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ABSTRACT 

In this research we have studied the structure of +He 

ions in He vapor at temperatures between l.32K - 4.22K and at 

saturation ratios between 0.05 ~ 1. Classical macroscopic 

thermo~namics predicts formation of a liquid drop around the 

ion, and the drop radius is gtven by the Thomson equation. 

In the above temperature and pressure ranges the radius of the 

drop varies between 6A - 9A. An experimental verification of 

the Thomson equatton shows the validity of the macroscopic 

thermodynamics when it is applied to microscopic systems and 

also gives information about the drop structure. To show the 

existence of the drops and to determfne their sizes experimen· 

tally, we have measured the mobilities of +He ions in He vapor 

in the above temperature and pressure ranges. The mobility is 

related to the radius of the drop through the momentum transfer 

cross section. Hence the drop size can be determined from the 

mobility data if the interaction potential and the nature of 

coll is ions between the charged drop and the neutral vapor atom 

is known. We have assumed that the interaction potential is 

the sum of the polarization potential between the central ion 

and the neutral vapor atom, and the van der Waals interactions 



between the vapor atom and each of the liquid atoms in the 

drop'. With the above potential the "experimental" drop 

radius is calculated in the elastic and "inelastic" models. 

Quantum corrections are made for the elastic model. The 

Thomson equation predi"ctions were compared with the "expe-

rimental 11 radii and a good agreement was found. This compa-

rison also showed the existence of a solid core within the 

' liquid drop. The . classical macroscopic thermodynamics was 

applied successfully to calculate the solid core radius. 

Finally, the temperature dependencies of the "experimental" 

radii showed slight variations from the predictions of the 

Thomson equation at T<2.3K. The deviations reach their 

maximum at ~l.9K. The existence of superfluid transition 

in the liquid helium layer of the ion-solid-liquid complex 

is suggested as an explanation of the temperature dependen-

cies of the "experimental" radii. The proposed transition 

temperature is ~l.9K and it is broadened up to ~2.3K. The 

transition starts when the liquid thickness becomes more 

than a monolayer. 
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1. INTRODUCTION 

Classical macroscopic thermodynamics is often used to 

explain both the homogeneous and the inhomogeneous nucleation 
( 1-3) 

of microscopic clusters in gases It has also been applied 
+ (4,5) 

to understand the structure of He ions in liquid helium 

In both cases the classical theory of nucleation is based on 

the f homson equation which was derived about a hundred years 
(6) 

ago by J.J.Thomson by using macroscopic thermodynamics In 

the case of the inhomogeneous nucleation of polarizable vapor 

atoms around a positive ion, this equation gives a relationship 

between the temperature and the pressure of the vapor, and the 

radius of the droplet formed around the ion in thermal equilib-
(2) 

rium with the vapor 
a. e2 2 (J 1 

k T 1 ~ (P/P ) y ( 1 ) 
sat n

1 
R1 2 Rf 

where R
1 

is the liquid drop radius, cr
1
v is the surface tension 

of the liquid-vapor interface, n
1 

is the density of the bulk 

liquid, a. is the atomic polarizability and P t is the saturated 
sa 

vapor pressure at temperature T. In the derivation one assumes 

an ideal vapor and an incompressible liquid with nearly unity 

dielectric constant and a sharp liquid-vapor interface with 

zero thickness. 



There are several reasons to check the validity of the 

Thomson equation. The main criticism is directed to its applica-

tion to microscopic systems. For the systems to which the Thomson 

equation is applied the drop sizes are of the order of angstroms. 

The application of macroscopic thermodynamics to such small 

systems is questionable. Also, perhaps the drop structure is not 

as simple as it is assumed to be in the Thomson equation. First 

of all the central ion differs from the neutral liquid atoms 

both in size and in structure. Secondly, a solid core might 
\ 

exist in the drop, as a result of the pressure increase induced 

by the attractive polarization field of the ion. Finally, in 

the derivation of the Thomson equation the liquid-vapor interface 

is assumed to be sharp with zero thickness. This means the 

curvature dependence of the surface tension is completely 

ignored. The details of the surface structure might be impor­

tant especially for microscopic drops where the ratio of the 

surface area to the volume of the drop becomes large. The Thomson 

equation does not predict any effect on the drop size resulting 

from the complex structure of the drop. The radius depends 

only on the surface tension and the density of the assumed bulk 

liquid just inside the surface of the drop. A study of the predic-

tions of this equation might give some information about the 

structure of the drop, ion-atom interactions etc. Furthermore 

2. 



such microscopic droplets will present a valuable opportunity 

to study the effect of finite size on the thermodynamical proper­

ties of the fluids. 

The predictions of the Thomson equation have been tested 

experimentally for various systems. In these studies different 

experimental methods have been applied. The measurements which 

are done with a mass spectrometer are used to obtain the enthal-

pies and the entropies of successive clustering reactions for 
\ (7,8) 

water and ammonia about various positively charged ions 

The results are compared with the theoretical ones which are 

obtained by utilizing the Thomson equation and its appropriate 

derivatives. In these systems the cluster sizes are relatively 

small with less than nine molecules in them. The level of dis-

agreement in the above comparison varies with the kind of ion 

used in the same vapor, and also with the vapor chosen. In 

general the Thomson equation is found to be inadequate to 

describe the ion induced nucleation of such microscopic clusters. 

Also in cloud chambers the supersaturations required for the 

homogeneous nucleation of various substances are measured. Because 

of the difficulty of the technique early experiments gave diverse 

results. The results of more recent diffusion cloud chamber 

experiments have been compared with the predictions of the clas-

sical nucleation theory which is based on the Thomson equation. 

3. 



Generally good agreement has been obtained( 9, lO). 

Similar thermodynamical arguments which are used in the 

derivation of the Thomson equation have been applied by Atkins 

to determine the size of a solid core formed around a positive 

I · · . I . . d h 1 • ( 
11 

) A k . d 1 h d b d he 1um ion 1n 1qu1 e 1um . t ins mo e a een teste 

by measuring the mobilities and the viscosities of the +He ions 

in the liquid helium, and comparing the solid core radius 

calcul~ted from this data with the predictions of the model. 

A good agreement was found by using the solid-liquid surface 

tension as an adjustable parameter( 5). 

+ In the work described below we have chosen to study He 

ions in He vapor mainly because the small surface tension of 

liquid helium results in relatively large drops. In the tempe-

rature range, 1.32K - 4 . 22K, of this experiment, and for satu-

ration ratios between ~0.05 - ~1 . 00, the number of atoms are 

estimated to vary between ~ 15 - ~150. Hence we should have a 

reasonable chance to see droplet growth and to compare the 

results with the predict1ons of the Thomson equation over a 

large range of droplet sizes. The analogy with the Atkins model 

and its experimental verification also played a role in this 

choice. In addition, the +He ion - He vapor system has other 

advantages: A chemical bond between the ion and th~ liquid atoms 

can cause deviations from the Thomson equation predictions(?). 

4. 



Since helium is an inert gas this possibility is minimized in 

our system. Also, because of its unusual phase diagram the 

helium drop is expected to remain liquid even at absolute 4ero. 

Furthermore, bulk liquid helium makes a transition from super­

fluid to normal fluid as the temperature increases above 2.17K. 

It is hard to believe that a superfluid transition will occur 

in such a microscopic liquid helium drop, and the Thomson equation 

predicts no effect of the transition on the drop radius even if 

it does~ Nonetheless, a liquid helium drop has the potential 

to give us a chance to understand if superfluidity exists in 

such a microscopic system. As a final practical point, the 

temperature range of this experiment, l.32K - 4.22K, is a defi­

nite advantage in assuring the cleanliness of the experimental 

cell. For experiments operating at higher temperatures, unde­

sired vapors and ions in the system are difficult to elemina-

te and their existence can create problems in analyzing the data. 

While it does not provide the most direct information 

about the structure of the ion, we have nonetheless chosen to 

study experimentally the ion mobility. We have done so for two 

principal reasons: First, because the technique is simple and 

direct, and capable of quite high accuracy, and second, because 

the ion remains in thermal equilibrium with the vapor throughout 

the measurement, as assumed in the Thomson model. 

5. 



The zero field mobility, µ 
' 

of an ion in a gas is defined as; 

lim 
vd 

( 2) µ = 

Ed+ 0 Ed 

where Vd is the drift velocity of the ion in an electric field 

E . The mobility is directly related to the momentum transfer 
d 

between the ion complex and the vapor atoms. Hence experimental 

momentum transfer cross sections can be calculated directly from 

the measured mobilities. On the other hand, if the interaction 

potentia~ between the charged drop and the neutral vapor atom 

is known as a function of the drop radius, and if a particular 

scattering model is adopted, then the theoretical momentum transfer 

cross sections can be calculated for a given radius. The radius 

for which the theoretical cross section is equal to the experimen-

tal cross section obtained directly from the mobility data is 

taken to be the 11 experimental 11 radius of the drop. It should 

be emphasized that the 11 experimental 11 drop radius obtained in 

this way depends on the scattering model adopted. It gives the 

actual size of the drop only if the assumed scattering model 

containes all the features of the collisions between the drop 

and the neutral atom. Not being able to measure the drop size 

directly is a disadvantage of the experimental method that we 

have chosen. But other than their being simple, the mobility 

experiments have another advantage of maintaining the thermal 

equilibrium between the liquid drop and the surrounding vapor 

6. 



during the measurement. For example in a mass spectroscopy 

experiment the correction has to be made to compensate the 

effect of evaporation of the liquid atoms from the surface of the 

drop when the drops are placed in vacuum. 
(11-14) 

In addition to our previous reports , there are 

+ 
two more measurements of the mobilities of -He ions in He vapor 

which indicate droplet formation. The first is the a.c. mobility 
( 15) 

measurement at saturated vapor pressure at 4.2K This 

experime~t indicated that the effective mass of a positive ion 

in He vapor was about 75 helium masses but the result could 

not be reproduced. The second is the d.c. mobility measurements 
( 16) 

by Henson at temperatures 2.0K - 5.2K and at fairly high 

pressures. As it will be discussed later, if there is no drop 

formation and if the vapor is assumed to be ideal, the mobility, 

µ , should be inversely proportional to the pressure, p. At a 

constant temperature, Henson interpreted the deviation of lnµ 

versus lnp graph of his data from a straight line at high pressu-

res as an indication of the droplet growth. However, no attempt 

was made to obtain quantitative information about the drop sizes. 

In our preliminary publications we have reported some samples 
(11-14) 

of mobilities at temperatures 1 .32K - 4.22K The existence 

of the drops were shown qualitatively even at low densities. 

The development of our quantitative analysis can be found in our 

previous publications. The final form of this analysis will be 

discussed in section IV of this report. The "experimental" 

7. 



radii obtained in each model were compared with the predictions 

of the Thomson equation. Good agreement was found over the entire 

pressure and temperature range of the experiment. 

In this report we extend our calculations of 11 experimental 11 

radii to include quantum effects. Together with the previous 

results, these calculations provide us with a deeper insight 

into the structure of the liquid helium drop. Here, we would 

like to report the details of the experiment and the results 

that we ~ave obtained. In the second section the details of the 

experimental set up and the procedure followed for measurement 

and the analysis of the raw data will be given. In section III 

a complete list of the mobilities that we have measured will be 

given. Their dependence on temperature and pressure will be 

displayed. The details of the calculations of the theoretical 

and the experimental radii will be discussed. The last section 

is reserved for the discussion of the results that we have 

obtained from the mobility data and from the comparison of the 

theoretical and the 11 experimental 11 radii. 

8. 



II. EXPERIMENT 

+ 
The mobilities of He ions are measured by a pulsed time-

of-flight method. A schematic of the apparatus is shown in 

Fig. l. Ionization is produced by a tritium a-source, S. An 

electric field causes the positive ions to move toward the gate 

grid Gl. The same electric field applies an opposite force on 

the primary8 particles and prevents them from entering the gate 

region Gl-G2. The drops are formed around the ion in the source 

' region, A. A small potential barrier between G2 and Gl which 

keeps the positive ions in the source region is overcome by an 

application of a positive square pulse on the grid Gl, and the 

ions enter and cross the uniform field drift region B. The 

width of the gate pulse is long enough to create an equilibrium 

current through the gate Gl-G2, i.e., the current created in 

region B is independent of the width of the Gl pulse. The ions 

induce a current on the collector, C, as they move from grid 

G3 to the collector. The electric field in this region is the 

same as the electric field in the drift region. The time of 

flight of ions between G2 and C is determined by the time between 

the cut off of the Gl pulse and the trailing edge of the collector 

pulse. The mobility of the ions is then calculated from Eq. (2). 

The grid assembly is placed in a copper can which is filled with 

helium gas, and surrounded by a liquid helium bath. 

9. 
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The tritium-8 source is a tritiated titanium foil with 

activity 600 m Ci, maximum energy 18 KeV, active area l.2 ~ x 2 cm
2

. 

The 5.23 cm long source region is long compared to the track 

length so that ionization is produced only in the source region. 

To obtain a constant electric field, Ed' the drift space is divi­

ded by 9 equally spaced electrodes with 3 cm inner diameter. 

lOK n precision resistors are used between the electrodes as 

potenti\l dividers. The drift field, Ed' was in the range 8-20 

v/cm and was measured to within 0.1 % accuracy. The diameter of 

the guarded collector is 2 cm, hence th~ distortion of the electric 

field near the collector is minimized and only the central portion 

of the ion beam, where the electric field is least distorted, 

is collected . . The wi rie spacing on the grids Gl, G2 and G3 is 

0.05 cm with 85% open area. Since the electric field in the 

collector region is the same as Ed, the field penetration due 

to the grid spacing on G3 is zero. All the electrodes, grids, 

and the collector are connected by lexan spacers. The total 

distance from G2 to C for which the time of flight is measured 

is 10.50 cm at helium temperatures (G2-G3 = 10.00 cm, G3-C = 0.50 

cm). This length is calculated from room temperature measurements 

of the same length and the known expansion coefficient of the 

spacers. To prevent oxidation, the stainless steel electrodes, 

grids, collector and source support are gold plated. To assure 

-4 
cleanliness the system is evacuated up to ~1 x 10 torr before 

l l. 



each run. A small amount of pure helium exchange gas is admitted 

into the can through a liquid nitrogen cooled charcoal trap at 

the beginning of the run. Otherwise during the experiment only 

the boil off from liquid helium in the bath is used to increase 

the can pressure. 

A. Drift time measurements 

The lo- 10 - lo- 11 A/cm2 current pulses, received by the 

collector are amplified by a current amplifier in which an Analog 

Device 41J operational amplifier is used with 109 n feedback 

resistor, Re. The signal to noise ratio (~7) of the current 

amplifier is low enough so that the amplifier did not create any 

problem in finding a recognizable pulse, and after the signal 

averaging, the uncertainity due to amplifier noise was always 

negligible compared to the errors due to diffusion, space charge 

etc. The 0.36 msec time constant, <, of the amplifier is uncer­

tain by about± 0.10 msec. To increase the accuracy a delayed 

trigger was used for the signal averager, and only the trailing 

edge of the amplifier output was averaged. The digital signal 

averager was operated so that its resolution was not a limiting 

factor. Its output was stored in a computer to be analyzed 

later. The drift time of the ions was found by the following 

procedure: The output voltage, Vvt), is related to the input 

current, i(t), for an idealized current amplifier by i(t) = 

l/Rf ( V(t) + < dV/dt ) where • is the feedback time constant. 

