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Synchronized firing among neurons has been proposed to constitute an elementary aspect of the neural code in sensory and motor
systems. However, it remains unclear how synchronized firing affects the large-scale patterns of activity and redundancy of visual signals
in a complete population of neurons. We recorded simultaneously from hundreds of retinal ganglion cells in primate retina, and
examined synchronized firing in completely sampled populations of �50 –100 ON-parasol cells, which form a major projection to the
magnocellular layers of the lateral geniculate nucleus. Synchronized firing in pairs of cells was a subset of a much larger pattern of activity
that exhibited local, isotropic spatial properties. However, a simple model based solely on interactions between adjacent cells reproduced
99% of the spatial structure and scale of synchronized firing. No more than 20% of the variability in firing of an individual cell was
predictable from the activity of its neighbors. These results held both for spontaneous firing and in the presence of independent visual
modulation of the firing of each cell. In sum, large-scale synchronized firing in the entire population of ON-parasol cells appears to reflect
simple neighbor interactions, rather than a unique visual signal or a highly redundant coding scheme.

Introduction
Much of what is known about neural coding arises from studies
of single neurons. However, in many neural circuits, the con-
certed activity of multiple cells cannot be predicted based on
recordings from single cells, because the firing of different cells is
not statistically independent. For example, retinal ganglion cells
(RGCs), which transmit all visual information from the eye to the
brain, exhibit strong synchronized firing—a tendency to fire
nearly simultaneously more frequently than expected by chance
(Arnett, 1978; Arnett and Spraker, 1981; Mastronarde, 1983a,b,c;
Mastronarde, 1989; Meister et al., 1995; DeVries, 1999). Numer-
ous studies based on recordings from pairs of nearby RGCs reveal
that synchronized firing reflects a combination of common syn-
aptic inputs and gap junction coupling (Mastronarde, 1983a,b,c;
Mastronarde, 1989; Dacey and Brace, 1992; Jacoby et al., 1996;
Stafford and Dacey, 1997; Brivanlou et al., 1998; Hu and Bloom-
field, 2003; Hidaka et al., 2004; Amthor et al., 2005; Ishikane et al.,

2005; Ackert et al., 2006; Trong and Rieke, 2008). Theoretical and
empirical studies suggest that synchronized firing in the retina
could play an important role in processing and transmitting in-
formation (Meister, 1996; Nirenberg et al., 2001; Schneidman et
al., 2006; Pillow et al., 2008), as it may in other sensory, memory,
and motor systems (Usrey and Reid, 1999; Laurent, 2002; Harris,
2005; Narayanan et al., 2005).

However, to understand how synchronized firing affects the
neural code of the retina, it is necessary to know how entire
collections of RGCs—rather than just pairs—fire in concert
(Schnitzer and Meister, 2003). Recent work suggests that syn-
chronized firing in local clusters of 7–10 RGCs can be understood
on the basis of pairwise interactions (Schneidman et al., 2006;
Shlens et al., 2006). However, almost nothing is known about
concerted activity in larger collections of RGCs, leaving open two
central questions about how synchronized firing affects the neu-
ral code of the retina.

First, it is unclear whether large, distinctive patterns of syn-
chronized firing could be produced by spatially extended sources
of common input, potentially providing a unique visual signal to
the brain (Schnitzer and Meister, 2003). In the mammalian ret-
ina, a diverse collection of wide-field amacrine cell types provide
extensive lateral connections to RGCs (Dacey and Brace, 1992;
Stafford and Dacey, 1997; MacNeil and Masland, 1998). These
cells have been proposed to underlie visual functions such as the
segregation of object and background motion (Masland, 2001;
Baccus and Meister, 2002; Olveczky et al., 2003; Baccus, 2007), by
simultaneously influencing activity in large collections of RGCs.
The spatial extent of amacrine cell connectivity suggests that their
impact may be difficult to observe in the small, local groups of
RGCs previously examined.
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Second, it is unclear whether the pairwise interactions in a
complete population of cells may combine to dominate the ac-
tivity of any individual cell (Schneidman et al., 2006; Bethge and
Berens, 2007; Nirenberg and Victor, 2007; Tang et al., 2008).
Extrapolations based on recordings from up to 10 cells have sug-
gested that that the activity of each RGC could be strongly dic-
tated by the surrounding population activity even if individual
pairwise interactions are weak, implying high network redun-
dancy (Schneidman et al., 2006). This prediction has never been
tested in a population large enough or complete enough that the
hypothesized redundancy could be observed.

Using large-scale electrophysiological recordings in the pri-
mate retina (Litke et al., 2004; Frechette et al., 2005), we probed
the spatial scale and structure of synchronized firing in complete
populations of �50 –100 ON-parasol RGCs, which uniformly
sample visual space and form a major projection to the lateral
geniculate nucleus. We report that patterns of synchronized fir-
ing in this population are significantly larger than previously ap-
preciated. However, we also find that network activity can be
summarized accurately on the basis of pairwise interactions be-
tween neighboring cells (Schneidman et al., 2006; Shlens et al.,
2006), and therefore that no additional widespread interactions
are implicated. Based on pairwise interactions, we show that no
more than 20% of the activity each ON-parasol cell is accounted
for by the activity of the network, indicating that although syn-
chrony is powerful, the resulting signals are not massively redun-
dant. These findings hold in the presence of visual stimulation,
indicating that the observed structure of synchronized firing re-
mains relevant during visual signaling.

