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This manuscript reports numerical investigations about the relative abundance and structure
of chaotic phases in autonomous dissipative flows, i.e. in continuous-time dynamical systems
described by sets of ordinary differential equations. In the first half, we consider flows contain-
ing “periodicity hubs”, which are remarkable points responsible for organizing the dynamics
regularly over wide parameter regions around them. We describe isolated hubs found in two
forms of Rössler’s equations and in Chua’s circuit, as well as surprising infinite hub cascades

that we found in a polynomial chemical flow with a cubic nonlinearity. Hub cascades converge
orderly to accumulation points lying on specific parameter paths. In sharp contrast with familiar
phenomena associated with unstable orbits, hubs and infinite hub cascades always involve stable

periodic and chaotic orbits which are, therefore, directly measurable in experiments. In the last
part, we consider flows having no hubs but unusual phase diagrams: a cubic polynomial model
containing T -points and wide regions of dense chaos, a nonpolynomial model of the Belousov–
Zhabotinsky reaction and the Hindmarsh–Rose model of neuronal bursting, both having chaotic
phases with “fountains of chaos”. The chaotic regions for the flows discussed here are different
from what is known for discrete-time maps. This forcefully shows that knowledge about phase
diagrams is quite fragmentary and that much work is still needed to classify and to understand
them.

Keywords : Hubs and spirals; Rössler oscillators; chemical oscillators; Hindmarsh–Rose neuronal
chaos; dense laser chaos; phase diagrams; global bifurcations; T -points; homoclinic orbits.

1. Introduction

Theoretical models of natural phenomena are rou-

tinely written nowadays in terms of the æquatio

differentialis introduced by Leibniz in 1676 [Ince,

1926; Franceschetti, 1999]. The immense utility

of differential equations in innumerable branches

of natural sciences has been a subject which has

received much attention and abundant illustration

for well over 300 years now [Segré, 2007]. In recent
decades, discoveries concerning properties of differ-
ential equations arise almost exclusively from math-
ematical studies requiring sophisticated techniques
and dealing mostly with unstable solutions and
nondirectly measurable properties.

All this progress notwithstanding, the purpose
of the present paper is to show that differential
equations still harbor unanticipated regularities.
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These novel regularities are not properties of iso-
lated solutions. They may be recognized by con-
templating the ordered way that large families of

solutions, periodic or not, organize themselves col-
lectively in parameter space. Extensive regions of
regularities can be easily recognized in phase dia-
grams computed with enough resolution to display
the chaotic regions and their inner structure. Regu-
larities emerge in parameter space as a result of the
self-organization of stable oscillations that, in prin-
ciple, should not be too difficult to observe in the
laboratory for a variety of popular oscillators across
all disciplines of natural sciences.

Our main purpose here is to describe the reg-
ular self-organization observed while studying sys-
tematically an elementary problem always faced
when simulating numerically natural phenomena
modeled by differential equations: the necessity to
discriminate and to classify periodic and aperiodic
(chaotic) asymptotic steady states supported over
extended parameter regions of interest.

The periodic or chaotic nature of steady states
is traditionally determined on a case-by-case exam-
ination by fixing parameters and investigating the
phase space, a space directly linked to the initial
conditions. However, over the past few years, it has
become increasingly easier to consider also the com-
plementary phase diagrams, i.e. to exploit detailed
tomographic views of the parameter space discrim-
inating periodic from aperiodic oscillations over
extended parameter regions [Bonatto et al., 2005,
2008; Bonatto & Gallas, 2007, 2008a, 2008b; Freire
et al., 2008; Ramı́rez-Ávila & Gallas, 2008, 2009].
These works report phase diagrams for a number
of prototypic oscillators like, for example, gas and
semiconductor lasers, a resistive circuit involving
a pair of diodes, variants of Chua’s circuit, atmo-
spheric and chemical oscillators, and a few other
oscillators. We briefly review what was found and
present new results.

