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Freezing of soft spheres in slit nanopores is investigated using Grand canonical Monte Carlo
simulations. The pores are in equilibrium with a liquid located close to the liquid–solid coexistence
region in the bulk Lennard-Jones phase diagram. In addition to layering, the confined fluid is found
to possess in-plane order, leading to the formation of frozen phases which give rise to a sequence
of solid–solid transformations as the pore width is varied. Transformations between n layered
triangular to n11 layered square lattices and between n layered square to triangular lattices, are
observed for n51, 2, 3, and 4. The transition from triangular to square lattices occurs via an
intermediate buckled phase which is characterized by increased out-of-plane motion, while
maintaining in-plane triangular order. Buckling was found to decrease with increasing number of
layers. The transition between square to triangular lattices at a fixed number of layers is
accompanied by a lowering of the solvation force, resulting in a doublet in the solvation force
maxima. Influence of fluid–wall interactions on the nature of the frozen phases are studied by
comparing the structures formed with a 10-4-3 and 10-4 fluid–wall potential. The solid structures
are classified based on their closest 3D counterparts.

I. INTRODUCTION

The understanding of the structure and dynamics of mo-
lecularly thin confined fluids is important in processes such
as wetting, adhesion, coatings, and boundary lubrication. Al-
though the gas to liquid transition in micropores is reason-
ably well understood, the liquid to solid transition and the
nature of possible solid phases that can exist under confine-
ment has only recently received greater attention.

Perhaps the most widely used experimental tool for
probing the physics of molecularly confined fluids is the sur-
face force apparatus ~SFA!, where forces across a fluid con-
fined between two mica ~atomically smooth! cross cylinders
are measured.1 Although primarily developed to measure
forces across molecularly thin films, dynamic SFA experi-
ments where the confined fluid is subject to normal and tan-
gential forces can be used to indirectly infer the state of the
confined fluid. Dynamic SFA experiments with nonpolar or-
ganic molecules, such as cyclohexane, indicate the presence
of a liquid to solid transition solely due to increasing
confinement.2 Solidification is inferred by the ability of the
film to support a finite shear stress. Dynamic stick-slip dur-
ing sliding experiments has also been attributed to alternate
freezing and melting mechanisms.3 Fundamentally, solidifi-
cation would imply that in addition to layering ~which is well
established! the fluid would possess long range in-plane or-
der as well. Since SFA experiments cannot establish this di-
rectly, the exact nature of the ‘‘solid’’ phase and the liquid–
solid transition is still under debate, with the possibility of
the formation of an intermediate amorphous glassy state.4,5

Recent extensions of the SFA ~Ref. 6! indicate that a combi-
nation of the SFA with improved optical imaging techniques

have the potential to yield a more complete physiochemical
picture of the confined fluid.

Molecular simulation techniques have provided a pow-
erful means of interpreting experimental data and have aided
in developing theories for inhomogeneous fluids. It is well
established, both by computer simulation7–9 and density
functional theory,10 that the oscillatory solvation force as a
function of confinement is accompanied by the formation
and disruption of layers. Molecular simulations that most
appropriately describe the conditions in a typical SFA experi-
ment are the grand canonical Monte Carlo ~GCMC! simula-
tions. In a GCMC simulation a pore of given volume V is
equilibrated with a bulk fluid of chemical potential m and
temperature T. In molecular simulations the pore walls are
modeled as either structured or smooth. In a structured pore
the fluid–wall potential is dependent on the lattice positions
of atoms that make up the wall. In the smooth wall the fluid–
wall potential is only a function of the normal distance of the
fluid atom from the wall. Epitaxial freezing occurs in struc-
tured, commensurate pores.8,11,12 GCMC simulations have
shown that depending on the bulk chemical potential, the
pore fluid need not always epitaxially freeze in structured
pores.13 On the other hand, under suitable thermodynamic
conditions, freezing can occur in pores with atomically
smooth surfaces14 –16 and in structured pores when the ad-
sorbed fluid is incommensurate with the pore walls,17 indi-
cating that epitaxy is not a necessary condition for freezing
of the confined fluid.2

With the development of experimental techniques, the
nature of frozen phases, with emphasis on the liquid to solid
transition under confinement, have received greater
attention.18 The underlying inhomogeneous structure of the
confined fluid and nature of the pore–fluid interaction can



either elevate or depress the freezing point relative to the
bulk fluid.19–21 Studies which investigate the structure of fro-
zen water under confinement, indicate that the structures and
transitions can be quite different from the bulk
counterparts.22,23 Molecular dynamics simulations of water
in a slit pore of 1 nm width predicts the formation bilayer ice
crystals, with slightly distorted hexagonal rings.24 Molecular
simulations of nitrogen in slit graphite pores show that or-
dered phases that are not observed during adsorption on a
single graphite sheet can be stabilized under confinement.25

X-ray diffraction studies of Ar and Kr in Vycor glass reveal
the presence of randomly stacked layers giving rise to a dis-
ordered hexagonal close packed structure, and the presence
of a solid–solid transition between this phase and the face
centered cubic structure.26 More recently, x-ray diffraction
studies have been reported for the liquid–solid and solid–
solid transitions for oxygen in cylindrical pores27 and melt-
ing and freezing of argon in porous silica.28

