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THE STRUCTURE OF GALOIS GROUPS OF CM-FIELDS
BY

B. DODSON

Abstract. A CM-field K defines a triple (G, H, p), where G is the Galois group of
the Galois closure of K, H is the subgroup of G fixing K, and peCis induced by
complex conjugation. A "p-structure" identifies CA/-fields when their triples are
identified under the action of the group of automorphisms of G. A classification of
the p-structures is given, and a general formula for the degree of the reflex field is
obtained. Complete lists of p-structues and reflex fields are provided for [ K: Q] = 2n,
with n = 3,4,5 and 7. In addition, simple degenerate Abelian varieties of CM-type
are constructed in every composite dimension. The collection of reflex fields is also
determined for the dihedral group G = D2„, with n odd and H of order 2, and a
relative class number formula is found.

Let A" be a CAf-field with [K: Q] = In, and let Kc be the Galois closure of K over
Q, where Q is the field of rational numbers. In the theory of complex multiplication,
the reflex field K' of a CAf-type is a fundamental notion. Recall that a CM-type
(K, $) specifies a set $ = {<p,,...,</>„} of n embeddings of K into C so that every
embedding is among {</>,, <£,,..., <j>„, 4>„}. It is known that [A"':G] depends upon
[K: Q] and $ in a rather complex way. When K/Q is Abelian, K' is a sub field of K.
Shimura has shown that there exist CA/-fields such that the maximal degree
[K': Q] = 2" occurs, and that there are cases with K c K'. A general formula for
the degree of the reflex field given in §1, is one of our main results.

An Abelian variety A with complex multiplication of type (K, $) is called
degenerate when the rank ?($), defined in §3, is less than the maximal value of
n + 1. The problem of computing the rank was proposed by Kubota, and in the case
K/Q Abelian, Lemma 2 of Kubota [8] gives a formulation in terms of group
characters. The Theorem of §3.1.1 reduces the calculation of the rank to linear
algebra when K has an imaginary quadratic subfield, a case emphasized in this
context by Weil [24]. While several degenerate cases with A simple have been
constructed, Ribet [15] proves that there are no such examples with n = p, for p a
prime. In §3 a converse to Ribet's Theorem is proved by constructing simple
degenerate Abelian varieties in every composite dimension.

Shimura's Theorem 2.5 of [21] gives (n + 1 - t(<&)) algebraic relations among
certain transendental numbers arising as the periods of Abelian integrals, so the
actual values of f($) are of special interest (cf. [1]). The present result is that when n
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2 B. DODSON

has a factorization n = kl, k > 2,1 > 2, there is a type $ with /($) = «-/ + 2for
the cyclotomic fields K, with Gal(AT/Q) = (p) X Z„, where Z„ denotes the cyclic
group of order «, and p is the automorphism induced by complex conjugation.
Further, when certain non-Abelian totally real fields exist, the same rank occurs for
K/Q non-Galois, and smaller ranks are obtained when n is even or divisible by a
square.

Suppose the Galois groups of the Galois closures of the totally real fields of degree
n are known, and consider, for example, the problem of listing the values of ri that
occur as n' = \\K': Q] for the reflex field K' of a CM-type for a CM-field of degree
In; or the problem of listing the values of ?($), for primitive types <£>, when n is
composite. Group theoretic techniques are introduced in §§1 and 2 to obtain such
information. Generating permutations and defining relations for the distinct permu-
tation groups of degree n that occur is sufficient information about the groups of
totally real fields (cf. the Classification Theorem of §2.3). The relation of these
calculations to the structure of the group of automorphisms of the Galois group
Gal(ATc/Q) is described in §6.

To illustrate the present methods, complete information is given for the reflex
fields when n — 3,4,5, and 7. The list for n = 4 uses the methods of group
cohomology introduced in §2, while results for the other values of n are obtained
from the classical lists of permutation groups of degree 2« = 6, 10 and 14. The
distribution of the values of r($) is given for n = 4 by the Theorem of §3.3.2, and a
procedure for the composite values with n < 16 is sketched in §5.3 with n = 6.

A related arithmetic topic is taken up for the example of the dihedral group
G = D2n, n odd. The equivalence classes of reflex types introduced in Shimura [21,
Remark 2.4] are also determined for this case. A formula relating the relative class
numbers of Shimura [17, 20] is given in §4. Professor Shimura's suggestion of a more
general formula involving the equivalence classes of reflex types initiated the
author's interest in the present investigation.

The author wishes to acknowledge and express his appreciation for Professor
Shimura's comments and encouragement. In particular, Professor Shimura patiently
explained the reflex principle to the author; brought the work of Ribet to the
author's attention; and suggested that the reflex fields for the dihedral group and the
corresponding chracters be examined. At several points in the investigation the
author was influenced by the comments of Professor Weil. The author also wishes to
thank Dr. Yoshida for his comments on an earlier manuscript and for providing
several corrections. Finally, the author wishes to thank the referee for the observa-
tion that the results deserved to be rewritten.

1. The reflex degree theorem.
1.1. A CM-field is a totally imaginary quadratic extension of a totally real field

K0. Let Kq be the Galois closure of K0 over Q.

Proposition. The Galois group of a CM-field of degree In is given by an exact
sequence

0 -+ (Z2)v ^ Gal(A"7Q) -> Gal(tf0/Q) ^ 1,
1 < o < n, where (l2)v is identified with the subgroup GalC/CyA^) of Gal(ATc/Q).
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GALOIS GROUPS OF CM-FIELDS 3

Proof. By Galois theory only the identification of the normal subgroup
Ga\(Kc/K{,) with (Z2)° must be established. Write K = A:0((-5)l/2), with 8 e K0,
let Si,...,Sn be the conjugates of 8 over Q, and observe that Kc =
/Co((-5,)1/2,...,(-5n)I/2). Every automorphism e of ATC fixing Kg is determined by
the images (-8,)1/2 - e,(-*,)1/a,...,Hi1)1/2 -» en(-8„)1/2, with e,«±l, ; =
1,..., «. Then Gal(/CyAo) maY be identified with the image in (Z2)" of the map
e -> (e,,..., e„) g (Z2)n, with e- defined by e, = (-1)%J = 1.n. Note that the
automorphism p of Kc induced by the complex conjugation has image (1,..., 1), so
o > 1.   □

Let Im(«,2) c S2n denote the maximal imprimitive subgroup of the symmetric
group S2n admitting a specified n sets of order 2 as sets of imprimitivity. More
explicit Galois theoretic information will be obtained from the following:

Imprimitivity Theorem. Let G be an abstract group with G = G&\(Kc/Q)for K a
CM-field of degree In. Then G may be represented as an imprimitive permutation
group of degree In with n sets of imprimitivity of order 2 so that

G=   U  (Z2n*(a),a),
O<EG0

where:
(1) G0 = Gal( Kq/Q) is given as a transitive permutation group of degree n and may

be identified with the group of permutations of the sets of imprimitivity in the
representation of G;

(2) (Z2)c = Gal(ATc/ATo) is identified with the group of permutations preserving the
sets of imprimitivity and is acted upon by G0 by permutation of coordinates under an
inclusion i: (Z2)v -» (Z2)"; and

(3) (s(a), a) G lm(«, 2) = (Z2)" Xs S„, the semidirect product, is a lift of a G G0,
so that, for the mapping s: G0 -* (Z2)", the mapping j ° s: G0 -» (Z2)"/(Z2)K is a
\-cocycle,j being the projection mapping.

Proof. Fix the isomorphism G = Ga\(Kc/Q) and let H c G be the subgroup
corresponding to Gd\{Kc/K). Note that, since Kc is the minimal Galois closure, the
action of G on the coset space H \ G is effective. Since K/K0 is a quadratic
extension there is a subgroup 5 of G with H c S and indices (S : H) = 2, (G: S) = n,
giving that the action of G on H\G admits the imprimitivity as asserted. Next
observe that the kernel of the action of G on the coset space 5 \ G is the subgroup of
G fixing all conjugates of S, so that the identifications of (1) and (2) hold.

Identify G with the image of G under permutation representation on the cosets of
H, and let Im(«, 2) be the maximal subgroup of S2„ admitting the sets of imprimitiv-
ity given by using the n cosets of 5 to specify the n sets of cosets of H. First note that
(Z2)" is a subgroup of the maximal subgroup (Z2)" of Im(n, 2) preserving the n sets
of imprimitivity. Next observe that the sequence 0 -» (Z2)" -> Im(«,2) -» S„ -*■ 1
has a splitting that may be explicitly given by lettering the sets of imprimitivity as
{±1},...,{±«} and lifting a g Sn by the mapping a -» o + o_ defined by +j -»
+ °(y)» -j ~* -a(j)ij = !,...,«. The permutation action of G0 then follows from
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4 B. DODSON

the inclusion G0 c S„ and the 5,,-action on (Z2)". Now, with

Gc(Z2)"x,G0c(Z2)" XsSn = lm(n,2),

define s: G0 -» (Z2)" by picking an arbitrary lift (s(a), a) g G, for each a g G0;
and observe that the subset of (Z2)" xs G0 determined by (Z2)u c (Z2)" and 5 is
closed under multiplication if and only if j ° s is a crossed homomorphism.   □

In view of the identifications made in the Imprimitivity Theorem, the exact
sequence of the proposition will be referred to as an imprimitivity sequence for
Ga\(Kc/Q). For any (transitive) Gc Im(«,2), the projection G -» G0 will be
denoted by ProjSets, or by ProjCo, and the exact sequence will be referred to as an
imprimitivity sequence for G, regardless of the existence of a CM-field K and an
isomorphism G = Gal(AVQ) inducing G0 = Ga\(Kc0/Q).

1.2. Let C denote the field of complex numbers, and let t,\ K -> C,j = 1,..., n,
be field embeddings so that every embedding t: K -> C is among the collection
{r,, r,,. ..,/„, t„), t: being the embedding given by complex conjugation. Then K has
2" CM-types (K,<&), where each type <t> on K may be viewed as giving n choices,
picking one embedding from each of the sets {t,, t). Recall that Gal(Kc/Q) acts on
the set of types on K by sending $ = {<£,,_$„} to the type <b$ with entries <pf
given by applying g g Ga\(Kc/Q) to the image of <f>.. Let 1st denote the projection
of (Z2)" onto the first coordinate.

Proposition. Let G = Gal(Kc/Q) be given by an imprimitive permutation repre-
sentation as in the Imprimitivity Theorem. Then a CM-type $ may be specified by
giving f G (Z2)" in such a way that the G-set structure on the set of types is given by
writing g G G as g = (es(o), a), and then sending $ = $' to $g = $h, with h =
a"' *(fes(a)), the product fes(a) being taken formally in (Z2)", with G0 acting by
permutation of coordinates.

Proof. Let H0 c G0 be the stabilizer of a letter under the inclusion G0 c Sn. Give
coset representatives Tj, j = 1,..., n, for H0 in G0, and let H be the subgroup of G
fixing the letters in the set of imprimitivity corresponding to the letter fixed by H0.
Observe that taking g; = (s(tj), t,), pgj = (ps(Tj), t-) gives {g„ pg^,..., gn, pg„) as
coset representatives for H in G, where p = ((1,..., 1),(1)) G (Z2)K X <(1)> c G is
the element of G corresponding to the automorphism p of Kc over Q induced by the
restriction of complex conjugation. Then use f g (Z2)n to specify the type given by
the embeddings corresponding to the cosets {Hpflg\,..., Hpfngn) for f = (/,,..., /„),
fj g Z2 being written as 0 or 1.