An unexpected feature found in the phase dia-
gram of some oscillators is a focal point, a periodic-
ity hub. Periodicity hubs were originally described
for piecewise-linear electrical circuits [Bonatto &

Gallas 2008; Ramı́rez-Ávila & Gallas 2008, 2009].
Figure 1 is a magnification of Fig. 2(b) of [Bon-
atto & Gallas, 2008] and shows a periodicity hub
located at the focal point F . Apart from illustrating
the organization around a hub, the main purpose
of Fig. 1 is to define notation for two fundamental
symmetry surfaces: S and h. The surface S divides
phase diagrams into a tame region, here to the left
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Fig. 1. The generic structure of parameter space around a
focal hub in F . The symmetry surface S passes through F

and through the colored dots which mark the main heads of
the first few shrimps of an infinite sequence contained in the
spirals curling up around F . Dots of identical colors lie on
the same spiral. The surface S divides phase diagrams into a
tame region, here to the left of S, and into a more complex

region, to its right. The line h is the accumulation limit for
pairs of legs emanating from every shrimp with main head
centered in S, above and below F . The line h divides the
complex region into two “mirror” sectors, indicated by the
numbers 1 and 2 inside the circles. Hinged in F we draw a
generic line g. Bifurcation diagrams along g display the same
window structure as long as g remains on the left of S. This
invariance implies the existence of a symmetrical third sector,
indicated by the number 3 placed on both sides of g.

of S, and into a more complex region, to its right.
The line h is the accumulation limit for pairs of
legs emanating above and below from every shrimp
centered along S. The line h divides the complex
region into two “mirror” sectors, indicated by the
numbers 1 and 2 inside circles. Microscopically, h

is like a continuous string folded infinitely often to
form a characteristic sheave of homoclinic loci, i.e. a
continuous line emanating from a common saddle-
focus equilibrium and containing an infinite number
of bendings or, equivalently, folds, at regularly dis-
tributed points forming a mesh in the parameter
plane. Except close to the folding, near a hub h

looks locally like a “homoclinic doublet”, namely
like a very narrowly-packed pair of curves running
parallel until meeting each other to form the fold.
At least numerically, periodicity hubs seem to be
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located precisely at these bendings of the homo-
clinic locus. Attached to F we draw a generic line
g that may be rotated up and down around F . We
call it “generic” because bifurcation diagrams along
g display the same window structure as long as g

remains on the left of S. This invariance implies the
existence of a self-symmetrical third sector, which
we indicate by the number 3 placed on both sides of
g. As corroborated by several of the figures below,
the relative orientation of the symmetry surfaces
S and h defines the generic parameter structuring
observed around hubs.

As shown by Fig. 1, the organization around
F is quite ordered and symmetric, with spiral nest-
ings emanating from F or, equivalently, converging
towards F . By suitably tuning parameters, peri-
odic oscillations (obtained for parameters inside the
dark spirals in Fig. 1) may have their waveform and
periodicity changed continuously without bound
and without ever crossing the vast surrounding
chaotic phase (represented by the colors in the
figure). The ordered organization around hubs is
“auto-regulated” in the sense that it exists intrin-
sically, without need of any external force to drive
it. Hubs and their selforganization are character-
istic properties of certain flows. They are not dif-
ficult to detect numerically, despite the fact that
there is no theoretical recipe to find them. Based on
their relative abundance in numerical experiments,
we expect hubs and their spirals to occur frequently
in applications.

As mentioned above, the existence of isolated

hubs was originally observed for piecewise-linear
electrical circuits. A novelty reported here is that
hubs appear not only isolated but in fact, quite
surprisingly, form infinite hierarchical cascadings
which accumulate towards a master hub or, equiv-
alently, arise from it. Such master hub acts like a
sort of main source of an infinite hub network (see
Fig. 7 below). The accumulation process underly-
ing hub cascades leads to characteristic parameter
paths, loci, with remarkably fertile structure. Every
individual hub is the termination of a family of peri-
odic orbits with waveforms evolving continuously
and with period growing more and more, diverg-
ing without any bound when approaching the focal
hub.

This paper is organized as follows. To setup the
scenario, Sec. 2 describes phase diagrams with iso-
lated hubs and infinite sequences of spirals attached
to them. Section 3 presents a first key novel
result, a dynamical system with infinite sequences

of hub cascades each one with infinite subcas-
cades, ad infinitum, all accumulating in specific
parameter points. Section 4 considers the so-called
T -point in the phase diagram of a cubic polyno-
mial model. Infinite sequences of spirals where pre-
viously observed in connection with such T -points
[Glendinning & Sparrow, 1986], which are termi-
nal points associated with particular heteroclinic
loops in parameter space. The purpose of Sec. 4
is to present numerical evidence that the infinite
sequences of unstable orbits associated with hete-
roclinic loops of a certain kind do not seem to be
the cause of hubs. Section 5 presents our second key
novel result, namely a flow containing a wide region
of dense chaos, i.e. continuous chaos without peri-
odic windows. Section 6 contains our conclusions.

