The Structure of Maximum Subsets of $\{1, \ldots, n\}$ with No Solutions to $a+b=k c$

Andreas Baltz*
Mathematisches Seminar
University of Kiel, D-24098 Kiel, Germany
aba@numerik.uni-kiel.de
Peter Hegarty, Jonas Knape, Urban Larsson
Department of Mathematics
Chalmers University of Technology
Göteborg, Sweden
hegarty@math.chalmers.se \{md9jonas,mdOlarur\}@mdstud.chalmers.se
Tomasz Schoen ${ }^{* *}$
Wydzial Matematyki i Informatyki
Adam Mickiewicz University
Poznań, Poland
schoen@amu.edu.pl

Submitted: Nov 9, 2004; Accepted: Apr 22, 2005; Published: Apr 28, 2005
MR Subject Classifications: 05D05, 11P99

Abstract

If k is a positive integer, we say that a set A of positive integers is k-sum-free if there do not exist a, b, c in A such that $a+b=k c$. In particular we give a precise characterization of the structure of maximum sized k-sum-free sets in $\{1, \ldots, n\}$ for $k \geq 4$ and n large.

1 Introduction

A set of positive integers is called k-sum-free if it does not contain elements a, b, c such that

$$
a+b=k c,
$$

[^0]where k is a positive integer. Denote by $f(n, k)$ the maximum cardinality of a k-sum-free set in $\{1, \ldots, n\}$. For $k=1$ these extremal sets are well-known: Deshoulliers, Freiman, Sós, and Temkin [1] proved in particular that the maximum 1-sum-free sets in $\{1, \ldots, n\}$ are precisely the set of odd numbers and the "top half" $\left\{\left\lceil\frac{n+1}{2}\right\rceil, \ldots, n\right\}$. For $n>8$ even $\left\{\frac{n}{2}, \ldots, n-1\right\}$ forms the only additional extremal set. The famous theorem of Roth [4] gives $f(n, 2)=o(n)$. Chung and Goldwasser [2] solved the case $k=3$ by showing that the set of odd integers is the unique extremal set for $n>22$. For $k \geq 4$ they gave an example of a k-sum-free set [3] of cardinality $\frac{k(k-2)}{k^{2}-2} n+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)} n+\mathcal{O}(1)$, which implies $\lim _{n \rightarrow \infty} \frac{f(n, k)}{n} \geq \frac{k(k-2)}{k^{2}-2}+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)}$, and they conjectured that this lower bound is the actual value. Moreover they conjectured that extremal k-sum-free sets consist of three intervals of consecutive integers with slight modifications at the end-points if n is large.

In this paper we prove that the first conjecture is true, and we expose a structural result which is very close to the second. Our proof is elementary. In fact it is based on two simple observations:

Suppose we are given a k-sum-free set A. Then

- $k x-y \notin A$ for all $x, y \in A$
(Otherwise we could satisfy the equation $k x=(k x-y)+y$ in A.)
- for all $y \in A$ any interval centered around $\frac{k y}{2}$ cannot share more than half of its elements with A.
(Otherwise we would find a pair $\left\lfloor\frac{k y}{2}\right\rfloor-d,\left\lceil\frac{k y}{2}\right\rceil+d$ in A, giving

$$
\left.\left(\left\lfloor\frac{k y}{2}\right\rfloor-d\right)+\left(\left\lceil\frac{k y}{2}\right\rceil+d\right)=k y .\right)
$$

2 Preparations

Let $n \in \mathbb{N}$ be large and let $k \in \mathbb{N}_{\geq 4}$. We start by agreeing on some notations.

Notations

Let $A \subseteq\{1, \ldots, n\}$ be a set of positive integers. Denote by

$$
s_{A}:=\min A \text { and } m_{A}:=\max A
$$

the smallest and the largest elements of A respectively.
For $l, r \in \mathbb{R}$ let

$$
\begin{aligned}
(l, r] & :=\{x \in \mathbb{N} \mid l<x \leq r\} \\
{[l, r) } & :=\{x \in \mathbb{N} \mid l \leq x<r\} \\
(l, r) & :=\{x \in \mathbb{N} \mid l<x<r\} \\
{[l, r] } & :=\{x \in \mathbb{N} \mid l \leq x \leq r\}
\end{aligned}
$$

abbreviate intervals of integers. Continuous intervals will be indicated by the subscript \mathbb{R}.
Furthermore for any $y \in \mathbb{N}$ and $d \in \mathbb{N}_{0}(:=\mathbb{N} \cup\{0\})$ put

$$
I_{y}^{d}:=\left[\frac{k y-1}{2}-d, \frac{k y+1}{2}+d\right] .
$$

Note that if $k y$ is even then $I_{y}^{d}=\left\{\frac{k y}{2}-d, \frac{k y}{2}-d+1, \ldots, \frac{k y}{2}+d\right\}$ and $\left|I_{y}^{d}\right|=2 d+1$, while if $k y$ is odd we have $I_{y}^{d}=\left\{\frac{k y-1}{2}-d, \ldots, \frac{k y+1}{2}+d\right\}$ and $\left|I_{y}^{d}\right|=2 d+2$.

The first Lemma restates our introductory observations.
Lemma 1 Let $A \subseteq[1, n]$ be a k-sum-free set. If $x, y \in A$ then $k x-y \notin A$. If $y \in A$ and $d \in \mathbb{N}_{0}$ then $\left|I_{y}^{d} \backslash A\right| \geq d+1$.

Suppose A^{\prime} is a k-sum-free set consisting of intervals $\left(l_{i}, r_{i}\right]$. The interval $\left(l_{i}, r_{i}\right]$ is k -sum-free if $l_{i} \geq \frac{2 r_{i}}{k}$. Moreover we observe that reasonably large consecutive intervals $\left(l_{i+1}, r_{i+1}\right],\left(l_{i}, r_{i}\right]$ (where we assume $\left.r_{i+1}<l_{i}\right)$ should satisfy $k r_{i+1} \leq l_{i}+s_{A^{\prime}}$. This leads to the following definition, describing a successive transformation of an arbitrary k-sum-free set A into a k-sum-free set of intervals.