Unlike molecularly confined films, colloidal suspensions
confined between glass plates can be directly imaged using
optical microscopy techniques. As a result solid–solid tran-
sitions in high density colloidal suspensions have been stud-
ied using a combination of experiments29–31 and computer
simulations.32–35 The confined colloidal suspension has pro-
vided a versatile experimental system to explore the liquid–
hexatic–solid phase transitions in quasi-two-dimensional
systems.36,37 In the single layer regime the solid freezes into
a triangular lattice and when more than one layer is present,
square lattices are formed at low densities, which transform
into triangular lattices at higher densities. The transition from
n layered triangular to n11 layered square lattice is seen to
proceed through buckled and prism phases.38 This sequence
of transitions, in these reduced dimensional systems, from
square to triangular lattices is understood predominantly in
terms of excluded volume effects.39

We have recently carried out GCMC simulations for a
Lennard-Jones ~LJ! fluid confined to a smooth slit graphite
pore.16 Unlike previous GCMC studies in slit pores, we con-
sidered a high density bulk fluid located close to the liquid–
solid freezing line. Under these conditions our preliminary
investigation reveals that in addition to the fluid freezing in
the pore, solid–solid transitions between triangular and
square lattices, which are remarkably similar to the sequence
observed in colloidal suspensions are observed. Since ex-
cluded volume effects dominate the structure of high density
soft-sphere systems this qualitative similarity between mi-
cron sized colloidal suspensions and molecular thin films is
not completely unexpected. An earlier GCMC study17 which
reveals the presence of a solid–solid transition in a soft
sphere LJ system showed that a transition from square ~bcc!

to triangular ~triclinic! lattices in the bilayer regime for xe-
non confined in a structured pore-wall made up of argon
atoms. In the same study solid–solid transitions were not
observed for the commensurate system formed by replacing
xenon with argon. Perhaps the lower bulk fluid density used
in these simulations, restricted the transformations to the bi-
layer regime.

In this manuscript, we extend our preliminary commu-
nication16 and present a more detailed analysis of the struc-

tures of frozen phases in slit shaped pores. GCMC simula-
tions are carried out for the similar bulk state point used
earlier.16 Here, the structure of the confined phases are con-
trasted for two kinds of smooth pore systems. The first is one
is methane adsorbed in graphite, which represents a system
with strong fluid–wall interactions. The second is a pore
modeled using the 10-4 fluid–wall potential with argon as
the confined fluid. When compared with the 10-4-3 fluid–
wall potential, the 10-4 potential represents a weakly attrac-
tive pore. The confined fluid structures are examined by
computing in-plane pair correlation functions, in-plane bond
order parameters, density distributions, and snapshots. The
frozen phases are classified based on their three dimensional
counterparts and where possible we compare our observa-
tions with the crystal structures observed in hard sphere and
confined colloidal systems.

II. THEORY AND SIMULATION PROCEDURE

A. Fluid–fluid potentials

Fluid–fluid interactions are modeled using a 12-6 LJ po-
tential,
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where e f f and s f f are the LJ energy and size parameters,
respectively, and r i j is the distance between particles i and j.

B. Fluid–wall potentials

In order to study the influence of the wall potential on
the structure of the confined fluid, two smooth wall systems
have been investigated. In the first case the fluid–wall inter-
action potential is modeled using a 10-4-3 potential,40
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where z is the perpendicular distance between the fluid par-
ticle and the wall, rw is the surface density of wall atoms, D
is the interlayer spacing of wall atoms, e f w is the fluid–wall
interaction parameter, and s f w is the fluid–wall diameter.
Earlier studies for freezing in this system have shown that
the structure of the frozen phase is not influenced by a more
detailed fluid–wall potential describing the corrugation of
the graphite sheet.15 The pore is assumed to be periodic in
the x – y plane.

In the second system studied the fluid–wall potential is a
10-4 potential,
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Unlike the 10-4-3 potential which takes into account the
multilayered nature of the wall atoms, the 10-4 potential in
Eq. ~3! represents the interaction between the fluid atom and
a single plane ~111! of a fcc lattice. The complete fluid–wall



interaction potential from two walls for a pore of width H,
one located at z52H/2 and the other at z5H/2 is

V f w5U f w~z1H/2!1U f w~H/22z !. ~4!

The fluid and wall interaction parameters used in the
simulations are indicated in Table I. For the 10-4-3 wall po-
tential the interaction parameters are similar to those used for
methane on graphite15 and for the 10-4 wall, the parameters
are those of argon. The fluid wall interaction parameters
were computed using the standard Lorentz–Berthelot mix-
ture rules,
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C. Layer density distributions

The layer density distribution,
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where ^N(z2(Dz/2),z1(Dz/2))& is the ensemble averaged
number of atoms in a bin of thickness Dz in the z direction,
A5L2 is the area of the fluid layer for the simulation box of
length L in the x – y plane. A bin width Dz50.025s was
used in the simulation.

D. Solvation force

The solvation force for the fluid confined in a slit pore of
area A is defined as
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where z i is the position of fluid particle i. The solvation force
is a sum of the contributions of the force exerted by the fluid

molecules on both the confining walls. The disjoining pres-
sure is defined as the difference between the solvation force
and the bulk pressure of the fluid which is in equilibrium
with the pore. In an open system, where the pore is in equi-
librium with a bulk fluid, the disjoining pressure approaches
zero for large pore widths.