Before proceeding, recall that there are no the-
oretical tools to predict the location and structure
of chaotic regions or phases. Thus, one needs to
resort to numerical simulations to find them, which
is what we do here. In fact, the theory is in such a
primitive stage that it is still very common to just
state that “chaos is a property of nonlinear differ-
ential equations” instead of trying to move to the
next logical level of addressing difficult and pressing
questions: to find a theoretical way to predict when
and where chaos should be expected in phase dia-
grams of physical systems governed by differential
equations, and to anticipate the possible structure
of such diagrams.

2. Isolated Hubs for Two Rössler’s

Oscillators

This section reviews the phenomenology associated
with hubs that are “macroscopically isolated” in
parameter space, in the sense that no other hubs
are detectable nearby. Instead of reviewing the orig-
inal piecewise-linear circuits already mentioned, we
consider here two normal forms of Rössler’s oscil-
lators. These oscillators are of interest because
their equations of motion have continuous deriva-
tives but not the symmetries of the piecewise-linear
circuits.

Figure 2 depicts phase diagrams with progres-
sively higher resolution for the dynamical system
defined by the equations

ẋ = −y − z, (1)

ẏ = x + ay, (2)

ż = bx + z(x − c), (3)
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where a, b, c are control parameters. This is one
of the prototypical models introduced by Rössler
[1976, 1979a, 1979b] to mimic continuous-time
chaos. In the literature, all these models are referred
to indistinctly as “Rössler’s oscillators”. The above
normal form was investigated previously by Fraser
and Kapral [1982], who reported a phase diagram
displaying a few stability boundaries for oscillations
with the simplest waveforms.

We computed the Lyapunov spectra for
Eqs. (1)–(3) after fixing b = 0.4 and integrating
them for a rectangular mesh of typically 800 ×

800 points in parameter space, using a fourth-
order Runge–Kutta scheme with fixed integration
step, mostly h = 0.01. The first 35 × 103 steps
were discarded, the subsequent 700 × 103 steps
were used to compute the Lyapunov spectra. We
used our in-house FORTRAN software to plot
8-bit compressed color PostScript bitmaps directly

from the Lyapunov spectra [Gallas, 1993, 1995]. As
usual, the largest nonzero exponents were then used
to discriminate periodicity from chaos, producing
PostScript phase diagrams like those in Fig. 2.

Chaotic oscillations (i.e. positive exponents) are
represented using colors while periodic oscillations
(negative exponents) are shown using a gray scale,
as indicated by the color scale. The color scale is
linear on both sides of zero but is not uniform from
minimum to maximum exponent. In other words,
the scales of colors and of gray shadings are linear
on both sides of zero but are independent from each
other. Furthermore, the scales of each individual
phase diagram were always renormalized to reflect
the corresponding minima and maxima of the dia-
gram. That is why colors of identical structures may
look slightly different from panel to panel, when
enlarged. The pink shading denotes parameters pro-
ducing mostly divergent solutions. Figure 2 shows
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Fig. 2. Progressively more highly resolved phase diagrams displaying a hub, more easily seen in (c), for Rössler’s equations in
Eqs. (1)–(3), with b = 0.4. The pink shading denotes parameters producing mostly divergent solutions. The colors of individual
panels vary because the color scale is not fixed, but is renormalized to reflect minima and maxima of individual panels. Note
the repetition in the leftmost panel of the “double-well” looking structure seen in (b). The boxes are shown magnified in the
next panels. This figure is motivated by Fig. 1 of [Fraser & Kapral, 1982]. Resolution: 2000 × 2000 exponents.
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our first example of an isolated hub in a dynam-
ical system with continuously differentiable equa-
tions of motion. The hub and its infinite spirals is
more clearly seen in Fig. 2(c). The organization is
the same as found in piecewise-linear circuits [Bon-

atto & Gallas 2008; Ramı́rez-Ávila & Gallas 2008,
2009]. This fact shows that hubs are not artifacts
arising from discontinuities in derivatives.

Figure 3 depicts analogous phase diagrams for a
second normal form of a Rössler oscillator, namely,

ẋ = −y − z, (4)

ẏ = x + a y, (5)

ż = b + z(x − c), (6)

where a, b, c are parameters. The only difference
between both models is the term involving b in
the ż equation. We will focus on the latter model
because Eq. (6) contains one multiplication less
than Eq. (3) and, therefore, is faster to evalu-
ate repeatedly during extended computations. Both
normal forms produce equivalent results in the sense
that they display analogous hubs, as may be seen by

comparing Figs. 2 and 3. Each panel in Fig. 3 dis-
plays phase diagrams computed as before, for grids
of 800 × 800 equally spaced parameter points.

