,

or the more general form

FV(n) =
∏

n1+···+nk=n

(FV1
(n1) ∪ · · · ∪FVk

(nk))
( n

n1,...,nk
)
,
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where the Vi are varieties derived from V in some way. The general phenomenon observed is

that V is a locally finite variety and

FV(n) =
∏

i

Dmi

i ,

with each Di a directly indecomposable factor of FV(n), mi is the multiplicity of Di in
the product, each Di is built from some algebras in some varieties associated with V and

the values of the mi are determined by enumerating valuations of a particular form. The
following is a description of some facts noticed in surveying these examples.

If V is one of the locally finite varieties examined, then the following facts were noted. The

subvariety V0 generated by all finite simple algebras of V is generated by a quasiprimal algebra
Q. Typically Q is a familiar algebra such as the 2-element Boolean algebra B. As we observed

earlier, the free algebra FV0
(n) is of the form

∏r
j=1 Qj with each Qj a nontrivial subalgebra

of Q, and r the cardinality of the set R of valuations for which FV0
(n) is isomorphic to

Ge(X, R). As is the case for any variety generated by a quasiprimal algebra, the congruence
lattice of FV0

(n) is a Boolean lattice with r coatoms. If FV(n) is written as product of
directly indecomposable algebras, then in the examples considered, the number of factors in

this decomposition is also r, and FV(n) =
∏r

j=1 Dj with each Dj directly indecomposable,
the congruence lattice Con (Dj) has exactly one coatom, say αj , and Dj/αi is isomorphic

to Qj . Moreover, in these examples, Con (FV(n)) ∼=
∏r

j=1 Con (Dj). Let V have similarity
type τ . For each q ∈ Q let τq denote the similarity type consisting of all terms t of type τ

that satisfy tQ(q, . . . , q) = q. We identify FV(n) with
∏r

j=1 Dj and let prj : FV(n) → Dj be
the projection map and let hj : Dj → Qj be a homomorphism with kernel αj. For 1 ≤ j ≤ r

and q ∈ Q let Xq
j = {xi ∈ X : hj(prj(xi)) = q}. Let Vq denote the variety of similarity type

τq that is generated by all algebras Aq
j whose universe is h−1

j (q) ⊆ Dj and whose operations

are those term operations t of Dj for which tQ(q, . . . , q) = q. Then each Dj is built from
subsets having the structure of FVq(Xq

j ) where q ranges over the elements of Qj. In the more

familiar examples we have Dj =
⋃

q∈Qj
FVq(Xq

j ).

For example, let us reconsider Example 4.2 of Stone algebras. Here the only simple
algebra is the 2-element Boolean algebra B so the variety S0 is the variety B of Boolean

algebras. The free algebra FB(n) is B2n

since every valuation to B is needed to separate the
elements of FB(n). So r = 2n and Con (FB(n)) is a Boolean algebra with r coatoms. In the
decomposition of FS(n) into directly indecomposables,

∏r
j=1 Dj , the unique coatom of the

congruence lattice of Dj is the kernel of the homomorphism hj onto B in which h−1
j (0) = {0}

and h−1
j (1) = Dj − {0}. The variety S is congruence distributive, so it follows from known

results that for every A ∈ S, if A = A1 × A2, then Con A ∼= ConA1 × ConA2. The

similarity types of τ0 and τ1 both include ∧,∨,∗∗; while τ0 includes the constant symbol 0
and τ1 contains the constant symbol 1. The algebras A0

j for 1 ≤ j ≤ r are all 1-element

algebras and so the variety Sq for q = 0 is the trivial variety T . For q = 1 the algebras A1
j

are term equivalent to distributive lattices with a top element 1 and the variety Sq for q = 1
is D1. For every j, we have Xk

j = {xi : hj(prj(xi)) = k} for k = 0, 1. Then Dj has as its

universe FT (X0
j ) ∪ FD1

(X1
j ).

In [2] general conditions on a variety V are presented and are proved to be sufficient to

force the well-behaved direct product decomposition of FV(n) into indecomposables described
in the previous paragraphs. We now sketch these results.
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A variety V is said to have the Fraser-Horn Property (FHP) if there are no skew con-

gruences on finite products, i.e., for all A1, A2 ∈ V , every θ ∈ Con (A1 × A2) is a product
congruence θ1 × θ2 with θk ∈ Con (Ak) for k = 1, 2. If V has FHP, then Con (A1 × A2) ∼=
ConA1×Con A2 for all A1 and A2 in V . Various conditions that imply FHP are known. If
V is congruence distributive, then V has FHP. Fraser and Horn [10] give a Mal’cev condition

equivalent to FHP and they derive as a special case the following:

A variety V has FHP if there are binary terms + and · and elements 0 and 1 in FV(3) such

that for all z ∈ FV(3), we have z · 1 = z + 0 = 0 + z = z and z · 0 = 0.

So, for example every variety of rings with unit has FHP.