E. Bond angle order parameters

The local bond angle order parameters,
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where u j is the bond angle formed between an atom and its
nearest neighbors (Nb) with reference to a fixed reference
frame, are computed for n54, 6. A distance cutoff of
1.25s f f was used while computing the nearest neighbor
bond distances for the bond order parameters. The bond or-
der parameters which are computed for individual layers ~av-
eraging over atoms! are averaged over the different layers in
the pore. The value of cn varies between 0 and 1. c451,
corresponds to a perfectly square lattice and c651 indicates
a triangular lattice. Deviations of the value of cn from unity
indicate the degree of disorder in the lattice.

F. Pair correlation function

The pair correlation function ~PCF! is computed within
individual layers using

g~r !5 K N~r ,Dr;Dz !

N lr l~z !2prDrDz
L , ~9!

where, ^N(r ,Dr;Dz)& is the number of fluid atoms in a cy-
lindrical shell of radius r, thickness Dr , and width Dz . r l(z)
is the layer density in a bin of volume ADz and N l is the
number of atoms in the layer.

G. Bulk fluid and pore GCMC

All results are reported in reduced units as shown in
Table II. Prior to carrying out the pore fluid studies GCMC
simulations were carried out to establish the bulk thermody-
namic state. Using a cubic simulation box of length of 7s,
potential cutoff of 3.5s with long range corrections, the den-
sity corresponding to an activity, Z*5Zs f f

3
51.2, T*

5kT/e f f51.0, where k is the Boltzmann constant is r*
50.898. The location of this point is illustrated in the bulk
LJ phase diagram41,42 shown in Fig. 1, where the location of
the liquid state points used in some of the earlier GCMC
simulations8,9,43 are shown for comparison. As an indepen-
dent check we used the 32 parameter LJ equation of state,44

which predicted a bulk density of 0.9001 and corresponding
pressure Pb

*53.32 at Z*51.2.
For the pore GCMC (mVT) simulations, 4 – 53106

Monte Carlo moves were used for equilibration, followed by
5 – 83106 moves during which ensemble averages were col-
lected. Each Monte Carlo move consists of an attempted ad-
dition, deletion and displacement with equal probability.45

Longer runs especially in the regions where the phase tran-
sitions occurred did not alter the results. A square simulation

TABLE II. Reduced units used in this work. e f f and s f f are the Lennard-
Jones parameters for the fluid–fluid interactions.

Quantity Reduced unit

Solvation force f z
*5 f zs f f

3 /e f f

Pore width H*5H/s f f

Pressure P*5Ps f f
3 /e f f

Temperature T*5kT/e f f

Density r*5rs f f
3

Activity Z*5Zs f f
3

TABLE I. Fluid–fluid and fluid–wall potential parameters used in this
study.

Parameter Methanea Argon Wall 10-4-3a Wall 10-4

e f f ~K! 148.1 120 ¯ ¯

eww ~K! 28.0 120
s f f ~Å! 3.8 3.405 ¯ ¯

sww ~Å! 3.40 3.405
rw ~Å23! 0.114
D ~Å! 3.35

aReferences 15, 40.



box was employed in all cases with periodic boundary con-
ditions in the x – y plane. Systematic system size checks were
carried out with two simulation box lengths, L57s f f and
L59s f f and in a few cases L512s f f . Small differences
were observed in the pore densities between the L57s f f and
9s f f , with greatest variations for pore widths at which
solid–solid transitions occurred. However the pore widths at
which the transitions occurred were unaltered. The results
reported here correspond to simulations carried out with a
periodic box of length 9s f f and a potential cutoff of 4.5s f f .
In the single layer regime, a box length of 12s f f was used.
Figure 2 illustrates the density distributions obtained for a
10-4 pore of width H*516s f f , where the central fluid lay-
ers achieve the density of the bulk fluid. The corresponding
solvation force at this pore width, f z

*53.28, is in good
agreement with the pressure of the bulk fluid. The pore den-
sity is evaluated using, rp5^N&/Vp , where ^N& is the en-
semble averaged number obtained in the GCMC simulation
and the pore volume Vp5L2H .

III. RESULTS

The results for the 10-4-3 pore will be discussed first, by
examining the structure of the confined layers in the different
regimes as revealed by the density distributions, PCF’s,
snapshots, solvation force curves and order parameters. This
is followed by a comparison with the results obtained for the
10-4 pore.

A. Single layer

The density distributions for the single layered regime
are shown in Fig. 3~a!, with PCF’s and side view snapshots
shown in Figs. 3~b! and 3~c!, respectively. From the PCF’s
and the values of c6 it is clear that the atoms adopt a trian-
gular lattice structure. The vertical dashed lines in Fig. 3~b!
correspond to the lattice positions of an ideal 111 fcc lattice,
based on the lattice parameter obtained from the first peak of
the PCF. For pore widths H*<1.9, the density distributions
@Fig. 3~a!# and the side view snapshots @Fig. 3~c!# indicate
that the atoms occupy the central region of the pore with
little out-of-plane movement. For 2.0<H*<2.25 the density
distributions broaden and increased out-of-plane motion is
observed @Fig. 3~c!#. However the order parameters and
PCF’s indicate that a triangular lattice is still retained, giving
rise to the buckled phase. The buckled phase occurs when
particles are able to move out-of-plane in the z direction,
while maintaining in-plane order. This situation occurs for
2.0<H*<2.25.