12. 



we eliminate the effect of the time constant by calculating 

i(t) directly from the data on a point by point basis, using 

the experimental value of T. Because of the dV/dt term in this 

equation the new pulses appear to be noisier. The deconvoluted 

pulses with four different amplitudes for the same drift field 

are shown in Fig. 2. The rounding of the edges is due to diffu­

sion and the wire spacing on the grid G2 only since there is 

no field penetration on G3 as mentioned before. The times t 1 

and t
2 

a}e the intercepts of the tangent line with the lines 

defining the amplitude of the pulse. Ideally as the trailing 

edge of the pulse moves across the collector region the current 

goes linearly to zero. Hence the response defined by lines 

A, B and T is probably very close to the ideal response. Since 

t
2 

is more accurately defined, it is preferred over t 1 and added 

to the delay time to find the total time of flight Td. As men­

tioned before the corresponding drift length, L, is 10.50 cm from 

the grid G2 to the collector. t 2 - t
1 

is the time passed for 

the ions at the trailing end of a pulse to travel through 0.5 cm 

collector region. Therefore for each pulse (t
2 

- t
1

) I Td must 

be ~o.048. This is consistent with our observations. 

13. 
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Four different pulse amplitudes were chosen for each drift 

field Ed to determine the effect of space charge on the transit 

time. In Fig. 2 the different values of the intercept , t
2 

for each pulse amplitude show the magn i tude of this effect. We 

compensate for the space charge effect by the following argument: 

Each ion in the drift region experiences an additional electric 

field resulting from the other charges around it. This electric 

field is assumed to be proportional to the charge density 

n = j / ~eµEd), where j is the current in equilibrium andµ is 

the mobility . Hence the total electric field experienced by an 

ion at the trailing edge of the pulse is Ed-Kn, where K is the 

proportionality constant. For Kn <<Ed, one can find: 

EdTd = L/µ { l + K/eµ(j/E~) + 0 [K/eµ(j/E~)]2 } ( j) 

If the above assumption and approximation are valid then a graph 

of EdTd vs. j /E~ is a straight line with intercept L/µ. In Fig. 

3a, 3b, 3c we show three typical results that we obtained from 

our data. The first one corresponds to the small charge densities 

where Eq. 2 is valid. Fig. 3b shows the effect of higher order 

terms for high charge densities. Whenever there is an ambiguity 

due to lack of data at small charge densities, as shown in Fig. 3c, 

we took the value of EdTd at the mid-point of the intercept l and 

and the intercept 2 to calculate the mobility. For these cases we 

assign larger uncertainity to include both of the intercepts. 

15. 



• .... l 
I 

-1 
l 

....; 
_J 

l 

.. .J 
.. j 
:r --~ j 
! . ,1 
~ ... :: 
~ j 

, . 

-~ "/ 
~ / · ... 

I • 

• .. 
I~ 

l 

tnt= ·· 

i 
nn!i 
111::-: 

ttie :· ~ 
l 

,...,:1 

... ==i 
n·:·3 

"\)' 1111 !": 1 

:ii .. ~1 
~ i 

{ "'°'j 
- l't'X: -

~ ~ 
.: hlOC~ 

" 1:.;.; 

l 
~=~ 

, ... :-i 
'"'° : ~ 
,,"ft • 

• I . .. ./ . 
}~ 

, 

:1 
-l 
J 
~ -l l 

~ . 
' .., -} ~ · 

-'}:' 

:1 

/ / 

"// ' 

•% 

l 
-- ~ , . 
., .. · ·---~------~ 

· · - 1 . • 1 . . ... l • • _, . . .... 

IN,; C• .. rt- .,.,,) 
1 .... :: 

·~- ~ ...... ---~----~---~----- ~ 
: . IOt:'~ · ·-" I . IC : ~ l . alntt I . ~ 

, ,~ """"'....,. l 'ffT) 

_JL:_,_-:-::;;;--~~;:;;; ··- 1.oatn 1. srx 1.:.1,. 1.1Ku: '·°""" 
11.: (~T ... n ""T) 

··-
Fig. 3A Fig. 3B 

Three typical results of the space charge effect. 
terms are explained in the text. 

Fig. 3C 

The 

0 ...... 
::s rt 
--' 

'-< Vl 
::::I'" 

QJ 0 
O" c: 
0 

__. 
c: 0.. 
rt 

O" 
2 (!) 

--' 

~ ::s 
0 

0 rt 
-ti (!) 

0.. 
rt 
::::I'" rt 
(!) ::::I'" 

QJ 
3 rt 
(!) 

QJ rt 
Vl ::::I'" 
c: (!) 

-s 
(!) 3 
0.. QJ 

l.O 
rt ::s 
-s -'· 

QJ rt 
::s c: 
Vl 0.. 
-'• (!) 

c+ 
0 

rt -ti 
-'• 

3 rt 
(!) ::::I'" 
Vl (!) 

Vl 
(!) 

(') 

0 
-s 
-s 
(!) 

(') 

rt 
-'· 
0 
::s 
Vl 

QJ 
-s 
(!) 

O'l 



B. Pressure and temperature measurements 

Since the mobility is a sensitive function of vapor density 

we have taken particular care to insure the accuracy of our pressure 

and temperature measurements. Both the can and the bath pressures 

are measured by 0-1000 torr MKS Baratron Model 170 capacitance mano-

meter. The connection of the gauge to the experimental chamber is 

large enough to make the thermomolecular effects negligible. The 

linearity of the gauge is checked against an oil manometer within 

the 1% accuracy of reading the manometer for pressure 5-40 torr. 
' 

The pressure calibration of the gauge is made by measuring the 

pressure at A-point transition and comparing the value that the 

gauge reads to the standard value of 37.76 torr. The two are found 

to be the same within ±o.1 % accuracy of the calibration. In fact 

the capacitance manometer measures differential pressure, and in 

the present experiment the reference pressure (of about 20 mtorr) 

is provided by a mechanical pump and measured by a thermocouple 

-'-

to an accuracy of ~10 mtorr. In order to determine the pressure 

variation due to small leaks in the system, bath temperature drifts, 

drift· of the pressure gauge, etc, each can and bath pressure was 

measured both before and after the transit time measurements at 

this particular temperature and pressure. Fot the highest and the 

lowest can pressures the total uncertainities are 0.3% and 0.8% 

respectively. 
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The temperature of the system is determined from the bath 

vapor pressure. The coarse temperature regulation is obtained 

by controlling the pumping speed on the bath. For fine temperature 

regulation an uncalibrated Ge resistor, in an a.c. bridge circuit, 

is epoxied on top of the can, and used with a ~ 100 n, ~4xlo- 2 W 

heater in a feedback circuit. Below the superfluid transition 

temperature, the heater resistor is placed on top of the can. 

Above this temperature, a chroma wire heater is wrapped around the 

can to maintain constant temperature through the experimental cell. 

' Also a bellows manostat is used to control the bath pressure at 

higher temperatures. Above 3K only a needle valve was more prac-

tical to keep the bath pressure constant to within 1% accuracy. In 

this way we could keep the uncertainities in the temperature 

within 0.08% and 0.24% below and above the A-point temperature 

respectively. 

C. Error analysis 

Most of the uncertainty in the mobility is due to the time 

of flight measurements. It originates basically from two sources: 

0.1 msec uncertainty in the amplifier time constant, and 0.05% - 1% 

ambiguity in determining the effect of space charge as explained 

previously. All the other errors in 'd' created by other sources, 

are negligible compared to the above two. The uncertainty in the 

drift field is 0.1 %. The random error in the drift length, L, is 

assumed to be zero. The total uncertainty in almost all mobilities 

varies between 0.2% to 1.6%. A few of our mobilities have errors 
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up to 3.8% however. 

Uncertainties in the pressure and the temperature are dis-

cussed in the previous section. Briefly, they are 0.3% - 0.8% 

and 0.8% - 0.24% in the pressure and in the temperature respec-

tively. 

In the above error analysis the systematic errors in the drift 

length arising from the uneven drift field, grid spacing etc. are 

not considered. These uncertainties were discussed in some detail 
(17) 

by Schwa~z who had measured the mobilities of +He ions in 

liquid helium. To compare our method of measurement and analysis 

with his and particularly to estimate the possible systematic 

errors in the drift length, we filled the can with liquid He and 

measured the +He ion mobility at T=l .289K and T=l .257K. The two 

results at both of the temperatures are consistent with each 

other within 2% accuracy of Schwarz. Therefore no calibration of 

effective drift length has been done. 

The temperature and the pressure range of this experiment 
(16) 

overlaps with those of Henson at temperatures between 2.0K -

4.2K and at high densities. Henson assigned 3% uncertainty in 

his mobilities. We compared our results with his in this overlap­

ping region of the temperature and the pressure. Our mobilities 

are slightly higher than his at low temperatures. This disagreement 

decreases from 15% to 4% as the temperature increases from 2.0K to 

3.0K. At higher temperatures the two results are consistent with 

each other within the mutual error bars. 
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III. EXPERIMENTAL RESULTS 

The temperature range of this experiment is l.32K - 4.22K. 

For each temperature, the mobilities are measured for different 

vapor pressures. The lowest can pressure was about 1 torr. 

This limit was chosen to keep the uncertainty in pressure within 

~1 % . Also we have observed the effect of ionization in the 

drift region at low vapor densities. The highest can pressure 

corresponds to a density ~7 x lo19cm-3. For higher densities 

' 
the distortion of the current pulse associated with long tran-

sit time made it impossible to make accurate measurements. At 

these high densities a shorter drift space is necessary. The 

experimental values of the mobility for each temperature and 

pressure chosen are tabulated in Table 1. 

Table 1. 

The mobilities of the ions in He vapor. 

T=l.3239K , p t=l.391 torr T=l.4278K, p t=2.495 torr 
sa sa 

Q(torr} µ(cm 2/sec-volt) Q(torr} µ(cm2/sec-volt} 

1. 385 21.08 2.418 12. 72 

1. 034 30.09 2 .124 14. 92 

0.890 35.92 1.846 17.69 

0.720 45 .81 1. 520 22.58 
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21. 

T=l.4287K, p t=2.495 torr T=l .7615K , Psat=l0.847 torr 
( . ) sa cont1 nue ... 

p(torr) µ(cm 2/sec-volt) p(torr) µ(cm 2/sec-volt) 

1. 222 28.86 1. 763 28.76 

1. 218 29. 01 3.475 12.92 

0.863 43 .41 5.100 8.18 

1. 654 20. l 0 6.829 5.74 

8.394 4.47 
T=l . 5434K ' p t=4.421 torr 

' 
sa 10 .427 3.39 

p(torr) µ ( cm
2 
/sec-volt) 9.470 3 .81 

2.380 15. 58 5.850 6.93 

3.252 10.63 2.945 15.63 

4.179 7.78 5.459 7.58 

0.804 53.76 
T=l.8735K , Psat=16.030 torr 

l. 512 26.33 

p(torr} µ(cm 2/sec-volt} 
T=l.6555K, psat =7 .181 torr 

2.050 25.63 

p(torr~ µ(cm2/sec-volt) 6.080 7.50 

7.015 4.78 10.800 3.76 

4.884 7.57 13.500 2.87 

2.809 14.60 9.023 4.69 

0.882 53.78 4.007 12 . 11 



22. 

T=2.0009K , p t=23.83 torr 
sa 

T=2.2995K , p t=50.960 torr 
sa 

p(torr) µ(cm 2/sec-volt) p(torr) µ(cm
2
/sec-volt) 

14.270 3. 17 15. 851 3.62 

10.170 4.68 20. 187 2.73 

6.190 8.38 13.527 4.31 

2.020 28.72 2.668 25.50 

18.050 2.37 1. 057 67.30 

22.240 \ 1.95 18.220 3.06 

20.665 1.95 15.020 3.97 

5.672 9.23 9.960 6.08 

7.357 6.81 5 .130 12 .65 

16.170 2.66 
T=2.5250K , p t=81.375 torr 

sa 

T=2. l 704K Psat=37.660 torr ' 

p(torr) µ(cm 2/sec-volt) 

p(torr} µ(cm 2/sec-volt) 9.796 7. 18 

3.066 20.55 6.503 11.11 

7.933 7.22 6.383 11. 40 

0.971 68.47 4.919 14.96 

14.967 3.43 0.949 82.99 

12.566 5.51 

17.425 3.77 

33.080 1. 789 

24.730 2. 5"13 



T=3.0340K , Psat=l91.50 torr 

p(torr) µ(cm2/sec-volt) 

31.086 2.59 

21 . 051 4.04 

11 .488 7.78 

6.290 14.23 

25.050 3.46 

l .059 92 .41 
\ 

15.360 5.75 

22.962 3.74 

25. l 02 3.40 

5.003 18.49 

1.926 50.32 

T=3.5020K , p t=356.7 torr 
sa 

p{torr) µ{cm2/sec-volt) 

12.337 8.57 

l .053 112. 50 

26.580 3. 77 

20.520 4.78 

14.438 7.30 

7.575 14 .11 

28.570 3.58 

23. 

T=4.2230K , p t=765.7 torr 
sa 

p{torr) µ(cm2/sec-volt) 

5.422 25.88 

10.373 12.84 

20.220 6.59 

31. 750 4.06 



The reduced mobility µr is defined as 

n 

n 
ref 

(4) 

where n f=2 . 69 x 10
19 

cm- 3 and n is the vapor density calcula-
re (18) 

ted by the virial equation of state The reduced mobility 

is displayed as a function of saturation ratio for several 

temperat~res and as a function of temperature for several 

saturation ratios in Fig. 4 and Fig. 5 respectively. 
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IV. THEORY AND CALCULATIONS 

In the first part of this section we will explain the 

calculation of the theoretical drop radius predicted by the 

Thomson equation. Some modifications that we have made to this 

equation will be discussed. Also the possibility of formation 

of a solid core inside a liquid drop and its effect on the drop 

radius will be introduced. The theoretical determination of the 

solid core radius will be given. 
' 

In the second part of this section we will discuss the de-

termination of the drop sizes from the mobility data. The mobi­

lity is related to the amount of momentum exchanged during a 

collision between a vapor atom and the drop. The momentum ex-

change, expressed by the momentum transfer cross section, de-

pends on the size of the drop. The experimental average momentum 

exchange for each experimental temperature and pressure can be 

determined from the corresponding measured mobility. On the 

other hand if the interaction potential is known as a function 

of drop radius and a model of the scattering process is adopted, 

the momentum transfer cross sections can be calculated. Hence 

for each scattering model there is an 11 experimental 11 drop radius 

which corresponds to the experimental momentum transfer cross 

section. These 11 experimental 11 drop radii depend not only on 

the scattering model but also on the mechanics of the scattering 

process. Depending on the temperature and the size of the drop, 
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quantum mechanical calculations of the momentum transfer cross 

sections might give different radii than the classical ones. 