Materials and Methods
Recordings. Preparation and recording methods have been described pre-
viously (Chichilnisky and Kalmar, 2002; Litke et al., 2004; Frechette et al.,
2005). Briefly, eyes were obtained from 12 deeply and terminally anes-
thetized macaque monkeys (Macaca mulatta) used by other experiment-
ers in accordance with institutional guidelines for the care and use of
animals. Immediately after enucleation, the anterior portion of the eye
and vitreous were removed in room light, and the eye cup was stored in
darkness for at least 20 min before dissection, in a bicarbonate buffered
Ames’ solution (Sigma) bubbled with 95% O2, 5% CO2 at 32–34°C, pH
7.4. Under infrared illumination pieces of peripheral retina 3–5 mm in
diameter, isolated from the retinal pigment epithelium, were placed flat
against a planar array of 512 extracellular microelectrodes, covering an
area of �1800 � 900 �m. Data were obtained from 15–120 min periods
of recording. The preparation was perfused with Ames’ solution.

The voltage on each electrode was digitized at 20 kHz and stored for
off-line analysis. Details of recording methods and spike sorting have
been given previously (Litke et al., 2004). Briefly, spikes were identified
using a threshold of four times the voltage SD. For each spike, the wave-
form of the spike and the simultaneous waveforms on six adjacent elec-
trodes were extracted. Three to five waveform features were identified
using principal components analysis. A mixture of Gaussians model was
fit to the distribution of features using expectation maximization (Duda
et al., 2001). The number of clusters and initial conditions for the model
was determined automatically using an adapted watershed transforma-
tion (Castleman, 1996; Roerdink and Meijster, 2001). All clusters were
visually inspected and when necessary, a mixture of Gaussian models was
fitted using manually selected initial conditions. Clusters with a large
number of refractory period violations (�10% estimated contamination
based on refractory period violations), or spike rates �1 Hz, were ex-
cluded from further analysis.

Stimulation and receptive field analysis. An optically reduced stimulus
from a gamma-corrected cathode ray tube computer display refreshing
at 120 Hz was focused on the photoreceptor outer segments. The mean
intensity was adjusted to a low photopic light level by including neutral
density filters in the light path. The mean photon absorption rate for the

long (middle, short) wavelength sensitive cones was approximately equal
to the rate that would have been caused by a spatially uniform mono-
chromatic light of wavelength 561 (530, 430) nm and intensity 4300
(4200, 2400) photons/�m 2/s, incident on the photoreceptors. For the
collection of ON-parasol cells shown in Figure 1, A and B, the mean firing
rate during exposure to a steady, spatially uniform display at this light
level was 11.8 � 3.6 Hz and 22.4 � 4.8 Hz for each preparation respec-
tively. Across all preparations examined firing rates varied from �5
to 20 Hz.

Spatiotemporal receptive fields were measured using a dynamic white
noise stimulus in which the intensity of each display phosphor at each
pixel location was selected randomly and independently over space and
time from a binary distribution. RMS stimulus contrast was 96%, stim-
ulus duration was 30 min. The pixel size (60 �m in 10 preparations, 96
�m and 120 �m in two others) was selected to accurately capture the
spatial structure of parasol cell receptive fields. For each RGC, the spike-
triggered average stimulus was computed; this summarizes how the cell
integrates visual inputs over space and time (Marmarelis and Naka, 1972;
Chichilnisky and Kalmar, 2001). An elliptical two-dimensional Gaussian
function was fitted to the spatial profile; outlines in Figure 1 represent the
boundary for these fits at the SD values specified in the figure caption.
The average of the major and minor axes of the 1 SD contour of each
parasol cell was �200 �m.

Fraction of spikes in multi-neuron firing patterns. The following method
was used to calculate the fraction of spikes in each cell that were synchro-
nized with those of any of its immediate neighbors in the mosaic, over
and above the chance expectation. For a given cell, consider the observed
probability p with which the cell fired simultaneously (�5 ms) with any
of its immediate neighbors. Also consider the probability q that this
would occur if the neurons fired independently, obtained by multiplying
the respective firing probabilities of the cells. The probability that the cell
participates in unexpected synchronized firing is thus p � q. Dividing by
the total firing probability of the cell r yields the fraction of spikes that
were part of an unexpected firing pattern, ( p � q)/r. Across 20 cells in
each of four preparations, this value was 31 � 5%, 22 � 4%, 15 � 2%,
and 14 � 4%, respectively (mean � SD).

Measuring deviations from spatial isotropy. The invariant spatial prop-
erties of synchronized firing were quantified by measuring the degree of
directional preference in the strength of synchrony. For each cell of in-
terest in the mosaic interior, a polygon was constructed in which the
angle and magnitude of each point measures the angle and strength of
synchrony with neighboring neurons. The angle and magnitude of these
points were uncorrelated (R 2 � 0.02, n � 286), and the major and minor
axes of an ellipse fitted to all the polygons simultaneously differed by
�7%, consistent with largely isotropic patterns of synchronized firing.
Note that this analysis of cell pairs does not rule out violations of isotropy
and translation invariance in higher-order interactions. The observation
that firing patterns was isotropic was consistent across all preparations
examined.

Identifying adjacent neurons in mosaic. Several statistics as well as the
formulation of the pairwise-adjacent model required defining adjacent
cells in the ON-parasol mosaic. A nonparametric technique was used to
define adjacency based on receptive field center locations. Each location
in space was associated with the nearest receptive field center. This defi-
nition delineates a collection of boundaries between territories associated
with neighboring cells, known as a Voronoi tessellation (Voronoi, 1907;
Okabe et al., 2000). Pairs of cells with shared boundaries are connected
with a line in Figure 4 A.

The Voronoi tessellation misidentifies adjacency if a hole exists in the
mosaic due to an unrecorded cell (e.g., Fig. 1 A, bottom left). Likewise,
the tessellation misidentifies adjacency between cells along the edge of
the mosaic. To deal with the latter problem, a secondary stipulation was
added that adjacency requires a shared edge within the convex hull of the
collection of receptive field centers.