Snapshots of the x – y plane shown in Figs. 4~a! and 4~b!
for H*51.82 and 2.25, respectively, reveal the formation of
a triangular lattice where each atom is surrounded by six
nearest neighbors. The lattice is however not free of defects.
The presence of defects is best revealed by the corresponding
Voronoi polyhedra which is equivalent to the Wigner Seitz
cells. The Voronoi poylyhedra around each atom is the poly-
gon formed with the perpendicular bisectors of the lines join-
ing the central atom with its nearest neighbors. In a triangu-

FIG. 1. ~a! Location of the state point used for GCMC simulations illus-
trated on the bulk LJ phase diagram. The liquid–vapor coexistence data are
from Lofti et al. ~Ref. 42!, and the liquid–solid coexistence data are from
Agarwal and Kofke ~Ref. 41!. Note the proximity of the state point, ‘‘1’’
used in this study, (T*51.0, r*50.898) to the liquid–solid transition line.
State points, ‘‘2’’ ~Ref. 43!, ‘‘3’’ ~Ref. 8!, ‘‘4’’ ~Ref. 9! used in earlier GCMC
simulations are indicated for comparison. ~b! Pair correlation function for
state point ‘‘1’’ illustrated in ~b!.

FIG. 2. Density distribution for a 10-4 fluid–wall potential @Eq. ~11!# pore
with 2pe f w

* 51 and H*516s f f . For reference, the density of the bulk fluid,
r*50.898 is indicated as a horizontal line. At this pore width, the solvation
force f z

*53.28.



lar lattice, polygons with the number of sides differing from
six, indicate the presence of defects. The Vornoi diagram at
H*52.25 clearly indicate the presence of a pair of penta-
gons in the region of the defect, marked with the letter D.

B. Two layer

As the pore width is increased a transition from one to
two layers occurs with the first two layers appearing at H*
52.39 as seen in the density distributions @Fig. 5~a!#. Since
the PCF’s in both layers were identical, the PCF’s for only
one of the wall layers are shown in Fig. 5~b!. The square
lattice starts to form at H*52.39 (c450.84) where the
peaks in the PCF are broadened. At H*52.45 (c450.93)
the peaks in the PCF are well defined, and similar in inten-
sity and location to the peaks shown for H*52.48 in Fig.
5~b!. Beyond H*52.45 the peaks clearly reveal the presence
of a square lattice and the order parameter c4 decreases con-
tinually until H*52.58. For 2.58,H*<2.66, in-plane order
once again increases and the fluid transforms to a triangular
~111 fcc! lattice for 2.66,H*,2.68 as seen in the corre-
sponding PCF @Fig. 5~b!#. The triangular lattice structure per-
sists until H*53.1(c650.73), beyond which the fluid enters
into a narrow transition regime between two and three layers
as indicated by the density distributions at H*53.2 @Fig.
5~a!#. Similar to the single layer situation, a buckled triangu-
lar phase is observed for 2.9<H*<3.1. The side view snap-
shots @Fig. 5~c!# indicate the relative increase in buckling as
the pore width is increased.

Snapshots of the atomic position shown in Fig. 6~a! re-
veal the formation of the square lattice at H*52.48. The
lattice structure at H*52.6 which corresponds to a pore
width at which the transition from a square to triangular
structure @Fig. 6~b!# occurs, reveals the formation of a trian-
gular lattice as shown in the upper right-hand side of the
snapshot @Fig. 6~b!# which coexists with the predominantly
square lattice domains in the lower left corner. At H*

FIG. 3. ~a! Density distributions, ~b! pair correlation functions, and ~c! side
view snapshots for the single layer regime; 10-4-3 fluid–wall potential. The
pair correlation functions indicate the presence of a triangular lattice struc-
ture. For H*.2.1, out-of-plane motions give rise to a buckled lattice. At
H*52.25 where buckling is the greatest, as observed in the side view snap-
shots, the pair correlation functions indicate that the in-plane triangular lat-
tice is retained.

FIG. 4. Snapshots and corresponding Voronoi diagrams for H*51.82 and
2.25. For H*52.25, where buckling is significant as seen in Fig. 3~c!, the
atoms shift out-of-plane in a random manner with no specific pattern, giving
rise to random buckling. The pairs of five sided polygons in the Voronoi
diagrams indicate the presence of defects in the triangular lattices. These
defects have been marked with the letter ‘‘D’’ in ~d!.



52.68 @Fig. 6~c!# the snapshots reveal the formation of a
triangular lattice, with the atoms in each layer located in the
three fold sites created by the adjacent layer. At H*53.1 the
snapshots indicate some interesting structural details. The at-
oms in the top layer ~shaded circles! no longer occupy the
three fold sites formed by the bottom fcc lattice @as seen in
Fig. 6~c!# but are shifted preferentially toward one of the
three underlying atoms. This occurs for 2.9<H*<3.1 indi-
cating that the relative shifting of atoms from their ideal

locations occurs with increasing interlayer distance. Within
each layer, however, the triangular lattice is retained as seen
in the PCF for H*53.1 @Fig. 5~b!#.