In this second part of this section, the determination of the 

11 experimental 11 drop radius in two different scattering models 

and the quantum effects on these calculations will be discussed. 

It should be emphasized that probably none of these model depen-

dent 11 experimental 11 radii reflect the precise size of the drop, 

but nonetheless they are helpful in understanding some features 
' 

of the drop structure. 

A. Thomson equation's predictions 

The theoretical drop radius, R1, is determined by the 

Thomson equation (Eq. 1) for each experimental temperature and 
( 19) 

pressure. Measured values for the bulk surface tension, a
1 

(T) , 
(20) 3(21) v 

liquid density, n
1

(T) , and ~=0.205 A are used in these 

calculations. 

The usual derivation of the equation presumes that the 

vapor is ideal. We also tried a version modified to include 

the non-ideal behavior of the vapor, but no appreciable effect 

on radius could be found. The derivation also neglects any 

density variations within the drop and any dependence of the 

surface tension on curvature . Since the pressure inside the 

liquid increases toward the center of the drop due to the pola-

rization attraction between the ion and the liquid He atoms, 
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it is reasonable to argue that the liquid density increases 

over the bulk liquid density as the distance from the ion 

decreases. Also the surface tension of the liquid-vapor 

interface of the finite size drop is different from, probably 
(22) 

smaller than, the bulk surface tension Hence one can specu-

late that the(~vln1)ratio in Eq.l is smaller than its bulk value. 

To understand how sensitive is the drop radius to decreasing the 

a
1
v;n1 ratio we have calculated R1 in Eq. 1 for crlv I n1 = 

' (8/10)(cr1v!n 1)bulk" This choice of the a1v;n 1 ratio increased 

the drop radius for all temperatures and pressures by about 
(14) 

5-6% , but the results did not change any of the conclusions 

that we will discuss in the following section. Therefore they 

will not be included in our discussion. The theoretical drop 

radius is then given by Eq. 1 with no modifications. 

The pressure increase in the drop due to the polarization 

force should not only increase the liquid density but it should 
(4,5) 

also result in a solid core inside the liquid drop The 

Thomson equation does not predict any effect of the solid core 

on the drop radius. In fact the drop radius is completely inde­

pendent of the structure inside. But it depends on the bulk 

liquid density just inside the drop surface and the surface 

tension. Hence as long as the existence of the solid core does 

not effect the density of the liquid layer and the surface tension, 
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the drop radius should remain constant. But for sufficiently 

small drops the solid-liquid interface might be very close to 

the liquid-vapor interface such that the solid core might have an 

effect on the properties of the liquid-vapor surface and of the 

liquid layer. The solid core radius, Rs' is calculated by using 

the similar thermodynamical arguments which are used in the deri-

vation of the Thomson equation. It is given by 

where p is melting pressure, n is the density of the solid, 
m s ( 23) 

and as
1
=0.l dyne/cm is the solid liquid surface tension 

In the above equation the solid is assumed to be incompressible 

with nearly unity dielectric constant. Equations l and 4 are 

used to calculate the liquid and the solid radii. The measured 
(20) 

values of bulk Pm(T) and ns(T) are used in these calculations 

The effects of the solid core on the drop size as liquid thick-

ness, R
1
-Rs, decreases will be discussed in the following section. 

B. Model dependent 11 experimental 11 radii 

As mentioned before the mobility is not directly related to 

the size of the drop but it is related to the momentum transfer 

cross section. In Chapman Enskog theory the relationship between 

the reduced mobility, µr' and a thermally averaged momentum 
(24) 

transfer cross section, ~{l,l), is given by 
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where mr is the reduced mass, indistinguisable from the mass of 

a single helium atom in the present case. The above equation 

is valid only for elastic, binary collisions but in some cases 
(24,25) 

it can also be applied to inelastic collisions We used 

Eq. 5 to calculate the experimental cross sections n(l ,l) from 
exp 

the meas~red values of the mobility. 

On the other hand, if the interaction potential between 

the charged drop and the neutral vapor atom is known for a given 

drop size, we can adopt a model describing the nature of scat-

tering and calculate thermally averaged momentum transfer cross 

sections theoretically for any drop size. Then for each model 

an 11 experimental 11 drop radius for which n(l,l) = n(l,l) can be 
th exp 

found. 

In the calculation of the theoretical cross sections we 

assumed that the interaction potential is the sum of the -C/r4 

polarization potential between the central charge on the vapor 

atom, and the van der Waals potential, -c6;r
6 + c12;r

12 , bet­

ween the vapor atom and each of the neutral atoms in the liquid. 

If the density of the liquid is assumed to be constant, integra­

ting the latter over the volume of the drop gives 
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3 1 
V(r)=-C/r4 - AR [ C6 2 3 - Cl2 

(r2-R ) 
(7) 

where C=ae2/2 , A=4rrn
1
/3 , c6=1.139xl04K-A6 , c12=3.1778xl06K-A12 

and R is the drop radius which is chosen as an adjustable para­
(26) 

meter 
( 1 ) 

To calculate the transport cross section, Q , from the 

above potential we have adopted two different scattering models. 

1. 'Elastic scattering model: In this model we assumed that 

all the collisions are elastic. In this case the problem is 

well defined both in classical and in quantum mechanical approach. 

In the classical case Q(l) is defined by 

(8) 

where b is the impact parameter, E is the relative energy of 

the incident atom. The scattering angle e is given in terms of 

b as 

where r , the distance of closest approach, is the outermost 
a 

root of l-b2/r~-V(ra)/E=O and V(r) is the interaction potential 

given by Eq. 7. The transport cross section Q(l) is calculated 

by numerical integration of Equations 8 and g. 
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To be able to include this type of scattering in our model 

we assumed that every atom which "touches" the drop is absorbed 

by the drop and simultaneously another atom is emitted in a 

random direction but with . the same energy so as to maintain the 

thermal equilibrium. Furthermore we assumed that an atom 

"touches" the surface if its classical distance of closest 

approach is less that rm, the position of the minimum of the 

potential V(r). All the other atoms which do not "touch" 
\ 

the surface are assumed to be scattered elastically. We call 

this model the 11 inelastic 11 model. Only classical mechanics 

is used in these calculations. For elastically scattered 

atoms (ra>rm), q(l) are calculated from equations 8 and 9. 

Because the scattering angle, e, is assumed to be random for 

atoms with ra~.rm• ~cose>=O. Hence 1-Cose=l is substituted 

into Eq.8 if ra<r . 
-m 

As mentioned before to estimate the "experimental" radii 

within each model, the thermally averaged momentum transfer 

cross section, n(l ~ l), must be calculated. The relationship 

between n(l,l)and q(l) is defined as; 

a(l,l)(T) = [l/2(kT) 3] J exp(-E/kT)E2q(l)(E) dE (11) 
0 

where E is the relative energy of the incident atom. The 

transport cross sections calculated in each model are used in 

. (l,l) 
Eq.11 to determine n for given drop radii, R. The value 

th 
of R for which n(l, 1 )= n(l, 1) is taken as the "experimental 11 

exp th 
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drop radius for each model. The uncertainty in the "experimen­

tal" radii due to the above calculations alone are 0.4%, 1% and 

o.4% for the elastic classical, the elastic quantum mechanical 

and the inelastic cases respectively. For the details of these 

calculations see Appendix C. 

In Fig.6 the three different "experimental" radii are 

displayed as functions of saturation ratio at T=l . 762K. R 
ce 

and Re represent the "experimental" radii determined from the 

classica' and the quantum mechanical elastic scattering model 

calculations. Ri is the "experimental" radius predicted from 

the inelastic scattering model. Most probably none of these 

11 experimenta 1 11 radii reflect the true size of a drop. The 

elastic model ignores the effects of inelastic collisions 

which are dominant at least for the case of the scattering of 

the He atoms from the bulk liquid surface. The "inelastic" 

model on the other hand ignores quantum effects. Besides the 

type of 11 inelasticity 11 chosen may not be the case for the real 

system under consideration. Despite of the differences in their 

determination, however, R , Re and R. have the same functional 
ce i 

dependence on saturation ratio. Their ratio to each other 

is almost constant over all the temperature and the pressure 

range. The difference between the three "experimental" radii 

is at most 3A. This suggests that a more realistic model 
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which includes both the true inelastic and the quantum nature 

of the scattering would probably give results close to our 

present estimations also. Comparisons of Ree and Ri' Ree and 

R show that both inelasticity and quantum effects lower the 
e 

estimated "experimental" drop radius. Hence the result of 

such a more realistic model is expected to be slightly smaller 

than all of the "experimental" radii displayed in Fig.6. In 

the foll~wing section we will compare the "experimental" radii 

with the theoretical drop radius, R
1

, predicted by the Thomson 

equation. In this comparison we will include only Re to 

represent the elastic model, because it contains the quantum 

effects and therefore is more realistic than Ree· 
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Since the experimental cross sections are obtained from 

the measured mobilities by using the Chapman Enskog equation 

(Eq.6), the estimated "experimental" radii are meaningful only 

if the collisions are binary which is a condition assumed in 

the derivation of Chapman Enskog equation. Therefore it is 

necessary to check whether this hypothesis is valid for the 

temperature and the pressure ranges of this experiment. As 

it was msntioned before the calculations of the deflection 

angle, e, shows that there is a critical impact parameter, 

be, below which the incident He atom spiral onto the drop. 

If the impact parameter is bigger than be the deflection angle 

is very small. If we ignore the momentum transfer for small 

angle scattering events corresponding to large impact para-

meters, b can be taken as a distance which characterizes 
c 

the range of interaction. An interaction volume can be defined 

as V=4rrb~/3. One reasonable criterion for the validity of 

the binary collision assumption is that the vapor density, n, 

should be low enough so that the mean number of atoms in the 

volume Vin the absence of the ion, nV, is less than 1. This 

criterion is used to calculate the boundary between binary and 

multiple collisions for each temperature and pressure. This 

boundary is displayed in Figures 4 and 5 as dashed lines. It 

is clear from these figures that almost all of our data is within 

the binary collision regime. 
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V. DISCUSSION 

In this section we will first make a qualitative analysis 

of our data. This analysis is independent of any model adopted 

and it shows the existence of the drops. Then we will compare, 

quantitatively, the model dependent 11 experimental 11 radii with 

the theoretical radius predicted by the Thomson equation. 

This comparison enables us to check the validity of macroscopic 

thermodyn~mics when it is applied to such a microscopic system 

and it also provides information about the structure of the 

microscopic helium drops. 

Qualitatively, the existence of a drop formed around the 

+He ion can be seen from the pressure dependence of the reduced 

mobility, µr, at a constant temperature. If the collisions are 

binary and the temperature is constant, the momentum transfer 

cross section, n(l ,l), should not vary with changing pressure 

if there is no drop formation. Since the only pressure dependence 

of µr is through n(l,l) (Eq.6), under these conditions, µr 

should also remain constant as the pressure of the system varies. 

The saturation ratio dependence of the reduced mobility is shown 

in Fig. 4. The dashed line is the binary-multiple collision 

11 boundary 11 (see the previous section). Above this line the 

collisions are mostly binary. The decrease in µr in the binary 

collision regime as p/psat decreases indicates the momentum 
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transfer cross section depends on the pressure which means that 

the drops are indeed growing around the ions. It should be 

emphasized that this qualitative confirmation of the Thomson 

equation is independent of any scattering model adopted. 

To be able to make quantitative comparisons, the model 

dependent "experimental" radii are determined by the model 

explained in the previous section. In Fig.7 and Fig.8 these 

"experimental" radii, R and R., and the theoretical radius R
0 e i ,,, 

are disp~ayed as functions of saturation ratio at T=l.428K, 

and as functions of temperature at p/p t=0.3 respectively. As 
sa 

can be seen from these figures, the theoretical drop radius 

is in good agreement with the drop radii, Re and Ri' estimated 

from the elastic and "inelastic" scattering models. In fact, 

for all the temperatures and pressures chosen in this experiment, 

the disagreement never exceeds 3.0 A which is roughly equal to 
(20) 

the diameter of a single He atom (2.2A) In previous 

section we have concluded that a more realistic model which 

includes both the inelastic and the quantum nature of the 

scattering should not give drastically different results to 

alter the present good agreement. On the contrary an "experimen­

tal" radius which is estimated by such a model is likely to be 

smaller than both Re and Ri and thus probably be closer to 

the theoretical radius R . Therefore we conclude that the Thomson 
Q, 

equation predicts the drop radii reasonably accurate for all the 

drop sizes that we have in the temperature and pressure ranges of 
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this experiment. 
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The small difference between the theoretical and the 

11 experimenta 111 radii shows interesting dependencies both on 

the size of the drop and the temperature. To be able to 

emphasize these points we define the "relative difference", 

o, between the theoretical and the "experimental" radii as; 

o · = (R · - Rn )/Rh. e,1 e,1 )I., J!.i 
( 12) 

where subscripts have their usual meaning. 

In ~ig.9 o is displayed as a function of the theoretical 
e 

radius, R , for all our measurements at temperatures higher than 
t 

2.3K. This choice of temperature range will be clear when 

the temperature dependence of o is examined . Regardless of the 

temperature and the pressur.e at which each individual point in 

this figu:e is obtained oe is constant for R>6.7 A to within 

the accuracy of the measurements but it has a discontinuity 

at R =6.7 A and increases significantly as the theoretical 
t 

radius decreases below this value. The similar graph for 

oi shows variation with temperature for Rt<6.7 A, i.e. at a 

constant temperature oi decreases with increasing Rt ' but the 

value of 0 . is bigger at lower temperatures at a constant 
1 

value of Rt . For R >6.7 A the variation of 0. with temperature 
t 1 

no longer exists, and like oe, oi is also constant to within 

the accuracy of the measurements. For the sake of clarity in 

Fig.9, oi is displayed only for Rt>6.7 A. The values of <Se and 
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0 . in the flat region are ~0.21 and ~0.12 respectively. As long 
l 

as T>2.3K and R >6.7 A, then, the 11 experimental 11 radii are 
£ 

related to the theoretical radius by a constant which is 

approximately equal to one. The significant point is that 

the proportionality constant is independent of both pressure 

and temperature in this region. Thus the pressure and tempera­

ture variation is accurately predicted by the Thomson equation 

using bulk values of n and a Furthermore, if we make the 
' £ iv· 

reasonable assumption that the departure of the constant 

from unity is only a measure of the imperfections of the scatte-

ring models, then we must conclude that in this 11 normal 11 region 

the Thomson equation is correct. 

Consider now what may happen when R£ decreases below 6.7 A. 

At this point the number of He atoms in the liquid drop is esti­

mated to be ~25 by the Thomson equation. For a similar charged­

drop system which contained this many atoms (or molecules) 

in it, macroscopic thermodynamics is still expected to be valid 

Hence the beginning of the change in o at R i ~ 6.7 A in Fig.9 

probably does not show the beginning of the failure of macros-

(7) 

copic thermodynamics due to the decrease in the drop size. Also 

we do not think that this increase arises from the imperfections 

of our scattering models since both oe and oi show the same 

qualitative dependence on the theoretical radius at R£>6.7 A. 