From Fig. 3, one recognizes two distinc-
tive signatures: (i) an infinite nesting of spirals

corresponding to periodic solutions, and (ii) the
presence of a remarkable focal point where all
spirals originate/terminate and which seems to
“organize” the dynamics in a wide portion of the
parameter space around it. Individual spirals orig-
inating/terminating at the focal hub are charac-
terized by specific families of periodic oscillations

embedded in the chaotic phase. Spirals and the spi-
ral nesting are truly codimension-two phenomena:
they may be only fully unfolded by tuning two or
more parameters simultaneously. Mutatis mutandis,
there are also white spirals of chaos.

Figure 3 reveals a number of different features
when compared with the organization seen around
the hubs of piecewise electrical circuits [Bonatto &

Gallas, 2008; Ramı́rez-Ávila & Gallas, 2008, 2009].
The most salient one is the left–right asymmetry
seen under the large four legged “shrimp-like”
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Fig. 3. Phase diagrams for Rössler equations, Eqs. (4)–(6) with a = 0.25, showing the location of a focal hub and the
infinite sequence of spirals connected to it. The focal hub is located roughly at the center of infinite sequence of spirals seen
in the lower-right panel. Boxes denote parameter regions being magnified successively. Colors indicate domains of positive
exponents while absence of colors denotes periodicity (negative Lyapunov exponents). The colors of each individual panel was
renormalized to display the minimum and maximum exponents contained in them, as indicated by the color scales.
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structure [Gallas 1993, 1994, 1995; Lorenz 2008]
located inside the top-right box in Fig. 3(a): while
the left side of the shrimp-like structure contains a
hub and the corresponding nesting of spirals, the
right side contains no hub at all. Additionally, in
Fig. 3(c) it is possible to recognize that the focal
hub is located roughly at the intersection of the
pair of diagonals of the rectangular white box. The
main diagonal is located roughly parallel to an axis
of approximate reflection symmetry which becomes
more and more accurate as one approaches more
and more the focal hub. In contrast, a line parallel
to the secondary diagonal and passing through the
hub divides the parameter plane into (i) an upper
region of quite tame behaviors, where bifurcation
diagrams along any line passing through the hub
display the same structure, and (ii) a region of more
complicated dynamics, below the diagonal, which
may be subdivided into two regions which approxi-
mately “mirror” each other along the approximate
axis of symmetry. The dynamical structuring and
some metric properties of the three regions around
the hub of Rössler’s equations will be discussed else-
where. A natural question here is: Why spiralling
“takes sides”? That is, what is the reason for a
preferential spiralling to happen in specific regions
of the parameter spaces, apparently avoiding to
emerge in a more symmetrically arranged form cov-
ering both sides?

Figure 4 illustrates the hub evolution when the
remaining control parameter a is tuned in Eqs. (4)–
(6). It shows sections of the intricate hub surface in
parameter space, in particular, its two limiting ori-
entations found for small and large values of a. Such
limit situations are interesting because they allow a
number of exact analytical results to be obtained.
Figure 4 corroborates a natural expectation: that
all curves in Fig. 1 are in fact just low-dimensional
sections of extended surfaces living in the higher
multidimensional parameter space.

At least numerically, the regular structur-
ing around hubs as well as their accumulation
properties seem to be invariant for all hubs discov-
ered so far. A distinctive feature observed some-
times is a pronounced “bending asymmetry”: the
shrimp distortion is far greater in one side of the
symmetry line S than on the other side. Figure 5
illustrates this bending asymmetry. Bending asym-
metries might be due to “nonoptimal” positioning
of the hub structure in the multidimensional param-
eter space. Since no theoretical help exists to locate
hubs, it is helpful to have a good idea of the possi-
ble spatial orientation and extension of hub to more
easily locate them in arbitrary multidimensional
spaces. A detailed investigation of this positioning
is quite time-consuming but is certainly necessary
to elucidate what to expect for sections of the para-
meter space.