Maximum entropy. Maximum entropy methods are used in statistical
inference to identify an unknown distribution given several constraints
which are insufficient to fully specify the answer. The method involves
selecting the distribution with the greatest entropy consistent with the
constraints,
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P̂� x	 �
arg max

P�x	 � H
P� � �
i�1

N

�i�E
Fi�x	� � ki	�,

where H[P] � ��xP(x)log2P(x) is the entropy of a firing pattern distri-
bution P(x), N is the number of constraints, E is the expectation over
P(x), {Fi} are linear functions of the firing patterns, {ki} are the measured
constraints, and {�i} are Lagrange multipliers enforcing the constraints
(Jaynes, 1957a,b; Cover and Thomas, 1991; Amari, 2001). In our appli-
cation the specified constraints are the firing rates expressed as probabil-
ities and the joint firing patterns P(xi, xj) for pairs of neurons xi, xj that are
adjacent. The Lagrange multipliers enforcing each pairwise-adjacent
constraint specify the sensitivity of the maximum entropy solution to
slight changes to the strength of synchrony (see Fig. 4 A, red lines). Note
that a model with pairwise-adjacent constraints where a spike (or no
spike) is labeled with a 1 (or �1) is identical to a nearest-neighbor Ising
model (Schneidman et al., 2006; Tang et al., 2008). The interaction terms
of this model (see Fig. 4 A) do not directly reflect the strength of synchro-
nized firing between a pair of neurons: for example, interaction terms can
propagate correlation to explain observed synchronized firing between
nonadjacent cells (Shlens et al., 2006).

A dual form of this problem is to recognize that computing the max-
imum entropy distribution is equivalent to computing the maximum
likelihood estimate of the Lagrange multipliers {�i} given the data
(Csiszár, 1975; Berger et al., 1996). Calculating the maximum likelihood
estimate of the parameters is a special case of estimating the parameters of
a discrete Markov random field (Jordan, 1998) or equivalently, a Boltz-
mann machine (Hinton and Sejnowski, 1986). This problem is recog-
nized to be log-concave everywhere, meaning that a unique global max-
imum exists and can be found with techniques from convex optimization
(Darroch and Ratcliff, 1972; Press et al., 1988; Berger et al., 1996; Malouf,
2002), simulated annealing (Hinton and Sejnowski, 1986; Hertz et al.,
1991), or approximations to the full likelihood (Perez, 1998; Hinton,
2002). In the case of large models, estimating model parameters is an area
of active research (Lan et al., 2006).

A drawback of these methods is that most optimization techniques
require an explicit calculation of the probability distribution, which in
turn requires normalizing across all possible firing patterns. In the case of
synchronized firing, the firing pattern distribution across n neurons con-
sists of a set of binary random variables x � (x1, x2,. . . , xn) with 2n

elements. Hence, determining the normalization constant across the fir-
ing pattern distribution for the entire neural population (e.g., 2 104 �
10 30 patterns) is not practical. The parameters of the pairwise-adjacent
model can be estimated by making draws from the unnormalized prob-
ability distribution by exploiting Markov Chain Monte Carlo (MCMC)
techniques (Kennel et al., 2005; Gamerman and Lopes, 2006). Tradi-
tional MCMC sampling can be slow, thus a specialized form of MCMC
sampling was used (Swendsen and Wang, 1987). MCMC samples of the
estimated distribution were drawn to calculate the likelihood gradient
(Perez, 1998). To assure convergence, an adaptive learning procedure was
used, which is equivalent to a form of simulated annealing (Jordan, 1998).

Because estimating the model parameters is complex, validation of the
results was performed in two ways. First, the convergence of the proce-
dure was examined by checking its ability to reproduce the desired con-
straints. In the case of the pairwise-adjacent model this amounts to
matching the firing rates of individual neurons and the degree of syn-
chronized firing between adjacent neurons. The trained model accu-
rately matched the observed firing rate and strength of synchrony (R 2 �
0.99). The remaining error may reflect the convergence criterion selected
and statistical variability between the training and testing data sets. Sec-
ond, the overall ability of the learning procedure to correctly infer the
parameters of a truly pairwise-adjacent distribution was tested. Thirty min-
utes worth of samples were generated from a pairwise-adjacent model, and a
new pairwise-adjacent model was estimated on these simulated data sam-
ples. The newly trained model recovered an unbiased estimate of the param-
eters {�i} from the simulated data (R2 � 0.99), indicating that the learning
procedure correctly inferred the appropriate model structure.

Likelihood and information theoretic analysis. Models were compared
using likelihood analysis. Details of this analysis have been given previ-

ously (Shlens et al., 2006). Briefly, the likelihood of a data set under a
given model is the probability of having observed that data set under the
assumption that the model is correct. For each of the statistics examined
(see Fig. 3), the number of observations was counted, producing a histo-
gram c � {ci}, where m � �ici is the total number of measurements. This
produces an estimate of the probability of each value of the statistic, P �
{pi}, where pi � ci/m. For a given model Q � {qi}, the probability of
having observed the histogram counts c if the model Q actually generated
the observations is the multinomial likelihood (Duda et al., 2001)

L��
i

q
ci

i .

The likelihood shrinks multiplicatively with increasing measurements
(larger m). A quantity that is invariant to the number of measurements is
the average likelihood L� � L

1⁄m. The Kullback–Leibler divergence from
information theory (DKL) bears a simple relationship to the average
likelihood:

DKL�P�Q	 � � log2L�

in the limit of infinite measurements (m3�). Estimating the KL diver-
gence in finite data is nontrivial and subject to severe biases, especially in
high-dimensional data. To address this issue, techniques for estimating
entropy efficiently were used (Krichevsky and Trofimov, 1981; Nemen-
man et al., 2002; Paninski, 2003; Orlitsky et al., 2004).