C. Three and four layers

In the three layered situations, the structures are able to
form a complete unit cell in the direction of confinement.
The corresponding PCF plots for the three layered system are
shown in Fig. 7~a!. The PCF’s for the contact ~adjacent to the
wall! layer and middle layer are shown for 3.3<H*<4.0.
The presence of order in the contact layers is seen to induce
greater order in the middle layer indicating that the contact
layer plays the role of a psuedostructured wall, into which
the middle layer ‘‘epitaxially’’ orders. This increased order-
ing, in the inner layers was clearly perceptible only for the
square lattices. The square lattice exists for 3.3<H*<3.5.
At 3.5,H*,3.55 where the transition from a square to tri-
angular lattice occurs, the PCF’s indicate that disorder first
occurs in the wall layer. At H*53.6 the fluid transforms into
a triangular lattice.

In addition to the square to triangular lattice transition,
an additional phase was observed in the three layered trian-
gular lattice based on the stacking of individual layers.
Examination of the stacking sequence in the three layered
lattices reveals an ABA stacking for 3.6<H*,3.8 corre-
sponding to the hcp lattice. The snapshot in Fig. 8~b! reveals
this structure at H*53.7. At H*53.8 the stacking sequence
transforms to the ABC stacking of a fcc crystal. For 3.8
,H*<4.1 although the in-plane triangular lattice structure
is preserved, the relative arrangement of atoms between

FIG. 5. ~a! Density distributions, ~b! pair correlation functions, and ~c! side
view snapshots for the two layer regime; 10-4-3 fluid–wall potential. The
two layered regime exists for 2.39<H*<3.1. Buckling occurs for 2.9
<H*<3.1 beyond which the fluid enters into a transition regime between
two and three layers.

FIG. 6. Snapshots in the two layered regime indicate the transition from
square lattices, at ~a! H*52.48 to triangular lattices ~c! H*52.68. At H*
52.60 ~b! where the transition occurs the lattice consists of predominantly
square lattices with smaller regions of triangular lattices ~upper right-hand
corner!. At H*53.1 ~d! although the triangular lattice is preserved in both
layers the top layer ~shaded circles! no longer occupy the threefold sites
created by the bottom layer ~open circles! as seen at H*52.68 ~c!.



layers deviates from the ideal lattice structures. Out of plane
displacements ~buckling! in the central layer for H*.3.8
increase sharply @Fig. 7~b!# with deviations as large as 0.5s f f

at H*54.0. The in-plane triangular structure persists until
H*54.1 above which the transition into four layers occurs.

Figure 9 illustrates the density distributions, PCF’s, and
selected snapshots in the four layered regime. Four layers are
observed at H*54.2 @Fig. 9~a!# and both the contact and
inner layers are disordered as seen in Fig. 9~b!. At H*
54.3, where the layers are well defined, the atoms form a
square lattice and at H*54.5, a triangular lattice is observed.
The stacking for the square and triangular lattices is ABAB
as seen in Figs. 9~c! and 9~d!, respectively. We did not carry
out simulations beyond H*54.5.

D. Solvation force and order parameters

Figure 10~a! shows the solvation force and bond angle
order parameter c4 as a function of the reduced pore width
H* and both the order parameters c4 and c6 are compared
in Fig. 10~b!. Typical error bars associated with the solvation

force data reported here are illustrated in Fig. 11. The
maxima in the solvation force correspond to well ordered
fluid layers and the minima correspond to regions where a
transition between layers occurs. In addition, the solvation
force curve reveals the presence of a doublet, giving rise to
local minima in the two and three layered regimes. This fea-
ture has been observed in an earlier GCMC study17 where a
transition from a two layered bcc to triclinic structures oc-
curred for a fluid confined in a structured slit pore. In both
the two and three layered regimes the transformation to a
triangular lattice is accompanied by a decrease in the solva-
tion force @Fig. 10~a!#. The sharp drop in the order parameter
(c4) in regions corresponding to the local minima in the
solvation force signals the transition between square to trian-
gular lattice structures @Fig. 10~a!#. This occurs for both the
two and three layered situations. The magnitude of the sol-
vation force at which the square lattice occurs is higher than
that of the triangular lattice. Given a fixed number of layers,
this decrease is predominantly due to the formation of trian-
gular lattices at larger pore widths. The differences in the
magnitude of the solvation force between square to triangu-
lar lattices is also seen to decrease with increasing layers.
Figure 10~b! where both the order parameters are superim-
posed reveals that the transition between square to triangular
lattices are sharp occurring over a narrow range of pore
widths.

E. 10-4 potential

Before concluding this section we contrast the results
obtained with the 10-4-3 fluid–wall potential with that of the

FIG. 7. ~a! Pair correlation functions and ~b! side view snapshots in the
three layered regime, 3.3<H*<4.1; 10-4-3 fluid–wall potential. Buckling
occurs for H*.3.8, with greater out-of-plane movement observed in the
central layers. The central layer is more structured than the wall layer when
square lattices form, 3.3<H*<3.5, although no such increased order was
observed with triangular lattices.

FIG. 8. Top view snapshots in the three layered regime. Open circles, bot-
tom layer (z<0); filled circles, middle layer; open squares, top layer. The
square lattice exists at H*53.3 ~a! where the atoms on each layer occupies
the fourfold site created by the bottom layer. A triangular lattice with ABA
stacking is observed at H*53.7 ~b! which transforms to ABC stacking at
H*53.8. At H*54.0 the structures are buckled @Fig. 7~b!# however, the
in-plane triangular lattice is preserved. The shifting away from the threefold
sites as observed in the two layer @Fig. 6~d!# situation is observed here as
well.