To verify the G-action, let H0 stabilize the letter 1, H stabilize the letters in the set
{+1}, and observe that p g G may be used to alter the map s: G0 -» (Z2)n so that
s(a) has first coordinate 0 for all a g G0. Consider theyth entry Hpf'gj of $', and
the translated coset Hpf'gjg. Write g = (e',a), with e' — es(a). Then compute
pf'gjg = {pf's{jj)Tj * e', Tjo). The coset of HQ in G0 determines which coordinate of
h is being given, and TjO takes / to a(j) (permutation multiplication being read
left-to-right), so TjO belongs to the coset H0jg(j).
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GALOIS GROUPS OF CM-FIELDS 5

The entry ha{j) of h = (/i,,..., hn) is then determined by deciding whether pfjgjg
belongs to HgaU) or to Hpgn(j). Noting that lst(s(a)) = 0 for all a g G0, the
calculation

irt(pM*/h *«') = //'(^ *«') = /,«;,
for e' = (ej,..., e'n), gives /i0(7) = £e', where the addition in Z2 is written multi-
plicatively. But then the G0-action allows the entries to be given by a *h = ie', so
h = a~' *(fes(a)), recalling e' = es(o).

1.3. The action of the proposition may be temporarily extended to give an action
f -» a"1 *{fe) for all (e, a) g (Z2)" XsG0. For the extended action, observe that
requiring (e, a) to fix f determines e = e(a,i) uniquely, since f = a"'*(fe) implies
e = fa *f. Restricting the action back to G c (Z2)" Xs G0 provides the following:

Definition. The splitting subgroup of G c (Z2)" X5G0 and f g (Z2)" is the
subgroup S0 = 50(f) of G0 defined by S0(f) = {a g G0/fa *f g (Z2)vs(a)}, where
G is given by (Z2)u and s as in the Imprimitivity Theorem.

The Reflex Degree Theorem. Let K/Q be a CM-field with maximal totally real
subfield KQ. Let 0 -» (Z2)° -» G -» G0 -» 1 be the imprimivity sequence of G =
Gal(A^c/Q) ancf represent G as in the Imprimitivity Theorem. Let (K,$) be a
CM-type and K' = K'(Q>) the reflex field of (K,$). Then, when 0 is written in the
form $ = 4>f,

[K':Q] = 2°{G0:S0),
where 2" = [Kc: Kq], and (G0: 50) is the index in G0 of the splitting subgroup
S0 = S0(f).

Proof. Recall that K'($) is the subfield of Kc fixed by the stabilizer of 0 under
the Gal(ATc/Q)-action, so that [K': Q] = (G: H'($)), with H'($) the correspond-
ing subgroup of G. Observe that H'($) = {(fa *f, a) /a g S0(f)}, since (fa *f, a)
must belong to G. Then |G| = 2"|G0| gives

(G: /?'(*)) = |G|/|H'(*)I = 2lG0|/|S0| = 2"(G0 : S0),
since ProjGo gives an isomorphism of H'(<&) onto 50.

Remark. Note that [K': Q] is also the order of the orbit of $ under the G-action.
Also observe that H'(<&) is explicitly given, at least when s(o) is explicitly given.

2. p-structures.
2.1.1. To study the G-set structure on the collection of CM-types, a refinement of

permutation structure on G is introduced by the following:
Definitions. Let G and G, be abstract groups with central involutions. Let p g G

and p, g G, be central involutions, and let H be a subgroup of G and Hx a subgroup
of G,, with (G: H) = (G,: Hx) = 2«, so G and G, act effectively on the coset
spaces H\G and HX\GX. Then the triple (G, H, p) will be said to be p-equivalent
to the triple (G,, i/,, p,) if there is an isomorphism ip: G -» G,, so that »K#) = #i>
and t^(p) = p,. A p-structure of degree 2« will refer to an equivalence class of triples
(G, H, p) under p-equivalence.
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6 B. DODSON

Remark 1. Shimura [17] observed that the automorphism p of Kc over Q induced
by complex conjugation is central in Ga\(Kc/Q). A verification in the present
context may be obtained by noting that p is identified with the central element
((1,..., 1), (1)) of Im(«, 2) in which Gal(Kc/Q) has been effectively represented.

Remark 2. The above definition is a special case of an " imprimitivity equivalence"
defined on triples (G, H, S), with (G: S) = n, (S: H) = k, and G effective on
H\G. Note the special circumstances k = 2 and S = H X (p), a direct product
with p central in G, in the present study. The general case of these "imprimitivity
structures" may also be of some Galois theoretic interest.

The present interest in p-structures is established by the following:

Proposition. Let K and K\ be CM-fields of degree 2n, and suppose G is an abstract
group with G = G&\(KC/Q) = Gal(A^/Q). Let p and p, be the central involutions of
G corresponding to the restriction of complex conjugation to Kc and K\, respectively,
and let H and Ht be the subgroups of G corresponding to Ga\(Kc/K) and Gal(K^/Q).
Then if (G, H, p) is p-equivalent to (G, //,, p,), the collection of CM-types for K and
K\ are equivalent G-sets.

Proof. Observe that a p-equivalence \p takes the pairing of cosets of H in G under
p to the pairing of cosets of Hi in G under p,, so that the action of G on types
commutes with <//.

Remark 3. In the case Kc = K{, a p-equivalence is an automorphism of
Ga\(Kc/Q) preserving the distinguished central element p. The subgroup of Aut(G)
preserving p will be denoted by Aut(G, p). Note that n = 2, G = D4 dihedral of
order 8, gives an example with K and K{ nonconjugate over Q. An identification of
the types for all such K and K\ may be observed in the treatment of n = 2 in
Shimura and Taniyama [23, §8.4(2)].

2.1.2. The technique of imprimitive permutation representations may be intro-
duced into the study of p-structures by the following:

Proposition. Let G0 c S„ be a transitive group of degree n and let (Z2)v be a
sub-G0-module of {Z2)n, with permutation action, so that p G (Z2)v for p = (1,..., 1).
Then s G Z\G0,(Z2)"/(Z2)V) specifies a unique p-structure.

Proof. The p-structure will be defined on the abstract group G given as a group
extension by c1 ([£]), c1 being the connecting homomorphism

S:H^G0,(Z2)"/(Z2y)^Hi(G0,(Z2y).

Note that G0 c S„ specifies a subgroup H0 up to conjugacy, and then a subgroup S
of G as the inverse image of H0 under G ^ GQ. Note that by hypothesis p g (Z2)v
c S, and p is uniquely determined in S. A p-structure on G is then determined by
using s to specify H of index 2 in S as the stabilizer of the two letters in the set fixed
by Hq in the imprimitive permutation representation of G defined by s.
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GALOIS GROUPS OF CM-FIELDS 7

As a first indication of the relation between group extension equivalence and
p-equivalence, consider the following:

Corollary of the Reflex Degree Theorem. Let K be a CM-field. Then the
p-structure determined by an imprimitive permutation representation of G =
Gal(XVQ) is given by the trivial class [0] G H\G0,(Z2)"/(Z2)V) if and only if K
has a reflex field K' with [K': Q] = [Kc: KCQ] = 2V, in which case Ga\(Kc/K') =
Gal(#o/Q) gives a splitting of the imprimitivity sequence ofGa\(Kc/Q) (respectively,
H' = G0forG).

Proof. If (G, H, p) is given by s g [0], then there is b g (Z2)", so s(o) =
bo * b(Z2)v. Take s(a) = bo * b and note that G is given as

G=   U (Z2)v(bo*b,o).
o£G0

But then the type defined by $ = $', with f = b, has H'($) - {(bo *b,o)/o g
G0} = G0 giving a splitting and [K': Q] = \G\/\H'\ = 2U|G0|/|G0| = 2°. Conversely,
if K has a type $with [K'(Q>): Q] = 2V, represent Ga\(Kc/Q) as in the Imprimitiv-
ity Theorem and write the type as $ = $f, f g (Z2)". Then observe a -» (fa *f, a)
sphts the imprimitivity sequence of Gal(Kc/Q), and s = j ° s, for s(o) = fa *f, is a
coboundary.

Remark. In the Classification Theorem of §2.3, [0] is shown to define a unique
p-structure of degree 2n on G = (Z2)v xsG0. The condition on the degree of the
reflex field in the corollary will therefore uniquely determine a p-structure for each
G0 c Sn and (Z2)" c (Z2)". This method of specifying the G-set structure on the
collection of CM-types is featured in §§3 and 4.

2.2.0. A phenomenon that occurs for permutation groups, and may be observed in
the analysis of Miller [11] for n = 6,7, forces a distinction between p-equivalence
and group extension equivalence. The existence of CM-fields whose imprimitivity
sequences require this distinction will be established before proceeding with the
algebraic definitions. One method for establishing the existence of a CM-field K so
that Gal(A"c/Q) has a given p-structure is to give a subgroup analysis of the group
Gal(L/Q), where L is a (non-Abelian) CM-field that is known to exist. Since
interesting fields K with Kc proper in L occur, the triple (G, H, p) will be said to
define a p-structure with kernel when the action of G on H \ G is not effective.

2.2.1 In §5 it will be shown that there are exactly four p-structures for n = 3.

Theorem. There exist CM-fields A', such that each of the 4 p-structures of degree 2n
with n = 3 occurs as Ga\(K\/Q.). The field with structure having v = 1 occur as
subfields of the fields with structures having v = 3. The groups for v = 3 are Z2 X A4
and Z2 X 54, and the CM-subfields of L are classified by 5 p-structures for Z2 X A4
and 10 p-structures for Z2 X S4.

Proof. See §5 for the fact that the structures and the groups are as specified. The
existence of the fields with v = 3 is provided by Shimura [18, §1] as an application
of results from class field theory, with the general case giving the existence of a field
L with G = (Z2)" XSG0 whenever there exists a totally real field K$ having group
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8 B. DODSON

G0, and the present case resulting for every K0 totally real cubic. An explicit
example may be found in Pohlman [12] for G = Z2 X S4. The existence of fields
with u = 1, if in doubt, will follow from the assertions below on p-structues with
kernel.

Consider G = 60* XZ2 for Gq = A4, S4. The splitting here is the splitting of
0 -> <p> -> G -> G0 -> 1, G0 = Gal(L<">/Q), given by a type $ of L as in the
corollary of §2.1.2. Thus, G0* = H'(<&) = Ga\(L/Q(f^d)), with Q(f^d) imaginary
quadratic, as may always be arranged whenever (G, p) has a p-structure with
(G: H X <p» = 2m for n odd.

First obtain the permutation structures (G, H X (p)) which classify the totally
real fields of L admitting CM-subfields of L as quadratic extensions. These may be
written as H X <p> = H% X (p) with H$ c G^. Then for G0* = A4, H$ =
1,Z2,Z3,(Z2)2, or A4, and for G0* = S4, H* = 1, ((12)), <(12)(34)>, Z3, (Z2)2,
(Z2)2, Z4, S3, D4, A4 or S4, where (Z2)2 is transitive and (Z2)2 is intransitive. Then
observe that since p is unique, the permutation structures (G, H), with H of index
two in these (p) X Hfi, determine the p-structures (as in Proposition 1 of §5.1).
Immediate conclusions are that H = H^ in (p) X H$ gives p-structures for n = 4,6,
and 12 for G^ = 44, and for n = 4,6,6,8,12, 12, and 24 for G0* = S4. For the
omitted cases, //* gives p-structures with kernel, the kernel (Z2)2, for each G*,
giving the required Galois cases with n = 3, v = 1.

The remaining p-structures have H of index 2 in <p) X Hfi, H =*= 7/*. For n = 3,
take

tf=<(p,(12)(34)),(0,(13)(24))>
for G* = /14, and

ff=<(p,(12)(34)), (0,(1234)))
for G* = S4. Note that the present notation is not in conflict with the previous
notation used for Z2 X G0 = G, provided that G is given its n = 4 structure with G*
identified with G0. The first nontrivial structures are obtained, one for each group,
by observing that ((0, (12)(34))) is inequivalent to ((p,(12)(34))>, since only
(0, (12)(34)) is a commutator. The final p-structure has n = 6, Gq = S4 and S = (p)
X (Z2)j, and is specified by the index two subgroup H"' c S given as H"' =
((p, (34)),(0,(12))). The inequivalence of this p-structure from the above structure
with the same S will be established below, while the other p-structure with n = 6 has
the distinct permutation structure of degree 6 on G0 = S4 (cf. §5.3). To check that no
further p-structures are allowed, either compute Hl as suggested in §6, or use
generators and relations directly, to produce an outer automorphism taking, e.g.,
(0, (34)) to (p, (34)) for S4. The remaining index two H are either conjugate to one of
the above or to the image of such a conjugate under this automorphism.