Definition 1 Let $n \in N$ and let $A \subseteq[1, n]$ be k-sum-free with smallest element $s:=s_{A}$. Define sequences $\left(r_{i}\right),\left(l_{i}\right),\left(A_{i}\right)$ by:

$$
\begin{aligned}
A_{0} & :=A, \quad r_{1}:=n \\
l_{i} & :=\left\lfloor\frac{2 r_{i}}{k}\right\rfloor, \quad r_{i+1}:=\left\lfloor\frac{l_{i}+s}{k}\right\rfloor \\
A_{i} & :=\left(A_{i-1} \backslash\left(r_{i+1}, l_{i}\right]\right) \cup\left(l_{i}, r_{i}\right\rfloor \cap[s, n] \text { for } i \geq 1 .
\end{aligned}
$$

The letter $t=t_{A}$ will be reserved to denote the least integer such that $r_{t+1}<s$. Observe that, for all $i \geq t$,

$$
\begin{equation*}
A_{i}=A_{t}=\left[\alpha, r_{t}\right] \cup\left(\bigcup_{j=1}^{t-1}\left(l_{j}, r_{j}\right]\right) \tag{1}
\end{equation*}
$$

where $\alpha=\alpha_{A}:=\max \left\{l_{t}+1, s\right\}$.

3 The structure of maximum k-sum-free sets

To obtain the structural result we consider the successive transformation of an arbitrary k-sum-free set A into a set A_{t} of intervals as in (1). Our plan is to show that each member of the transformation sequence $\left(A_{i}\right)$ is k-sum-free and has size greater than or equal to $|A|$. For n sufficiently large, depending on k, and a maximum sized k-sum-free subset A of $[1, n]$, it will turn out that A_{t} consists of three intervals only, i.e.: that $t=3$. This observation will do to determine $f(n, k)$, and we conclude our proof by showing that A
could be enlarged if it did not contain (nearly) the whole interval (l_{3}, r_{3}] and consequently almost all elements from $\left(l_{2}, r_{2}\right]$ and $\left(l_{1}, r_{1}\right]$, so that in fact almost nothing happens during the transformation of an extremal set.

Lemma 2 Let $A \subseteq[1, n]$ be k-sum-free. Let $i \in \mathbb{N}$.
a) A_{i} is k-sum-free.
b) $\left|A_{i}\right| \geq\left|A_{i-1}\right|$.

Proof. a) Clearly, it is enough to prove the claim for $i \leq t$, so we may assume that $s \leq r_{i}$. Suppose there are $a, b, c \in A_{i}$ with $a+b=k c . A_{i}$ is of the form

$$
A_{i}=A_{i-1} \cap\left[s, r_{i+1}\right] \cup\left(l_{i}, r_{i}\right] \cap[s, n] \cup\left(l_{i-1}, r_{i-1}\right] \cup \ldots \cup\left(l_{1}, r_{1}\right] .
$$

If $c \in\left(l_{1}, r_{1}\right]$, then $k c>2 n$, which is impossible. If $i \geq 2$ and $c \in\left(l_{j}, r_{j}\right]$ for some $j \in[2, i]$, then $k c \in\left(2 r_{j}, l_{j-1}+s\right]$ and the larger one of a, b must be in $\left(r_{j}, l_{j-1}\right]$. But $\left(r_{j}, l_{j-1}\right] \cap A_{i}=\emptyset$ by construction. Hence $c \in A_{i-1} \cap\left[s, r_{i+1}\right]$. Now, $k c \leq k r_{i+1} \leq l_{i}+s$. Since $\left(r_{i+1}, l_{i}\right] \cap A_{i}=\emptyset$, both a and b have to be in $A_{i-1} \cap\left[s, r_{i+1}\right]=A \cap\left[s, r_{i+1}\right]$. But A is k-sum-free, a contradiction.
b) The inequality is trivial for $i \geq t$. For $1 \leq i<t$ we have that $l_{i} \geq s$ and hence

$$
A_{i}=\left(A_{i-1} \cap\left[1, r_{i+1}\right]\right) \cup\left(l_{i}, r_{i}\right] \cup\left(\bigcup_{j=1}^{i-1}\left(l_{j}, r_{j}\right]\right) .
$$

Thus it suffices to prove that

$$
\left|A_{i-1} \cap\left[1, r_{i}\right]\right| \leq\left|A_{i-1} \cap\left[1, r_{i+1}\right]\right|+\left\lceil\frac{(k-2) r_{i}}{k}\right\rceil \text {. }
$$

Clearly, then, it suffices to prove the inequality for $i=1$, i.e.: to prove that, for any $n>0$, and any k-sum-free subset A of $[1, n]$ with smallest element s_{A}, we have

$$
\begin{equation*}
|A| \leq\left|A \cap\left[1, r_{2, A}\right]\right|+\left\lceil\frac{(k-2) n}{k}\right\rceil \tag{2}
\end{equation*}
$$

where

$$
r_{2, A}:=\left\lfloor\frac{\lfloor 2 n / k\rfloor+s_{A}}{k}\right\rfloor .
$$

The proof is by induction on n. The result is trivial for $n=1$. So suppose it holds for all $1 \leq m<n$ and let A be a k-sum-free subset of $[1, n]$. Note that the result is again trivial if $s_{A}>2 n / k$, so we may assume that $s_{A} \leq 2 n / k$, which implies that $r_{2, A} \leq n / k$, since $k \geq 4$.