10-4 potential. We note that the GCMC simulations for the
10-4 fluid–wall potential was carried out under identical
thermodynamic conditions as the 10-4-3 potential. Since the
overall qualitative features are in general similar46 to the re-
sults obtained with the 10-4-3 pore only key differences are
highlighted. Figure 11 illustrates representative pair correla-
tion functions for pore widths that accommodate 1, 2, and 3
layers. The PCF’s in the single layer regime ~H*51.8 and
2.2! do not show the structure characteristic of a triangular
lattice as observed for the 10-4-3 potential @Fig. 3~b!#. In
contrast, the structure of the PCF ~Fig. 11! reveals a more
liquidlike behavior. Although, a small increase in structure is
observed at H*52.1 due to increased buckling, the pore
fluid still lacks in-plane order. In the two layered regime
PCF’s indicate the formation of square and triangular lattices
at H*52.6 and H*52.85, respectively. Similarly, in the
three layered regime, square and triangular lattices are ob-
served at H*53.55 and H*53.8, respectively. In compari-
son with the 10-4-3 pore the equilibrium pore densities ~see
legend in Fig. 11! for the 10-4 system are significantly lower.
The lower density at smaller pore widths, precludes the for-
mation of an ordered phase in the single layer region. The
sequence of square to triangular lattices occur in a qualita-
tively similar fashion to the 10-4-3 pore, however the overall
intensities of the peaks in the PCF’s and values of the order
parameters ~Fig. 11! for the lattices are smaller when com-
pared with those of the 10-4-3 pore, indicating the gradual
loss of order due to weaker fluid–wall interactions, and
lower pore densities. Further, the square lattices are seen to
exist over a smaller range of pore widths and the transition
regimes ~during which the pore fluid is disordered! between
lattice structures occur over a wider range of pore widths

when compared with the 10-4-3 pore. Although the solvation
force maxima do indicate a weak split ~Fig. 11!, the variation
in the solvation force between the square and triangular lat-
tices is small. Albeit much smaller, when compared with the
10-4-3 pore, the transition between square to triangular lat-
tices is accompanied by a lowering in the solvation force.

IV. DISCUSSION

Unless otherwise stated we restrict our discussion to the
structures observed in the 10-4-3 system. From the density
distributions the following regimes, within the resolution of
slit widths (DH*50.02– 0.03) used in our simulations, can
be discerned; single layer 1.8<H*<2.25; transition be-
tween 1 and 2 layers, 2.25,H*<2.36, two layers 2.39
<H*<3.1; transition between 2 and 3 layers 3.2<H*
,3.3, three layers 3.3<H*<4.1 and four layers 4.2<H*
<4.5. The transition regimes where layering is disrupted,
occurs in a small range of pore widths indicating that the
confined fluid is in a highly layered state. The series of struc-
tures that form are summarized in Fig. 12, where T, B, and S

denote the triangular, buckled, and square lattice structures,
respectively. Figure 12 also illustrates the variation in the
number of particles ^N& with increasing pore widths. Al-

FIG. 9. ~a! Density distributions, ~b! pair correlation functions, and snap-
shots ~c! and ~d! for the four layered regime. The topview snapshots reveal
the presence of a square lattice at H*54.3 and a triangular lattice at H*
54.5. Both these lattice structures indicate that the stacking is ABAB. The
symbols for the snapshots are similar to those used for the three layered
snapshots ~Fig. 8! with shaded triangles representing the additional layer.

FIG. 10. ~a! Solvation force and bond angle order parameter, c4 , as a
function of the pore width; 10-4-3 fluid–wall potential. The splitting in the
solvation force peaks, in the two and three layered regimes occurs during the
transition between square to triangular lattices as seen by the rapid change in
c4 through this region. ~b! Order parameters c4 and c6 as a function of pore
width; 10-4-3 fluid–wall potential. The transformation between square and
triangular lattices occurs over a narrow range of pore widths as seen by the
sharp changes in the order parameters during the transformation between
triangular and square lattices.



though simulations in the single layer regime were carried
out for a simulation box of length 12s f f , for purposes of
comparison, the ensemble averaged numbers were scaled to
a box of length 9s f f . Two dominant jumps in the pore den-
sity which occur around H*52.4 and H*53.2 correspond
to layering transitions. The transitions from the square to
triangular lattices are accompanied by a small increase in
pore density as seen in the increasing number of particles as
a function of pore width in Fig. 12. These jumps in density
are reflected as steps in ^N&. In the two layered regime the
two steps correspond to the formation of square and triangu-
lar lattices, respectively. In the three layered regime, in ad-
dition, we observe a third step which accompanies the tran-
sition from hcp to fcc structures.