Fig. 4. Evolution of the hub and spirals in the c×b phase diagram as a function of a, indicated inside each panel, for Rössler’s
oscillator of Eqs. (4)–(6). Colors denote chaos (positive Lyapunov exponents) while dark shadings denote periodicity (negative
exponents). The pink regions seen for a = 0.40 and 0.50 indicate predominance of divergence. The color scales of individual
panels were renormalized to reflect the minimum and maximum exponents of each panel, as illustrated by the scales in the
bottom row. Note differences in horizontal axis, indicating a significative compression when a grows.
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Fig. 5. Hub for Chua’s circuit with piecewise linear term. Note the strong bending asymmetry of the shrimp shapes on
distinct sides of the hub. Similar asymmetries exist when the piecewise linear term is replaced by a cubic nonlinearity in the
circuit. For details about this figure and hubs for Chua’s circuit see [Ramı́rez-Ávila & Gallas, 2008, 2009].

Before proceeding, we mention briefly two very
important works by Gaspard and collaborators
[1983, 1984] where the parameter space of Eqs. (1)–
(3) was analyzed. They focus on unstable homo-
clinic orbits related with a theorem of L. Shilnikov,
not on experimentally accessible stable orbits as
done here. Moreover, we mention that while it is
tempting to associate spiral nestings with the much
studied homoclinic orbits, we have found spirals not
to be numerically detectable in some flows which are
textbook examples of the Shilnikov setup. This will
be discussed elsewhere. As mentioned in the intro-
duction, periodicity hubs emerge at certain bend-
ings, or foldings, of homoclinic loci in parameter
space. Their local structure is essentially as nicely
described more than a quarter century ago by Gas-
pard et al. [1983, 1984]. Their global organization is
considerably more complex and a first account was
provided recently by Vitolo et al. [2009]. To con-
clude this section, we mention that it is possible to
identify periodicity hubs in some figures contained
in papers published recently, e.g. [Castro et al.,
2007; Albuquerque et al., 2008]. Such works, how-
ever, contain no reference to hubs and their roles.

3. Infinite Hub Cascades in a

Chemical Oscillator

The purpose of this section is to show that hubs
may also arise in infinite cascades with subcas-
cades, ad infinitum. Such ordered cascading and
subcascading may be recognized in the sequences
of magnifications depicted in Figs. 6 and 7. The
hierarchical cascading seems to be connected to
a master hub which acts like a sort of source for

an infinite hub network. The accumulation pro-
cess underlying hub cascades leads to characteristic
parameter paths, loci, with remarkably fertile struc-
ture. Every individual hub is the termination of a
family of periodic orbits as their period grows more
and more, diverging without any bound, and their
waveform evolves continuously.

Figures 6 and 7 illustrate specific sections of the
control parameter space for a polynomial chemical
model studied by Gaspard and Nicolis [1983]. In this
model, the temporal evolution of certain chemical
concentrations (x, y, z) is governed by three cou-
pled nonlinear differential equations derived from
the mass action law of chemical kinetics:

ẋ = (βx − fy − z + g)x, (7)

ẏ = (x + sz − α)y, (8)

εż = x − az3 + bz2
− cz. (9)

Following Gaspard and Nicolis, we investigate the
α × β parameter plane while keeping all other
parameters fixed at the following values: a = 0.5,
b = 3, ε = 0.01, f = 0.5, g = 0.6, s = 0.3, but
taking c = 4.8 for better visibility of the hubs.

Figure 6 shows a large portion of the α×β plane
where, in panels (a) and (b), it is easy to recognize
infinite sequences of hubs and spirals “irradiated”
from a master hub located roughly at the center
of the rectangle at the bottom of Fig. 6(b), with
approximate coordinates

(αm, βm) = (0.7825, 0.39213). (10)

This point may be identified at the bottom of
Fig. 6(f) and at the center of Fig. 7. Its location may
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Fig. 6. Lyapunov phase diagram for the chemical model of Eqs. (7)–(8) displaying infinite hierarchies of focal hubs, each
surrounded by its corresponding spiral nestings. Top row: global views. The smaller box in panel (b) is shown magnified in
Fig. 7. Middle row: Zoom of the three larger boxes seen in (b). Bottom row: Infinite sequences of hubs. (g) and (h) show the
infinite hub networks contained in the pair of boxes in (f).
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Fig. 7. Phase diagram illustrating the convergence towards the “master hub”, located roughly at the red dot with coordinates
given in Eq. (10), near the center of the central pink box. The intersections of “superstable” loci inside the white boxes may
be used to estimate the position of the master hub.

be estimated by considering the intersection of con-
secutive pairs of straight lines, one on the left and
other on the right of the central hub. Such pairs of
lines pass through the superstable intersection of the
parabolae located inside the white boxes in Fig. 7
and which quickly become hard to distinguish in
the figure. The precise coordinates of (αm, βm) are
obtained in the infinite limit when the straight lines
converge towards the focal hub, degenerating there
to a point. Equation (10) provides just an estimate
of the final accumulation point.