2.2.2. Definitions. Let G0 c Sn and (Z2)K c (Z2)" be as usual. The trivial
p-structure will refer to the p-structure defined on the split group G = (Z2)v XSG0
defined by the 1-cocycle s = 0e Z1(G0,(Z2)V(Z2)',) as in the Proposition of
§2.1.2. A p-structure will be said to be nonsplit if it is defined by jg
Z1(G0,(Z2)"/(Z2n, so that c\[s\) * [0] in H2(G0,(Z2)V), c1 being the map c1:
#1(G0,(Z2)V(Z2r)-7Y2(G0,(Z2n. For s e Z\GQ,(Z2)"/(Z2Y), a nontrival
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GALOIS GROUPS OF CM-FIELDS 9

p-structure relative to s will refer to a p-structure defined by s, g Z'(G0, (Z 2)"/(Z 2)v)
with c1 ([«,]) = c'([.s]), but inequivalent to the p-structure defined by s. A nontrivial
split p-structure will refer to a nontrivial p-structure relative to the initial structure
given by 0.

Proposition. Let L be a CM-field with Gal(L/Q) = Z2 x S4, and let K and Knt
be the two CM-fields having K0 given as the fixed field of S = (p) X (Z2)2 as a
common maximal totally real subfield, K and Knl being given by the subgroups H and
H"', of index 2 in S, as specified in the proof of the above theorem. Then Knl defines a
nontrivial split p-structure inequivalent to the p-structure defined by K.

Proof. Observe that both fields have v = 1, and K has an imaginary quadratic
subfield, which therefore occurs as a reflex field K' for a type on K. By contrast, Knt
may be seen to have no imaginary quadratic subfield and, therefore, no G-orbit of
types containing just two elements. In fact, L has only two imaginary quadratic
subfields, the second being the fixed field of the image of 1 X G0* under the outer
automorphism used in the proof of the theorem. But (p, (12(34)) g Hnt, so Hnl is
not a subgroup of either 1 X G0* oi its image. Thus K and Knt are inequivalent, but
may be observed to have identical imprimitivity sequences.

2.3.1. The material of this subsection is not used until §5, and, in particular, is not
required for the arithmetic results of §§3 and 4. Representatives for the distinct
p-structures are provided by the following:

Classification Theorem. The p-structures of degree 2n are classified by:
(A) picking representatives G0 c Sn for the distinct permutation structures of degree

n;
(B) picking representatives for the class of G0-submodules (Z2)v c (Z2)" with

p G (Z2)v under identifications by the normalizer NS(G0)of G0 in Sn; and then,
(C) finding the Ns(G0)-orbits of Hl(G0,(Z2)n/(Z2)v) for G0 and (Z2)v ranging

over the choices in (A) and (B), where NS(G0) is the subgroup of NS(G0) preserving
(z2r-

Proof. Let ^: G ^> G\ be a p-equivalence. First observe that ^ induces an
equivalence on the group actions of the groups obtained from ProjSets, so that
G0 = ProJs^G) and Gq = ProjSets(GI) may be regarded as equivalent permutation
groups. Then the two p-structures may be given by imprimitive permutation repre-
sentations in a common subgroup (Z2)" Xs G0 c Im(«, 2), with a single G0 c Sn for
each permutation structure of degree n. Next observe that (Z2)" XSNS(G0) c
Im(«,2) acts on (Z2)" xsG0 by conjugation and is the maximal group having an
action that corresponds to a reindexing of the elements {±1,..., ±ri) preserving the
given sets of imprimitivity (±1},...,{±«) specified in the choice of Im(«,2) and
preserving the choice G0 c Sn. Note that the action of 0 XsNSn(G0) gives the
identifications of (B). Finally, the action of (Z2)" xs 1 gives B\G0, -)-equivalence
on the 1-cocycle defining the image of the permutation representation of G, and then
only the above 7Ys(G0)-equivalence is allowed on //1(G0,(Z2)V(Z2)t,).
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10 B. DODSON

Proposition. The abstract groups G in the above classification are given as group
extensions by fixing the choices in (A) and (B) and computing

H>(G0,(z2y/(z2y)/j>{H>(G0,(z2y)),

which is isomorphic to

Z'(G0,(Z2)7(Z2)U)//1(Z'(G0,(Z2)")),

where j1 is used for the cocycle mapping induced by the projection j: (Z2)n -*
(Z2)"/(Z2)V, and also for the induced mapping on cohomology classes.

Proof. In fact, the condition G c (Z2)" XSG0 assures that i2(f) = 0, for/ the
2-cocycle defining the extension, and the inclusion map i2: H2(G0,(Z2)V) ->
H2(G0,(Z2)n). The assertion follows by exactness of the long exact cohomology
sequence. The cocycle formulation, Zl/j\Zi), is obtained by observing thaty'1:
B\G0,(Z2)n) -> B\G0,(Z2y/(Z2)v)issuT]CCtwc.

2.3.2. A choice of representatives for (A), (B) and (C) in the Classification
Theorem will be referred to as a normalization, or "normal form", for the elements
of a p-structure. Some examples will be given here, with further cohomological
considerations being postponed to §6.

Example 1. For n = p, p a prime, any G0 may be normalized to contain the
/7-cycle (1 2 ■ ■ ■ p). Note that recent results on 2-transitivity supply a complete list
of these G0, as in [4].

Example 2. For n = 4, the transitive permutation groups with G0 = Z4, G0 = D4
may be normalized as ((1234)), and <(1234),(12)(34)>. By contrast G0 = (Z2)2, G0
transitive, is uniquely determined as a subgroup of S4, and allows arbitrary reindex-
ing:/vS4((Z2)2) = 54.

G0 = (Z2)2 also has three submodules of the form (Z2)v c (Z2)" for n = 4,
u = 2. A 3-cycle may be used to establish an equivalence between these three
submodules, and also among the permutation groups G with G0 = (Z2)2 and v = 2.
The choice (Z2)v = (p, £'), for v = 2, with £' = (0101) g (Z2)4, is preferred, since
that choice fits the nesting (Z2)2 c D4, for D4 normalized as above.

Example 3. Consider G = Z2 X Z4. First observe that G has 3 central order two
elements in two Aut(G) orbits. The imprimitivity sequence of Gal(Kc/Q) may be
observed to depend upon the isomorphism G = Gal(Kc/Q), since these two classes
correspond to K0 having group (Z2)2 or Z4. The two noncharacteristic central order
two elements define a single p-structure, although the imprimitivity sequences are
inequivalent. The characteristic central order two element gives a p-structure that is
supplied by a single cocycle group, Z1((Z2)2,(Z2)4/(p»- Observe that \Zl/j\Z*)\
= 8, while only four abstract groups are obtained. A reindexing of the form (0, a^),
with tfy a 3-cycle, gives a p-equivalence on the three group extensions with G = Z2 X
Z4, and on the three group extensions with G = D4, so that the identifications made
in (C) of the Classification Theorem are nontrivial. Note that Z'/y'^Z1) classifies
subgroups of (Z2)" Xs G0 up to extension equivalence, which is therefore too strong,
in addition to being too weak, as shown in §2.2.

Example 4. Nonsplit extensions are supplied by the group

G+={(e,a)G(Z2)wXJG0 = G/sgn(e)sgn(a)= +1),
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GALOIS GROUPS OF CM-FIELDS 11

with sgn(e-) frome G (Z2)w c (Z2)" c S2„andsgn(a)froma G G0 c Sn (cf. Coxeter
and Moser [3]). Whenever G0 and (Z2)w have odd elements, G+ will be a nonsplit
extension over G0, with v = w - 1, and therefore distinct from the trivial structure
on the split group [(Z2)w] + xsG0, where [(Z2)w]+ is the even subgroup of (Z2)w,
common to both groups. When n is even both groups contain p, while when n is odd,
extra structures for G0 of degree «, = 2n are obtained.

Note especially the case n even, w = n, v = n — 1. By the Reflex Degree Theorem,
is = n — 1 implies that either there are two G-orbits of types, each of order 2H_1, in
which case the p-structure is trivial, or else all types form a single G-orbit. Further
examples with a single G-orbit of types are found for n = 4, one with v = 1, two
with t; = 2 and several cases with v = 3 that are nonsplit but not of the form G+.
For complete results when n = 4, see §5.2.

3. Degeneracy in composite dimensions.
3.1.0. Recall that for a CM-type (K, $), an Abelian variety A with complex

multiplication of type (K, $) is obtained by the analytic construction of Shimura
and Taniyama [23]. The existence of a CM-field with a given type therefore assures
the existence of Abelian varieties of that type. The rank of A, t(A) = t($), is the
rank of the free Z-module M spanned by the Gal(Kc/Q) orbit of $ inside the
Z-module spanned by the 2w embeddings of K into C. Observe that the sum of the
coefficients of the embeddings t and f is a constant for each element of M, so that
the maximal rank is obtained when coefficients for n embeddings, pairwise noncon-
jugate, and the common value of the sum of the coefficients are given independently.
Then the rank of A is n + 1 and A is said to be nondegenerate. The variety A is said
to be degenerate when rank(^l) = rank(K, 0) < n + 1.

Let (K', 0') be the reflex type of (K, $). Recall that rank (K, 0) = rank(/C, $')
(Kubota [8] or Shimura [22]), so [A"':Q] ^[K:Q] is a necessary condition for
(K, $) to be nondegenerate. Also, (K, $) is said to be primitive, and A is simple,
when ((K, $)')' = (K, 4>) (Shimura [19]); and (K')' c K, with (KJ = Kif and only
if (K, $) is primitive. Observe that if A is reducible,

rank(A,$) = rank(/T, $') = rank((/C, $')') < ^[A":Q] + 1,

so that the distinction between degeneracy and nondegeneracy is meaningful only
when (K, $) is primitive.

The proposition of §1.2 provides a method for computing the G-orbit, and
therefore, the rank f(0) of (K, $), subject to explicit information on G0 c S„,
(Z2)v c (Z2)", and s: G0 -> (Z2)". Also, the Classification Theorem of §2.3 pro-
vides a reduction to the distinct cases. In the following, the weight of f g (Z2)",
f = (/,,..., /„) will refer to the sum/, + • • ■ + /„, where each fj is regarded as being
given by an integer,/^ = 0 or l,y = 1,..., n.

3.1.1. The following Theorem will be referred to as the "constant weight criterion"
for degeneracy.

Theorem. Suppose the CM-field K has an imaginary quadratic subfield, and let
G0 = Ga\(KcQ/Q) be given by G0 c Sn. Then G as Ga\(Kc/Q) has the trivial p-struc-
ture with v = 1 on <p) X G0. Let $ = $f, f e (Z2)", be a CM-type on K and let r be
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12 B. DODSON

the rank of the Z-span of the orbit G0*(f), regarded as a subset of Z".  Then
?($) = r + 1, unless the weight off is n/2, in which case t(Q>) = r may also occur.

Proof. Let D be an imaginary quadratic subfield of K. Then Kc is the composite
Kc = DKq, so that [Kc: K„] = 2, i.e., v = 1. But then K has two types having D as
a reflex field of degree 2 = 2V, so that K determines the trivial p-structure by the
corollary of the Reflex Degree Theorem and the fact that B\G0, -) gives p-equiva-
lences (cf. the Classification Theorem). The p-structure is then given by s(o)
identically 0, so that the G-orbit of f is G0*(f) U G0*(pf).