We believe that the deviation of the "relative difference" from 
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its constant value for small drop sizes is the effect of the 
(28) 

existence of the solid core inside the liquid drop As 

mentioned before the Thomson equation predicts a change in the 

drop radius due to the solid core only if the surface tension 

and/or the bulk liquid density just below the assumed sharp 

liquid-vapor interface are effected by the existence of the 

solid core. Hence if this prediction is true then the depen­

dence of o on the thickness of the liquid should show a minimum 
\ 

liquid thickness below which the assumptions of the bulk liquid 

density and surfacetension in the Thomson equation are no 

longer valid. We calculated the solid core radius, Rs, from Eq.4 

which is also derived from the· macroscopic thermodynamics. 

Ri - Rs gives the liquid thickness. In Fig.10 oe and oi are 

shown as functions of Rt - Rs. In both of the models o's show 

a discontinuity at R ~ -Rs=2.5 A which is about equal to the size 
(~9) 

of a single He atom They are constant for a liquid thick-

ness greater than ~2 . 5 A. For Ri -Rs <2.5 A, oe increases with 

decreasing liquid thickness. In this range of liquid thickness 

oi is not displayed in this figure because it shows similar 

temperature variations which are mentioned before . Our interpre-

tation of this behavior is that the Thomson equation with bulk 

parameters works as long as the liquid layer is thicker than 

about a monolayer. Below this thickness the thermodynamic 

formalism is probably still valid, but the surface is becoming 

sufficiently influenced by the core structure so that the use of 
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( 30) 
bulk values of nn andq is no longer appropriate 

JV 'ly 

The dependence of the "relative difference" on the tempe-

rature shows an interesting behavior. In Fig.11 oe and oi 

are displayed as functions of the temperature. To seperate 

the effect of the solid core the drops with less than 2.5 A 

liquid thickness are excluded from this figure. Both oe and 

o. show the same functional dependence on the temperature: 
l 

Above ~ 2.3K both are constants regardless of the temperature 

and saturation ratio. The same result has already been found 

in the previous paragraph; i.e. the oe and oi are constants 

for T>2.3K if the liquid thickness is more than 2.5 A 

It was interpreted that the Thomson equation can accurately 

estimate the drop size in this range of temperature. But at 

T=2.3K, oe and oi start to deviate from their constant values 

and they increase with the decreasing temperature until T=l.9K. 

At T=l .9K the rate of change of the "relative differences" 

changes once again. Also they both show a dependence on the 

saturation ratio for T<2.3K, i.e. in Fig.11 o has two different 

values corresponding to t wo different saturation ratios at a 

constant temperature. The splitting of o for each saturation 

ratio starts at T=2.3K and increases with decreasing tempe-

ratures down to ~ l.9K. Below this temperature the splitting 

remains almost constant. For higher values of PIPsat the 

deviation of o from its constant value is more. 
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_,, 

To be sure that the apparent temperature dependence of 

the 11 relative difference 11 reflects a physical reality, and is 

not an artifact of our m,ethod of determining o from the measured 

mobility, we must consider the possible sources or error in our 

calculations. One might think that the temperature dependence 

arises from the imperfections in our scattering models. To 

rule out this possibility it would be helpful if we could see 

a similar effect on the temperature dependence of the mobility 

directly. 'Unfortunately it is very difficult to see any cor­

responding structure in the mobility vs. temperature graph 

since oe and oi are calculated in two different models and 

still show a similar functional dependence we believe that 

the imperfections of the models are not the cause of the 

increase in o which is observed at temperatures less than -v2.3K. 

The failure of the binary collision assumption used in the 

derivation of the Chapman Enskog equation (Eq.5) might also 

cause some complications in the temperature dependence of o, 

since this equation is used to determine the experimental 

. (l,l) 
cross section, n , from the measured mobility. Fig.5 shows 

exp 

the estimated "boundary" between the binary and 11111tiple 

collisions. It is clear that this "boundary" does not pass 

through a constant temperature and definitly not through l.9K 

or 2.3K. Furthermore, as mentioned before, most of our data 

is in the binary collision regime. Hence this possibility 
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is also ruled out in explaining the temperature dependence of o. 

As a result we conclude that even though our method of determi­

ning oe and oi ts indirect and probably imperfect, the results 

displayed in Figures 11 and 12 have physical significance. 

Before we draw any conclusion from the temperature depen-

dence of o, it might be helpful to see the variation of the 

"relative difference" with the liquid thickness at low tempe-

ratures. In Fig .12 oe and oi are displayed as functions of 

Ri -Rs for'T>2.3K (see Fig.10) are also drawn for comparison. 

The o 's for intermediate temperatures (l.9K <T<2.3K) are not 

shown in this figure for the sake of clarity. But reasonably 

enough they lie in between the solid and the dashed lines. At 

a given liquid thickness the difference between the solid and 

the dashed lines shows the deviations of oe and oi from their 

constant values for which the Thomson equation is found to be 

valid. Fig.12 shows that the deviation starts as soon as the 

liquid thickness becomes more than a monolayer ( ~ 2.2 A), and 

it increases with the increasing thickness of the liquid helium. 

Because of the lack of data for Ri -Rs<2.5 A at low temperatures, 

the effect of the solid core can not be seen in this figure. 

But the effect is observed for some intermediate temperatures. 

No difference is found between the high and the low temperature 

o's for R -R <2.5 A. Since the ion-solid-liquid complex is 
£ s 

almost completely solid for this range of the liquid thickness, 
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above result suggests that the change in o, starting at T=2.3K 

is due to the liquid helium layer alone. In other words, if 

the solid-liquid complex which is formed around the ion has no 

liquid layer on it we would not expect to see any change in o 

with decreasing temperature. We should mention, however, that 

in Fig.12 the spread of data for small liquid thickness is large, 

and at low temperatures we do not have as many data points as 

we have for high temperatures at the region where Ri -Rs<2.5 A. 

Sine~ what we have actually measured is the mobility which 

is directly related to the momentum transfer cross section, 

Q(l,l), by the Chapman Enskog equation, it is more convinient 

to interpret the results in terms of the cross section rather 

than the "relative difference". The higher oe and oi values 

in Fig.ll at temperatures less than ~ 2.3K mean higher values 

for the 11 experimental 11 radii, Re and Ri. Although not very 

clear this effect can also be seen in Fig.8 . The bigger 

"experimental" radii correspond to larger experimental cross 

sections. Hence as the temperature decreases below 2.3K the 

experimental cross section starts to increase more rapidly 

than expected in the model. A rapid increase in the experimen­

tal cross section means either an increase in the actual (not 

"experimental") drop size which is not predicted by the Thomson 

equation, or it might also mean a change in the nature of colli­

sions, without an actual increase in the drop size. The cal­

culations of the cross ections in different models show that 
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for a given temperature and drop radius the 11 inelastic 11 model 

gives larger cross sections than the elastic model. Hence 

large cross sections at low temperatures imply that collisions 

start being more inelastic at ~2.3K. It is also possible 

however that the nature of the interaction changes as tempe-

rature decreases below 2.3K. Unfortunately it is impossible 

to draw any reliable conclusions with the present information. 

Nonetheless, any change in the nature of the scattering with the 

' 
temperature in a rather peculiar way still needs an explanation. 

One might think that the number of atoms on the surface of the 

drop changes with the temperature, and changing surface occupancy 

might cause a change in the nature of the scattering. But this 

is hardly the case since the same effect is not observed at high 

temperatures. Another possible cause of such behavior might be 

a superfluid transition that liquid helium layer undergoes at 

~l.9K, and which is broadened up to ~2.3K. Although it is 

difficult to believe that there is a A-point transition starting 

from the second atomic layer of liquid helium, it does explain 

the general features of our results. The suppression and the 

broadening of the bulk transition temperature (2.17K) for finite 
(20) 

systems is known Qualitatively, ~l.9K for transition tempe-

rature and ~o.4K broadening above the transition temperature is 

consistent with this fact. 

54. 



One needs to have more information to be able to explain the 

details of the variation of the cross section with the temperature. 

But it is not unreasonable to expect a change in the scattering 

process as the liquid layer passes through a transition from the 

normal fluid to superfluid as the temperature decreases. This 

change might favor an increase in the cross section at low tem­

peratures. For example we can speculate that during a collision, 

the proposed superfluid helium layer will deform under the 

' 
influence of the attractive van der Waals field of an incident 

atom because of the lack of friction between the solid core and 

the liquid layer. Under this condition the drop will appear 

bigger to the incident atom. This will result in a larger 

momentum transfer cross section. As mentioned before, the diffe-

rence between o's at high and low temperatures does not exist 

if the liquid layer becomes less than a monolayer. Existence 

of a superfluid transition can also explain this observation: 

Since in this range of the liquid thickness the ion-solid-liquid 

complex becomes almost completely solid, no superfluid transi­

tion and hence no difference between o's at the high and the 

low temperatures should be expected. 

We feel that with the present data any further comment on 

the temperature dependence of the momentum transfer cross section, 

( l 'l) 
n , can not be more than a speculation. Perhaps more informa-

tion is needed to give a satisfactory explanation of this point. 
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To summarize our results: First, we have shown the exis­

tence of the drop formation around the +He ions, directly from 

the mobility measurements. This is a qualitative verification 

of the Thomson equation. Secondly, by comparing the model 

dependent 11 experimental 11 radii with the Thomson equation pre­

dictions we have concluded that macroscopic thermodynamic 

arguments can explain in detail the sizes of the microscopic 

helium drops with radii between 6.7 A - 9 A. The comparison 

' also showed that there is a solid core within the liquid drop 

and its radius can also be determined by the thermodynamical 

arguments. No effect of the solid core on the liquid drop 

radius is found untill the liquid thickness becomes less 

than 2.5 A at which the solid core changes the properties of 

the liquid-vapor interface. This result is also in complete 

agreement with the Thomson equation. Finally, we have found 

an unexpected increase in oe and oi (or in the experimental 

cross section) as the temperature decreases. The increase 

starts at ~2.3K and reaches its maximum value at ~l.9K. This 

result is interpreted as, with decreasing temperature, either 

an increase in the actual drop size which is not predicted by 

the Thomson equation, or a change in the nature of the collisi-

ans which keeps the drop size unchanged. Although the present 

data is not enough to make a completely satisfactory explanation, 

we suggested that the dependence of the experimental cross section 

might be an indication of a superfluid transition in the liquid 
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helium layer of the ion-solid-liquid complex. According to 

our results the transition temperature is ~l.9K and it is 

broadened up to ~2.3K. The suggested transition starts when the 

thickness of the liquid layer becomes more than a monolayer. 

' 
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APPENDIX A 

The Thomson Equation 

In this research we have used the Thomson equation as 

the theoretical base to compare our experimental results. By 

this comparison we have checked the validity of the macroscopic 

thermodynamics when it is applied to the microscopic systems 

and we als~ obtained information about the structure of the 

microscopic helium drops. Since the Thomson equation has 

played a central role in the interpretation of the experimental 

results its derivation from the thermodynamical arguments will 

be given in this appendix. To be able to show clearly that 

the drop radius which is given by the Thomson equation is not 

effected by the existence of a solid core we will assume a 

solid core in the liquid drop. 

When an ion is placed in a polarizable vapor, the vapor 

atoms will be polarized in the electric field of the ion. 

Hence an attractive polarization force will be created between 

the ion and the neutral vapor atoms. The effect of the polari­

zation potential will be an increase in the Gibb's free energy 

of the system. To reduce the free energy, or equivalently, 

to reduce the effect of the ion, a liquid drop will form 

around the ion. Above reasoning is valid also for an ion in 
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a liquid. Therefore it is reasonable to expect a solid core 

within the liquid drop. But in the absence of the ion the 

liquification and the condensation are not favorable at pres­

sures less than the saturated vapor pressure because the free 

energies of the liquid and the solid phases are more than the 

free energy of the gas phase at p<psat" Hence the total 

change, ~G, in the free energy, G, of the system due to the 

formation ~f the solid-liquid complex around the ion can be 

written as; 

( A -1) 

where ~Ge is the decrease in the free energy due to the re­

duction in the electric field energy, and, ~Gs and ~G t are 

the increasesin G due to the condensation and the liquification 

respectively. At the thermal equilibrium ~G is minimized. 

~Ge is the difference between the electric field energies 

of an ion with charge e and radius R0 surrounded by the two 

concentric dielectric spheres of solid and liquid with radii 

rs and r t , and of the same ion in a vapor. The energy density, 

u, in the presence of a dielectric is given by; 

( A -2) 

where D is the displacement vector with magnitude e/r2 and 

E is the dielectric constant. If the interactions between the 

polarized atoms are ignored E=l+4nan where a is the atomic 

pol ari zabil ity. ~G can be expressed in terms of the energy 
e 
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densities Us·' ut and UV of the solid, the liquid and the vapor as; 

r r t r t s 
ti Ge = J us dT + J UR. d, - J Uy dT (A -3) 

Ro rs R 
0 

where d,is the volume e 1 ement. If we assume that the dielectric 

constant of the vapor isl, and of the solid and the liquid 

nearly l, then equation A -3, together with A -2, will give; 

' 
tiGe = 2~ a e 2 [ns(l/rs - l/R0 ) + n£(1/r£ - l/rs)J (A -4 ) 

tiGt and tiGs can be calculated from the thermodynamical 

arguments. In Fig. A - 1 the free energies per atom, chemical 

potentials, of vapor, liquid and solid phases are shown 

schematically as functions of pressure. At a constant tempera-

ture; 

dµ = v dp (A -5 ) 

where v is the atomic volume . If the liquid and the solid 

is assumed to be incompressible the chemical potentials of the 

liquid and the solid should change with pressure linearly as 

they do in this figure. The slopes of the lines £ and s are 

vt and vs, the atomic volumes of the solid and the liquid 

respectively. tiµ£ and tiµs are the increases in the chemical 

potential due to the liquification and the condensation of an 

atom at pressure p. From the geometry of the figure; 

(A - 6 ) 

63. 