An interesting feature that should deserve fur-
ther consideration is the relative similarity of the
three phase diagrams shown in Figs. 6(c)–6(e).

Although no effort was made to find adequate view-
ing windows for these figures, their close resem-
blance seems to indicate that simple affine transfor-

mations similar to the ones used to superimposed
domains of stable periodicities in one-dimensional
two-parameter discrete-time dynamical systems
[Gallas, 1994; Hunt et al., 1999] should allow one
to find “parametrically isomorphic domains” much
in the same spirit of those recently reported by Bon-
atto et al. [2008].

Gaspard and Nicolis [1983] reported in their
Fig. 9 a phase diagram for Eqs. (7)–(8). Their
diagram consists of three line segments: one identi-
fied as the homoclinic locus of one of the fixed points
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Fig. 8. Sequences of phase diagrams displaying “fountains” of chaos in three distinct sections of the 14-dimensional parameter
space of the nonpolynomial model originally found by Györgyi and Field [1992] to reproduce chaos in the Belousov–Zhabotinsky
reaction. Such structures resemble half-cuts of the structure containing a hub. For details see [Freire et al., 2009].
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Fig. 9. Sequences of phase diagrams displaying “fountains” of chaos for the Hindmarsh–Rose [1984] neuronal model, Eqs. (11)–
(13), with a = 1, b = 3, c = 1, d = 5, S = 4, r = 0.003, I = 3.31, and x1 = −1.6. Such structures resemble half-cuts of the
structure containing a hub. Similar fountains were also found in other models. For details see [Freire & Gallas, 2009].

of the system, one identified as the line where a cer-
tain limit cycle loses its stability and a Hopf bifur-
cation line. Their homoclinic locus seems to lie close
in our Fig. 6 to what was defined as the character-
istic direction h (defined in Fig. 1), along which all
major shrimp legs not coiling up around the main
hub sequence accumulate. A one-dimensional map
model of the situation is discussed by Gaspard et al.

[1984].
As shown by Figs. 6(a) and 6(b), the relevant

dynamical fact here is that the roughly vertical line
containing infinite hubs results from the severe con-
straint imposed by accumulation processes involv-
ing two families of stable shrimp legs, one on the
left, one on the right of the vertical hub line. In
Figs. 6(a) and 6(b) the vertical line corresponds to
the accumulation line h defined in Fig. 1. In other
words, such line seems not to be a source of interest-
ing dynamics but, instead, to simply arise from the
leg accumulation process. Gaspard and Nicolis also
briefly mention a certain point M , terminal point
of a homoclinic locus, without much discussion. As
illustrated by Fig. 7, the master hub acts as a sort
of sun having infinite layers of shrimps, its “plan-
ets”, orbiting in spirals around it. Each spiral, either
of periodicity or of chaos, is characterized by spe-
cific oscillatory pattern. The master hub behaves
like a busy commuting center where, after follow-
ing a spiral characterized by a specific pattern, one
may commute to any other of the infinite patterns
available there. It is possible to jump from an oscil-
latory to a chaotic pattern or vice-versa. Noise may
allow the commutation to occur much earlier than
reaching the master hub. While unstable homoclinic
loci are certainly interesting mathematical players

closely linked to the complex dynamics, we focus
on a description based on stable oscillatory patterns
that can be directly measured in experiments.

To conclude this section, we present in Figs. 8
and 9 very interesting structures, “fountains of
chaos”, resembling half-cuts of the arrangement
around hubs. They are shown here for two rather
distinct models, namely a 14-parameter nonpoly-
nomial model of the Belousov–Zhabotinsky reac-
tion proposed by Györgyi and Field [1992] and the
eight-parameter Hindmarsh–Rose [1984] model of
neuronal spiking and bursting:

dx

dt
= y − ax3 + bx2 + I − z, (11)

dy

dt
= c − dx2

− y, (12)

dz

dt
= [(x − x1)S − z]r. (13)

This type of structure may be indicative of a
nearby hub and motivate the exploration of high-
dimensional parameter spaces.

4. T -Point Spirals versus Hub

Spirals

The aim of this section is to answer the following
question: are hub spirals connected in some way to
the spirals known to exist near T -points? We have
not yet been able to find any connection between
them. Our most direct attempt to correlate both
sets of spirals is described in the remainder of this
section.