A finite algebra A has the Apple Property (AP) if for all β ∈ Con A, if β < 1A is a factor
congruence with A/β directly indecomposable, then the interval lattice [β, 1A] in Con A has

exactly one coatom. A variety V has AP if every finite algebra in A has AP. Equivalently,
V has AP if every directly indecomposable finite algebra in V has a congruence lattice with
exactly one coatom. For example, a local ring has AP.

If an algebra or a variety has both FHP and AP, then we say it has FHAP. In [6] locally
finite varieties with FHAP are shown to have finitely generated free algebras with the rich

direct product structure described earlier in this section.
For any locally finite variety V let V0 be the subvariety generated by all finite simple

algebras in V . We call V0 the prime variety of V . For arbitrary V little can be said about
V0. However, in the event that a locally finite variety has FHAP and satisfies one additional

condition, then the prime variety is especially well-behaved.

4.3 Theorem Let V be a locally finite variety with FHAP. Suppose every subalgebra of a
finite simple algebra in V is a product of simple algebras. Then all of the following hold:

(1) V0 is congruence distributive.

(2) V0 is congruence permutable.

(3) Every finite member of V0 is a product of simple algebras.

(4) For every n the free algebras FV(n) and FV0
(n) have the same number of directly inde-

composable factors, and if r denotes this number, then it is possible to write

FV(n) =

r
∏

j=1

Dj and FV0
(n) =

r
∏

j=1

Qj

with the Dj and Qj directly indecomposable, so that if αj is the unique coatom of
Con (Dj), then Dj/αj and Qj are isomorphic.

In the examples described in the earlier part of this section, the varieties satisfy the hypotheses
of this theorem and the prime variety in each case is, in fact, a variety generated by a

quasiprimal algebra.

4.4 Theorem Let V be a locally finite variety with FHAP. Suppose every subalgebra of a
finite simple algebra in V is a product of simple algebras. Let r, Dj, Qj be as in Theorem

4.3 with hj : Dj → Qj a homomorphism with kernel αj. For Q a finite simple algebra in V
and q ∈ Q, let τq be the similarity type of all terms t for which tQ(q, . . . , q) = q. For each j
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with Qj
∼= Q, let Aq

j be the algebra with universe h−1
j (q) ⊆ Dj and operations those t in τq,

and let Vq be the variety generated by all Aq
j. If Xq

j = {xi ∈ X : hj(prj(xi)) = q}, then the
algebra Aq

j contains a set that is the universe of an algebra isomorphic to FVq(Xq
j ).

The hypotheses of Theorems 4.3 and 4.4 are robust with many different varieties satisfying

them. The examples alluded to earlier all satisfy them and thus Theorem 4.4 provides a
uniform explanation of the description of the directly indecomposable direct factors of the
finitely generated free algebras in those varieties.

In Theorem 4.4 we have that the universe of Dj is the disjoint union of the universes of
the Aq

j as q ranges over the elements of Qj and that Aq
j contains a subalgebra isomorphic to

FVq(X
q
j ). For varieties such as Stone algebras, A

q
j = FVq(X

q
j ) and so Dj =

⋃

q∈Qj
FVq(X

q
j ).

This situation represents a lower bound for the size of the Dj . Moreover, it is possible to
provide sufficient conditions on the behavior of the fundamental operations of V and Vq that

guarantee that all the directly indecomposable Dj have this minimal structure.

On the other hand, it is possible for the size of Dj to exceed this lower bound. In [2] a

condition is given that if added to the hypotheses of Theorem 4.4 forces A
q
j
∼= FVq(X) for

every q ∈ Qj. Thus, in this case Dj is the disjoint union of |Qj| sets, each corresponding

to the universe of FVq(X). Roughly speaking, this condition given in [2] is that for every

q, q′ ∈ Qj there is a unary term uqq′ that maps Aq
j onto Aq′

j . Note that if this condition holds,

then |Dj| = |Qj| · |FV0
(n)|. An example of a variety in which this occurs is the variety V of

rings generated by Zp2, for p any prime. As observed earlier, a variety of rings with unit

has FHP. The variety V is known to have AP and thus V has FHAP. The only simple ring
in V is Zp and so the prime variety V0 is the variety generated by Zp. So FV0

(n) ∼= (Zp)pn
.

Theorem 4.4 applies. The number of factors in the decomposition of FV(n) into directly
indecomposables is the same as that for FV0

(n), which is pn. For each q ∈ Zp it can be shown

that the variety Vq is the variety generated by the p-element group in which all p elements are
constants. The free algebra on n free generators for this variety is easily seen to have pn+1

elements. For each q, q′ ∈ Zp the unary term u(x) = (x + q′ − q) mod (p) can serve as uqq′ .

So for each directly indecomposable factor Dj of FV(n) we have |Dj| = p|FV0
(n)| = pn+2.

All the Dj are isomorphic and thus |FV(n)| = (pn+2)pn
.
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