If the vapor is ideal and if vg>>vt ' the equations A - 5 and 

A -6 will give ; 

tiµ =-kTl np/p t 
t sa 

( A -7) 

Ni =n£4/3n(r1 - r~) is the number of atoms which condense to 

form a homogeneous liquid drop with a solid core in it. 

ni and ~£ are the density and the radius of the liquid drop 

and rs is'the radius of the solid core. Then; 

tiG =-kTN lnp/p + cr 4nr2 

£ £ sat i v £ 
( A -8) 

where cr is the surface tension of the liquid-vapor interface. 
£V 

The second term on the right hand side of the Eq.A -8 is the 

surface energy which can not be neglected for small drops 

with large surface/volume ratio. Similarly for the solid 

core inside the liquid; 

( A -9) 

and 

(A-10) 

where cr is the surface tension of the solid-liquid interface 
s t 

and N =n 4/3nr2. In Eq.A -10 an incompressible solid with 
s s s 

density ns> >ng is assumed. 
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The total free energy change, ~G, is the summation of 

the Equations A - 4, A -8 and A -10. At thermal equilibrium 

both a ~G/ a rt and a ~G/ a rs must be zero. The first of these 

conditions gives the Thomson equation with the drop radius Ri ; 

(A-11) 

The second condition of the thermal equilibrium gives Eq. 5 

of theman'-!script if p«p is satisfied. 
m 

(A-12) 

where R is the solid core radius at thermal equilibrium. 
s 

Above derivation shows how the macroscopic thermodynamics 

enter the derivation of the Thomson equation; and it also 

shows that the drop radius which is predicted by the Thomson 

equation is not effected by the presence of the solid core 

inside the drop. The drop radius only depends on the surface 

tension, cr , and the assumed bulk liquid density, n0 , just 
tv ;., 

inside the sharp liquid-vapor interface. 
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APPENDIX B 

EXPERIMENTAL DETAILS 

Most of the experimental details are discussed in section II 

of the manuscript. Here we would like to explain the electronic 

and vacuum connections that were not explained previously. 

l.Electronic connections of the Grid Assembly 

As discussed before, the mobilities of +He ions He vapor 

are measu~ed by pulsed-time-of-flight method. A schematic of 

the electronic connections of the grid assembly is shown in 

Fig. B-1. Briefly, +He ions are produced by the bombardment 

of the electrons from a tritium B source, S. The drops are 

formed in the source region A. They are moved toward the gate 

region Gl-G2 under the influence of an electric field Es. 

A small potential barrier between Gl and G2 keeps the positive 

ions in the source region when the gate is off. The ions enter 

the drift region, B, when the potential barrier is overcomed 

by the application . of a square positive pulse on the grid Gl. 

The ion pulses travel through the drift region with a constant 

drift velocity, vd, in a uniform drift field Ed. Ion pulses 

create an induced current on the collector C as they pass through 

the grid G3. The current pulse is first amplified and then 

signal averaged to eliminate the noise. The travel time of +He 

ion pulses from G2 to C is measured. 
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To obtain a uniform field in the drift region, the equally 

spaced electrodes between G2 and G3 are seperated by lOKn 

precission resistors, R1 s. The distance between the electrodes 

is l.OOcm which is twice as much as the distance between G3 and C. 

To make the electric field in the collector region equal to the 

field in the region B, two resistances, R1 s, each of which is 

lOKn, are connected parallel between G3 and C as shown in Fig.B-1. 

The uniform electric field, Ed, is changed by changing Vd, which 

\ 

is the potential difference between G2 and C. Vs is the potential 

difference between S and G2. The field distribution in the 

source region can be arranged by the variable resistors Rl, R2, R3 

and R4. Another variable resistor R5 is used to change the poten­

tial barrier between Gl and G2. During the actual run of the 

experiment the variable resistors Rl through R4 and R5 are preset 

to give the maximum ion current through the gate when the pulse 

is on. Vs and/or the amplitude of the Gl pulse from the pulse 

generator, P.G., are changed to obtain the different ion pulse 

amplitudes. 

2. Electronic connections for the time of flight measurements 

The schematic of the electronic connections to measure the 

time of flight of the ion pulses is shown in Fig.B-2. A pulse 

generator, P.G.I, connected to a function generator, F.G., is 

used to create a positive square pulse (Gl-pulse) to cause the 

+He ions enter into the drift region. The current pulses, the 
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SIGNAL, created by the arrival of the +He ions to the collector, 

C, are first amplified by the preamplifier which is an Analog 

Device 41J operational amplifier used with lOgQ feedback resis­

tance. Most of the time the signal from the preamplifier 

was big enough so that further amplification was not needed. 

Occasionally a second amplifier, amp.II, was used with gain 

at most 5 for further amplification. In both cases the ampli­

fied signal is displayed on an oscilloscope, Scope I. To 

increase the accuracy, the total time of flight is taken as 

the addition of the two time intervals. The first time inter­

val, the delay time, is initiated by the Gl pulse from P.G. I 

by triggering another square pulse in P.G.II. The width of 

this second pulse is equal to the delay time which covers 

almost all the time of flight except the trailing end of the 

original signal from the amplifier amp.II. The delay time is 

measured by a universal counter, U.C .. To compare the widths 

of the delay and Gl pulses, they are displayed on a double 

channel oscilloscope, Scope II. The second time interval is 

initiated by the end of the delay pulse which corresponds to 

the trailing end of the amplifier signal. Only this portion 

of the signal is averaged by a Fabri-Tek 1010 digital signal 

averager to be able to make accurate measurement of the time 

of flight. The two time intervals are shown schematically in 

Fig.B-3. The total time of flight, Td' is equal to t 1 + t
2

. 
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The details of the determination of the second time interval t 2 

is given in the manuscript. 

GI Pul.1e 

_n_ 
I 
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I I 
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The two time intervals, t
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and t
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3. Cryogenic system 

The temperature range of this system is 1 .32K-4.22K. 

To obtain and maintain such low temperatures require a special 

technique. Part of the details of this technique is discussed 

in the manuscript. In this section we will give a diagram of 

the cryogenic system and explain the procedure that we have 

followed to obtain the helium temperature (4.2K). The necessary 

vacuum and electronic connections to measure and to regulate 

' the pressure and the temperature in the cryogenic system will 

be di .scussed in the following two sections. 

The schematic of the cryogenic system is shown in Fig.B-4. 

The copper can in which the grid assembly is placed is filled 

with helium gas at a desired pressure. The low temperatures 

(l.32K-4.22K) are obtained by a liquid helium bath which surrounds 

the can. Isolation vacuum around the bath is a vacuum jacket 

which thermally isolates the liquid helium bath from the surro­

undings. Finally the liquid helium dewar is placed in a liquid 

nitrogen bath at 77K. 

Before each run of the experiment the system is cooled down 

to 4.2K, the boiling temperature of helium at atmospheric pressure, 

by the following procedure: First, the can, the bath and the iso­

lation vacuum are evacuated to assure the cleanliness. ~1x10- 4 

torr pressure is achieved in the can and in the isolation vacuum 

at this stage. Then the isolation vacuum is filled by the nitrogen 

gas from the liquid nitrogen boil off up to 1-2 torr to make the 
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thermal contact between the nitrogen and helium dewars. Later 

when the system is at helium temperatures the exchange gas, 

nitrogen, freezes and the vacuum is achieved in the isolation 

vacuum again to maintain the thermal isolation of the helium 

bath. The helium dewar is also filled by the nitrogen gas 

up to l At. pressure to make the thermal contact between the 

isolation vacuum and the copper can. He gas can not be used 

for this purpose since it diffuses through the glass and 

enters in\o the isolation vacuum causing a poor thermal isola­

tion of the helium bath at the helium temperatures. Finally, 

the nitrogen dewar is filled by the liquid nitrogen to cool 

down the whole system except the grid assembly up to 77K. 

The grid assembly is cooled to nitrogen temperature by letting 

pure helium gas into the can through a charcoal trap which is 

surrounded by a liquid nitrogen cold trap. To reduce the tem­

perature of the system further, down to 4.2K, the nitrogen 

exchange gas is pumped from the helium dewar, and the dewar 

is filled with the liquid helium. 

4. Vacuum system 

The schematic of the vacuum system is shown in Fig.B-5. 

The cryogenic system is viewed from the top in this figure. The 

can and the bath pressures are measured by the capacitance mano­

meter, MKS Baratron Model 170, through the valves 2 and l respec­

tively. This pressure gauge measures the differential pressure, 

i.e. the pressure measured with respect to a reference pressure. 

The reference pressure is obtained by pumping the volume between 
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the values B,3 and 7 by a mechanical pump, PUMP l, and the 

relative value of it is measured by the capacitance manometer 

through the valve 3. The absolute value of the reference 

pressure ( ~ 20 mtorr) is measured by a thermocouple, TCl, which 

is calibrated against the Mclaud gauge. The oil manometer is 

used to check the linearity of the capacitance manometer bet-

ween the pressures 5 torr - ~ O torr. During the experiment the 

pressure in the can is increased by letting the helium gas from 

the liquid helium boil off in the bath through the valves l and 

' 
2. Can pressure is decreased by pumping the helium gas from the 

can by PUMPl through the valves A and B or 2 and 3. As mentioned 

in the manuscript, the temperature of the system is determined 

from the bath vapor pressure. The coarse temperature regulation 

is obtained by controling the pumping speed on the bath by valves 

10, 9 and a needle valve 8. At temperatures above the superfluid 

transition temperature 2.17K, the thermal conductivity of the 
(20) 

liquid helium is low The evaporation at relatively hot spots 

in the liquid helium creates wrinkles on the surface which results 

jn oscillations in the bath pressure. Hence to control the tern-

perature is more difficult if T>2.17K. Between the temperatures 

2.17K - 3.0K, in a addition to controlling the pumping speed, a 

pressure regulator is also used to regulate the temperature. Before 

each run of the experiment, the whole vacuum system is evacuated 

and leak checked by the leak detector. Cleanliness is most impor-

tant in the can and in the isolation vacuum. Therefore these 

two parts of the vacuum system are pumped by PUMPl and a diffu-
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sion pump which is placed in the leak detector through valves 

A and B and 6, 7 for two or three days to achieve a pressure 

of ~1x10- 4 torr. This pressure is measured by the ion gauge, IG. 

As mentioned in the previous section, to cool down the grid 

assembly, pure helium gas is let into the can through the 

charcoal trap and the valves ll and A. 

The vacuum system is mounted on a table which sits on 

vibration absorbers. 

5.Temperature control system 

The fine temperature regu t ation of the experimental cell 

is obtained by an uncalibrated Ge resistor in a bridge circuit 

and is used with a heator in a feedback circuit. The bridge 

circuit and the electronic connections of the temperature control 

system are shown schematically in Figures B-6 and B-7 respectively. 

The locations of the various components of the bridge circuit 

are indicated in Fig B-6. The 35Hz ac voltage is supplied by 

the Lock-in amplifier Ref+Bridge amplifier Ref Derive as shown 

in Fig.B-7. The Ge resistor, RGe• is placed in the liquid helium 

dewar, on top of the can. The resistance of the Ge resistor 

is sensitive to the temperature changes in the dewar at helium 

temperatures. A slight temperature change in the dewar is 

enough to cause a difference between RGe and R
8 

which are shown 

in Fig.B-6. As a result a current passes through the detector. 

This current signal is amplified by the bridge amplifier first. 

The output signal, SIG, can be observed on the oscilloscope. 

The signal is then sent to the lock-in amplifier for further 
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amplification. The final signal which corresponds to the tempe­

rature deviations in the dewar is observed on the chart recorder. 

To regulate the temperature a lOOQresistor, RH' is used in a 

feedback circuit. At temperatures below the superfluid transition 

temperature at which the liquid helium is a perfect thermal 

conductor, RH is placed on top of the can. Above this temperature, 

the thermal conductivity of the liquid helium drops drastically 

Hence to maintain a constant temperature throughout the experimen­

tal cell a chromel wire is wrapped around the . can as the heator 

resistor a't T>2.17K. Normally if the amplitude of the signal 

from the lock-in amplifier is zero, indicating a constant tem­

perature in the experimental cell, the heator in Fig.B-7 supplies 

~2V de voltage to RH. It corresponds to ~4xlo- 2 W. If a nonzero 

signal is received the heator unit automatically changes this 

voltage to keep the temperature constant. Above procedure for 

fine temperature regulation was very useful at temperatures 

below the superfluid temperature. At T>2.17K, the temperature 

fluctuations were very large for the heator circuit to regulate. 

Therefore, except a few cases, the temperature control system 

is only used to record the relative temperature on the chart 

recorder. 
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APPENDIX C 

CALCULATIONS OF MOMENTUM CROSS SECTIONS 

To be able to calculate the momentum cross section, ~ (l ,l), 

the interaction potential between the charged drop and the neutral 

vapor atom must be known. We assumed that this potential is the 

addition of polarization potential, 

all the van der Waals interactions, 

' 

-c/r4, and the summation of 

6 12 
-c6/r +c12;r , between the 

vapor atom and each of the neutral liquid atoms. If the drop is 

assumed to have constant density the total of van der Waals 

interactions can be calculated by replacing the summation with 

an integration over the volume of the drop . The resultant 

potential is; 

R3 

V(r)=-c/r4-Ac
6 2 2 3 (r -R ) 

(C-1 ) 

where A=4nnt /3, nt is the number density of the liquid, C=ae
2
/2, 

a is the atomic polarizability, and R is the radius of the drop. 

In above equation first term represents the polarization inte-

ractions, second and third terms are the total of repulsive and 

attractive parts of van der Waals interactions respectively . 

Above potential can be written in terms of reduced variables 

as· 
' * * * p 1 

V (r )=---- -
R*4 r*4 

*6 *4 *2 15r +63r +45r +5 

(r*2_1)9 

( C-2 ) 
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where 

--* * 
f(R ,P )= 2 

5R* -117R*4-99R*2-15 

* *8 *6 *4 *2 · P (lOR +80R +522R +390R ,+60) 
+-

3 

( C-3) 

' 
and the reduced quantities are defined as; 

* r =r/R 

* R •R/r 
m ( C-4) 

* * * V (r )=V(r )/E 

where -s is the minimum of interaction potential V(r) and r 
m 

* is the position of this minimum. P in above equations is the 

ratio of polarization term to the value of total potential at 

* r=r . Therefore for P =O Eq.C-2 gives the interaction potential 
m 

between the neutral drop and the vapor atom. * The value of P =O 

can also be used as an approximation for very large charged 

drops where the polarization term is small compared to van der 

* Waals interactions. Because this value of P might have more 
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applications we have included it in our calculations even 

though it is not useful for us. 

Th 11 
. ( 1 '1 ) 

erma y averaged momentum transfer cross section n 

is defined as 

00 

(1,1) 1 1 (1) 
n (T)= - Q (E) e-E/kT E2 dE 

2(kT) 3 o 
( C-5) 

where Eis the relative energy of incident atom and Q(l)(E) is 

the transport cross section. In terms of the reduced quantities; 

' 00 

n *(l,l)(r*)=~f e-E*/T* E*2 Q*(l)(E*) dE* 
2T 3 o 

* where T =kT/E: 

* E =E/E: 

n*(l, 1)=n(l'1) hrR2 

{(l )=Q(l) hrR2 

If the transport cross section, Q(l), is known then 

( C-6) 

( C-7) 

(11) (1) 
n ' can be calculated from Eq.C-6. Q depends on both 

the nature and the mechanics of scattering between the drop 

and the incident atom. We have calculated the transport cross 

section both in elastic and in inelastic scattering models. 