Time scale of analysis. The selection of time scale (or bin size) for
defining synchronized firing could influence the results. Ideally, the
choice of bin size should match the width of the cross-correlation peak
[�10 ms; Shlens et al. (2006), their Fig. 2 B], and encompass a significant
fraction of the refractory period, to accurately reflect the strength of
correlation while avoiding statistical dependencies associated with re-
fractoriness. Selecting too small a bin size could produce a poor estimate
of correlation strength due to limited counting statistics. Selecting too
large a bin size could mask synchrony by averaging over times outside the
window of synchronization.

A twofold change in the bin size did not significantly affect the results.
For the preparation of Figure 3A (top panels), using bin sizes of 5 and 20
ms, the pairwise-adjacent model accounted for, respectively, (99.2%,
99.4%, 99.5%) and (99.0%, 98.2%, 98.6%) of the departures from inde-
pendence in the three statistics examined, similar to the results obtained
with a 10 ms bin size (see Fig. 3A, see insets). The fraction of firing
entropy of an individual RGC predictable from its neighbors was also
little affected by bin size. For the retina in Figure 4 A, using bin sizes of 5
and 20 ms, 7.3 � 0.9% and 5.1 � 1.1% of firing entropy, respectively,
were predictable from the firing of neighboring cells. Similar results were
obtained in the presence of visual stimulation.

Failures of the pairwise-adjacent model. The pairwise-adjacent model
failed to explain �1–2% of the deviations from statistical independence
(see Fig. 3). Several potential sources of the deviations were examined.

First, when the waveforms of spikes in different neurons overlap in
time, the recorded (summed) voltage waveform differs from the wave-
form produced by either cell alone, potentially causing spikes from both
cells to be missed in the spike sorting procedure and leading to an under-
estimate of synchronized firing events. To test for this possibility, the
following control procedure was performed. Thirty minutes of data was
sampled from a pairwise-adjacent model fitted to recorded data. Then
artifacts were introduced that mimicked the hypothetical spike sorting
bias. In a first test, �5% of pairwise synchronous events between adja-
cent neurons were removed. In a second test, 5% of triplet synchronous
events between adjacent neurons were removed. A new pairwise-
adjacent model was then fitted to and compared with the altered data
sets. In both manipulations, no systematic biases were found in the three
statistics of interest (see Fig. 3) and the model accounted for 99.3, 99.6,
and 99.6% of the failures of statistical independence. Thus, artifacts as-
sociated with the spike sorting procedure are unlikely to entirely account
for the observed failures of the model.

Second, to assess whether the failures were attributable to nonstation-
arity or finite counting statistics, the accuracy of the model was compared
with that of a second firing pattern distribution (Pemp) that consists of the
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firing probabilities estimated directly from an independent period of
recording from the same neurons. The accuracy of Pemp as a model for
Pobs reveals the reproducibility of the experiment. Pemp always accounted
for at least 99.5% of the deviations from statistical independence. Thus,
the failures of the model cannot be explained entirely by counting statis-
tics or nonstationarity of the recordings.

Third, the possibility of systematic deviations between the model and
data was examined in more detail (see Fig. 3, bottom rows). In 11 of the
12 preparations examined, the model did not systematically overpredict
or underpredict any of the three statistics examined. In one preparation
(Fig. 1 A), the model overpredicted the frequency of large firing patterns
but not small ones, and the overprediction grew systematically with size
of the firing pattern. Thus, although the results were not entirely consis-
tent across data sets, systematic deviations could not explain the failures
of the model in all data sets.

Finally, a potential source of the discrepancy between data and model
is an implicit assumption that was made about the temporal structure of
the data: that the sequential time samples from the recording are inde-
pendent observations. This assumption does not take into account inter-
actions over time in the firing of cells. A notable temporal interaction is
action potential refractoriness, which reduces the probability that a neu-
ron will generate a spike for a period of several milliseconds after the
occurrence of a spike. For temporal interactions to have a significant
effect on the results, the distribution of firing statistics must depend
substantially on the pattern of activity in preceding time samples. To test
this, time samples were divided into two groups: those for which the
preceding time sample contained more than the median number of neu-
rons firing, and those for which the preceding time sample contained
fewer than the median. Each of the three statistics was then examined
separately for the two groups of firing patterns. The effect of the preced-

ing time sample was large. For example, in the
preparation in Figure 1 B, the Kullback–Leibler
divergence between the full distribution of
numbers of neurons firing and the group with
high and low preceding firing was 1.74 � 10 �4

and 1.30 � 10 �4 bits/neuron, respectively.
These values represent 2.4% and 3.2% of the
magnitude of the departures from statistical in-
dependence in the data, respectively. Similar
departures were observed for the other statistics
examined. Thus, the effect of temporal interac-
tions on the measured firing pattern statistics
was potentially large enough to account for the
observed failures of the model.

Results
Action potentials were recorded extracel-
lularly from RGCs in isolated macaque
monkey retina perfused with physiological
saline solution, using an array of 512 re-
cording electrodes (Litke et al., 2004; Fre-
chette et al., 2005). The receptive field of
each RGC was identified using reverse cor-
relation with a white noise stimulus
(Chichilnisky and Kalmar, 2001). Cells
were segregated into distinct functional
classes according to their receptive field
characteristics. ON-parasol cells, which
project to the magnocellular layers of the
lateral geniculate nucleus, were identified
by their distinctive receptive field size,
density, and light response kinetics
(Chichilnisky and Kalmar, 2002; Field et
al., 2007). As expected from previous
work, the receptive fields of ON-parasol
cells formed a regular lattice, or mosaic,
uniformly sampling the region of retina
recorded (Fig. 1) (Devries and Baylor,

1997; Chichilnisky and Kalmar, 2002; Frechette et al., 2005). The
completeness of the recorded mosaics indicated that nearly every
ON-parasol cell in this 4 � 8 degree region of retina was recorded
in each of 12 preparations (n � 104, 48, 56, 56, 58, 66, 68, 75, 81,
66, 65, and 54 neurons). Subsets of one of these data sets were
used in previous work (Shlens et al., 2006).