First suppose that there exists $x \in A \cap(n / k, 2 n / k]$. Then $1 \leq k x-n \leq n$ and the
map $f: y \mapsto k x-y$ is a 1-1 mapping from the interval $[k x-n, n]$ to itself. For each y in this interval, at most one of the numbers y and $f(y)$ can lie in A, since A is k-sum-free. To simplify notation, put $w:=k x-n-1$. Then our conclusion is that

$$
\begin{equation*}
|A \cap(w, n]| \leq \frac{1}{2}(n-w) . \tag{3}
\end{equation*}
$$

If $w=0$ or if $A \cap[1, w]=\emptyset$, then we are done (since $k \geq 4$). Put $B:=A \cap[1, w]$. Then we may assume $B \neq \emptyset$, hence $s_{B}=s_{A}$. Applying the induction hypothesis to B, we find that

$$
\begin{equation*}
|B|=|A \cap[1, w]| \leq\left|B \cap\left[1, r_{2, B}\right]\right|+\left\lceil\frac{(k-2) w}{k}\right\rceil . \tag{4}
\end{equation*}
$$

But $s_{B}=s_{A}$ implies that $r_{2, B} \leq r_{2, A}$, hence that $B \cap\left[1, r_{2, B}\right] \subseteq A \cap\left[1, r_{2, A}\right]$. Thus (3) and (4) yield the inequality

$$
|A| \leq\left|A \cap\left[1, r_{2, A}\right]\right|+\left\lceil\frac{(k-2) w}{k}\right\rceil+\frac{1}{2}(n-w)
$$

which in turn implies (2), since $|A|$ is an integer. Thus we are reduced to completing the induction under the assumption that $A \cap(n / k, 2 n / k]=\emptyset$. Suppose $x \in A \cap\left(r_{2, A}, n / k\right]$. Then $\lfloor 2 n / k\rfloor+s_{A}<k x \leq n$ and $k x-s_{A} \notin A$. In other words, we can pair off elements in $A \cap\left(r_{2, A}, 2 n / k\right]$ with elements in $(2 n / k, n] \backslash A$. This immediately implies (2), and the proof of Lemma 2 is complete.

We have seen so far that any k-sum-free set A can be turned into a k-sum-free set A_{t} having overall size at least $|A|$. The set A_{t} is a union of intervals, as given by (1), though note that the final interval $\left[\alpha, r_{t}\right]$ may consist of a single point, since $r_{t}=s$ is possible. The proof of the following Lemma uses a fact shown in [3] by Chung and Goldwasser, to prove that t must be equal to three if $|A|$ is maximum.

Lemma 3 Let A be a maximum k-sum-free subset of $[1, n]$, where $n>n_{0}(k)$ is sufficiently large. Let $s:=s_{A}$ and let $t:=\max \left\{i \in \mathbb{N} \mid r_{i} \geq s\right\}$. Then $t=3$.

Proof. Let A_{t} be the set of positive integers given by (1). In a similar manner we now define a k-sum-free subset A_{t}^{\prime} of $(0,1]_{\mathbb{R}}$.
Put $c:=s / n$ and, for $i=1, \ldots, t$ define real numbers R_{i}, L_{i} as follows:

$$
R_{1}:=1, \quad L_{i}:=\frac{2 R_{i}}{k}, \quad R_{i+1}:=\frac{L_{i}+c}{k} .
$$

Then we put

$$
A_{t}^{\prime}:=\left[\alpha^{\prime}, R_{t}\right)_{\mathbb{R}} \cup\left(\bigcup_{j=1}^{t-1}\left[L_{j}, R_{j}\right)_{\mathbb{R}}\right)
$$

where $\alpha^{\prime}:=\max \left\{L_{t}, c\right\}$. That A_{t}^{\prime} is k-sum-free is shown in [3]. One sees easily that

$$
\begin{equation*}
\left|A_{t}\right| \leq n \cdot \mu\left(A_{t}^{\prime}\right)+t \tag{5}
\end{equation*}
$$

where μ denotes the Lebesgue-measure. Now suppose that $t \neq 3$. It is shown in [3] that there exists a constant $c_{k}>0$, depending only on k, such that in this case

$$
\begin{equation*}
\left|\mu\left(A_{t}^{\prime}\right)\right| \leq \frac{k(k-2)}{k^{2}-2}+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)}-c_{k} \tag{6}
\end{equation*}
$$

In fact, in the notation of page 8 of [3], an explicit value for c_{k} (which we will use later) is given by

$$
c_{k}=\frac{2}{k}(R(3)-R(4)),
$$

which by definition of R amounts to

$$
\begin{equation*}
c_{k}=\frac{8\left(k^{4}-4 k^{2}-4\right)(k-2)}{\left(k^{6}-2 k^{4}-4 k^{2}-8\right)\left(k^{4}-2 k^{2}-4\right) k} . \tag{7}
\end{equation*}
$$

Now (5) and (6) would imply that

$$
|A| \leq \frac{k(k-2)}{k^{2}-2} n+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)} n-c_{k} n+t .
$$

But we have seen in the introduction that $|A| \geq \frac{k(k-2)}{k^{2}-2} n+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)} n+\mathcal{O}(1)$ and, since $t=\mathcal{O}\left(\log _{k} n\right)$, we thus have a contradiction for sufficiently large n. Hence t must equal three, for large enough n, as required.