In elastic model the quantum effects are also included. 
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1. Elastic Model 

i.Classical case: 

For this case the reduced diffusion cross section Q*(l) 

is given by; 

00 

q*(l) = 2~(1-Cosa) * * b db ( C-8 ) 

0 

* where reduced impact parameter b =b/R, and deflection angle e is 

*2 *2 * * * -1/2 *2 * 
[1-b /r -V ( r )/E ] I r dr (C-9) 

* where ra=ra/R, the minimum approach, ra, is the outmost 

zero of l-b/r2-V(r)/E. 

n*(l ,l) is calculated by numerical integration of three 

collision integrals given by Equations C-6, C-8 and C-9. The 

* * * * ranges and increments of parameters chosen for R ,P ,E and T 

are given in Table C-1. The estimated error in q*(l) and n*(l ,l) 

are within 0.05% and 0.1 % respectively. The results obtained 

for diffusion cross sections are listed in Table C-2. In 

above calculations the method described by O'Hara and Smith 

is used 

ii.Quantum mechanical case: 

For quantum mechanical case n*(l,l) can still be calcu­

lated by Eq.C-6. The main difference is the occurence of an 

extra parameter corresponding to the de Broglie wavelength. 
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The reduced wavelength is defined as 

( C-la) 

where mr is the reduced mass of drop-atom system. * A , sometimes 

called the de Boer parameter, is a measure of the quantum nature 

of the system. It is zero for a classical system and increases 

with the quantum effects. 

The reduced diffusion cross section is 

'A *2 00 

o*(l) = 2*2 L (t+l) Sin2(o -o ) 
TI E i =a .Q, t +l 

( C-11 ) 

where ot is the phase shift for quantum number t . oi 's are 

calculated by solving the Schoredinger equation numerically. 

Effective reduced potential 

*2 
* * * * A 

vveff(r ) = v (r ) +­
TITI 2 

t (H l) 

*2 
r 

( C- 12) 

has an horizontal inflection point at t =t a which corresponds to 

* * * * * 
Veff(r )=Ea. For t>ta Veff(r ) has no dip. Quantum effects 

* * become increasingly more important for E < Ea for which the wave-

length of the incident atom becomes comparable to the characteris­

tic length of the potential. We have made use of two different 

methods, namely JWKB and Noumerov methods, to calculate the phase 

* * shifts for E < Ea. In this range of energy there is a value of 

* * * * * * 
t , i c' for which Veff(r ) = Ec is a maximum, with aveff(r )nr =a. 

(See Fig.C-1.) 
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JWKB method is a semiclassical method which ignores the reflection 

and the transfer of the incident atom from and through the energy 

* * * * * 
barrier of Veff for E >Ee and E < Ec respectively. Hence this 

approximate method is not good for t near t . Noumerov method 
c 

gives almost exact phase shifts for all values of t . For each 

* incident energy, E , we have calculated the phase shifts around 

tc in Numerov method and rest of the phase shifts are calculated 

in JWKB method. The error in Q*(l) is estimated to be within 

0.3%. For E*> E~ the values of Q*(l)•s, calculated by classical 

and the ~uantum mechanical approaches, are found to be the same 

within the error limits of each calculation. Therefore classical 

o*(l).s are used to calculate n*(l ,l) in this energy range. 

The values of Q*(l),s are listed in Table C-3. 

* * * * 
The ranges and increments chosen for R , P , A and E are 

tabulated in Table C-1. 

2. Inelastic Model 

In this model we assumed that every atom which does 11 touch 11 

the drop is absorbed and then reemitted randomly with the same 

energy to maintain the thermal equilibrium of the system. This 

corresponds to 1-Cose=l in Eq.C-8. Furthermore we assumed that 

an atom 11 touches 11 the drop if its closest distance of approach 

is smaller than the position of the minimum of the potential V(r). 

The atoms which do not 11 touch 11 the drop are assumed to be 

scattered elastically. The method of calculation is the same as 

explained in elastic classical model. Calculated Q*(l) values 

are listed in Table C-4. 
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3. Calculation of experimental radii 

To be able to make use of the results of above calculations, 

*(1,1) 
namely Q 1 s; for each experimental temperature, the drop 

radius has changed from 6A to 15A by lA steps. The parameters 

* * * * 
Rexp' Pexp' ixp and Texp were calculated for each radius . 

Successive interpolations of Q*(l, 1) over T*, p* ( and A* in 

quantum mechanical case) are used to calculate Q(l,l) as function 

of R for every experimental temperature. Comparison of these 

* ( 1 1 ) 
Q ' 1 s with experimental cross sections obtained directly from 

' the mobilities gives the 11 experimental 11 drop radii. 
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TABLE C-1 

The ranges and the increments chosen for the parameters 

* * * * * R , P , A , E and T in classical and quantum mechanical cal-

. (1,1) 
culat1ons of n . 

x Range of x 

* 
R 0.7-0.9 

p* o.o-ct.s 

* * 
£1 0.001-E

0 

* * * 
E2 E

0
-lOE

0 

* * * 
E3 lOE

0
-lOOE

0 

* T 0.13-0.80 

CLASSICAL 

xn 

n7T 
0. 1 (Cos + l)+O. 7 , n=O, 1,2 ,3,4 

4 
n7T 

0.25(Cos + 1 ) , n=0,1,2,3,4 
4 

* 0.001 /16 
E ( )n 
o E* 

, n=O, 1 , 2, ... , 16 

0 

lOE*(O.l)n/l 5 

0 
, n=O, 1 , 2, ... , 16 

lOoE*(o. l)n/4 
0 

, n= 0, 1 , 2, ... , 4 

n7T 
0.385(Cos +l)+0.13, n=0,1,2,3,4 

4 
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x 

* R 

* p 

* A 

* El 

* E2 

* 
E3 

* T 

TABLE C-1 continue 

QUANTUM MECHANICAL 

Range of x Xn 

nTI 
0.7-0.9 O.l(Cos +l)+0.7 

2 

nTI 
0.0-0.5 0.25(Cos +1)+0.7 

2 

nTI 
0.3-\.0 0.35(Cos +1)+0.3 

2 

same as the classical case 

same as the classical case ... 

same as the classical case ... 

same as the classical case ... 

, n=0,1,2 

, n=0,1,2 

,n+0,1,2 

* * * The total range of E is 0.001-lOOE
0 

where E
0 

is the 

value of the effective potential at the horizontal inflection 

point. 
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TABLE C-2 

The transport cross sections, Q(l) 's, calculated 
in elastic classical model. 

* * * * n/16 
R
0
=0.9 , En=E0(o.ool/E

0
) 

* p 
n 

* n=O n=l n=2 n=3 E n=4 
n 

n=O 1. 311 l. 290 1. 256 1. 235 1. 228 
n=l l .411 1 .372 l. 311 1 .274 1. 262 
n=2 1. 567 1 .499 l .389 1. 323 1.304 
n=3 l .82~ l. 705 1. 506 l .390 1 .356 
n=4 2.24 2.039 1.689 1.478 1.420 
n=5 2.856 2.556 1. 977 l. 602 1.499 
n=6 3.687 3.293 2.427 1. 778 1. 595 
n=7 4.774 4.273 3.090 2.030 1. 712 
n=8 6.190 5.555 4.006 2.396 1 .853 
n=9 8.017 7.228 5.240 2.931 2.021 
n=lO 10.397 9.398 6.865 3.697 2.230 
n=ll 13.482 12.230 8.988 4.760 2.478 
n=l2 17.472 15. 907 11. 786 6.208 2. 771 
n=l3 22.660 20. 723 15.437 8.144 3 .129 
n=14 29.368 26.942 20.237 10. 704 3.556 
n=l5 38.061 35.063 26.473 14. 086 4.054 
n=l6 49.224 45.499 34.641 18. 515 4.644 
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TABLE C-2 continue 

* RO = 0.9 , E~=lOE~(O.l)n/l 6 

p* 
n 

* 
En n=O n=l n=2 n=3 n=4 

n=O 1. 146 1 .145 1 .143 l.141 1. 140 
n=l 1. 150 1 .148 1. 145 1. 144 1. 143 

n=2 1 • 154 1. 152 1 .149 1 .146 1 .146 

n=3 1 . 158 1. 156 1 . 152 1 .150 1. 149 
n=4 1. 163 1. 160 1 .156 1. 153 1 . 152 
n=5 1 .169 1. 165 1 . 160 1. 157 1 . 155 
n=6 1 .174 1. 170 1 . 164 1. 160 1. 159 
n=7 1 . 181 1. 176 1 . 169 1. 165 1 .163 
n=8 1 .186 1 .182 1. 174 1. 169 1. 167 
n=9 1 . 195. 1. 190 1 .180 1 .174 l. 171 
n=lO 1. 205 1 .198 1 . 186 1.179 1. 176 
n=ll 1. 216 1 .207 1 . 194 1. 185 1. 182 
n=l2 1 .229 1 . 219 1. 202 1 .192 1. 188 
n=l3 1. 244 1. 232 1 • 213 1.200 1 . 196 
n=l4 1. 262 1.248 1. 224 1 .209 1 .204 
n=l5 1.284 1 .267 1 . 238 1. 220 1. 214 
n=l6 1. 309 1.289 1.255 1 .233 1.227 

* E~=lOOE~(O.l)n/ 4 
Ro = 0.9 , 

p* 
n 

E* 
n n=O n=l n=2 n=3 n=4 

n=O 1. 106 1.106 1.106 1. 106 1. 106 
n=l 1 .115 1 .114 1.114 1.114 1.114 

n=2 1 .123 1 .123 1 .122 1 . 121 1 . 121 
n=3 1. 133 1 . 133 1 . 131 1 .130 1. 130 
n=4 1. 146 1 . 145 1 .142 1.141 1. 140 
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TABLE C-2 continue 

* E~=E~(0.001/E;)n/l 6 
Rl = 0.8707 , 

* p 
n 

* 
En n=O n=l n=2 n=3 n=4 

n=O 1.449 1. 419 1 .370 1. 339 1 .330 
n=l 1. 587 1 .534 1. 451 1 .398 1. 381 
n=2 1. 796 1. 706 1 .559 1 .468 1.442 
n=3 2 .121 1 .972 1. 718 1 . 561 1 . 515 
n=4 2.610 2.377 1. 955 1.685 1. 607 
n=5 3.302 2.970 2.309 1 .852 1. 718 
n=6 4.228 3.789 2.829 2.079 1 .855 
n=7 5.431 4.872 3.569 2.393 2.019 
n=8 6.988 6.286 4.572 2.829 2.218 
n=9 8.993 8.117 5. 917 3.437 2.453 
n=l 0 11 . 575' 10.475 7.679 4.275 2.741 
n=ll 14.906 13.544 9.974 5.419 3.079 
n=l2 19.191 17.480 12. 961 6.947 3.489 
n=l3 24. 688 22.560 16.852 8.992 3.981 
n=l4 31 .792 29 .163 21.902 11.676 4.552 
n=l5 40.893 37.668 28.503 15. 201 5.237 
n=l6 52.695 48.635 36.965 19.796 6.063 

* E*=lOE*(o l)n/l 6 
R

1 
= 0.8707 , 

n 0 · 

* 
Pn 

* 
En n=O n=l n=2 n=3 n=4 

n=O 1 .204 1 .202 l .199 l .197 1 .196 
n=l 1. 210 1 .208 1. 204 1. 201 1 .200 
n=2 1. 215 1. 212 1 .208 1 .206 1. 205 
n=3 1. 221 1 • 219 1. 213 1 . 210 1. 209 
n=4 1. 228 1. 225 1. 219 1. 214 1. 213 
n=5 1. 235 1 . 231 1 .225 1. 220 1 .218 
n=6 1. 243 l .238 1 .230 l. 225 l .223 
n=7 1. 253 l .247 1. 237 1 . 231 1.229 
n=8 1. 263 1. 257 1 .245 1 .238 l. 235 
n=9 1. 275 1. 267 1. 254 1. 246 1 .242 
n=lO 1. 289 1. 280 1 .264 1.253 1. 250 
n=ll 1 .306 1 .294 1 .274 1 .262 1.258 
n=l2 1 .325 1. 311 1 .287 1. 273 1.268 
n=l3 1. 349 1. 331 1 .303 1.285 1.280 
n=l4 1. 376 1. 355 1 .322 1.300 1. 293 
n=l5 1. 410 1 .385 1.344 1.318 1. 310 
n=l6 1 .447 1 .418 1 .368 1.339 l. 330 



94. 

TABLE C-2 continue 

* E~=lOOE~(O.l)n/ 4 
R
1 

= 0.8707 , 

* Pn 

* En n=O n=l n=2 n=3 n=4 

n=O 1 .148 1 .148 1 .148 1. 148 1 .148 
n=l 1. 159 1 . 159 1 .158 1. 158 1. 158 
n=3 1 .186 1 .185 1 .184 1. 182 1. 182 
n=4 1. 204 1 .202 1 .199 1. 197 1 .196 

* * * * n/16 R2 = 0.8000 , En=E0(0.001;E0) 

* Pn 

* 
En n=O 

' 
n=l n=2 n=3 n=4 

n=O 1 .872 1 .820 1. 729 1 .674 1. 655 
n=l 2 .120 2.035 1 .887 1.789 1. 758 
n=2 2.461 2.327 2.087 1. 927 1.878 
n=3 2.942 2.738 2 .361 2 .103 2.023 
n=4 3.606 3 .311 2.737 2.328 2 .199 
n=5 4.497 4.091 3.254 2.616 2.412 
n=6 5.662 5 .130 3.958 2.988 2.668 
n=7 7. 149 6.483 4.905 3.471 2.975 
n=8 9.095 8.231 6.155 4.099 3. 341 
n=9 11. 559 10.475 7.796 4. 916 3. 773 
n=lO 14.696 13.350 9.924 5.967 4.289 
n=ll 18. 701 17. 011 12. 672 7.380 4.890 
n=l2 23.754 21.689 16.205 9.223 5.629 
n=l3 30.270 27.661 20.747 11. 594 6.496 
n=l4 38.430 35.256 26.579 14.684 7.520 
n=l5 48.890 44.932 34 .106 18.670 8.723 
n=l6 62.224 57.409 43.694 23.827 10. 133 
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TABLE C-2 continue 

* R
2 

= 0.8000 , E~=lOE~(O.l)n/l 5 

* p 
n 

* 
En n=O n=l n=2 n=3 n=4 

n=O 1. 375 1. 372 1.368 1 .363 1. 363 
n=l 1 .385 1. 381 1 .376 1.372 1. 370 
n=2 1 .395 1 .391 1 .384 1.379 1. 378 
n=3 1 .407 1.402 1 .394 1.388 1 .386 
n=4 1. 419 1 . 414 1 .404 1. 398 1. 386 
n=5 1 .434 1 .427 1. 415 1.408 1.405 
n=6 1 . 451 1.442 1.428 1. 419 1. 415 
n=7 1.469 1 .459 1 .436 1.430 1 .427 
n=8 1 .490 1 .479 1 .458 1.444 1 .439 
n=9 1. 514 1 . 501 1.477 1.460 1 .454 
n=lO 1 .544 1. 527 1.498 1.477 1 .471 
n=ll 1. 578 1 .558 1. 522 1.498 1 .491 
n=l2 1 . 619 1. 595 1. 552 1. 522 1. 513 
n=l3 1 .674 1 .639 1. 587 1. 552 1 . 541 
n=l4 1. 734 1 .697 1 .630 1. 587 1. 574 
n=l5 1.806 1. 762 1. 680 1 .630 1 . 614 
n=l6 1 .876 1 .825 1. 731 1. 673 1. 654 