Synchronized firing in large populations
To examine multi-neuron synchronized firing, the activity of the
entire population of ON-parasol cells was recorded in the pres-
ence of spatially uniform, steady photopic illumination. The
prevalence of synchronized firing was determined by calculating
the fraction of spikes in each cell that were synchronized with
those of any of its immediate neighbors in the mosaic, over and
above chance expectation (see Materials and Methods). Across
four preparations this value ranged from 14% to 31%. Thus, a
substantial fraction of the spikes produced by any given ON-
parasol cell reflect synchronized firing.

To examine the spatial structure of multi-neuron synchro-
nized firing, movies were generated in which each frame repre-
sented the activity of all cells in a 10 ms time bin. The receptive
field of each cell was filled if the cell fired a spike (supplemental
Movie 1, available at www.jneurosci.org as supplemental mate-
rial). Synchronized firing was examined at the 10 ms time scale
because this time scale captured much of the autocorrelation
within a cell and cross-correlation between cells (42% and 83% of

DCBA

200 μm

noitalumits lausivnoitanimulli tnatsnoc

Figure 1. Islands of large-scale synchronized firing in populations of primate ON-parasol RGCs across four preparations (A–D).
Each oval represents the 0.9, 1.0, 1.0, and 1.0 SD outline of the Gaussian fit to the receptive field of a single cell in each preparation,
respectively. If a neuron spikes within a 10 ms interval, the receptive field is colored black. Shown are six selected frames to
highlight the spatial scale of synchronized firing from each preparation under constant illumination (A, B; supplemental Movie 1,
available at www.jneurosci.org as supplemental material) and visual stimulation (C, D; supplemental Movie 2, available at www.
jneurosci.org as supplemental material).
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variance, respectively; see Materials and Methods for expanded
discussion of time scale) (Shlens et al., 2006). Several snapshots of
activity are shown for two recordings in Figure 1, A and B; these
data were selected to emphasize synchronized firing. Synchro-
nized firing occurred at spatial scales substantially larger than the
distance between nearest neighbors in the mosaic. Specifically,
synchronized firing events including up to 44% of the popula-
tion, and up to 26 spatially contiguous neurons, were observed in
four preparations examined. In one preparation (Fig. 1A), firing
patterns of this magnitude were observed every 30 min. If the cells
fired independently, such patterns would occur only once every
�6000 years. Therefore, the observed patterns of activity clearly
deviate from the predictions of independence, and significantly
exceed the scale of multi-neuron synchronized firing previously
reported in the retina (Schnitzer and Meister, 2003; Schneidman
et al., 2006; Shlens et al., 2006).

Some regularities in the patterns of synchronized firing are
apparent from visual inspection (Fig. 1A,B; supplemental Movie
1, available at www.jneurosci.org as supplemental material).
First, as expected from previous work (Shlens et al., 2006), syn-
chronized firing was spatially localized: active cells tended to be
clustered in a local region, the size of which covaried with the
average receptive field size of the ON-parasol cells recorded. Sec-
ond, synchronized firing was spatially isotropic: the strength of
synchrony was approximately invariant to the orientation of the
line joining a cell pair, exhibiting deviations from circular sym-
metry no larger than 7% (see Materials and Methods; data not
shown). Third, synchrony was approximately translation invari-
ant: its spatial extent was approximately independent of the loca-
tion of the recorded cells: no distinct boundaries or stereotyped
motifs appeared in recorded firing patterns, and each cell was
equally likely to exhibit synchronized firing with each of its neigh-
bors. These features of synchronized firing were observed consis-
tently in all preparations examined.

Measuring the complete pattern of activity
The above findings suggest that synchronized firing in ON-
parasol cells may be summarized parsimoniously, provided that
the measurements encompass a sufficiently large region of retina.
The sufficiency of the recording was tested by examining three
statistics of synchronized firing. The first statistic was the fraction
of neurons firing in a given time sample. For example, in the
bottom panel of Figure 1B, a total of 13 neurons fired (20%). The
second statistic was the number of firing neurons in spatially
contiguous groups consisting of more than one neuron (see Ma-

terials and Methods). For example, in the bottom panel of Figure
1B, two contiguous firing groups were observed, sizes 10 and 3.
The third statistic was the fraction of pairs of adjacent firing cells.
For example, in the bottom panel of Figure 1B, there were 18
pairs of adjacent firing cells (11%). [Note that a more complete
approach to assess synchronized firing would be to estimate the
frequency of all 2n possible firing patterns in n neurons (Shlens et
al., 2006), which is impractical when n is in the range of 50 –100 as
in the present data.]

If the present recordings were sufficient to capture the full
extent of synchronized firing, then the values of these statistics
should reach asymptotes with a collection of cells no larger than
the total number of cells recorded. To test this prediction, these
statistics were calculated using spatially contiguous subsets of
recorded cells in four preparations (Fig. 2). For small groups of
cells similar to those examined in previous work (Schneidman et
al., 2006; Shlens et al., 2006) (e.g., 7–10 neurons), the three sta-
tistics either exhibited large variance or assumed mean values
significantly different from the values observed with the entire
population (gray bar). However, these statistics approached as-
ymptotic values, with gradually shrinking variance, with �40
cells.