Now we are nearly in a position to determine $f(n, k)$. We want to calculate the cardinality of an extremal k-sum-free set A via computing $\left|A_{3}\right|$. Since $\left|A_{3}\right|$ depends on s_{A}, the following lemma will be helpful :

Lemma 4 Let $n>n_{0}(k)$ be sufficiently large. If A is a maximal k-sum-free subset of $[1, n]$, then $S-2 k \leq s_{A} \leq S+3$, where $S:=\left\lfloor\frac{8 n}{k^{5}-2 k^{3}-4 k}\right\rfloor$.
Proof. Set $s:=s_{A}$. By Lemma 3, for $n>n_{0}(k)$ we have $r_{4}<s$. Since A is maximal we have $|A|=\left|A_{3}\right|$. Now, for a fixed n, the cardinality of A_{3} is a function of $s \in[1, n]$ only. So we need to show that $\left|A_{3}(s)\right|$ attains its maximum value only for some $s \in[S-2 k, S+3]$. Define

$$
s^{\prime}:=\min \left\{s \in[1, n]: l_{3}(s)<s\right\} .
$$

A tedious computation (see the Appendix below) yields that $s^{\prime}=S+1$ if k is even and $s^{\prime}=S$ or $S+1$ if k is odd. Hence

$$
\begin{equation*}
s^{\prime} \in[S, S+1] . \tag{8}
\end{equation*}
$$

Clearly,

$$
\left|A_{3}(s)\right|= \begin{cases}\left\lceil\frac{(k-2) n}{k}\right\rceil+r_{2}(s)-l_{2}(s)+r_{3}(s)-s+1, & \text { if } s \geq s^{\prime} \tag{9}\\ \left\lceil\frac{(k-2) n}{k}\right\rceil+r_{2}(s)-l_{2}(s)+r_{3}(s)-l_{3}(s), & \text { if } s<s^{\prime}\end{cases}
$$

How does $\left|A_{3}(s)\right|$ change (ignoring its maximality for a while) if we alter s ?
First suppose $s \geq s^{\prime}$. If s increases by one, then $\left|A_{3}\right|$ will decrease by one unless either r_{2} or r_{3} increases. Now r_{2} can only increase (by one) once in $k(\geq 4)$ times. Almost the same is true of r_{3}, though its dependence on l_{2} makes things a little more complicated. However, it is not hard to see that we encounter an irreversible decrease in the cardinality of $\left|A_{3}\right|$ after at most 3 steps of increment of s. Hence $\left|A_{3}(s)\right|<\left|A_{3}\left(s^{\prime}\right)\right|$ if $s \geq s^{\prime}+3$.
Next suppose $s<s^{\prime}$. If we decrease s, then $\left|A_{3}\right|$ cannot increase at all, since l_{i} will not decrease unless r_{i} does. Moreover, $\left|A_{3}\right|$ will become smaller if the size of any interval is diminished. So we can focus our attention on $\left(l_{2}, r_{2}\right]$. While r_{2} decreases once in k times, l_{2} does so no more than once in $k\left\lfloor\frac{k}{2}\right\rfloor \geq 2 k$ times. Thus $\left|A_{3}(s)\right|<\left|A_{3}\left(s^{\prime}-1\right)\right|$ if $s \leq s^{\prime}-1-2 k$.

We have now shown that, as a function of $s \in[1, n]$, the cardinality of A_{3} attains its maximum only for some $s \in\left[s^{\prime}-2 k, s^{\prime}+2\right]$. This, together with (8), completes the proof of the lemma.

Now we can prove the first conjecture of Chung and Goldwasser.

Theorem 1

$$
\lim _{n \rightarrow \infty} \frac{f(n, k)}{n}=\frac{k(k-2)}{k^{2}-2}+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)} .
$$

Proof. Let A be a maximum k-sum-free set in $[1, n]$, with n sufficiently large. From Lemma 4 we have $\frac{s_{A}}{n}=\frac{S^{*}}{n}+o(1)$, where $S^{*}=\frac{8 n}{k^{5}-2 k^{3}-4 k}$. Thus we can estimate

$$
\begin{aligned}
\frac{f(n, k)}{n} & =\frac{\left|A_{3}\right|}{n}=\frac{r_{1}-l_{1}+r_{2}-l_{2}+r_{3}-S^{*}+1}{n}+o(1) \\
& =\frac{1}{n}\left(n-\frac{2 n}{k}+\frac{2 n+k S^{*}}{k^{2}}-\frac{4 n+2 k S^{*}}{k^{3}}+\frac{4 n+2 k S^{*}+k^{3} S^{*}}{k^{4}}-S^{*}\right)+o(1) \\
& =\frac{k^{4}-2 k^{3}+2 k^{2}-4 k+4}{k^{4}}+\frac{S^{*}}{n k^{3}}\left(2 k^{2}-2 k+2-k^{3}\right)+o(1) \\
& =\frac{k^{4}-2 k^{3}+2 k^{2}-4 k+4}{k^{4}}+\frac{8\left(2 k^{2}-2 k+2-k^{3}\right)}{\left(k^{5}-2 k^{3}-4 k\right) k^{3}}+o(1) \\
& =\frac{k^{5}-2 k^{4}-4 k+8}{\left(k^{4}-2 k^{2}-4\right) k}+o(1) \\
& =\frac{k(k-2)}{k^{2}-2}+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)}+o(1),
\end{aligned}
$$

and the claim follows by taking the limit.

We can now show the main result.

Theorem 2 Let $k \in \mathbb{N}_{>4}$ and $n>n_{1}(k)$. Let S and s^{\prime} be as in Lemma 4. Let $A \subseteq$ $\{1, \ldots, n\}$ be a k-sum-free set of maximum cardinality, with smallest element $s=s_{A}$. Then $s \in[S, S+3]$ and $A=\mathcal{I}_{3} \cup \mathcal{I}_{2} \cup \mathcal{I}_{1}$, where

$$
\begin{aligned}
& \mathcal{I}_{3} \in \begin{cases}\left\{\left[s, r_{3}\right],\left[s, r_{3}+1\right]\right\}, & \text { if } s \geq s^{\prime} \\
\left\{\left[s, r_{3}\right),\left[s, r_{3}\right] \backslash\left\{r_{3}-1\right\}\right\}, & \text { if } s<s^{\prime},\end{cases} \\
& \mathcal{I}_{2} \in \begin{cases}\left\{\left[l_{2}+2, r_{2}\right],\left[l_{2}+2, r_{2}+1\right]\right\}, & \text { if } r_{3}+1 \in A \\
\left\{\left(l_{2}, r_{2}\right],\left(l_{2}, r_{2}+1\right],\left[l_{2}, r_{2}\right),\left[l_{2}, r_{2}\right] \backslash\left\{r_{2}-1\right\}\right\}, & \text { if } r_{3}+1 \notin A,\end{cases} \\
& \mathcal{I}_{1} \in \begin{cases}\left\{\left[l_{1}+2, n\right]\right\}, & \text { if } r_{2}+1 \in A \\
\left\{\left[l_{1}, n\right),\left(l_{1}, n\right],\left[l_{1}, n\right] \backslash\{n-1\}\right\}, & \text { if } r_{2}+1 \notin A,\end{cases}
\end{aligned}
$$