Let v,,..., vr G G0*(t) span G0*(f) c Z", still identifying the elements of Z2 with
0, 1 g Z. Observe that ?($) is the rank of the Z-module spanned by W = {(v, pv) G
Z2"/v g G*(f) c Z"), where pv denotes the multiplication in (Z2)", the result
regarded as an element of Z ". Next, note that the weight w = weight(v) is constant
for v G G0^(f), and, in particular, weight (vy) = w, for j = 1,..., r. The assertion of
the Theorem will follow from the lemma below, which will be used to show that
(v,, pv,),... ,(vr, pvr), (p, p) is a spanning set for W.

Lemma. Let v,,..., vr g (Z2)" have constant weight w. Suppose every entry of
w G Z" is a 0 or a 1, and that weight(w) = w. Then w = EnjVj implies pw = Ew -(pv-).

Proof. Consider the kih entry, wk, in w. Then wk = EnjVJk, for vJk the kih entry
of \j. But observe that the kth entry, pvjk, of pv, is defined by vjk + pvjk = 1, with
vjk,pvjk<E{0,\}.Then

w = weight(w) = ^n-weight(v-) = w(£w-)

= w(Y,nj(vjk + pvjk)) = w(wk + {zZ"jPVjk)),

so the A:th entry Enjpvjk and wk satisfy the same defining condition.
Returning to the proof of the Theorem, the lemma gives that {(v, pv)/v e G0*(f)}

is contained in the Z-span of the (v-, p\j), while (pv, v) = (p, p) — (v, pv) accounts for
G0*(pf). Finally, the rank of $ = $' can be r if and only if (p, p) belongs to the
Z-span of the (v, pv), in which case weight(pvy) = n — w gives that (En Aw =
(EnA(n — w), so 2w = n.

3.1.2. The following Theorem, which suffices for the present applications, will be
referred to as the "minimal weight criterion" for nondegeneracy.

Theorem. Let Gc(Z2)"XsG0c Im(/i,2) be an imprimitive permutation repre-
sentation o/Gal(A"c/Q), with [K: Q] = 2n, and let the G-orbit of the type $ = $f be
given by G*(f) = (w,,..., w„-, pw,,..., pw„}. Then (K, $) is nondegenerate provided
there are indices i,,..., i n so that when \j G (w, , pw, ),forj = 1,..., n, is selected to be
of minimal weight, the collection v,,..., v„ is linearly independent (in Q") and for at
least one indexy0, weight^) < n/2.

Proof. The weight condition assures that there is no nonzero relation Emj(\j, pvy)
+ mn + x(p, p) = 0, since weight(v,) < n/2, weight^) < n/2, gives

Xwyweight(vy) < ^m^weigh^pv,-).
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Remark. When 0 = (0,..., 0) g (Z2)" belongs to the orbit G„,(i), v, of maximal
weight may be preferred. As only a single G-orbit is affected, the choice of \j of
minimal weight is suggested by the natural determinate calculations in low degrees.
Note that n' > n is necessary, as observed above in §3.1.0, and that in the
applications n' = n, in which case the ("„) possible choices of indices may be
avoided.

3.2.1. Theorem (A Converse of Ribet's Theorem [15]). Let n > 4 be composite
and factor n as n = kl, with k > 2, I > 2. Then there exist simple degenerate Abelian
varieties of dimension n and rank n — I + 2.

Proof. Observe that there exist cyclic totally real fields for every n, so there exist
CM-fields K with K/Q Abelian and Gal(AyQ) = <p> X Z„ = G. Normalize the
p-structure so that G0 = Z„ is given by G0 = (a), a = (1 2 • • ■ «), and consider the
type defined by f = ((1,..., 1), 0„..., 0,), written in k blocks, each with / entries.
Let M be the n X n matrix with rows given by successive cyclic shifts under a, to
obtain the successive images of f under g = (0, o~l) g G. The first (k - 1)1 + 1 = n
- / + 1 rows of M are linearly independent, while the last / rows may be written in
/ x / blocks as (/,, 0,..., 0,12), with

10    0     ...     0    0\
1     0     ... 0

I\ —

\   i   ...   i  6/
and

M     1    ... 1\
0    1     ... 1h =
0 ...     0    ij

Subtract the first row of M from the last / - 1 rows and then add they th row to the
((k - 1)/ + y)th, for j = 2,..., I to obtain the last rows (0, /,, 0,..., 0,12). Repeat-
ing the procedure with the next / rows will shift /, again, until the rows (0,..., 0, /,
+ I2) are obtained. Then r = (k — 1)/+ 1 in the constant weight criterion, so
rank(K, $') = n - / + 2, with $' the type defined by f. Finally, note that $ is
primitive since the orbit of f under G has order 2n, with K/Q Abelian.

3.2.2. Existence of simple Abelian varieties of smaller rank, in special dimensions,
is provided by the following:

Theorem. Suppose the prime ideal (2) decomposes in the cyclotomic field Q($p), p a
prime, into g > 1 factors of degree f, and note that p = +1 (mod 8) is sufficient but
not necessary to insure g > 1. Then there exist Abelian varieties with complex
multiplication having dimension 2flp, I = 0,1,..., g - 1, and rank p + I. In particu-
lar, for / > 0, these Abelian varieties are simple, degenerate, and in fact are of
CM-type (K, $), with $ primitive, but with reflex field K', of degree 2p, a proper
subfield of K.
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14 B. DODSON

Proof. First observe that the condition p = ±\ (mod 8) is necessary and
sufficient for (2) to decompose in the quadratic subfield of Q(£p), so g > 1. Note the
case p = 43, where/= 14. Next observe that there exist cyclic totally real fields of
degree p, e.g., as subfields of Q(f9), for q an auxiliary prime with p/(q - 1).
Therefore by Shimura [18, §1], there exist CM-fields with Galois groups (Z2)p XsZp.

Viewing the decomposition of (2) in Q(£p) as corresponding to a factorization of
(xp - \)/(x - 1) into g irreducible polynomials of degree / (mod2), use the
coefficients of these irreducible polynomials to construct irreducible representations
Vj of Zp with dimF(^) = /, and Vj c F2[Z ], F2 being the field with two elements
and F2[Z ] being the regular representation. The corresponding decomposition of
(Z2)p is then (Z2)' = <p> e K, © • • ■ e Vg, with V} = (Z2)f. Note that V} and
each sum V- © • • ■ © Vj is normal in (Z2)p xsZp, and, since no such subgroup
contains p, will fix a Galois CM-subfield of the CM-field with group (Z2)p XsZp.
The fixed field K then has group

(z2yx5zp/(z2)^-')^(z2fxszp,

with (Z2)//+l being identifiable with the complementary summands of Vj © • • • ©
Vj f in (Z2)p. Next take H' = Ker(lst|(Zi)//+i) and note that p G H' so H' fixes a
CM-field K' of degree (G: H') = (2"+lp)/2fl = 2p, G being the group (Z2)"+1
xsZ . The properties asserted above will be shown to hold for this choice of K and
K'.

Now observe that K' has a single class of types, which maybe represented by a
type written as $°, with an orbit of order 2^/+' < 2P, and that all other types have
orbits of order 2fl+lp, so have reflex field (K1)' = K, the Galois closure of K'. In
fact, let such a type be given as 4>f, (G, H', p) having structure by s(o) = 0, for all
a g Zp. Then Zp fixes f g (Z2)* (mod(Z2)c), 13 = fl + 1, if and only if f e (Z2)c,
so [(K'Y : Q] = 2v(Lp: (1)) = 2fl+xp. Since K' has no CM-subfields, K' will be the
reflex field of (K,($')'), for such an i, f G (Z2)v, so the notation K' is not
misleading, and the primitivity of the type on K, with corresponding simplicity of
Abelian varieties of type (K,($')'), is assured, since the reflex type is always
primitive. Finally, observe that rank ?(($')') = t(<&{) < p + 1, with the exact value
p + 1 being the result of Ribet's Theorem in [15].

Remark 1. The lowest-dimensional cases have dimension 56, from «' = 7, u = 4,
and 25 • 31 = 992, from n' = 31, v = 6. The method described for obtaining VJ c
(Z2)P is standard in algebraic coding theory, and a proof for the assertions required
in the above proof may be found in [9, p. 277], a reference kindly supplied by E. F.
Assmus, Jr. Professor Assmus also emphasized that the cases p = 7, v = 4, and
p = 23, v = 12 are extremely exceptional among the cases p = ±1 (mod 8), v =
(p + l)/2, where (Z2)" c (Z2)P is one of the two choices given as quadratic
reciprocity codes. The automorphism groups of these linear codes, which correspond
to a maximal G0 in the present terminology, are Zp xsZ(p_l)/2 except in the above
two cases, p = 23 admitting the Mathiew group M23. As a consequence, the other
codes for this t; presumably having smaller automorphism groups, CM-fields of
degree 2p having reflex fields K' of degree 2«' in the range 2{p+l)/2p(p - l)/2 <
2n' < 2P may be expected to give Abelian varieties with interesting properties.
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Remark 2. The first example of G with a type for which K could have a reflex
field with K c K' was obtained by Shimura in [20] for G = D,4. Such types
predominate for D2n, n odd, as will follow from the formula of the proposition of
§4.1. Other examples provided by the present investigation include a case with n = 4
and \G\ = 16 (minimal), and examples with n = 1, v = 4, the cases with G0 = Z7
X s Z3 and PSL(2,7) having K c K' c Kc.

Remark 3. Yoshida has brought to the author's attention an elementary proof
that there exist totally real fields with group S„ for every n. The existence of simple
degenerate Abelian varieties in the dimensions

£(n/2)and (iy k*h
with rank < n + 1 follows from Yoshida's comment and the present methods.

3.3.1. While the K/Q Abelian case avoids existence problems, the special proper-
ties that result from the existence of various non-Abelian groups as the Galois
groups of totally real fields may be formulated as the following:

Theorem. (A) Suppose there exists a totally real field Kq with Galois group
Gal(/LQ/Q) = Zk \ Zh k > 2, I =* 1, the wreath product. Then there exist simple
degenerate Abelian varieties with complex multiplication by a non-Galois CM-field such
that the varieties have dimension n = kl and rank n — I + 2.

(B) Under the same hypothesis, except that k = 2 is allowed, there exist simple
Abelian varieties with dimension n' = k21 having rank < kl + 1.

(C) Further, in the even case, the existence of totally real fields with Galois groups
[(Z2)m] + XsZm(m > 3) and Dm for m odd (m > 5) supplies simple Abelian varieties
of CM-type (K, $), and reflex field K', with dimension n = 4m, and with dimension
n = 2m (m odd, m > 5), respectively, in each case with K' c K, [K: K'] = 2, so that
rank($) < \n + 1.

Proof. (A) Write

I~kx^-i = (ol,o2,...,ol,ol+l),

with

a, = (12 ••■ k),o2 = (k+ 1 ••• 2k),..., 0/= (k(l - 1) + 1 ■•■ kl),
and

o,+ l = (1 k + 1 •• • k(l- 1) + 1)(2 ••-)••• (k ■ ■ ■ kl).

Then take K0 to be the subfield fixed by H0 = (o2,..., a,). Note that a transitive
degree n = kl structure, G0 = Zk X Z, c Im(/, k), has been given, with H0 =
StabGo(l). Take K to be the composite of K0 with an imaginary quadratic field, and
then observe that Kc/Q has group G = Z2 X G0, with K determining the p-struc-
ture that may be given by s(o) = 0 for all a g G0. Taking any Ty with ry(l) = y, let $f
be the CM-type with f = ((1,0,..., 0)k,. ..,(1,0,..., 0)*), with f being written in /
blocks, (1,0,..., 0)* having k entries, with or, r = \,...,l, transitive on the rth
block. Then since a,,..., a, act independently and a/+, stabilizes, f has a G-orbit of
order 2k'.
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To check that (K, $') is primitive, and establish that the Abelian varieties of type
(K, $') are simple, apply the method of Shimura and Taniyama [23, Proposition
26]. Observe that explicit coset representatives Tj can be given as a/"+,a|"+u, taking 1
to uk + 1 + w. Then write S = U"=xHpfJTj, with the notation there. Since k > 2,
observe that (p,o) G Hx = (g e G/gS = S), the number of elements with first
entry p being changed. Next observe that o"> ■ ■ ■ o"1 g H] implies ax = 0, and,
finally, that ox' • • ■ a/^1 g Hx implies fk+x = • • • = f2k, which is also false for the
present f.