Large synchronized firing patterns appeared not to represent
singular events, but instead samples from a continuum, as shown
by the distributions of the three statistics in Figure 3A (top row,
gray bars). These distributions also reveal the spatial extent of
synchronized firing. For example, in the recording of Figure 1A,
for �99.9% of the recorded patterns, no more than 25 neurons
(40%), and no more than 15 spatially contiguous neurons (23%),
fired synchronously. Finally, the three statistics may be used to
summarize quantitatively the departures from statistical inde-
pendence in the population (Fig. 3A, top row, dashed curves;
supplemental Movie 4, available at www.jneurosci.org as supple-
mental material). The large observed deviations reflect the prom-
inence of synchronized firing in the population.

Pairwise-adjacent interactions largely explain
synchronized firing
Can the observed patterns of synchronized firing be explained
with a simple model? One possibility is that they can be under-
stood entirely on the basis of measured interactions between pairs
of cells (Schneidman et al., 2006; Shlens et al., 2006; Tang et al.,
2008), or (most simply) between pairs of adjacent cells in the
mosaic (Shlens et al., 2006). This hypothesis was tested using the
observed firing pattern statistics (Fig. 3A, top row).
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To generate predictions of population responses based purely
on pairwise and adjacent interactions, the maximum entropy
methodology developed in recent work was used (Schneidman et
al., 2003b, 2006; Shlens et al., 2006). To introduce the approach,
let xi � {1, 0} indicate whether neuron i fires (or not) during a
single time bin, and let Pobs(xi) indicate the probability that it fires
(or not). Similarly, let Pobs(xi, xj) represent the joint probability of
two cells each firing (or not), and let Pobs(x1,. . . , xn) indicate the
joint probability of any given pattern of firing in the entire pop-
ulation of cells. The goal is to produce and test a model of
Pobs(x1,. . . , xn), solely from the knowledge of Pobs(xi) and Pobs(xi,
xj), assuming no further structure in the population activity. A
natural solution, borrowed from statistical mechanics (Jaynes,
1957a,b), is to select a pairwise model Pmodel(x1,. . . , xn) which has
maximum entropy, or randomness, subject to the constraints
Pmodel(xi) � Pobs(xi) and Pmodel(xi, xj) � Pobs(xi, xj) (see Materials
and Methods). A simpler model is one in which the constraints

Pobs(xi, xj) are only obtained from imme-
diate neighbors in the mosaic; this will be
referred to as the pairwise-adjacent model
(Shlens et al., 2006). A visualization of the
pairwise-adjacent model fitted to data
from the preparation in Figure 1B is given
in Figure 4A (see Materials and Methods).

To test the model, simulated firing pat-
terns were generated and compared with
the data. Qualitatively, the accuracy of the
model predictions may be assessed by
comparing movies generated from the
model and data (supplemental Movies 1,
3, available at www.jneurosci.org as sup-
plemental material). Quantitatively, the
firing patterns produced by the model
closely matched all three measured statis-
tics of the data (Fig. 3A, top row, solid
curves). Strikingly, the model correctly
predicted the frequency of spatially contig-
uous islands of up to at least 30 firing neu-
rons, even though model parameters were
constrained only by the firing probabilities
of pairs of adjacent cells. Across four prep-
arations, the observed frequency of firing
patterns matched that predicted from the
fitted pairwise-adjacent model (Fig. 3A,
bottom row). Large events encompassing
�40% of neurons firing or �15 contigu-
ous neurons firing (Fig. 3A, bottom row,
gray box) occurred infrequently and were
subject to large counting variability. De-
spite this variability, the pairwise-adjacent
model produced an unbiased prediction of
each firing pattern across preparations.

To summarize these findings, the simi-
larity of the distributions of the three sta-
tistics for the model (Pmodel) and the data
(Pobs) was measured using likelihood anal-
ysis. The likelihood associated with a par-
ticular model Pmodel is the probability of
observing the data, given the model. The
negative logarithm of the average likeli-
hood asymptotically approaches the
Kullback–Leibler divergence Dmodel �
DKL (Pobs�Pmodel), and expresses the simi-

larity of the data and model distributions (see Materials and
Methods). The fraction of deviations from statistical indepen-
dence accounted for by a particular model, F � 1 � Dmodel/Dind,
measures the success of the model in explaining synchronized
firing. The value of F was computed for the data across four
preparations (including Fig. 1A,B), and for each of the three
statistics. For the data in Figure 3A, the values of F are given inset.
In all cases the pairwise-adjacent model accounted for 98 –99% of
the deviations from statistical independence observed (see Mate-
rials and Methods for an analysis of the time scales and deviations
not accounted for by the model).

Measuring the influence of the network on each cell
The accurate fit of the pairwise-adjacent model made possible an
analysis of the influence of shared signals on the activity of each
cell. A natural measure of shared signals is the information that
the activity of the surrounding population contains about the
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activity of the reference cell. Specifically,
the information about the activity of a ref-
erence cell, y, contained in the activity of its
neighbors, x1,. . . , xn, is measured by the re-
duction in uncertainty about the activity of
the reference cell obtained from knowledge
of the neighbor activity, I( y; x1,. . . , xn) �
H( y) � H( y � x1,. . . , xn), where H(�) repre-
sents the entropy, or uncertainty, of a ran-
dom variable. The pairwise-adjacent
model makes possible an unbiased esti-
mate, because it permits the generation of
requisitely large simulated data sets exhib-
iting approximately the same statistics as
the data.