If k is even, then $\mathcal{I}_{i} \neq\left[l_{i}, r_{i}\right] \backslash\left\{r_{i}-1\right\}$ for $1 \leq i \leq 3$.
Remark. Note that Theorem 2 does not precisely determine the k-sum-free subsets of $\{1, \ldots, n\}$ of maximum size, for every $n>n_{1}(k)$. With n and k fixed, one first needs to determine for which value(s) of $s \in[S, S+3]$ the quantity $\left|A_{3}(s)\right|$, as given by (9), is maximized. The result will depend on n and k. Even then, for a fixed s, not all the possibilities for $\mathcal{I}_{3} \cup \mathcal{I}_{2} \cup \mathcal{I}_{1}$ need be k-sum-free. See Section 4 below for further discussion.

Proof. We have already seen that $\left|A_{3}\right|=|A|$. Our first aim is to show by comparing A_{3} with A_{2} that almost the whole interval $\left(l_{3}, r_{3}\right]$ must be in A. Having achieved this, we infer by Lemma 1 that $\left(r_{3}, l_{2}\right] \cap A$ is nearly empty. Comparing A_{2} with A_{1} will then reveal that most of $\left(l_{2}, r_{2}\right]$ is contained in A. Again Lemma 1 will help us to see that A cannot share many elements with $\left(r_{2}, l_{1}\right]$ and a final comparison of A_{1} with A will conclude the proof.
(I) The first aim is easily reached if $s:=s_{A} \geq l_{3}+1$. Simply note that

$$
A_{2}=\left(A \cap\left[s, r_{3}\right]\right) \cup\left(l_{2}, r_{2}\right] \cup\left(l_{1}, r_{1}\right] \subseteq\left[s, r_{3}\right] \cup\left(l_{2}, r_{2}\right] \cup\left(l_{1}, r_{1}\right]=A_{3} .
$$

The maximality of $\left|A_{2}\right|$ gives $A_{2}=A_{3}$ and hence $\left[s, r_{3}\right] \subseteq A$. Observe that $s>l_{3}$ together with Lemma 4 and (8) give $S \leq s \leq S+3$.

Assume now that $s \leq l_{3}$. We want to show that in this case $s=l_{3}$. Suppose $s<l_{3}$ and let $B=\left[S-2 k, l_{3}\right] \cap A$. Define

$$
C:=I_{s_{B}}^{1} \cup \bigcup_{b \in B \backslash\left\{s_{B}\right\}} I_{b}^{0} .
$$

Clearly $C \subseteq\left(l_{3}, r_{3}\right]$ for all $n \gg 0$. Then since C is the union of disjoint intervals, Lemma 1 gives that $|C \backslash A|>|B|$. Hence we get the contradiction $\left|A_{3}\right|=\left|\left(A_{2} \backslash B\right) \cup\left(l_{3}, r_{3}\right]\right| \geq$ $\left|\left(A_{2} \backslash B\right) \cup(C \backslash A)\right|>\left|A_{2}\right|-|B|+|B|=\left|A_{2}\right|$. Therefore we are left with $s=l_{3}$, and this implies

$$
\begin{equation*}
\left|A_{2}\right|=\left|A_{3}\right| \Longleftrightarrow\left|A \cap\left[s, r_{3}\right]\right|=\left|\left(l_{3}, r_{3}\right] \cap\left[s, r_{3}\right]\right|=\left|\left(s, r_{3}\right]\right| . \tag{10}
\end{equation*}
$$

If $r_{3} \notin A$ we can infer from (10) that

$$
A \cap\left[s, r_{3}\right]=\left[s, r_{3}-1\right]=\left[l_{3}, r_{3}-1\right] .
$$

If $r_{3} \in A$, Lemma 1 gives $k l_{3}-r_{3} \notin A$, so $-k+1 \leq k l_{3}-2 r_{3} \leq-1$. If $k l_{3}-2 r_{3} \leq-2$ we get $I_{l_{3}}^{1} \subseteq\left(l_{3}, r_{3}\right]$ and $\left|I_{l_{3}}^{1} \backslash A\right| \geq 2$, which is impossible since this would imply $\left|A_{3}\right|>\left|A_{2}\right|$. Hence $k l_{3}-2 r_{3}=-1$ and k is odd. Using (10) one obtains

$$
A \cap\left[s, r_{3}\right]=\left[l_{3}, r_{3}\right] \backslash\left\{r_{3}-1\right\} .
$$

Suppose now that $s=l_{3}$ and $r_{3}+1 \in A$. Then $k l_{3}-\left(r_{3}+1\right) \notin A$ and

$$
r_{3}-k \leq k l_{3}-\left(r_{3}+1\right) \leq r_{3}-1 .
$$

This contradicts that $\left[s, r_{3}-2\right] \subseteq A$ unless $k l_{3}-\left(r_{3}+1\right)=r_{3}-1$, but then $r_{3} \notin A$ and $\left|A \cap\left[s, r_{3}\right]\right|=\left|A \cap\left[s, r_{3}-2\right]\right|$ which contradicts (10). Hence $r_{3}+1 \notin A$ if $s=l_{3}$.