To determine the rank, use the constant weight criterion and observe that f and
the elements ((oa)b) *f,a= 1,...,/, b = \,...,(k - 1), supply \ + l(k - 1) inde-
pendent elements of Gn*(f) that span G0* (f). Then

rank ?($')= l + /(*-l) + l = ft-/ + 2-n-/+2<»i+l,

as asserted.
(B) With the same subgroups as above, consider the type with f = ((1 0 ■ ■ • 0)*,

(10 ■ • • 0)^., 0k,...,0k). Then a3,..., a, stabilize this type, and no element of the
form af1 • • • o?l\\ with any one of ax, a2, or al+x nonzero, can fix this type, so an
orbit of order k2l is obtained. Then the reflex type of this type may be used to
construct Abelian varieties with the required properties.

(C) The case of D2„, n odd, is deferred until §4.1. For G0 = [(Z2)m] + XsZm, take
H0 = Ker(lst|[(Z )<n]+), G = Z2 X G0, and H = 0 X H0, G corresponding to the
composite with an imaginary quadratic field. Then (G: H X (p» = 2m. Using

G0 =((lm+ \)(2m + 2),..., (m - 1 2m - \)(m2m),

(12 • •• m)(m + 1 •• • 2m)) = (a,,..., om),

and s(o) identically zero, let $' be given by f = (1 1 0 • • • 0). Then H'(<&f) =
((0, a3),... ,(0, am_,)> with H' c H,(H: H') = 2, so we take K to be the fixed field
of//'.

Remarks. In case (C) observe that m = 3 gives G0 = A4 in degree 2m = 6, so the
degenerate reflex type gives an Abelian variety of dimension 4m = 12 with rank 7,
which exists by the theorem of §2.2.1. Under the hypothesis on the existence of the
totally real fields, (B) combined with (C) gives the existence of pairs (K, $), (K', $')
with [/C: Q] > [K: Q], except when [K': Q] = 2n' with n' odd and square free.
Note the exceptional case n' = 6, which is even, but does not allow this strong form
of degeneracy. Likewise, case (B) and the proof of case (A) give much smaller ranks
than those obtained in the Abelian case of §3.2.1 for dimensions divisible by a large
square, or of the form kl.

3.3.2. As a final result on degeneracy, the results of §5.2 clarify the number of
cases involved and provide a method of proof for a result stated without proof in
Ribet's paper [14]. One formulation of the result is the following:

Theorem. Let Abe a simple Abelian variety of CM-type (K,<b), with dimc (A) = 4.
Then A is degenerate if and only ifGa\(Kc/Q) = Z2 X A4, or Z2 X S4 and (K, $) is
the reflex of a type on a CM-field of degree 6.
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Proof. The essential observation will be made in the proposition of §5.2.2, where
the cocycle analysis establishes that there are only six orbits in question, the case
[(Z2)4] + - (p) being the degenerate type known to occur. The minimal weight
criterion establishes nondegeneracy for the other five cases.

4. A relative class number formula.
4.0. For cases of the form G = (Z2)v XsZp, as in the theorem of §3.2.2, the

general partition formula for the degrees of the reflex fields,

2p = 2v + (2"p)(Z\),
c

where Ecl, the sum of c = (\/p)(2p~v - 1) ones, has been established in the proof.
Other cases with K c A" have been remarked upon, but the dihedral group G = D2„,
n odd, and (p) X Sn are the cases for which a general partition formula has been
obtained. More information is available for the case G = D2n, n odd, where the
elementary character theory of G may be used to give explicit relations among
certain characters Xk-/k'0 an^ Xk/k0> where K' is a reflex field of K and K'0 = (A"')<p\
The previously obtained example of Shimura is of the form Xk/k0 = Xk'/k'0 an^
gives the relative class number relation of Proposition A.7 in [20, p. 84].

4.1. In the case of G = D2n, n odd, G determines a unique p-structure (G, H, p)
with (G: H) = 2n (D2n of order 4n). Giving G the usual split structure s(o) = 0 for
all a G G0 = Dn, the partition is given by the following:

Proposition. For G = D2n, n odd, the partition giving the degrees of the reflex
fields is given as

2" = 2 + 1(2/5,, +4ls,2),
l/n

where slx, s!2 are summations ofslx and sl2 ones, with slx defined recursively by

and sl2 defined recursively as

s,a = 77 2' - 2 - E (21%,A + 4l'sra) - 2&J,

both summations being over divisors I' < /. For the particular case of primes,

spl =2<*-,>/2- 1    and   sp2 = (l/4p)[2p-2-p(2<p+^2-2)].

si,\ * 0 for aU l> and S/,2 * 0, except for / = 3,5.

Proof. The term 2 corresponds to the type $°. For / < n, the term 2ls,, counts
the types $f for which f G (Z2)n is fixed by Dn/I c Dn but no larger subgroup, and
the term 4lsl2 counts f fixedby Zn/l but no larger subgroup. The factors 2/ and 4/
give the orbit of such types under G. Finally, 2nsn , counts the types fixed only by a
reflection (in G0 = Dn), 2n being the order of such orbits, and 4nsn2 counts the
types fixed by no element of G.
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The cases n = 3,5,7,15, and 45 give illustrations of the formula and its recursive
nature. Note that all of the partition terms sn2 correspond to types for which the
reflex fields K' of K have K c K' = Kc, the existence of such types supplying the
remaining portion of the proof of part (C) of the theorem in §3.3.1. The case D2n,n
even, appears to present somewhat contrasting phenomena, which has not yet been
fully developed. Note that D2t, like D2p, allows few CM-subfields. The partition
64 = 4 + 12 + 12 + 12 + 24 from n = 6, G = DX2, shows that K c K' = Kc can
also occur for n even.

4.2. A concern for the p-structure identifications made by Outer(G) will be
supported by the introduction of character theory to the description of a more
arithmetic structure. The relative class numbers below retain geometric significance,
as is established, for example, in Shimura [17] (cf. also Weil's review in Math.
Reviews), [20], via the field of moduli.

Definition. Let (G, H, p) be an element of a p-structure, possibly having kernel.
Then Xhx(p)/h denotes the character of G induced from the character of H X (p)
trivial on H, but nontrivial on H X (p). The notation Xk/k wiH De used when the
case G = Ga\(Kc /Q), with H corresponding to Ga\(Kc/K) and p to complex
conjugation, is intended.

Proposition. Suppose G = D2n, n odd, occurs for a CM-field L = Ke, [L : K] = 2.
Let AT' be a CM-subfield of L, [L : Kl] = 2, nonconjugate to K over Q, and let L0, K0,
and K0l denote the maximal totally real subfields. Then the character relation

Xl/l0 = Xk/k0 + Xk'/k'0

holds.

Proof. Observe that Xl/l maY t>e decomposed into irreducible characters, with
the decomposition written in the notation of Serre [16] as

Xl/l0=   0   2X*©*3©*4.
h odd

the last two being characters of degree 1, the others of degree 2. The above rela-
tion then  follows from the decompositions of Xk/k0 and Xk'/k'0> one giving
® a odd** ® ^, the other ©^x*© 4V

Note that which character has which decomposition will depend upon which
Outer(G) class is represented by (G, H, p) in the p-structure defined by (G, H, p).
For an algebraic number field F, let h F be the class number of F, dF its discriminate,
and EF the group of units. Then applying the method of Shimura [20] provides the
following:

Theorem. Suppose L/Q is a CM-field, Gal(L/Q) = D2n, n odd, and let K, K\
L0, K0, Kq be as in the above proposition. Then the following relations hold.

(i)       dL/dLo = (dK/dKo)(dK>/dKh)   and

(ii)        2[EL:ELoYXhL/hLo = [EK: EKa\XhK/hK.a[EK>: EK^XhK,/hKl

Proof. By the formula of Hecke [7], E/E0 Abelian and quadratic gives £E(s) =
$E (s)L(s, xo). f being the Dedekind Zeta function and L(s, x0) being the L-func-
tion for the character of the extension E/E0. Apply the formula for the residue of
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the Zeta function. Then the discriminate terms are isolated, and the regulator terms
are absorbed as in Shimura [20, p. 84]. But the L-function terms are equal by
standard properties of the Artin L-series and the above proposition.

5. Examples for n < 8.
5.0. In this section p-structures are not allowed to have kernels. In §5.1 all cases

for the values n = 3, 5, and 7 will be obtained with some general properties of n
odd, and n = p,p a prime, included. All of the p-structures for these values are split,
with n = 1 giving two cases having nontrivial structure. The case n = 4 is treated in
5.2, with many nonsplit cases obtained. Preliminary results for n = 6, especially the
examples generalized in §3, are presented in 5.3.

For all of the p-structures with n = 3,4,5 and 7, the G-orbit structure of the
collection of types is given. Recall from §1 that the G-orbit structure is a partition of
the set of types, i.e., of {f | f e (Z2)"}. Pick $, j = 1,...,/, to represent each G-orbit.
Then, in the CM-field case, a numerical partition 2" = Ej=,[ J]■: Q] results, Jj being
the reflex field of (K, Oy). Every other reflex type of K is then given as (/-, 07')g =
(//,($,')*), for g G Gal(AT'/Q), so that the (Jp $,'),/ = I,..., I, represent all of the
reflex types of K. The partition 2" = £' = ,(G: //'($,■)) is then given for each
p-structure.

5.1.1. First observe that when G has a p-structure with n odd the classifications of
p-structures and permutation structures coincide. The result is the following:

Proposition. Suppose G has a central order two element p. Then for a permutation
structure (G, H) to support distinct p-structures, every permutation structure (G, Hx),
G effective on Hx \ G, for which (G: Hx) = 2nx, must have nx even. Further, (G, Hx, p)
must have ProjSets(G) with a central order two element.

Proof. For (G, H) to support distinct p-structures, G must have at least two
central order two elements, else p is characteristic, and Aut(G, p) = Aut(G). Con-
sider the imprimitivity sequence 0 -» (Z2)v' -> G -» G0 -> 1 for (G, Hx, p). Since
Gq is transitive, p is the unique central order two element of G in (Z 2)U|, so a second
central order two element, p,, would be of the form p, = (e\ o'), a' =*= (1). But then
p, of order two implies a' of order two, and p, central in G implies a' central in G0.
Finally, since Hx is without normal subgroups of G, p, G //,, and G has the
subgroup lattice G 3 Hx X (p) X (p,) d Hx X <p) z> Hx, with 2 = (//, X <p) X
(p,)://, X (p2»,so2/n„for«, =(G://, X <p».

The p-structures for the values n = 3,5 and 7 will then be obtained by determin-
ing which of the permutation structures of degree 2« = 6,10 and 14 have abstract
groups containing a central order two element. The analysis is further simplified by
the fact that n = p, p a prime, strongly restricts the values of v, and therefore of
\G\ = 2t)|G0|. In fact, observe the following:

Proposition. Let n = p be an odd prime. Then for any G0 of degree p, and any
imprimitivity sequence 0 -» (Z2)" -> G -» G0 -* 1 for a p-structure (G, H, p) (p G
(Z2)v), the divisibility condition p/2v~l — 1 holds.
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Proof. G0 must contain a /?-cycle o, so (Z2)v may be decomposed into Z^-orbits
for Zp = (a). Since/? is odd, p gives a pairing of these orbits, so

(Z2)v = (0 U p) U {Ox U pO,} U • • • U {Os U PG,},

with each O, of order/?.
Thus for/? = 3 and 5,13 = 1 orp; while for/3 = 7, u = 1, 4 or 7. The general case

of p = +1 (mod 8) allows (Z2)0 with 1 < 13 < /? by quadratic reciprocity and the
construction in §3. Recall that/3 = 43 = 3 (mod 8), but v = 15 occurs.