There are studies in the literature about certain
heteroclinic bifurcations in the paradigmatic Lorenz
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equations which have also described families of spi-
rals winding up around terminal points, or T -points,
in parameter space. Such points are defined by
degeneracies between stable and unstable mani-
folds of distinct fixed points [Alfsen & Frøyland,
1985; Glendinning & Sparrow, 1986; Bykov, 1993;
Shilnikov, 1993]. Thus, it is natural to look for con-
nections between the spirals from these earlier stud-
ies and the infinite sequences of spirals connected
with periodicity hubs.

The earlier studies involve essentially the use
of standard techniques to derive return maps near
fixed points. Such techniques provide first-order
results valid locally, near “sufficiently small” neigh-
borhoods of stationary points where the flow may
be assumed as linear to be solved analytically. As
pointed out by Glendinning and Sparrow [1986],
there are a number of restrictions for their validity,
even when confined just to the Lorenz equations.

A T -point was studied numerically in detail by
Shilnikov [1997] for the following model:

ẋ = y, (14)

ẏ = x(1 − z) − Bx3
− by, (15)

ż = −a(z − x2), (16)

Fig. 10. Left panel: Phase diagram for the Shimizu–Morioka laser model, Eq. (15) with B = 0, reproduced with permission
from [Shilnikov et al., 2001], where its details are explained. T marks the location of the T -point discussed in the text. Right
panel: Lyapunov phase diagram displaying 800 × 800 exponents. Colors indicate domains of chaos (i.e. positive Lyapunov
exponents) while absence of colors marks periodicity (negative exponents). The pink triangle in the lower right corner denotes
divergent solutions. The overall cartographic description provided by these figures is rather distinct, both in emphasis and
details. The panel on the right characterizes domains of stable orbits, with basins of attraction having positive measure. The
large homogeneous chaotic phase seen in the rightmost panel is shown with greater detail in Fig. 11.

where we use a instead of the original α and b

instead of λ, to avoid confusion with the symbols
used earlier for Lyapunov exponents. As pointed
out by Shilnikov, the model above displays var-
ious scenarios involving appearance and destruc-
tion of chaos and bifurcations of chaotic regimes
typical for some three-level laser models. For this
reason, we refer to this model as Shilnikov’s laser
model.

For B = 0, A. Shilnikov computed the phase
diagram shown in the left panel of Fig. 10, where the
location of a T -point and two spirals is indicated.
The corresponding Lyapunov phase diagram com-
puted as described in Sec. 2 is shown in the
right panel. Comparison of both figures shows their
content to be quite different. In particular, the
Lyapunov diagram shows no sign of the spirals accu-
mulating on the T -point of the left panel. To inves-
tigate this question further, Fig. 11 presents several
magnifications of the chaotic phase of Shilnikov’s
model. Figures 10 and 11 seem to provide evidence
that the spirals accumulating in T -points and the
spirals accumulating in hubs are of a quite distinct
nature because they produce very different phase
diagrams. Curiously, both situations deal with infi-
nite spiral structures and sequences of codimension
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Fig. 11. Sequences of phase diagrams for the Shimizu–Morioka model of a homogeneously broadened single-mode laser,
Eq. (15) with B = 0. Macroscopically, the model displays a surprisingly large homogeneous chaotic phase, but no trace of a
hub and spirals in the region where it is known to contain a T -point (shown in Fig. 10; see text). The colors in each individual
panel were renormalized to reflect the minimum and maximum exponents contained in them. In the middle row: The white box
highlights the region a ∈ [0.14, 0.22]× b ∈ [0.45, 0.55]. The magenta box highlights the region a ∈ [0.16, 0.20] × b ∈ [0.47, 0.53].
The cyan box highlights the region a ∈ [0.18, 0.26] × b ∈ [0.50, 0.60]. The panels in the bottom row show magnifications of
these three boxes. The top panel displays 800× 800 exponents while each of the six smaller panels shows 400× 400 exponents.
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two points approaching certain “fundamental” codi-
mension two points. This subject certainly deserves
further study and the development of an adequate
theoretical foundation.

For physical applications, a key point is that
the Lyapunov phase diagram reflects macroscop-
ically stable dynamical phenomena, characterized
by positive-measure basins of attraction in phase
space. In contrast, the fundamental loci due to the
unstable oscillations underlying T -points are not
easily measurable. Unstable orbits have basins of
attraction with measure-zero, being considerably
more difficult to locate. All hubs are termination
points of infinite families of stable periodic orbits of
ever evolving waveforms and periods growing con-
tinuously without any upper bound, diverging to
infinity.