The in-plane lattice parameters a*5b* represent the lat-
tice parameters in the x – y plane and c* represents the lattice
parameter in the z direction assuming a complete unit cell of
three layers. a* and b* were estimated from the peaks in
g(r*) and c* was computed from the peak positions of the
layered density distributions to within an accuracy of
0.02s f f . Representative lattice parameters, structures and
c*/a* ratios are summarized in Table III. The square lattices

that form in the two layered regime correspond to the first
two basal planes of a bct lattice and the triangular lattices
correspond to the first two basal planes of the hcp lattice. At
H*52.39 where the first square lattice structures were ob-
served, the lattice is somewhat loosely packed (a*51.16) as
seen in Table III. This lattice parameter decreases as the pore
width is increased beyond H*52.42. The c*/a* ratios for
the three layered structures indicates that the three layered
square lattices correspond to a complete unit cell of the bct
lattice and the three layered triangular lattices correspond to
a complete unit cell of the hcp lattice. At H*53.8 the ABA
stacking transforms to the ABC stacking of a fcc lattice ~Fig.
8!. The hcp structures in the three layered regime have
c*/a* ratios both smaller and larger than the ideal closed
packed value of 1.633, indicating that the ideal packing ex-
ists for 3.6,H*,3.7. It is interesting to note, for the buck-
led phases, which occur before the admission of an addi-
tional layer ~formation of square lattices! in the two and three
layered regimes, the c*/a* ratio is near 2, indicating that
these structures exist in a highly expanded state.

Buckling was seen to occur prior to the inclusion of an
additional layer. In the absence of a quantitative definition to
pinpoint the onset of a buckled phase, we indicate buckling
to occur when the out of plane deviations exceeds 0.5s. In
our system buckling occurs in the region 2.0<H*<2.25 in
the single layered regime, for 2.9<H*<3.1 in the two lay-
ered regime and for 3.8,H*<4.0 in the three layered re-
gime. Buckling was also found to increase in-plane order as
seen in the small increase in c6 prior to complete disorder.
Similar to observations in colloidal suspensions29,30 buckling
is most pronounced during the transition from the single-
layer to the two layered regime with reduced buckling as
the number of layers is increased. In hard sphere
simulations,33,34 atoms move out-of-plane in a regular fash-
ion giving rise to zig–zag or linear buckled structures. In our
simulations buckling was random with no preferred out-of-
plane movement. Unlike hard sphere systems the fluid–wall
interaction plays an important role in the single layer regime.
In our system ~similar to other slit pores! the fluid–wall in-

FIG. 11. ~a! Pair correlation functions, ~b! solvation force and order param-
eter c4 as a function of pore width for the 10-4 fluid–wall potential. In
general the peaks are broader and order parameters are less, indicating that
the structures possess smaller in-plane order when compared with the fluid
confined in the 10-4-3 pore. In particular the single layer is liquidlike as
indicated by the pair correlation functions at H*51.8, 2.1. The pore densi-
ties corresponding to H*51.8, 2.1, 2.6, 2.85, 3.55, and 3.80 are 0.425,
0.405, 0.543, 0.622, 0.665, and 0.700, respectively.

FIG. 12. Reduced pore density, rp
* vs H* denoting the various phases

observed for the 10-4-3 fluid–wall potential. T, triangular; B, buckled; S,
square with the numerical prefix indicating the number of layers. The re-
gions where the structures are not marked indicate transitions between lay-
ers or phases. The three layer fcc structure is observed at H*53.8.



teraction potential has a minimum at the center of the pore
for 1.8<H*<2.1. As the pore width is increased the mini-
mum from the pore center shifts toward the walls giving rise
to the two layered regime. During this transition which oc-
curs for 2.1,H*<2.25, the fluid–wall interaction potential
shows a broad weak minima. It is during this stage that buck-
ling is most pronounced. This trend is also clearly reflected
in the broadening of the density distributions shown in Fig.
3~a!. The transition from one to two layers is dominated by
strong fluid–wall interactions ~greatest at smaller pore
widths! which probably offsets the energetic gain due to or-
dered buckling. A preliminary Voronoi analysis of defects
indicate that the defects in the single layer buckled phase was
the greatest when compared with the buckled structures at
greater pore widths.

During the transition from triangular to square lattices in
the two and three layered regimes, buckling in the wall lay-
ers are less pronounced when compared with the single layer
regime since the particles are located in the fluid–wall po-
tential energy minima. However, snapshots of the particles
indicate a deviation from regular AB stacking in the two
layered buckled regime @Fig. 6~d!#. This phenomenon akin to
a relative shearing of layers has also been observed in col-
loidal suspensions.30 In the three layered regime this shear-
ing effect @Fig. 8~d!# gives rise to structures that have a lay-
ering between ideal ABC and ABA stacking in the regime
3.8,H*<4.1. Although hard sphere packing29 ~in the ab-
sence of fluid–fluid interactions! do indicate that both ABA
and ABC stackings are equally preferred, we are unable to
explain the preference toward the ABC stacking at H*
53.8.

We point out that the rhombic phase, which has been
previously observed in hard sphere simulations33 during the
transformation between two layered square to triangular lat-

tices was not observed in this study. We looked for the pos-
sible occurrence of these structures by carrying out simula-
tions in this regime (2.58,H*,2.62) with a fine resolution
in the pore width. However examination of the snapshots and
the PCF’s did not reveal the presence of this structure. Per-
haps a more sensitive order parameter33,34 is required to
make a more definitive statement on the existence of this
phase.

Since the thermodynamic state of the bulk fluid deter-
mines the density of the pore fluid and consequently its state
of order, it is expected to have a strong influence in deter-
mining the presence of these transitions and the extent to
which these transitions would persist as the pore width is
increased. Simulations carried out with a lower density bulk
fluid ~T*51.2 and r*50.661! did not reveal any in-plane
order in the 10-4 pore.47 For a given fluid, a complete map-
ping of the phase diagram would depend on both the ther-
modynamic state of the bulk fluid and fluid–wall interaction
strength.