Finally note that, if $s=l_{3}$ and $k l_{3} \geq 2 r_{3}-1$, the latter being a requirement for either of the two possibilities for \mathcal{I}_{3} to be k-sum-free, then another computation similar to the one in the Appendix yields that $s \geq S$. Again, using Lemma 4 we obtain

$$
\begin{equation*}
S \leq s \leq S+3 \tag{11}
\end{equation*}
$$

as claimed in the statement of the theorem. This completes the first part of our proof.
(II) For the second part note that we have just shown

$$
\begin{equation*}
s \geq l_{3} \tag{12}
\end{equation*}
$$

Plugging (11) into the definition of l_{3} yields (after a further tedious computation similar to that in the Appendix)

$$
\begin{equation*}
S-1 \leq l_{3} \leq S+1 \tag{13}
\end{equation*}
$$

which implies in view of (12) and (11)

$$
\begin{equation*}
l_{3} \leq s \leq l_{3}+4 \tag{14}
\end{equation*}
$$

Moreover we have observed that $\left[s, r_{3}-2\right] \subseteq A$. Let $\xi_{1}, \ldots, \xi_{5} \in\{0, \ldots, k-1\}$ be constants such that

$$
\begin{align*}
k l_{1} & =2 r_{1}-\xi_{1} \tag{15}\\
k r_{2} & =l_{1}+s-\xi_{2} \tag{16}\\
k l_{2} & =2 r_{2}-\xi_{3} \tag{17}\\
k r_{3} & =l_{2}+s-\xi_{4} \tag{18}\\
k l_{3} & =2 r_{3}-\xi_{5} . \tag{19}
\end{align*}
$$

We suppose that n is sufficiently large, so we can be sure that

$$
\left[k s-\left(r_{3}-2\right), k\left(r_{3}-2\right)-s\right] \cap A=\emptyset .
$$

By (14) we can infer that

$$
\begin{aligned}
\emptyset & =\left[k\left(l_{3}+4\right)-\left(r_{3}-2\right), k\left(r_{3}-2\right)-s\right] \cap A \\
& =\left[r_{3}-\xi_{5}+4 k+2, l_{2}-\xi_{4}-2 k\right] \cap A .
\end{aligned}
$$

Let $J=\left[r_{3}+2, r_{3}-\xi_{5}+4 k+1\right] \cap A$ and $K=\bigcup_{x \in J}\{k x-(s+2), k x-(s+1), k x-s\}$. Then $K \cap A=\emptyset,|K|=3|J|$ and by (18) and (19) we have

$$
K \subseteq\left[l_{2}-\xi_{4}+2 k-2, l_{2}-\xi_{4}-k \xi_{5}+4 k^{2}+k\right] \subseteq\left(l_{2}+k-2, l_{2}+4 k^{2}+k\right] \subseteq\left(l_{2}+2, r_{2}\right]
$$

if $n \gg 0$. Let $B=\left[l_{2}-\xi_{4}-2 k+1, l_{2}\right] \cap A$. If $B \cup J \subseteq\left\{l_{2}\right\}$ then $A \cap\left[r_{3}+2, l_{2}-1\right]=\emptyset$. Otherwise, with C as in part (I) if $|B|>1$ we can verify that $C \subseteq\left[r_{2}-\frac{3 k^{2}-k+2}{2}, r_{2}\right] \subseteq$ $\left(l_{2}+1, r_{2}\right]$, for $n \gg 0$, and $|C \backslash A|>|B|$. Put $C:=\emptyset$ if $|B| \leq 1$. For large n, K and C are disjoint. Hence $|B \cup J|<|(C \backslash A) \cup K|$ and we get

$$
\left|A_{2}\right|=\left|\left[A_{1} \backslash\left(J \cup B \cup\left\{r_{3}+1\right\}\right)\right] \cup\left(l_{2}, r_{2}\right]\right|>\left|A_{1} \backslash\left\{r_{3}+1\right\}\right| .
$$

Thus if $r_{3}+1 \notin A$ we get $\left|A_{2}\right|>\left|A_{1}\right|$ so suppose $r_{3}+1 \in A$. Then neither l_{2} nor $l_{2}+1$ can be in A_{1}. Otherwise, since $\left(s-\xi_{4}+k\right), s-\xi_{4}+k-1 \in[s, s+k] \subseteq\left[s, r_{3}-2\right] \subseteq A$ we get

$$
k\left(r_{3}+1\right)=l_{2}+\left(s-\xi_{4}+k\right)=\left(l_{2}+1\right)+\left(s-\xi_{4}+k-1\right),
$$

which is impossible. But $l_{2}+1 \in A_{2}$, so also in this case it follows that $\left|A_{2}\right|>\left|A_{1}\right|$, since $l_{2}+1 \notin K \cup C$ for large n. Again we conclude that $A \cap\left[r_{3}+2, l_{2}-1\right]=\emptyset$. Consequently,

$$
\left|A_{2}\right|=\left|A_{1}\right| \Leftrightarrow\left|A \cap\left(\left[l_{2}, r_{2}\right] \cup\left\{r_{3}+1\right\}\right)\right|=\left|\left(l_{2}, r_{2}\right]\right|,
$$

which gives $A \cap\left[l_{2}, r_{2}\right]=\left[l_{2}+2, r_{2}\right]$ if $r_{3}+1 \in A$. If $r_{3}+1 \notin A$ and either $l_{2} \notin A$ or $r_{2} \notin A$, we get $A \cap\left[l_{2}, r_{2}\right]=\left(l_{2}, r_{2}\right]$ or $A \cap\left[l_{2}, r_{2}\right]=\left[l_{2}, r_{2}\right)$, respectively. In case $r_{3}+1 \notin A$ and both $l_{2}, r_{2} \in A$, we see that $k l_{2}-r_{2}=r_{2}-\xi_{3} \notin A$. If $\xi_{3} \geq 2$ then $I_{l_{2}}^{1} \subseteq\left(l_{2}, r_{2}\right]$ and l_{2} could be profitably replaced. Hence $\xi_{3}=1, A \cap\left[l_{2}, r_{2}\right]=\left[l_{2}, r_{2}\right] \backslash\left\{r_{2}-1\right\}$ and k is odd.
(III) For the final interval $\left(l_{1}, r_{1}\right]$ we use Lemma 1 to conclude from