5.1.2. Now recall the transitive G0 for n = 3,5 and 7. For « = 3, there are only
G0 = Z3 and S3; for « = 5, G0 = Z5, £>5, Z5 xsZ4, A5 and 55; and, for n = 1,
G0 = Z7, D7, Z7 XSZ3, Z7 X5Z6, PSL(2,7), A7 and 57. The p-structures for these
values are then described by the following:

Theorem. For n = 3,5 and 7 there are a total of 33 p-structures. Of these, 28 are
the split structures Z2 X G0 and (Z2)n Xs G0for the above 14 G0. T/zree more are f/ie
n = 7, t3 = 4 split structures (Z2)4 XsG0,for G0 = Z7, Z7 XSZ3, a«J PSL(2,7). 4//
owf /wo of these split groups have unique permutation structure, the two nontrivial split
p-structures resulting from distinct permutation structures on Z2 X PSL(2,7) and

(Z2)4XJPSL(2,7).

Proof. See the lists of Miller [10] or Zassenhaus [25] for n = 3 (2n = 6), the list of
Cole [2] for n = 5 (2n = 10), and the list of Miller [11] for n = 1 (2n = 14). Note
that the corrections to Cole's list in Miller [11] do not affect the present case.

Only the list for n = 7, 2n = 14 presents any problem. Since n = 7 is odd, observe
that the only cases admitting 2 sets of order 7 are split and have 13 = 1. The other
cases listed above account for 12 of the 27 permutation groups that admit 7 sets of
order 2 but not 2 sets of order 7. The remaining 15 such permutation groups fail
to have a central order two element, since they occur as [(Z2)V] + XSG0,
as [(Z2)v XSG0}+, or as G, with (Z2)v XSG0 = (p) X G,, the [ ]+ cases failing to
contain p since n = 1 is odd.

5.1.3. Proposition 1. When n = 3, v = 1, the partition 23 = 2 + 6 holds for both
G = Z2 X G0, and 23 = 8 holds for both G = (Z2)3 X 5 G0. When n = 5 there are two
cases with v — 1. For G = Z2 X G0 with G0 = Z5 or D5, the partition is 25 = 2 + 10
+ 10 + 10, tv/ufe for G0 = Z5XSZ4, A5, or S5, 25 = 2 + 10 + 20. The case G =
(Z2)5 xsG0 gives a single orbit, 2s = 32.

Proof. Use Zp c G0 to give coset representatives t,, and take s(a) = 0 for all
a G G0. Then the type 0°, 0 e (Z2)", accounts for the term 2 when 13 = 1. The first
term of 2 n is then represented by (001) or (00001). For n = 5, the first two G0 have
(11000) and (10100) in distinct orbits, while the other three G0, being 2-transitive,
identify these to give a single orbit. That the case v = n gives a single orbit has been
previously distinguished by Shimura [18, §1].
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While the same priniciples apply to n = 7, v = 1, s(o) identically 0, there are
several more cases. The notation [ \kn-k is used to denote the preliminary decom-
position into orbits having f with k or n — k entries of 1. Also the notation Er\, for
the sum of r l's is used. Then the n = 1 partitions are given by the following:

Proposition 2. For n = l,v = 1 s(o) identically 0, the partitions are as follows:
(1)27 = 2+ 14(1,1),/^ G0 = Z7;
(2) 27 = 2 + 14 + [14(Z31)]2,5 + [14(I31) + 28]3,4,/w D7;
(3)27 = 2 + 14 + [42]25 + [14 + 14 + 42]34,/wZ7 XSZ3 and?Sh(2,7);
(4) 27 = 2 + 14 + [42]25 + [28 + 42]34, for Z7 XSZ6; and
(5) 27 = 2 + 14 + [42]2'5 + [70]3 4 for A7 and S7.

Representatives for the orbits are as given below.
Further, the other cases have the partitions 27 = 16 + 112 for the three split cases

with v = 4 and s = 0, and the nontrivial split case with 0=1, and a single orbit,
21 = 128, for the nontrivial split case with v = 4, in addition to the cases with v = 7.

Proof. For the cases with v = 1, s = 0 use Z7 c G0 to specify $f, and obtain the
preliminary decomposition

27 = 2 + [14],,6+ [l4(£l)l     + fl4(ll)     •
V   3     'h,5        [      V   5     'J 3,4

The case G0 = Z 7 is completed by specifying the representatives

(1100000),    (1010000)    and   (10001000)

for [ ]25; and

(0000111), (0001011), (0001101), (0010011),   and   (0010101)

for [ ]34. All other cases except for D7 have G0 = Z7XJZ3asa subgroup, which
identifies the three orbits from [ ]25 to give the [42]25 terms. G0 = D7 has an element
stabilizing each of the representatives, so the orbits remain distinct.

For [ ]3 4, note that the second and third representatives give the exceptional orbits
for Z7, and the representatives chosen give the coefficients in the factorization

(x1 - \)/(x - 1) = (x3 + x + l)(x3 + x2 + 1)    (mod2).

These exceptional orbits give terms of 14 + 14 for the G0 admitting 13 = 4, and 28
for G0 = D7 c Gq = Z7 XSZ6. Again D7 has a reflection fixing the other three
representatives, giving distinct orbits, while G0 = Z7 X^Z3 c G'Q identifies these.
Finally, G0 = A7 and S7 are 3-transitive, so that [ ]3 4 is a single orbit.

For the cases with 13 = 4 and s = 0, a term of 16 is required by the corollary of the
Reflex Degree Theorem and can be represented by 0. Then (Z2)4XSZ7 is a
subgroup of the other two, and (Z2)4 gives identifications of the other orbits for
Z2 X Z7, the orbit used to construct (Z2)4 being excepted, and odd = (0000001) is a
representative in any case. The nontrivial case with v = 4 and G0 = PSL(2,7) has a
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trivial subgroup with G0 = Z7, u = 4, but must not allow a term of 16 by the same
corollary, so must identify the two (Z2)4 XSZ7 orbits, giving a single orbit. Finally,
the nontrivial structure with o=l may be written as G = Z2 X PSL(2,7)*,
PSL(2,7)* being a "head = 1" subgroup. Explicitly,

((0000000), (1234567))    and    ((0011101),(12)(47))

satisfy Burnside's relations for PSL(2,7), and make identifications on the oribits of
the trivial Z7 X^Z3 subgroup given by the above 7-cycle and (253)(467).

5.2.1. For n = 4, 2n = 8, several cases allow nonunique central order two ele-
ments, in distinct Aut(G)-orbits, so permutation structures are not sufficient. The
cocycle method, having been established in general, provides the following:

Theorem. There are 38 p-structures for n = 4, which may be arranged according to
(G0,(Z2)C), and have partitions as on the table of n = 4 results below.

Proof. Observe that for each of the five transitive G0, o = 1,3 and 4 determines
(Z2)v uniquely, v = 1 giving (p) and v = 3 giving [(Z2)4]+. Neither G0 = A4, nor
G0 = S4 allow v = 2, and recall that the three G0-modules for G0 = (Z2)2 have been
found to be equivalent in §2.3.2, where the normalizations for G0 = Z4, G0 = D4
determine (Z2)v, v = 2, uniquely.

Now compute H](G0,(Z2)4) to get (0) for G0 = (Z2)2, Z4 and A4; and <p> for
G0 = D4 and S4. In the latter case, note that Hl(G0,(Z2)v) = (p), so the inclusion
j'1 is an isomorphism, giving/1 = 0 in all cases. Note that Outer(G) makes nontrivial
identifications if and only if G0 = D4 or S4, as in the Structures Theorem of §6.

Since/1 = 0 we have 7/'(G0,(Z2)4/(Z2)1J) = Z'/y^Z1), so we compute the
group Z'/y'^Z1) of extension classes. For the cases G0 = (Z2)2, Z4 and D4, pick s:
G0 -* (Z2)4 for each class and compute the order structure to see that nonisomor-
phic groups result from each extension class with (G0,(Z2)") held constant, except
in the two cases G0 = (Z2)2, v = 1 and o = 3. The case with v = 1 has appeared in
§2.3.2, and the case with v = 3 gives \ZX/j\Zx)\ = 4, with two NSi(Z2)2 = S4 orbits.
For G0 = A4 and 54 note that the groups listed on the following table for n = 4 are
nonisomorphic and belong to the appropriate cohomology spaces. Since nonisomor-
phic representatives have been obtained, and equivalence between distinct (G0, (Z2)v)
is not allowed, the number of structures is given by \Z]/j\Zi)\, with the above two
exceptions.

The identifications of the abstract 2-groups, while not essential, may be easily
obtained by comparing the structure (Z2)4 XSGQ with successive index two sub-
groups, as provided on the lattice diagrams of Hall and Senior [5]. The partition
results follow from the methods of §§1 and 2, explicit calculation with (s(o),o)
being rarely required. The primitive cases will be described below.

Note that in each case the split structure is given first in the following:
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Table of n = 4 Results.

Structures Partition giving degrees of reflexes
G0=(Z2)2

v = 1        (Z2)3 2 + 2 + 2 + 2 + 8
(Z2)xZ4(pe Z4) 4 + 4 + 8
D4 4 + 4 + 4 + 4
Q 8 + 8

u = 2       Z2 X D4(p e D4) 4 + 4 + 8
\6T2b 8 + 8

t3 = 3       32r5a, 8 + 8
32I>, 16

13 = 4       64r25fl| 16
G0 = l4

u=l        Z2XZ4(p£Z4) 2 + 2 + 4 + 8
Z8 8 + 8

u = 2       16r2c, 4 + 4+8
16r2rf 16

« = 3        32I>, 8 + 8
32I>2 16

« = 4       64r22a, 16
G0 = D4

t3=l        Z2X D4(p<£ D4) 2 + 2 + 4 + 8
16r2c, 4 + 4 + 8
16I>, (= £>8) 8 + 8
16I>2 8 + 8

t3 = 2       32I>, 4 + 4+8
32i>, 8 + 8
321> 16
32r6a, 16

13 = 3       64r25a, 8 + 8
64i>, 16
64r22a, 16
64r26a, (= 2-Sylow 16

of W(D4))
13 = 4       (Z2)4 XsD4(s 2-Sylow        16

of W(C4))
G0 = A4

»=1        Z2 X A4 2 + 6 + 8
SL(2,3) 8 + 8

t3 = 3       [(12)4] + XSAA 8 + 8
t3 = 4       (l2yxsA4 16

G0 = S4
13=1       Z2X54 2 + 6 + 8

GL(2,3) 16
u = 3       l(Z2y]+xsS4 8 + 8

[(Z2)4XsS4]+( = W(D4))    16
13 = 4      (Z2)4xs54(= W(C4)) 16
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Remark 1. For 2-groups, the notation is that of Hall and Senior [5], in which the
first number is the order of the group, the symbol Tk denotes the family to which the
group belongs in the sense of P. Hall [6], and the remaining portion of the notation
specifies the group within that family. The symbol Q denotes the quaternion group.
The [ ]+ notation is from Coxeter and Moser [3], as recalled in §2.3.2; likewise, W(-)
denotes the Weyl group of the reduced root system of the simple Lie algebra of that
type. Note that Im(«, 2) = W(Bn)= W(Cn) is the "hyperoctahedral group".