First, the information that the activity
of a single neighboring cell contained
about the activity of a reference cell was
estimated, i.e., I( y; x1). For five example
cells, this quantity was small, reflecting
weak pairwise coupling (Fig. 4B, leftmost
points). Next, the analysis was repeated for
increasing numbers of neighbors, accu-
mulated in order of distance, up to n � 15
cells. For cells in Figure 4B, the amount of
information in the surrounding activity
increased with the number of neighbors
considered, reaching an asymptotic maxi-
mum of 0.06 � 0.01 bits with 15 cells.
Across all reference cells in this data set
(excluding cells with fewer than six recorded neighbors, to avoid
edge effects), the total information about the activity of the ref-
erence cell contained in its 15 nearest neighbors was 0.056 �
0.0087 bits. In three other preparations this value was 0.094 �
0.025 bits, 0.08 � 0.011 bits, and 0.039 � 0.01 bits (Fig. 4C). Just
six immediate neighbors provided the large majority (90% �
7.4%) of the information about the firing of the reference cell
(Fig. 4C).

To assess the relative strength of network interactions, the
information I( y; x1, . . ., xn) was compared with the entropy of
the firing of the reference cell, H( y). For the preparation in Figure
4A, this comparison is plotted with red points in Figure 4D. Note
that the variation in entropy across reference cells solely reflects
the variation in firing rates of the individual cells. A best fit line
(data not shown) indicates that the information was 7.0 � 1.1%
of the entropy of the firing of the reference cell (see Materials and
Methods for analysis across bin sizes). Across three other prepa-
rations, the network activity accounted for 18.9 � 3.2%, 11.2 �
1.7%, and 6.5 � 1.5% of the entropy. In summary, no more than
20% of the uncertainty in the firing of an individual cell was
accounted for by the activity of the surrounding population (Fig.
4D, dashed line).

Synchronized firing in the presence of visual signals
The above results refer only to synchronized firing in the sponta-
neous activity of RGCs. However, the relevance of synchronized
firing for retinal function ultimately depends on its role in visual
signaling to the brain, and it is possible that the influence of the
network on an individual cell changes when RGC firing is mod-
ulated by a visual stimulus (Fig. 1C,D; supplemental Movie 2,
available at www.jneurosci.org as supplemental material). To test
this possibility, the pairwise-adjacent model was fitted to data
obtained in the presence of a white noise stimulus, in which the

intensity and color of each pixel of the display varied randomly
and independently over time. The stimulus was strong enough to
drive firing in the cells: it was used to extract the receptive fields
shown in Figure 1. However, the pixels were small enough that
they generated no more than 8.4% additional synchronized firing
in adjacent cells [as determined by shuffle correction (Perkel et
al., 1967; Palm et al., 1988)]. Thus, this stimulus provided a test of
whether visually modulated activity that is approximately inde-
pendent in each cell alters the relative influence of the network.

Figures 3B and 4E show the results from 12 retinas. The
pairwise-adjacent model accurately predicted the frequency of
firing patterns in the retina from Figure 1D (Fig. 3B, top row) as
well as 11 other retinas (Fig. 3B, bottom row). Importantly, the
pairwise-adjacent model predicted the frequency of large-scale
firing events (�15 contiguous neurons) (Fig. 3B, bottom row,
gray box) and accounted for 98.0 –99.8% of the deviations from
statistical independence. For the same four preparations in Fig-
ure 4D, the activity in the neighbors accounted for 6.3 � 1.0%,
18.6 � 3.3%, 9.5 � 1.5%, and 5.1 � 1.4% of the activity of the
reference cell, respectively (Fig. 4E). Thus, as the visual function
of RGCs was engaged by independent stimulus modulations, the
pairwise-adjacent model remained accurate and the relative in-
fluence of shared and unique signals in each cell remained
roughly fixed.

Discussion
The present findings reveal the large-scale structure of multi-
neuron synchronized firing in a population of RGCs that trans-
mits a complete visual representation to the brain. ON-parasol
cells fired synchronized spikes in large, spatially contiguous
groups, and 15–30% of spikes in each cell were associated with
multi-neuron synchronized firing not expected by chance. How-
ever, a simple model, based on pairwise interactions between
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immediate neighbors in the population, accounted for 99% of the
spatial scale and structure of synchronized firing. These neighbor
interactions accurately predicted the frequencies of the largest
patterns of electrical activity measured. Despite strong synchro-
nized firing, the activity of any given cell was only weakly redun-
dant: no more than 20% of the firing of each cell was predictable
from the activity of its neighbors. These findings were virtually
unchanged by independent visual stimulation of the cells. In
summary, synchronized firing in a complete population of ON-
parasol cells appears to reflect simple neighbor interactions,
rather than a unique collective visual signal or a highly redundant
coding scheme.

Synchronized firing in the retina
A previous finding in larval tiger salamander retina indicated that
RGCs often fire in large groups, raising the possibility that syn-
chronized firing patterns represent a unique, elementary symbol
in the neural code of the retina (Schnitzer and Meister, 2003).
However, because that study lacked information about the spatial
structure and cell type organization of synchronized firing, it left
open the question of what the unique symbol could be. Other
studies have also examined multi-neuron synchronized firing,
but at a scale significantly smaller than the patterns of activity in
the neural population, providing an incomplete picture (Schnei-
dman et al., 2006; Shlens et al., 2006).

The present work characterizes the spatial “footprint” of syn-
chronized firing in one cell type at a sufficiently large scale to
capture all the apparent structure. The data did not reveal singu-
lar and unique synchronized firing events in the ON-parasol pop-
ulation, nor any particular tendency toward large-scale synchro-
nization. Instead, the data suggest that large-scale synchronized
firing events form part of a continuum of patterns of collective
electrical activity produced by neighbor interactions.