* E~=lOOE~(O.l)n/ 4 
R

2 
= 0.8000 , 

* 
Pn 

* E n=O n=l n=2 n=3 n=4 
n 

n=O 1. 272 1 .272 1. 272 1. 271 1. 271 
n=l 1. 293 1. 292 1. 291 1. 291 1. 290 
n=2 1. 316 1. 315 1 .313 1. 312 1. 312 
n=3 1. 342 1 . 341 1 .338 1 .336 1. 335 
n=4 1 .375 1.372 1 .367 1 .363 1 .362 
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TABLE C-2 continue 

* E~=E~(O.OOl/E~)n/l 5 
R
3 

= 0.7293 , 

* pn 

* 
En n=O n=l n=2 n=3 n=4 

n=O 2.458 2.383 2.244 2.144 2.114 
n=l 2.840 2.724 2.506 2.350 2.302 
n=2 3.333 3 .159 2.826 2.585 2.508 
n=3 3. 991 3.739 3.242 2.873 2.754 
n=4 4.862 4.508 3.787 3.232 3.050 
n=5 5.998 5. 521 4. 501 3.679 3.403 
n=6 7.463 6.836 5.435 4.237 3.822 
n=7 9.338 8.526 6.652 4.937 4.321 
n=8 11. 719 10.687 8.223 5.819 4.911 
n=9 14.733 13.443 10.249 6.922 5.605 
n=lO 18.561 16.943 12. 843 8.329 6.425 
n=ll 23. 395 21 .384 16. 168 l 0.106 7.396 
n=l2 29.480 26.995 20.408 12. 377 8.533 
n=l3 37 .166 34 .119 25.796 15. 272 9.877 
n=l4 46.871 43.064 32.667 18. 934 11 .459 
n=l5 59.102 54.418 41 .390 23.623 13.320 
n=l6 74.656 68.722 52.471 29.589 15.496 

* R
3 

= 0.7293 , E~=lOE~(O.l)n/l 5 

* p 
n 

* E n=O n=l n=2 n=3 n=4 
n 

n=O l. 603 l. 599 l .592 l. 585 1.584 
n=l l. 618 l . 614 l .606 l. 599 l. 596 
n=2 l. 636 l .630 l .620 l. 612 l. 610 
n=3 l. 655 l .648 l .636 l .626 l. 624 
n=4 l. 676 l .669 l .653 l .643 l. 639 
n=5 l. 699 l. 691 l .673 1.660 l. 656 
n=6 1. 727 l. 716 l .695 1.680 l. 674 
n=7 l. 757 l. 744 l. 720 l. 701 l .695 
n=8 1.793 l. 778 l .748 1. 725 l. 719 
n=9 l .841 l .816 1.780 l. 753 l. 745 
n=lO l .893 l .868 l . 818 l. 785 l. 776 
n=ll 1..955 l. 925 l .869 l .824 l .812 
n=l2 2.029 l. 993 l. 925 l .874 l .860 
n=l3 2 .130 2.075 l. 993 l. 932 l. 914 
n=l4 2. 241 2 .186 2.074 2.001 l. 979 
n=l5 2.365 2.301 2 .166 2.081 2.057 
n=l6 2.463 2.396 2.235 2 .152 2.123 
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TABLE C-2 continue 

* * * n/4 
R
3 

= 0. 7293 , En =lOOE
0

(0. l) 

* 
Pn 

* E n=O n=l n=2 n=3 n=4 
n 

n=O l. 434 l .436 1.436 1.435 1.435 
n=l l .469 l .469 l .468 l .467 l .467 
n=2 l. 507 1.506 l .503 l. 501 l . 501 
n=3 l. 550 1.548 1.544 l. 540 1.540 
n=4 l. 603 l. 599 l. 592 l. 586 1.584 

* * * * n/16 
R
4 

= 0.7000 , En=Eo(0.001/E ) 
0 * 

' 
p 
n 

* E n=O n=l n=2 n=3 n=4 
n 

n=O 2.767 2.678 2.514 2.397 2.357 
n=l 3.216 3.082 2.832 2.651 2.588 
n=2 3.786 3.589 3. 213 2.936 2.840 
n=3 4.533 4. 251 3.700 3.283 3.140 
n=4 5.507 5. 119 4.329 3.710 3.496 
n=5 6.768 6.248 5 .142 4.239 3.921 
n=6 8.386 7. 701 6.194 4.893 4.424 
n=7 10.445 9.565 7.546 5. 706' 5.021 
n=8 13. 051 11. 935 9.284 6.716 5.724 
n=9 16.352 14.945 11 .506 7.976 6.553 
n=lO 20.520 18. 751 14.340 9.550 7.529 
n=ll 25.778 23.584 17.954 11 .522 8.639 
n=l2 32.373 29. 671 22.554 14.035 l 0. 024 
n=l3 40.680 37.321 28.387 17.200 11. 619 
n=l4 51.134 47.000 35.782 21.196 13. 476 
n=l5 64.309 59.210 45 .177 26.250 15.667 
n=l6 80.797 74.552 57.018 32.590 18.205 
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TABLE C-2 continue 

* * * n/16 
R
4 

= 0.7000 , En=lOEo(O.l) 

* p 
n 

* n=O n=l En n=2 n=3 n=4 

n=O l. 719 l. 711 l. 706 l. 699 l .696 
n=l l. 738 l. 732 l. 723 l. 715 l. 711 
n=2 l. 758 l. 752 1. 740 l . 731 1. 727 
n=3 1. 784 l. 773 l. 759 l. 749 l. 744 
n=4 1.808 l. 799 1.780 1.768 l. 763 
n=5 1.838 l .826 1.806 l. 789 l. 783 
n=6 l .871 l .857 1.833 l .814 l .805 
n=7 l. 909 l .893 1.863 l .842 l .833 
n=8 l. 954 l. 934 1.898 l .872 l .862 
n=9 2.0~ l .982 l. 939 l .900 l .895 
n=lO 2.0 2.048 l .987 l. 949 1. 934 
n=ll 2 .157 2 .119 2.043 l. 998 l .980 
n=l2 2.250 2.205 2 .123 2.056 2.036 
n=l3 2.359 2.307 2.210 2 .137 2 .110 
n=l4 2.516 2.447 2.312 2.225 2 .193 
n=l5 2.664 2.587 2.425 2.327 2.290 
n=l6 2. 770 2.693 2.539 2.410 2.370 

* 
, E*=lOOE~(O.l)n/ 4 

R4 = 0.7000 
n 

* p 
n 

* 
En n=O n=l n=2 n=3 n=4 

n=O . l. 520 l .520 l . 519 l. 519 l. 518 
n=l l. 560 l .559 l. 558 l. 556 1.556 
n=2 1. 604 l. 603 1.600 1.598 l. 597 
n=3 l. 656 l .653 l. 649 l .645 l .643 
n=4 1. 720 l . 715 l. 706 l. 700 l .697 
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TABLE C-3 

( 1) 
The transport cross sections, Q 's, calculated 

in elastic quantum mechanical model. 

* * * * 
Ro = 0.9 , Po = 0.5 R

0 
= 0.9 ' p = 0.25 

1 
* /\. * /\. 
n n 

E* n=O n=l n=2 n=O n=l n=2 
n 

n=O 1. 335 1 . 361 1 .368 1. 250 1 .283 1 .300 
n=l 1 .463 1. 479 1 .503 1.369 1. 381 1 .395 
n=2 1.680 1. 743 1. 740 1 .490 1. 525 1. 530 
n=3 2.104 2.052 2.033 1. 729 1. 766 1. 668 
n=4 2.859 2.785 2.231 1. 401 1 .426 1. 977 
n=5 2 .13~ 3.920 3.040 1.472 1. 626 2.524 
n=6 3.052 4.152 3. 231 1 .660 2 .156 2. 585 
n=7 4.891 6.273 5.229 1. 970 3 .161 2.567 
n=8 8.229 6.551 6.389 2.388 4.897 3.287 
n=9 14. 391 9.934 6.075 3.420 8.337 5.414 
n=lO 15.598 4.930 11. 585 5. 538 9.950 9.670 
n=ll 21.659 12.274 19.480 10. 681 15.483 9.583 
n=l2 28.203 20.369 10.790 18.189 16.670 9.932 
n=l3 20.232 34.021 25 . 992 30.649 4.965 17.005 
n=l4 8.993 62.747 39.509 51 .404 5.801 25.984 
n=l5 6Al.2 106.440 65.917 61 . 167 7.616 53.332 
n=l6 . 9.685 56.432 31.832 85 . 361 8.451 18. 977 
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TABLE C-3 continue 

* * * * Ro = 0.9 ' p 2 = 0.0 R
1 

= 0.8 , Po = 0.5 

* * A An n 
* E n=O n=l n=2 n=O n=l n=2 
n 

n=O 1. 255 1. 255 1 .273 1. 962 1. 955 1. 983 
n=l 1. 296 1 .329 1 .338 2.370 2.368 2.258 
n=2 1. 407 1 .403 1.428 3.059 2.912 2.447 
n=3 1. 482 1.528 1 .522 4.140 3.492 2.748 
n=4 1. 280 1. 211 1. 612 4.967 3.836 3.809 
n=5 1.332 1. 210 1 .867 5.687 4.443 5 .136 
n=6 1.407 1. 222 2.423 9.053 5. 720 6.177 
n=7 1. 509 1. 232 1 . 915 11. 928 7.027 7.632 
n=8 1. 657 1. 246 1.762 9.755 9.356 10. 613 
n=9 1 . 86"2 1. 291 1 .857 5.402 14.407 14.912 
n=lO 2 .135 1 .353 1. 943 7.616 21 . 149 17.807 
n=ll 2.463 1 .448 2.058 8.402 34.048 26. 166 
n=12 2.780 1. 561 2 .193 11 . 923 14.763 31. 575 
n=l3 3.032 1.606 2.391 16. 188 13.693 22.830 
n=14 3.200 1. 580 2.617 26.681 21.683 38.784 
n=l5 3.315 1. 528 2.924 34.259 37.026 71 . 711 
n=l6 3.383 1 .478 3.280 63.806 38.069 77.174 

* * * * Rl = 0.8 ' P1 = 0.25 R
1 

= 0. 8 , p2 = 0.0 

* * A A 
n n 

* E n=O n=l n=2 n=O n=l n=2 
n 

n=O 1. 782 1 .801 1 .812 1 .688 1. 710 1. 731 
n=l 2.042 2.079 2.009 1 .890 1. 927 1 .893 
n=2 2.496 2.490 2. 169 2.252 2.243 1.904 
n=3 3.228 3.926 2.199 2.696 2.642 2 .158 
n=4 4.004 3.259 2.607 3.283 2.885 2.037 
n=5 3.254 4.785 3.646 1 .824 3.531 2.365 
n=6 4.830 4.048 4.698 2.045 4.117 2.946 
n=7 7.711 3. 778 5.090 2.292 6.368 3.937 
n=8 12.088 4.154 5.836 2.750 4.287 5.075 
n=9 24.304 5.353 7.324 3. 531 3. 521 4.422 
n=l 0 11. 280 6. 951 12.265 6.212 3.728 3.279 
n=ll 10. 316 14.035 20.251 7 .126 4.210 3.786 
n=12 7.962 24.587 16.023 8.446 4.730 3.456 
n=13 14.979 36. 167 20.721 17.356 5.338 3.717 
n=14 15.745 68. 121 33.283 34. 186 6.024 3.834 
n=15 6.513 82.634 54.340 60.969 6.664 3.918 
n=16 6.794 50.643 83. 772 96.472 7 .140 4.064 



101 

TABLE C-3 continue 

* * * * R
2 

= 0.7 , Po = 0.5 R2 = 0. 7 , pl = 0. 25 

* * An An 

* En n=O n=l n=2 n=O n=l n=2 

n=O 2.975 2.997 3.017 2.645 2.675 2.652 
n=l 3.840 3.825 3.390 3.319 3.259 2.881 
n=2 5.262 4.154 3.778 4.209 3.932 3.046 
n=3 5.605 4.390 5.258 4.947 3.687 4.105 
n=4 6. 151 4.533 6.427 5.905 3.803 4.542 
n=5 5. 251 6.548 7.382 6.633 4.196 5.510 
n=6 5.041 9.588 9.999 5.799 6.057 6.780 
n=7 '15.014 13.955 12.527 9.432 9.351 9.064 
n=8 11 .245 15.616 15.596 9.186 11. 787 10. 122 
n=9 13.51~ 23.862 17. 316 5.704 19. 076 9.808 
n=lO 33.377 13.279 18. 193 7.584 17.784 18. 965 
n=ll 37. 574 25.090 26.288 8.581 38.868 27.447 
n=l2 63.407 39.966 45.988 13.888 10.410 17. 167 
n=l3110.015 61.002 28.938 19. 971 11. 633 27.220 
n=l4 90.600 97. 770 67.338 29.059 16.786 47.432 
n=l5 69.687 75.449 116.604 40.412 24.573 76.008 
n=l6 54.570 66. 186 144.950 75.665 47.556 98.872 

* * R
2 

= 0.7 , p
2 

= 0.0 

* A 
n 

* E n=O n=l n=2 
n 

n=O 2.459 2.475 2.496 • 
n=l 2.925 2.948 2.610 
n=2 3.617 3.237 2.936 
n=3 4.309 3.294 3.308 
n=4 5.331 3.415 3.939 
n=5 6. 061 3.283 4.275 
n=6 6.895 3.142 4.246 
n=7 5.809 3.448 5.422 
n=8 13.012 4.480 7.233 
n=9 5 .361 4.630 10.429 
n=lO 6.087 6.434 8.842 
n=ll 6.920 10.080 7.293 
n=l2 7.748 12. 139 6.497 
n=l3 8.667 22.282 9.497 
n=l4 9.438 36.066 15.945 
n=l5 10.011 53. 194 23.029 
n=l6 10.364 78.026 34.079 
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TABLE C-4 

The transport cro~s sections, Q(l)•s, 
calculated in inelastic classical model . 