Lastly we mention that our findings are consistent with
previous simulation studies of methane on graphite where
the strong fluid–solid interaction for this system leads to an
increase in the freezing temperature relative to the bulk. In
the global phase diagram developed for freezing in nanop-
ores an elevation and depression in the freezing temperature
relative to the bulk was related to a parameter a which de-
pends on the fluid–wall interaction strength.48 This study
reveals that an elevaton in freezing temperature should occur
for a>1.15. In agreement with these finding we observe an
elevation in the freezing temperature for the 10-4-3 pore
where a52.16. However for the 10-4 system although the
value of a51 is slightly below 1.15, we still see a frozen
phase though less structured than the 10-4-3 pore.

V. SUMMARY AND CONCLUSIONS

GCMC simulations have been used to study the structure
of a fluid confined in a smooth slit pore. Unlike previous
studies we choose a bulk state point lying close to the
liquid–solid freezing line. This not only results in solidifica-
tion of the pore fluid but a sequence of solid phases are
observed with increasing pore width. In the single layer re-
gime the fluid forms a triangular lattice in the 10-4-3 pore
due to the increased pore densities. For the two and three
layered structures, the fluid first forms a square lattice which
transforms into a triangular lattice with increasing pore width
and pore fluid density. Buckled phases which occur during
the transformation from n to n11 layers is a result of struc-
tures maintaining their in-plane triangular lattice structure
with increased out-of-plane disorder. The observed structures
are classified based on the 3D unit cells. The square lattices
are bct in structure and the triangular lattices are hcp. In the
three layered regime an additional transformation occurs due
to a change in the stacking from ABA ~hcp! at lower pore
widths to ABC ~fcc! at larger pore widths. The study reveals,
that hcp structures possessing both positive and negative de-
viations from an ideal lattice can exist under confinement. In
addition stable triangular lattices can exist under a highly
expanded state.

TABLE III. Lattice parameters a* ~in-plane! and c* ~out-of-plane! for dif-
ferent pore widths in the two and three layered regimes.

H* a* c*/2 c* c*/a* Structures

2.39 1.16 0.60 ¯ 1.034 2S

2.42 1.17 0.60 ¯ 1.025 2S

2.45 1.14 0.66 ¯ 1.158 2S

2.48 1.10 0.70 ¯ 1.273 2S

2.50 1.12 0.68 ¯ 1.214 2S

2.54 1.09 0.72 ¯ 1.321 2S

2.66 1.11 0.84 ¯ 1.514 2T

2.68 1.11 0.86 ¯ 1.550 2T

2.70 1.10 0.88 ¯ 1.60 2T

2.80 1.10 0.94 ¯ 1.709 2T

2.90 1.10 1.00 ¯ 1.818 2TB

3.00 1.10 1.06 ¯ 1.927 2TB

3.10 1.10 1.08 ¯ 1.964 2TB

3.30 1.08 ¯ 1.48 1.370 3S

3.40 1.08 ¯ 1.58 1.463 3S

3.50 1.08 ¯ 1.64 1.490 3S

3.60 1.10 ¯ 1.74 1.582 3T-hcp
3.70 1.10 ¯ 1.84 1.673 3T-hcp
3.80 1.10 ¯ 1.94 1.764 3T-fcc
3.90 1.10 ¯ 2.00 1.818 3T

4.00 1.08 ¯ 2.10 1.944 3T

4.05 1.08 ¯ 2.14 1.981 3T

4.10 1.08 ¯ 2.22 2.056 3T



Since the sequence of transitions observed in molecu-
larly thin films, such as the ones studied here, are qualita-
tively similar to solid–solid transformations in colloidal sys-
tems we compare the structures with those observed in
confined colloidal suspensions. Unlike hard sphere systems,
the nature of the wall can influence the density and therein
the structure of the confined fluid. Simulations with a weakly
attractive 10-4 fluid–wall potential reveals these differences.
Although the single layer structure is disordered due to the
lower pore densities, the sequence of transitions is qualita-
tively similar to that observed in a 10-4-3 pore.

Gas to liquid and more recently liquid to solid transitions
under molecular confinement has been the subject of exten-
sive investigations using molecular simulations. However,
the formation of frozen phases and transitions between them,
such as the ones reported in this study have been largely
unexplored. Although, our study has been limited to simple
spherical molecules, it suggests that more complex frozen
phases can exist in confined molecular systems. Recent sur-
face force experiments49,50 on water confined to molecular
layers indicate the subnanometer confined films are in a high
state of order. Although our study is restricted to determining
the presence of a solid phase by computing structural quan-
tities, a complete thermodynamic treatment would involve
computing the free energies of the various phases.

1 J. N. Israelachvili, Intermolecular and Surface Forces: With Applications

to Colloidal and Bioligical Systems ~Academic, London, 1985!.
2 J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 ~1998!.
3 M. L. Gee, P. M. McGuiggan, and J. N. Israelachvili, J. Chem. Phys. 93,
1895 ~1990!.

4 L. A. Demirel and S. Granick, Phys. Rev. Lett. 77, 2261 ~1996!.
5 L. A. Demirel and S. Granick, J. Chem. Phys. 115, 1498 ~2001!.
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