Redundancy in a complete neural population
Although synchronized firing was strong and structured, the ac-
tivity of each ON-parasol cell was only weakly redundant with the
activity of surrounding ON-parasol cells. This finding relates to
two predictions from previous studies.

One study of RGCs in larval salamander retina predicted,
based on an extrapolation from small groups of cells, that inter-
actions among all RGCs in a small region of the retina could
produce highly ordered or “freezing” behavior (Schneidman et
al., 2006), a phenomenon not observed in the present work.
However, two important differences in the studies bear mention.
First, the previous study was performed using stimuli with sub-
stantial spatial redundancy, which would be expected to elevate
synchronized firing [for discussion, see Bethge and Berens
(2007), Nirenberg and Victor (2007), and Roudi et al. (2009)].
Second, the extrapolation from the data to the complete RGC
population was based on the approximation that correlated ac-
tivity between pairs of cells is independent of distance within the
recorded region. This approximation implies that the total inter-
action strength would grow as the square of the number of cells.
In the present work, examining an essentially complete collection
of cells uniformly tiling a large region of retina, correlated activity
declines systematically with distance (Shlens et al., 2006) and is
captured by local interactions between neighboring cells. Thus
the total interaction strength scales linearly with the number of
cells, and the prediction of what could occur in a fully connected
local population (Schneidman et al., 2006) remains untested.

In a similar vein, a second study of larval salamander RGCs
revealed substantial (up to �40%) redundancy in the visual sig-

nals carried by pairs of RGCs, particularly in cell pairs with highly
overlapping receptive fields (Puchalla et al., 2005). In principle,
this high pairwise redundancy could produce even higher redun-
dancy in a full population of such cells. In contrast, the present
results show that the information carried about the activity of an
ON-parasol cell by all the surrounding ON-parasol cells is no
more than �20%. This value provides a bound on the visual
signal redundancy in the entire ON-parasol population [Schnei-
dman et al. (2003a), their Eq. 11]. However, it does not provide a
measure of redundancy across all RGC populations in a local
region of retina.

A simple hypothesis may reconcile the present and previous
findings: firing and visual signals are largely nonredundant
among RGCs of a single type, which exhibit limited receptive field
overlap, but highly redundant across all RGCs of different types
in a small region of retina, which exhibit substantial receptive
field overlap. This would be predicted if the dominant source of
noise in the retina were photoreceptor noise (see below), because
RGCs with overlapping receptive fields presumably sample from
the same photoreceptors.

It is worth noting that different RGC types project to distinct
targets in the brain and probably subserve distinct visual func-
tions (Berson, 2008). Therefore, high redundancy between dif-
ferent cell types in a local region may reveal little about the func-
tional impact of synchronized firing, whereas low redundancy
within a cell type over an extended region may be relevant for
understanding downstream computations.

Circuits mediating synchronized firing
Previous studies have revealed that synchronized firing in RGCs
of several species arises from a combination of gap junction cou-
pling and common synaptic input (Mastronarde, 1989; Dacey
and Brace, 1992; Jacoby et al., 1996; Stafford and Dacey, 1997;
Brivanlou et al., 1998; Hu and Bloomfield, 2003; Hidaka et al.,
2004). In principle, either of these mechanisms could mediate
synchronized firing observed here. Recent work using paired in-
tracellular recordings indicates that gap junction coupling [po-
tentially through amacrine cells (Dacey and Brace, 1992)] and
correlated synaptic input contribute to synchronized firing
among ON-parasol cells, although the latter dominates (Trong
and Rieke, 2008). Although the present work provides no addi-
tional insight into mechanism, it does suggest that the mecha-
nisms underlying synchronized firing in pairs of neighboring
ON-parasol cells may suffice to explain the patterns of activity in
the entire network. One possibility is that a single noise source,
namely photoreceptor noise, dominates both firing variability in
individual RGCs and shared variability in neighboring RGCs
(Trong and Rieke, 2008; F. Rieke, personal communication).

It remains possible that novel stimuli could activate distinct
retinal circuits that would create more complex patterns of RGC
activity than would be produced by neighbor interactions. For
example, recent work has shown that looming stimuli (Ishikane
et al., 2005) and reversing moving stimuli (Schwartz et al., 2007)
generate unique patterns of synchronized firing in frog and
salamander RGCs, respectively. Whether such effects are present
in the ON-parasol population remains to be seen.

Future directions and relevance for other neural circuits
The present results highlight the value of statistical approaches to
probe the effect of synchronized firing on visual signals. Although
the maximum entropy approach has the benefit of relying on few
assumptions, its utility may be limited because of the large data sets
required to probe firing dynamics and stimulus dependencies. An
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alternative approach is a parametric model of light response that
includes interactions in the spiking activity of adjacent cells and also
provides an explicit, optimal decoding algorithm for the neural sig-
nals (Pillow et al., 2008). This model may be useful for probing the
temporal structure of synchronized firing and its role in visual
signaling.

The regularity of the observed firing patterns made it possible
to summarize their structure and scale with a few statistics and a
simple model. Previous findings suggest that such a summary of
network interactions may prove more difficult in cortical circuits
(Callaway, 1998; Yoshimura and Callaway, 2005; Yoshimura et
al., 2005), where the anatomical and functional organization may
not be as simple or as precisely registered as in the retina. How-
ever, it remains possible that the functional organization of at
least some central circuits is simple, even though their anatomical
arrangement is complicated by factors such as multiple overlaid
maps of sensory variables [e.g., primary visual cortex (Ohki et al.,
2005, 2006)]. Furthermore, increasing knowledge about cell type
organization in the brain (Callaway, 2005; Göbel et al., 2007;
Mitchell et al., 2007) might reveal a more regular structure in
patterned firing within each defined neural population.
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