5. Laser Chaos: Dense,

Homogeneous or Robust?

The recent demonstration of the feasibility of a
purely hardware level encryption scheme based on
chaos in communications over 120 km of a com-
mercial fiber-optic channel in the metropolitan area
network of Athens, Greece [Argyris et al., 2005] has
attracted renewed attention to great potential of
path-breaking applications of chaotic laser signals.
Of importance for such applications is to find wide
parameter regions characterized by dense chaos and
a total absence of periodic windows embedded in
them.

The notion of “robust chaos” has been used
in the literature to describe dense, or equivalently,
homogeneous chaos, i.e. chaos with no periodic
windows embedded in it, like that found for the
Shilnikov model of Eqs. (14)–(16) and represented
in Figs. 10 and 11. Robust chaos was dis-
cussed in 1992–94 by Majumdar and Mitra [1994]
while studying dynamic optimization models. These
authors expressed the opinion that chaos occurs for
non-negligible set of parameter values and, there-
fore, cannot be dismissed as “accidental” for fami-
lies of economies. Subsequently, the notion of robust
chaos was introduced again by Banerjee et al.

[1998], motivated by practical applications demand-
ing chaotic orbits characterized by the absence of
periodic windows and coexisting attractors in some
neighborhood of parameter space. A plethora of
systems are well-known for the absence of peri-
odic regions in chaotic phases, mostly discrete maps
[Kawabe & Kondo, 1991a, 1991b, 1993; Cosenza &

Gonzalez 1998; Potapov & Ali, 2000; Priel & Kan-
ter, 2000; Andrecut & Ali, 2001; Alvarez-Llamoza
et al., 2008]. An overview of some issue related with
dense chaos for maps was presented recently by
Elhadj and Sprott [2008].

Although the name robust chaos has been
in use, we feel perhaps belatedly that it is not
adequate. In mathematics, the topological notions
attached to the words dense or connected seem more
appropriate to describe the absence of periodic win-
dows embedded in chaos. In physics, the notion of
robustness is traditionally attached to perturbation
theory, to stability in phase-space, not to phase dia-
grams. Robust means resistant to perturbations. In
physics, phase diagrams have homogeneous phases

which are necessarily robust. Otherwise, they could
not be directly observed experimentally. For this
reason, we prefer to say dense chaos or, equiva-
lently, homogeneous chaos, the traditional names of
statistical physics adapted to the situation.

The chaotic phase seen in Figs. 10 and 11 for
the Shilnikov model is the largest homogeneous
chaotic phase that we are aware of for a flow. From
a practical point of view, it is clear that dense
chaos like that in Fig. 11 is potentially interesting
for a number of applications, for instance, for real-
time digital secure communications with encrypted
signals using the chaotic output of semiconductor
lasers as carriers.

6. Conclusions

We have studied the evolution of infinite fami-
lies of periodic oscillations embedded in chaotic
phases of simple flows, i.e. dynamical systems ruled
by systems of ordinary differential equations. The
chaotic phases of prototypical dynamical systems
were shown to contain a characteristic hub towards
which an infinite sequence of spirals represent-
ing periodic oscillations converge. We presented a
simple chemical flow that contains an infinite of
cascades and subcascades of hubs and spirals, all
organized in a quite regular way, as shown in Fig. 6.
All hubs are termination points of an infinite family
of periodic orbits of ever evolving waveforms as its
period becomes infinite. Infinite hub cascades were
also found in the piecewise-linear circuits of Sec. 1
and in other systems. In fact, it may well be that
infinite hub cascade are always present, being just
simpler to recognize in some flows than in others.

On the basis of evidence provided by a model
introduced by Shilnikov, we have argued that hubs
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are codimension-two points of a different nature
than the so-called T -points. Hubs involve global
bifurcations of stable orbits and seem to require
more elaborate analytical ingredients for their the-
oretical description than the usual linear stability
analysis around fixed points. It is our hope that the
surprisingly rich examples described here will stim-
ulate analytical developments.

Complex systems are sometimes characterized
by the concept of “emergence”, associated with sys-
tems displaying organization without a central orga-
nizing authority [Ottino, 2004]. In this sense, sys-
tems containing hubs should not to be regarded
as complex. However, as shown for several distinct
dynamical systems here, the presence of powerful
networks of stable “organizing authorities” of posi-
tive measure may remain undetected for long time,
despite decades of intensive work.

Acknowledgments

The author thanks Hans J. Herrmann for a very
fruitful month spent in Zürich. He also thanks
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