Remark 2. Twenty of these structures are nonsplit, some of which belong to more
general cases. The three cases with two distinct p-structures on a single permutation
group are G = Z2 X Z4, G = Z2 X D4, and G = 16 r2c,. In particular, 35 degree 8
permutation groups admit 4 sets of order 2 and the central order two element p. The
groups 64 r22a, and 64 r25a, which occur twice have distinct permutation structures
in each appearance, while 32 T7ax occurs three times, each time with distinct
permutation structure. Thus 31 nonisomorphic groups occur, 22 of which are
2-groups.

5.2.2. Proposition. Up to normalization there are just six subsets of (Z2)4 that
occur as the G-orbits of primitive types. Four of these arise from the split structures, and
are given as (Z2)4, [(Z2)4]+, [(Z2)4]+ (odd), and [(Z,)4] + - <p>. The other two are
associated with the cyclic case G = Z8, and are both of order 8, containing even and
odd elements.

Proof. First observe that normalization by Bl does not disturb s(o) odd or even,
so that specific <3>f need not be given. Checking cocycle calculations, observe that, for
v < 3, there is a g G0 so that s(o) is odd if and only if G0 has a 4-cycle t with s(t)
odd. But then G has a subgroup Z8 = ((s(r), t)), which may easily be observed to
have the partition 24 = 8 + 8, each orbit being primitive. For primitivity, observe
that H = (1) with every H c Hx having p g Hx , so no proper containment is
allowed. For explicit representatives, take Z8 = (((0001),(1234))), and observe the
elements (0,(1000), (1100), (1110)} in one orbit, {(0010), (1001), (0100), (1010)) in the
other. As to the orbits of G, either G must preserve these orbits, or else G has (Z2)4
as a single G-orbit with partition 24 = 16.

Next observe that the cases with v = 3 give (Z2)4, [(Z2)4]+ and [(Z2)4] +
(odd), the latter two if and only if G is split, as analyzed in §2.3.2, Example 4. The
remaining cases all have s(o) even for all a g G0, and also have v < 2. But when
s(o) is always even, [(Z2)4]+ and [(Z2)4]+ (odd) must be preserved by the G-action.
Now if 3 + |G0|, no orbit of order 6 occurs. As the reflex of a type with an orbit of
order 4 is of degree 2 or 4, no orbit of order 4 contains primitive types, and no
further primitive types are obtained. For 3/|Gn|, the two split cases may be easily
computed and give

(z2)4 = <p)u([(z2)4] + -(p))u[(z2)4] + (odd).

Otherwise there is no term of order two, so no term of order 6 occurs, and only the
two "split" orbits of order 8 occur for s(o) even. As the required cocycle calcula-
tions may be easily supplied, the present description is complete.

5.3.1. For n = 6 and larger composite values such as n = 8,9 or 15, a nesting of
the G0 as with Zp c G0 forp prime and with (Z2)2 ■ Z4 = D4 c S4, (Z2)2 c A4 for
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n = 4 is not so readily apparent. For the general case certain G0 with corresponding
properties are distinguished by the following:

Definition. A transitive group G0 of degree n is called a minimal group of degree
n, and written as G™n (when n is understood), provided that no proper subgroup of
G0 is transitive.

For n = 6, the minimal groups are provided by the following:

Proposition. The imprimitive transitive permutation groups of degree 6 may be
normalized to have the inclusion relations indicated on the lattice diagram for n = 6
below, with the notations introduced in the proof. The primitive G0 of degree 6 are
never minimal, so there are four minimal groups G™m for n = 6; these are the groups
Z6, S3, A4 and Im(2,3)+ indicated in the lattice diagram by boxes.

Proof. To fix the notation, the relevant structure of these well-known groups is
recalled. The group Im(2,3) has the structure S3 X Z2, the wreath product, and is
also given as (S3 X S3) XSZ2, semidirect. Im(2,3)+ is the subgroup by

Im(2,3)+= (((a,,a2), p') e (S3 X S3) XsZ2/sgn(ox)sgn(o2)(-\)e = l}.

The group G36, also of order 36, is G36 = (S3 X S3)+XSZ2. Note that p is the usual
product of 3 disjoint two cycles, but with nontrivial action in Im(2,3). Since (123)
and (456) are even, the Z6 subgroup given by (((123), (456)), p) does not belong to
Im(2,3)+, but does to G36 as well as the wreath product Z3 \ Z2. Further inclusions
are obtained by observing that G36 is the holomorph of S3, that is, G36 =
S3 xsAul(S3) = S3 XSS3. A subgroup analysis may be used to establish that
Im(2,3)+ is a minimal group.

For Im(3,2) = (Z2)3 XSS3 as usual, observe that Im(3,2) n Im(2,3) = D6, with
D6 also given as D6 = S3 ■ Z6. A4 is the subgroup [(Z2)3] + XSZ3 of Im(3,2), and
contains no subgroups of order 6. Observe that A4 ■ D6 = A4 ■ S3 ■ Z6 = Im(3,2).
The permutation groups S4 and Im(3,2)+ are both abstractly isomorphic to 54, the
notation "S4" being reserved for [(Z2)3] + XJ5'3, which contains A4 as given. A4 x Z2
= (Z2)3 X^Z3 and is given as A4 ■ Z6. Likewise Im(3,2) + = A4 ■ S3, completing the
description of the 12 imprimitive G0.

The four primitive groups of degree 6 are given as A5 = PSL(2,5), S5 = PGL(2,5),
A6 and S6. To see that none of these are minimal, observe A4 c A5 c A6 c S6 and
A5 c S5.

Lattice Diagram for n — 6
order
72 Im(2,3)

48 Im(3, 2) ^s.

36 ^^^^^       j     \ , G36 Im(2> 3)+

24 S4 lm(3, 2)+ 4,kZ,1 //

12 At" \   ^p" t^^^r^
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The steps (A) and (B) of the Classification Theorem are given for n = 6 by the
following:

Theorem. For n = 6 there are 66 inequivalent pairs (G0,(Z2)V), with p g (Z2)v,
and therefore 66 inequivalent p-structures with trivial cochain s(o) = 0 for all o g G0.
All 16 G0 aJ/m'r <p> wf'f/z e = 1, [(Z2)6]+ w/rt v = 5, and (Z2)6, accounting for 48
cases. G0 admits v = 2 if and only ifG0 c Im(2,3), supplying 1 cases; G0 admits v = 3
// a«ti on/y if G c Im(3,2), supplying 8 cases; ana", G0 admits v = 4 if and only if
G0 c Z)6 = Im(2,3) n Im(3,2), /or 3 cases.

Proof. Consider the 4 G™n cases, and decompose (Z2)6 into G™"1 orbits, taking
account of the pairing given by p. The action of G0 preserves the number of l's,
allowing a preliminary decomposition (Z2)6 = (p) U [ ], 5 U [ ]24 U [ ]3, subscripts
denoting the number of l's. Since G0 is transitive, the pairing by p gives [ ], 5 as a
single orbit of order 12.

The remaining terms decompose as follows:

(1) |[]2,4|= 12+12 + 6,    |[]3|= 12 + 6 + 2,   forG0 = Z6;

(2) |[ ]2,4|= 6 + 6 + 6 + 12,    |[ ]3|=2 + 6 + 6 + 6,    forG0 = 5'3;

(3) |[]2,4l=24 + 6,    |[]3|=8+12,    for G0 = A4;

and

(4) |[ ]2i4| = 12 + 18,    |[]3| = 2+18,    forG0 = Im(2,3) + .
The cases for (GQran,(Z2y) are then obtained by examining unions of orbits to see
when sub-G0-modules are obtained. First results are that v = 3 and v = 4 do not
occur for G^ = Im(2,3)+, nor does v = 4 for G0min = A4.

To obtain some of the pairs (G™m,(Z2)u), aside from the cases with v = 1,5 and
6, observe that (Z2)v = {(e, e) e (Z2)6/e e (Z2)3), gives a case with o = 3 for
G0 c Im(3,2), and (Z2)" = <p,(0, p0)> with p0 = (111) g (Z2)3, gives a case with
i; = 2 for G0 c Im(2,3). Observe that D6 admits (Z2)v = {(e, pa0e) G (Z2)6/e G
(Z2)3, a = 0,1) since both S3 and Z6 do, and D6 = S3 ■ Z6. Note that for G0
containing either A4 or Im(2,3)+, [(Z2)6]+ is unique for 13 = 5, since otherwise
[(Z2)5]+ would give u = 4.

Next observe that each value v = 1,2,..., 6 occurs for G0 = Z6, with (Z2)"
uniquely determined for each value. For example, v = 2 gives odd elements, so
v = 3 must have only even elements, else a second 13 = 2 would result. But then
(Z2)" = (p)U0, for 0 the orbit from [ ]24 with order 6. The remaining case
G^n = S3 has 3 submodules (Z2)v for each of o = 3 and v = 4. The equivalence of
these under Ns (S3) = G36 may be observed by noting that G36 gives the same
decomposition of (Z2)6 as Im(2,3)+, so that G36 does not preserve any (Z2)v for
u = 3 or 4, as would be required for S3 to have inequivalent submodules as in (B) of
the Classification Theorem. No other nonunique (Z2)"'s occur for S3, as in the
previous cases.

All 20 (Go"11, (Z2)") cases having been obtained, most of the general cases follow
from the inclusion relations in the above proposition. For example, in the case

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GALOIS GROUPS OF CM-FIELDS 27

Z6S3 = Z3 I Z2, here with subgroups Z6 and S3 so Z6 n S3 = Z2, observe that 53
does not preserve the unique submodule with 13 = 3 for Z6, and therefore does not
preserve the submodule with 13 = 4 either. Finally, consider the primitive cases, all of
which have been observed to contain A4. The inclusion rules out 2 and 4, and gives
uniqueness for 13 = 5. The remaining case, v = 3, may be eliminated since each of
these G0 is at least 2-transitive, so that [ ]24 is a single orbit or order 30.

Corollary of proof. Let G = Z2X G™m be the split v = 1 group with structure
by s(o) = 0 for all o e G0. Then the types of G, i.e., of (G, Stabc(+1), p), have
G-orbit structure giving the following partitions:

(1) 26 = 2 + 12 + [12 + 12 + 6]24 + [12 + 6 + 2]3,for G0 = Z6;
(2) 26 = 2 + 12 + [6 + 6 + 6 + 12]w + [2 + 6 + 6 + 6]3,for G0 = S3;
(3) 26 = 2 + 12 + [24 + 6]24 + [8 +\2]3,for G0 = A4;and
(4) 26 = 2 + 12 + [12 + 18]24 + [2 + 18]3,/or G0 = Im(2,3)+.

Proof. The split structure Z2 X G0 with s(o) = 0 for all a g G0 exactly gives the
G0-orbits with pairing by multiplication by p, so the computations are the same.

The examples generalized in §3 occur for the cases G0 = Z6, A4, and Im(2,3)+.
The group G0 = Z3 \ Z2 is adopted in place of Im(2,3)+ as an orbit with similar
properties is obtained.

6. The relation to group extensions.
6.0. The present section does not depend upon the material of §§3,4 or 5. For the

remainder of §6 the requirement p g (Z2)v will be dropped, unless otherwise noted,
to allow a general "imprimitivity structure", (G, H, S), with n sets of order 2, as in
Remark 2 of §2.1. The imprimitivity sequence still has the form 0-»(Z2)"-»G->
G0 -» 1 and G is given by an imprimitive permutation representation as in the
Imprimitivity Theorem of §1. While the case 13 = 0, where the action of G on S \ G
is effective, still allows such a representation, v > 0 will be supposed.

Let H be the subgroup fixing the elements of the set {±k), and let kth denote the
projection of (Z2)" on the klh coordinate. Then since (S : H) = 2, and the action of
G on S\G has a nontrivial kernel, there exists e0 G (Z2)u such that A^eg) * 0,
else (Z2)" c H, contradicting the requirment that G be effective on H\G. Then e0
may be used to arrange A:th(s(a)) = 0, for all a g G0, so H may still be given as
H = {(es(o), o) g G/o G H0(k), kth(e) = 0), for H0 = H0(k) the subgroup of G0
fixing the set {±k}.