* * * * n/16 
R
0
=0.9 , En=E0(0.001/E

0
) 

* p 
n 

* n=l n=2 n=3 n=4 EO n=O 

n=O 1. 598 1. 558 1.490 1.445 1 .432 
n=l 1.774 1 . 710 1. 602 1. 533 1. 517 
n=2 2.034 1. 929 l. 750 1. 633 1 .596 
n=3 2.418 2.250 1. 953 1. 757 1. 695 
n=4 2.9~9 2. 722 2.242 1. 914 1 .810 
n=5 3.760 3.393 2.662 2. 119 1. 945 
n=6 4.784 4.316 3.266 2.393 2 .105 
n=7 6.097 5. 510 4.111 2.767 2.293 
n=8 7.781 7.046 5.246 3.284 2.516 
n=9 9.947 9.028 6.731 4.000 2.780 
n=10 12.735 11 .585 8.664 4.982 3.093 
n=ll 16. 326 14.892 11. 791 6.307 3.466 
n=l2 20.955 19. 166 14. 451 8.069 3.909 
n=l3 26.906 24.691 18.710 10. 389 4.438 
n=l4 34.627 31 . 851 24.258 13.434 5.069 
n=l5 44.535 41.111 31 .487 17.423 5.823 
n=l6 57.393 53 .119 40.912 22.657 6.724 
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TABLE C-4 continue 

* E~=lOE~(O.l)n/l 5 
R

0 
= 0.9 , 

* p 
n 

* E 
n 

n=O n=l n=2 n=3 n=4 

n=O 1.267 1. 264 1. 258 1. 254 1. 253 
n=l 1. 272 1.268 1. 261 1. 257 1. 255 
n=2 1. 278 1 .274 1. 266 1.260 1. 259 
n=3 1. 284 1 .279 1. 271 1 .264 1. 262 
n=4 1.292 1. 287 1.276 1. 269 1. 267 
n=5 1 .302 1.294 1 .283 1. 275 1 .272 
n=6 1.313 1.304 1. 290 1 • 281 1. 278 
n=7 1.325 1. 315 1 .299 1 .288 1. 284 
n=8 1.339 1.328 1. 310 1. 297 1 .292 
n=9 1.356 1 .343 1. 321 1 .307 1.302 
n=lO 1 .3,6 1. 361 1 .335 1.318 1. 313 
n=ll 1.400 1.382 1. 352 1. 332 1 .326 
n=l2 1 .427 1 .407 1 . 371 1.348 1.340 
n=l3 1 .460 1.435 1 .393 1 .367 1 .358 
n=l4 1.497 1 .468 1.420 1.388 1 .378 
n=l5 1. 541 1. 508 1 .450 1. 414 1.402 
n=l6 1. 591 1 . 551 1 .485 1 .443 1.430 

* , E~=lOOE~(O.l)n/ 4 R
0 

= 0.9 

* 
Pn 

* E 
n 

n=O n=l n=2 n=3 n=4 

n=O 1. 238 1.238 1 .237 1. 237 1 .236 
n=l 1. 240 1.240 1. 239 1. 238 1. 238 
n=2 1. 245 1.244 1 .242 1. 241 1.240 
n=3 1. 253 1 . 251 1 .248 1. 245 1.245 
n=4 1. 267 1. 263 1 .258 1. 254 1. 253 
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TABLE C-4 continue 

* R
1 

= 0.8707 , 
* * * n/16 

En=E0(o.ool/E0) 

* p 
n 

* 
E n=O n=l n=2 n=3 n=4 
n 

n=O 1.821 1. 768 1. 678 1.623 1.604 
n=l 2.046 1. 965 1 .826 1.733 1.704 
n=2 2.371 2.243 2.018 1 .869 1. 821 
n=3 2.834 2.636 2.278 2.033 l. 954 
n=4 3.480 3 .190 2.635 2.239 2. 111 
n=5 4.351 3.954 3 .132 2.502 2.294 
n=6 5.486 4.971 3.821 2.844 2.510 
n=7 6.935 6.287 4.757 3.296 2.764 
n=8 8.787 7.977 6.000 3.898 3.065 
n=9 11. 152 10. 143 7.620 4.703 3.420 
n=l o 14. 1 ~o 12.922 9.718 5. 779 3.841 
n=ll 18. 054 16.489 12.430 7.207 4.339 
n=l 2 23. 011 21 .067 15.935 9.087 4.931 
n=l3 29.355 26.947 20.466 11. 546 5.634 
n=l4 37.490 34.451 26.323 14.753 6.470 
n=l5 47.871 44.215 33.871 18.929 7.464 
n=l6 61 173 56. 610 43.696 24.363 8.648 

* <=10E~(O.l)n/l 6 R1 = 0.8707 , 

* 
pn 

E* 
n 

n=O n=l n=2 n=3 n=4 

n=O 1 .363 1 .359 1. 351 1 .346 1 .344 
n=l 1 .370 1 .365 1 .356 1 .350 1. 348 
n=2 1 .377 1 .372 1 .362 1. 355 1 .353 
n=3 1 .387 1 .380 1 .369 1. 361 1.358 
n=4 1.398 1 .389 1 .376 l. 368 1. 364 
n=5 1.411 1. 401 1 .386 1 .375 1. 371 
n=6 l .425 1 . 415 1. 397 1.384 1 .380 
n=7 1.443 1.430 1. 401 1. 394 1. 389 
n=8 1 .463 1 .449 1 .423 1. 406 1. 401 
n=9 1.487 1 .470 1.440 1. 421 1. 414 
n=lO 1. 515 1 .495 1.460 1 .438 1 .430 
n=ll l. 548 1. 524 1.483 1 .457 1 .448 
n=l2 1.586 1 .558 l. 511 1.480 1 .470 
n=l3 1. 632 1. 599 1.544 1. 506 l .495 
n=l4 1. 685 1 .647 1 .582 1. 538 1.524 
n=l5 1. 747 1.702 1. 626 l. 576 1. 559 
n=l6 l. 815 1. 763 1. 674 1. 616 1. 598 
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TABLE C-4 continue 

* R
1 

= 0.8707 , 
* * n/4 

En =lOOEo(O. l) 

* pn 

* En n=O n=l n=2 n=3 n=4 

n=O l. 323 l. 323 l .322 l. 322 l .322 
n=l 1.327 1.326 l. 325 1.324 l .324 
n=2 1.333 l. 331 1.329 1.328 1.328 
n=3 l. 343 l. 341 l .337 l .334 1.333 
n=4 1.363 l. 358 l. 351 1.346 1.344 

* * * * n/16 
R2 = 0.8000 , En=E0(0.001;E0) 

* 
' 

pn 

* En n=O n=l n=2 n=3 n=4 

n=O 2.478 2.395 2.247 2.144 2. 111 
n=l 2.819 2. 701 2.484 2.332 2.283 
n=2 3.307 3 .131 2.802 2.567 2.491 
n=3 3.956 3.701 3.210 2.849 2.730 
n=4 4.812 4.457 3.743 3.194 3.010 
n=5 5.923 5.448 4.440 3.620 3.336 
n=6 7.346 6.731 5.355 4.150 3.719 
n=7 9.137 8.373 6.547 4.818 4.167 
n=8 11 .448 10.467 8.091 5.664 4.694 
n=9 14.350 13. 124 l 0 .077 6.741 5.314 
n=lO 18.018 16. 497 12.625 8.120 6.044 
n=ll 22.648 20. 779 15.879 9.886 6. 906 
n=l2 28.541 26.209 20.037 12. 150 7. 921 
n=l3 35.955 33 .103 25.347 15.055 9.118 
n=l4 45.334 41.853 32.124 18. 781 10.531 
n=l5 57.270 52.967 40.780 23.560 12. 191 
n=l6 72.456 67.080 51.787 29.689 14.171 



TABLE C-4 continue 

* E~=lOE~(O.l)n/l 5 
R

2 
= 0.8000 , 

* p 
n 

* 
En n=O n=l n=2 n=3 n=4 

n=O 1. 640 1 .634 1. 622 1. 613 1. 610 
n=l 1. 652 1 .645 1 . 631 1. 621 1 . 617 
n=2 1 .667 1.658 1. 641 1.630 1. 626 
n=3 1. 684 1. 674 1 .654 l. 641 l. 636 
n=4 l. 703 l. 691 1. 669 1. 654 l. 648 
n=5 1. 726 l. 712 l. 686 1.668 1.662 
n=6 l. 754 1. 737 l. 707 l. 685 1.679 
n=7 l. 786 l. 767 l. 731 l. 706 l. 698 
n=8 1.824 l .801 1. 759 l. 730 l. 720 
n=9 l .86~ l. 841 l. 792 l. 757 1.746 
n=lO 1. 92 l .889 l. 831 l. 790 1. 777 
n=ll l. 984 1. 946 l .878 l .829 1. 814 
n=l2 2.059 2.013 l. 932 l .875 1.857 
n=l3 2.146 2.092 l. 997 l. 929 l. 909 
n=l4 2.249 2 .185 2.072 l . 994 l. 969 
n=l5 2.364 2. 291 2. 159 2.068 2.039 
n=l6 2.477 2.394 2.246 2 .143 2.110 

* ~ E;=lOOE~(O.l)n/ 4 
Rn = 0.8000 

* p 
n 

* 
En n=O n=l n=2 n=3 n=4 

n=O l. 570 l. 569 1. 568 l .568 l. 567 
n=l l. 576 l. 575 l. 573 l. 571 l. 571 
n=2 l. 586 l. 585 l. 581 1. 578 l. 577 
n=3 l. 605 l. 602 l. 595 l. 591 1.589 
n=4 1.640 l .633 l. 621 l. 613 l . 610 
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TABLE C-4 continue 

* * * * n/16 
R
3 

= 0.7293 , En=E
0

(0.001;E
0

) 

* 
Pn 

* 
E n=O n=l n=2 n=3 n=4 
n 

n=O 3.345 3.027 3.234 2.867 2.818 
n=l 3.818 3.368 3.665 3.146 3.076 
n=2 4.494 3.844 4.276 3.516 3.408 
n=3 5.361 4.437 5.056 3.954 3.791 
n=4 6.471 5 .185 6.056 4.479 4.236 
n=5 7.883 6.132 7.322 5.115 4.754 
n=6 9.670 7.336 8.955 5.890 5.359 
n=7 11. 924 8.846 11. 009 6.840 6.067 
n=8 14.759 10.810 13.603 8.011 6.895 
n=9 18.324 13.276 16. 873 9.463 7.864 
n=lO 22.800 16.399 20. 991 11. 271 9.001 
n=ll 28.422 20.353 26.174 13. 531 10.333 
n=l2 35.486 25.359 32.704 16L364 11 .896 
n=l3 44.357 31.670 40.923 19. 929 13.730 
n=l4 55.504 39.696 51.271 24.421 15.883 
n=l5 69.505 49.840 64.303 30.095 18.408 
n=l6 87 .114 62.569 80. 715 37.273 21.379 

* E*=lOE*(o l)n/l 6 
R3 = 0.7293 , n 0 • 

* p 
n 

* 
E n=O n=l n=2 n=3 n=4 
n 

n=O 2.003 l. 994 l. 977 l. 964 l. 960 
n=l 2.022 2. 012 l. 992 l. 977 l. 972 
n=2 2.046 2.034 2.010 l. 993 l. 987 
n=3 2.073 2.059 2.032 2.011 2.004 
n=4 2 .104 2.088 2.056 2.033 2.025 
n=5 2. 142 2 .123 2.085 2.058 2.049 
n=6 2. 186 2 .164 2.120 2.087 2.077 
n=7 2.239 2.212 2 .160 2. 121 2.110 
n=8 2.301 2.269 2.208 2 .162 2.148 
n=9 2.375 2.337 2.226 2.210 2.194 
n=lO 2.463 2.418 2.333 2.269 2.249 
n=ll 2.568 2.515 2.413 2.3.37 2.314 
n=l2 2.693 2.629 2.509 2.418 2 .391 
n=l3 2.840 2.765 2.622 2.514 2.483 
n=l4 3. 010 2.922 2.753 2.627 2.590 
n=l5 3. 196 3.095 2.900 2.756 2.712 
n=l6 3.357 3.244 3.034 2 .871 2.821 
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TABLE C-4 continue 

* E~=lOOE~(O.l)n/ 4 R
3 

= 0. 7293 , 

* p 
n 

* 
E n=O n=l 
n 

n=2 n=3 n=4 

n=O l .892 l .891 l .890 1.888 l .888 
n=l l . 901 1. 900 l .897 l .895 1.894 
n=2 l. 918 l. 915 l . 910 1.906 1.905 
n=3 l. 948 1.943 l. 934 l. 927 l. 924 
n=4 2.003 1.994 1.977 1. 964 l. 960 

* 
, E*=E;(0.001/E*)n/l 6 

R
4 

= 0.7000 
n O 

* 
Pn 

* 
En n=O' n=l n=2 n=3 n=4 

n=O 3. 791 3.664 3.423 3.248 3. 182 
n=l 4.332 4.157 3.824 3.572 3.483 
n=2 5. l 03 4.858 4.379 4.011 3.879 
n=3 6.081 5.742 5.064 4.528 4.337 
n=4 7.319 6.864 5.920 5. 146 4.866 
n=5 8.885 8.285 6.993 5.890 5.483 
n=6 l 0. 857 l 0 .080 8.345 6.789 6.202 
n=7 13.337 12.343 10.048 7.885 7 .041 
n=8 16.444 15. 189 12. 198 9.224 8.023 
n=9 20.344 18.765 14.909 l 0. 871 9.170 
n=lO 25.225 23.258 18.329 12.903 l 0. 512 
n=ll 31 . 340 28.899 22.689 15.424 12.084 
n=l2 39.000 35.951 28.076 18. 561 13. 924 
n=l3 48.593 44.863 34.905 22.477 16.079 
n=l4 60 . 574 56.022 43.572 27.381 18.605 
n=l5 75.667 70.033 54.426 33.535 21.560 
n=l6 94.556 87.645 68.209 41 .207 25.034 
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TABLE C-4 continue 

* E*=lOE*(o l)n/l 5 
R4 = 0.7000 , 

n O · 
* 

Pn 
* 

E 
n 

n=O n=l n=2 n=3 n=4 

n=O 2.188 2 .176 2 .159 2. 143 2 .137 
n=l 2. 212 2.200 2 .178 2 .159 2. 152 
n=2 2.240 2.226 2.199 2 .178 2 .170 
n=3 2.274 2.256 2.224 2.200 2. 191 
n=4 2.312 2.293 2.254 2.226 2.216 
n=5 2.358 2.335 2.289 2.257 2.245 
n=6 2.414 2.382 2.331 2.293 2.279 
n=7 2.473 2.441 2.381 2.336 2.319 
n=8 2.548 2. 510 2.439 2.386 2.366 
n=9 2.63~ 2.593 2.509 2.446 2.423 
n=lO 2.74 2.692 2.592 2.518 2.490 
n=l2 3.027 2.950 2.809 2.704 2.665 
n=l3 3.207 3.115 2.948 2.824 2. 777 
n=l4 3.413 3.306 3.110 2.964 2. 910 
n=l5 3.634 3. 513 3.290 3. 121 3.059 
n=l6 3.814 3.683 3.439 3.256 3 .189 

* E~=lOOE;(o.l)n/ 4 
R
4 

= 0.7000 , 

p~ 
* 

E 
n 

n=O n=l n=2 n=3 n=4 

n=O 2.055 2.054 2.052 2. 051 2.050 
n=l 2.066 2.064 2. 061 2.058 2.057 
n=2 2.086 2.083 2.077 2.072 2.071 
n=3 2 .122 2.116 2 .105 2.097 2.094 
n=4 2. 189 2 .178 2 .158 2 .143 2 .137 
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C 0 R R E C T I 0 N S 

1. Add "since there is no model independent theory to compare 

it with. But" after line 10 on page 50. 

2. Line 9 on page 51 should read "Ri -Rs for T<l.9K. The dashed lines 

taken from the similar graph for T>2.3K (see Fig.10) are also 

drawn for ,comparison." The existing line is incomplete. 
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