$$
\left[s, r_{3}-2\right] \subseteq A \text { and }\left[l_{2}+2, r_{2}-2\right] \subseteq A
$$

in view of (16) and (17) that, for $n \gg 0$,

$$
\begin{aligned}
\emptyset & =A \cap\left[k\left(l_{2}+2\right)-\left(r_{2}-2\right), k\left(r_{2}-2\right)-\left(l_{2}+2\right)\right] \\
& =A \cap\left[r_{2}-\xi_{3}+2 k+2, l_{1}+s-\xi_{2}-2 k-l_{2}-2\right], \text { and } \\
\emptyset & =A \cap\left[k\left(l_{2}+2\right)-\left(r_{3}-2\right), k\left(r_{2}-2\right)-s\right] \\
& =A \cap\left[2 r_{2}-\xi_{3}+2 k-r_{3}+2, l_{1}-\xi_{2}-2 k\right]
\end{aligned}
$$

Let $J=\left[r_{2}+2, r_{2}-\xi_{3}+2 k+1\right] \cap A$ and $K=\cup_{x \in J}\{k x-s, k x-(s+1), k x-(s+2)\}$. From (14) we have

$$
K \subseteq\left[l_{1}-\xi_{2}+2 k-2, l_{1}-\xi_{2}-k \xi_{3}+2 k^{2}+k\right] \subseteq\left(l_{1}+k-2, r_{1}\right], \quad \text { if } n \gg 0
$$

Let $B=\left[l_{1}-\xi_{2}-2 k+1, l_{1}\right] \cap A$. If $s_{B}<l_{1}$ with C as in (I) we can verify that, for sufficiently large n,

$$
C \subseteq\left[\frac{2 r_{1}-\xi_{1}-k \xi_{2}-2 k^{2}+k-5}{2}, r_{1}\right] \subseteq\left(l_{1}, r_{1}\right]
$$

$|C \backslash A|>|B|$ and max $K<s_{C}$. By analogy with part (II) we get $A \cap\left[r_{2}+2, l_{1}-1\right]=\emptyset$ and the rest of the claim follows as before.

4 Estimates and Periodicity

We first want to estimate values of $n_{i}(k), i=0,1$, for which Lemmas 3 and 4, and Theorem 2 respectively are valid. The estimates we shall arrive at can probably be improved upon. The example of a k-sum-free set A in [3], referred to in the proof of Lemma 3, satisfies

$$
|A|>\frac{k(k-2)}{k^{2}-2} n+\frac{8(k-2)}{k\left(k^{2}-2\right)\left(k^{4}-2 k^{2}-4\right)} n-3 .
$$

Hence the proof of Lemma 3 goes through provided n is sufficiently large so that

$$
\begin{equation*}
c_{k} n-t_{0} \geq 3 \tag{20}
\end{equation*}
$$

where $t_{0}=t_{0}(n, k)$ is the largest possible value for t in Definition 1. Now from Definition 1 we easily deduce that, if $i<t$, then $r_{i+1} \leq\left(\frac{4}{k^{2}}\right) r_{i}$, and hence that $r_{t} \leq\left(\frac{4}{k^{2}}\right)^{t-1} n$. Since $r_{t} \geq 1$ a priori, we can thus estimate

$$
\begin{equation*}
t_{0} \leq \frac{1}{2} \log _{k / 2} n+1 \tag{21}
\end{equation*}
$$

Since, by (7), $c_{k}=\mathcal{O}\left(\frac{1}{k^{6}}\right)$, we thus deduce from (18) and (19) that one can take $n_{0}(k)=$ $\mathcal{O}\left(k^{6}\right)$. It is then an easy and tedious exercise to go through the proof of Theorem 2 and check that one can also take $n_{1}(k)=\mathcal{O}\left(k^{6}\right)$.

Next, we explain what we mean by the word 'periodicity' in the title of this section. If $k \geq 4$ is even then, for $n>0$, we have $s^{\prime}=S+1=\left\lfloor\frac{8 n}{k^{5}-2 k^{3}-4 k}\right\rfloor+1$. Hence for a fixed k, if we regard s^{\prime} as a function of n, then $s^{\prime}(n)+1=s^{\prime}\left(n+p_{k}\right)$, where $p_{k}:=\frac{k^{5}-2 k^{3}-4 k}{8}$. For odd k, we define $p_{k}:=k^{5}-2 k^{3}-4 k$ and in this case, a little more care is required to check that $s^{\prime}(n)+8=s^{\prime}\left(n+p_{k}\right)$.

Now for any k and n, let $\mathcal{F}(k, n)$ denote the family of maximal k-sum-free subsets of $\{1, \ldots, n\}$. Then for n sufficiently large, as estimated above, and k even (resp. k odd), the map $s \mapsto s+1$ (resp. $s \mapsto s+8$) clearly induces a 1-1 correspondence between the sets in $\mathcal{F}(k, n)$ and $\mathcal{F}\left(k, n+p_{k}\right)$. This is what we mean by 'periodicity'. This observation clearly reduces, for any fixed k, the full classification of all k-sum-free subsets of $\{1, \ldots, n\}$, for all n, to a finite computation.