Fix s g Z1(G0,(Z2)"/(Z2)t') and consider, in the case p g (Z2)v, the following:

Proposition. Let S = Projs,!ts(#o), for Proj^ defined by s; and, for t g
Z\G0,(Z2)n), let H, = {(es(o), o) G S/k^(e) = k^(t(o))). Then representatives for
the nontrivial p-structures relative to s are among the p-structures (G, H„ S).

Proof. Consider the factor /'(Z1) in the proposition following the Classification
Theorem in §2.3. Observe that Ht is the inverse image of the stabilizer of a letter in
the image of G under the automorphism (e, a) -» (et(o), a) of (Z2)" XSG0 c S2n
defined by t. Then (H„ S) represents (under p-equivalence) the p-structure defined
bysy'(r).
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6.1. To account for the structures (//,, S) on G, the essential features are
abstracted by the following:

Definitions. Let (G, H, S) define an imprimitivity structure with n sets of order
2, so that G acts effectively on H\G, and suppose the action of G on S \ G has
nonzero kernel. Then (G, H, S) is said to have H0 = Proj^^H) as its initial
structural subgroup. Let N be a subgroup of H0, normal in H0. Then a pair (HN, S),
where HN is a subgroup of S is said to define an imprimitivity structure with
structural subgroup N provided that HN is without normal subgroups (aside from (1))
of G, that the index (S: HN) = 2, and that TV is the largest among the normal
subgroups KofHQ for which Proj^'ts( K) nH = Proj^iO n HN. The pair (HN, S)
is said to define a nontrivial structure, relative to the initial structure (H, S),
provided that (HN, S) defines an imprimitivity structure inequivalent to that defined
by the initial structure (H, S). In the case S = H X (p), where the imprimitivity
structures are referred to as p-structures, the notation (HN, p) is used.

Proposition. The subgroup HN of S is uniquely determined by the normal subgroup
NaH0.

Proof. Let (Z2)u~' denote the subgroup (Z2y~x = (Z2)v n H = ker(/tth|(Z2)u).
Since 1 g N, the subgroup (Z2)""' is common to both H and HN. Write H =
UoeW (Z2)u"1(s(a), a), recalling that s(o) has been chosen so that Ath(s(a)) = 0
for all a g G0. Then observe that

HN=   U (Z2y-l{er^s(o),o),
aeH0

where e0 has been fixed with A:th(e0) * 0, and sgnA,(a) = Xn(°) 1S tne characteristic
function of N = H0 - N. To check, note that the above collection must be contained
in HN, but then equality holds by the requirement (S: HN) = 2 in the definition of
(HN, S).

Examples. For the case G = Z2 X S4, H = H0 = S3, with n = 4, (Z2)v = <p>,
and e0 = p, observe that the subgroup N = 1 is not allowed as a structural
subgroup. Let a g H0 be a 3-cycle. Then (p, a) e HN gives (p, a)3 = (p,(l)) g Hn,
contradicting (S: HN) = 2.

For the general subgroup Ht, observe that Ht = HN is the subgroup of 5
corresponding to the normal subgroup ./V = ker(&Jh), for kf1: H0 -» Z2 defined by
kf(o) = k^(t(o)).

6.2. With the above preliminaries established, the nature of the p-structures
classified by the Classification Theorem may be clarified by the following:

Structures Theorem. Let (G, H, S) define an imprimitivity structure, and sup-
pose the imprimitivity sequence 0 -> (Z2)'' -> G -» G0 -» 1 has v > 0. Then the
collection of structural subgroups N depends only on (G0, (Z2)v). There is a collection G
of structural subgroups with the following properties:

(1) the structures (HN, S), with N G Q, are equivalent to (H, S), independent of G;
(2) (HN, S) is a nontrivial split structure for all N £ Q, when G is split; and
(3) for G to have a smaller number of nontrivial structures than the split group,

Aut(G) must contain elements as specified precisely below.
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Further, the collection Q is computable from H\GQ,(Z2)V), with the structural
subgroups corresponding to nonzero classes requiring identifications by Outer(G), the
group of outer automorphisms.

Before beginning the proof, some technical results describing the effect of Aut(G)
on the structures (HN, S), will be given. In order that a g Aut(G) give an equiva-
lence of the initial structure (H, S) with some structure (HN, S), a must satisify
a(S) = S and a(H) = HN, by definition. Then a((Z2)v) = (Z2)v so a defines an
automorphism av: (Z2)° -» (Z2)v by (aK(e),(l)) = a(e,(l)) and induces an auto-
morphism a: G0 ̂ > G0. The automorphism a is then determined by these two maps
and a third map as: G0 -» (Z2)", with as(o) defined by a(s(o), o) =
(as(o)s(a(o)), a(o)). Write a G Aut(G), under the assumption a(S) = S, as a =
(av, as, a).

Next, S and H have ProjG (S) = ProjG (H) = H0, since o > 0, so a(H0) = H0.
Recall that the subgroup (Z2)u_1 = (Z2°)° n H = ker(/tth|(Z2)lJ), for H = H(k),
H0 = H0(k), is common to all of the subgroups HN so av is restricted by
av((Z2)v~]) = (Z2)°^'. Apply the requirement that a be multiplicative to the
product (e's(o), a)(e,(l)) = (e's(o)o * e,o) to obtain the compatibility condition
av(o * e) = a(o)*aD(e), for all e g (Z2y, o g G0.

The remaining condition for a = (av, as, a) to define an element of Aut(G)
taking (H, S) to some (HN, S) is given by the following:

Lemma 1. Suppose av g A\x\((Z2)v,(Z2y~x), a g Aut(G0, H0), and the above
compatibility condition relating av and a holds. Then a = (av, as, a) defines an
automorphism if and only if the map as: G0 -* (Z2)v satisfies the condition

(*) (Ss(as)){o,ox) = av((8s){o,ox))(8ss){a(o),a(ox)},

where 8 is the coboundary map

(8s)(o,ox) = s(o)o*s(ox)s(oox),

and 8S is the coboundary

(6a-0(T,T,) = r(T)a(T)*r(T,)?(TT,).

Proof. The condition holds if and only if the map

a(es(o),o) = (av(e)as(o)s(a(o)),a(o))

is multiplicative, noting that the cochain map s has (8s)(o, ox) g (Z2)v, since
(yos)GZ'(G0,(Z2)V(Z2r).

The above condition is also sufficient to insure that a(S) = S and a(H) = HN, so
any such triple will produce a structural subgroup N, determining which HN arise as
a(H) = HN. Recall that v > 0 allows normalizing the kth coordinate of s(o) to be 0,
for all a e G0, k depending upon H = H(k). Then observe that jV may be obtained
by the following:

Lemma 2. The structural subgroup N determining a(H) = HN is given as N =
ker(klh(as(a-l(o)))\Ho).
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Proof. Recall H = UoeW (Z2)K"'(s(a), a), and then observe that for a =
(av,as,a) as above,

a(H)=   U  (Z2yl(as(o)s(a(o)),a(o)).

Then

k*(as(o)s(a(o))) = k*(a5(o))

since klh(s(o)) = 0 for all a g G0. But the map sgnA,(a) used to describe HN gives
the lift of a, soa = a"'(a,) gives klh(as(a~ '(a,))) as sgnA,(a,).

A complete account of the effect of Aut(G) on the structures (HN, S) has been
reduced to understanding the maps as: GQ -» (Z2)v allowed by Aut(G). If the
right-hand side, av(8s)8as, of equation (*) of Lemma 1 is nonzero, then the map a5
strictly depends on G, since the split extension with trivial structure s(o) = 0 for all
a g G0 forces the right-hand side to be zero. Then the existence of such an
automorphism of G supplies the promised precise specification in (3), as may be
observed in the analysis of the case 8s(as) = 0 in the following:

Proof of the Structures Theorem. For the collection of structural subgroups,
observe that HN a subgroup of index two in S gives that HN is without normal
subgroups of G. Only (Z2)k c (Z2)v~] is possible, but if e g (Z2)k has a nonzero
entry, the transitive G0-action will conjugate that entry to the kth component, taking
e outside HN. To insure that HN = Uo6//o(Z2)u"'(e0gn"<a)s(a), a) is closed under
products, consider a relation oxo2 ■ ■ ■ or = 1 among elements of HQ. Lifting the
relation to HN gives

(^^'M",)- a,)(e0gn»(O2)s(a2), a2) • • • (e0^>s(ar), or)

= (4«n^('")s(a1)a]* erf^a,* s(o2)

■••(a, •••ar_,)*e0^>(a, •••a^,)*s(ar),(l)).

Then closure requires the first entry to be in (Z2)"_1 = ker(/cth|(Z ,„). But /cth(s(a))
= 0 and sgn^ is only required on H0 = H0(k), so that

kth(-) = Arth(EJf1"<<'')a,*Eogn"<02)--- (a, • ■ ■ ar_,)* efi*"™)

is independent of s. But lifting generators and relations for H0 to HN and taking
account of the subgroup (Z2)v~x, with action determined by H0, suffices to
determine HN, regardless of s.

For t0 g Z1(G0,(Z2)C) the map a = (0, t0,1) is always an automorphism, as may
be seen, in particular, from Lemma 1. But for t0 g B\Gq,(Z2)v), A^/qI^ ) = 0
since H0 fixes kth components, so klii([t0]) is well defined for [r0] G H\G0,(Z2)V).
Then H\G0,(Z2)V) gives a collection of structural subgroups, independent of G.
But a(H) = HN for N * H0 is never achieved by a g Inn(G), since HN is not one of
the n conjugates //(/), j = \,...,n, of H = H(k). Therefore Hl(G0,(Z2)v) * 0,
t0 g Z\G0,(Z2)V) nonprinciple with ker(/cth(?0|H )) = N =*= H0 always corresponds
to an equivalence requiring Outer(G).

Only the assertions on G = UoeG (Z2)u(0, a), by an argument depending only
upon the right-hand side of the equation of Lemma 1 being zero for all a g Aut(G),
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remains. But under this assumption, as g Zi(G0,(Z2)t>), the group of cocyles with
action twisted by a, i.e., o5* (e) = a(o)* e. Finally, observe that t0(o) = as(a~\o)),
for as g Z\, gives t0 G Z1, untwisted, so that kth(as(a-](o))) = klh(t0(o)) adds no
new structural subgroups.

Remarks. In the low degree examples considered in the present investigation,
nontrivial structures have been obtained only when the imprimitivity sequence of G
is split. Observe that a nontrivial split imprimitivity structure, p £ (Z2)v, occurs for
n = 3 and accounts for the fact that G0 = S4 has two distinct permutation structures
of degree 6. Recall that the nontrivial structure on Gal(Kc/Q) in §2.2 uses one of
these.

The nontrivial structures obtained are only asserted to be distinct from the initial
structure and might therefore allow further equivalences among themselves. A
generalization of Miller's examples is the case G = Z2 X PSL(2, p), the direct
product G0 = PSL(2, p) being allowed to range over all transitive permutation
structures. For (HN, p) with HN = Ht, t g Z'(G0,(Z2)deg(C°)), a calculation estab-
lishes that the trivial cochain structure admits / such nontrivial structures for / = 0,1
or 3, with / = 3 implying H0 = D2 , dihedral of order 4a,, a, > 1. Since p is
characteristic, the p-structures (Z2 X PSL(2, p), (0) X D2 , p) are in one-to-one
correspondence with the permutation structures (Z2 X PSL(2, p), (0) X D2q). The
permutation structures do not determine the p-structures for each p only when p is
noncharacteristic. The case where p is the unique element of order 2 strongly
restricts the structure of G, as in [13].
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