As an example, we now look at $k=4$. By (7) we compute $c_{4}=\frac{47}{48290}$. Then Lemma 3 is valid at least for all n satisfying

$$
c_{4} n-\frac{1}{2} \log _{2} n-1 \geq 3
$$

which reduces to $n \geq 11008$. One can then check that the proof of Theorem 2 also goes through for all such n. We have $p_{4}=110$. We now present the full classification of all 4 -sum-free subsets of $\{1, \ldots, n\}$, valid (at least) for all $n \geq 11008$. This was obtained with the help of a computer.
For each $s, n \in \mathbf{N}$ we define the sets $J_{x}(s), 1 \leq x \leq 13$, as follows (the l_{i} and r_{i} are functions of s and n as in Definition 1) :

$$
\begin{aligned}
J_{1} & =\left[S, r_{3}-1\right] \cup\left[l_{2}, r_{2}-1\right] \cup\left[l_{1}, n-1\right], \\
J_{2} & =\left[S, r_{3}-1\right] \cup\left[l_{2}, r_{2}-1\right] \cup\left[l_{1}+1, n\right], \\
J_{3} & =\left[S, r_{3}-1\right] \cup\left[l_{2}+1, r_{2}\right] \cup\left[l_{1}, n-1\right], \\
J_{4} & =\left[S, r_{3}-1\right] \cup\left[l_{2}+1, r_{2}\right] \cup\left[l_{1}+1, n\right], \\
J_{5} & =\left[S, r_{3}-1\right] \cup\left[l_{2}+1, r_{2}+1\right] \cup\left[l_{1}+2, n\right], \\
J_{6}(s) & =\left[s, r_{3}\right] \cup\left[l_{2}, r_{2}-1\right] \cup\left[l_{1}, n-1\right], \\
J_{7}(s) & =\left[s, r_{3}\right] \cup\left[l_{2}, r_{2}-1\right] \cup\left[l_{1}+1, n\right], \\
J_{8}(s) & =\left[s, r_{3}\right] \cup\left[l_{2}+1, r_{2}\right] \cup\left[l_{1}, n-1\right], \\
J_{9}(s) & =\left[s, r_{3}\right] \cup\left[l_{2}+1, r_{2}\right] \cup\left[l_{1}+1, n\right], \\
J_{10}(s) & =\left[s, r_{3}\right] \cup\left[l_{2}+1, r_{2}+1\right] \cup\left[l_{1}+2, n\right], \\
J_{11}(s) & =\left[s, r_{3}+1\right] \cup\left[l_{2}+2, r_{2}\right] \cup\left[l_{1}, n-1\right], \\
J_{12}(s) & =\left[s, r_{3}+1\right] \cup\left[l_{2}+2, r_{2}\right] \cup\left[l_{1}+1, n\right], \\
J_{13}(s) & =\left[s, r_{3}+1\right] \cup\left[l_{2}+2, r_{2}+1\right] \cup\left[l_{1}+2, n\right] .
\end{aligned}
$$

Note that, by Theorem 2, for a given $n \geq 11008$, every maximal 4 -sum-free subset of $\{1, \ldots, n\}$ is one of the sets $J_{x}(s)$, for some $s \in[S, S+3]=\left[s^{\prime}-1, s^{\prime}+2\right]$. By the remarks above, for each $i \in\{0, \ldots, 109\}$, there are natural 1-1 correspondences between the sets in the families $\mathcal{F}(4, n)$ for all $n \equiv i(\bmod 110)$. By slight abuse of notation, we denote any such family simply by \mathcal{F}_{i}. Our computer program yielded the following result :

If $\left|\mathcal{F}_{i}\right|=1$, then $i=6,7,22,23,46,47,49,51,54,55,57,59,61,70,71,73,75,77,86,87,89$
or 91 and

$$
\mathcal{F}_{i}=\left\{J_{9}\left(s^{\prime}\right)\right\}
$$

or $i=36,37,100$ or 101 and

$$
\mathcal{F}_{i}=\left\{J_{9}\left(s^{\prime}+1\right)\right\} .
$$

If $\left|\mathcal{F}_{i}\right|=2$, then \mathcal{F}_{i} is

$$
\begin{gathered}
\left\{J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\} \quad \text { if } i=93,103,105,107, \\
\left\{J_{4}, J_{9}\left(s^{\prime}\right)\right\} \quad \text { if } \quad i=9,11,13,25,27, \\
\left\{J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\} \quad \text { if } \quad i=48,50,56,58,60,72,74,76,88,90 \\
\left\{J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\} \quad \text { if } \quad i=63,65,67,79,81 .
\end{gathered}
$$

If $\left|\mathcal{F}_{i}\right|=3:$

$$
\begin{aligned}
\mathcal{F}_{8}=\mathcal{F}_{24} & =\left\{J_{4}, J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\}, \\
\mathcal{F}_{15} & =\left\{J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\}, \\
\mathcal{F}_{29} & =\left\{J_{4}, J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{39} & =\left\{J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{62}=\mathcal{F}_{78} & =\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\}, \\
\mathcal{F}_{53} & =\left\{J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{83} & =\left\{J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+2\right)\right\}, \\
\mathcal{F}_{92} & =\left\{J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{95}=\mathcal{F}_{97} & =\left\{J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{102} & =\left\{J_{9}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{109} & =\left\{J_{9}\left(s^{\prime}\right), J_{7}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\} .
\end{aligned}
$$

If $\left|\mathcal{F}_{i}\right|=4:$

$$
\begin{aligned}
\mathcal{F}_{1}=\mathcal{F}_{3}=\mathcal{F}_{17} & =\left\{J_{2}, J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\}, \\
\mathcal{F}_{10}=\mathcal{F}_{12}=F_{26} & =\left\{J_{3}, J_{4}, J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\}, \\
\mathcal{F}_{38} & =\left\{J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{41}=\mathcal{F}_{43} & =\left\{J_{4}, J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{52}= & =\left\{J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{64}=\mathcal{F}_{66}=\mathcal{F}_{80} & =\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\}, \\
\mathcal{F}_{104}=\mathcal{F}_{106} & =\left\{J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{69} & =\left\{J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\} .
\end{aligned}
$$

If $\left|\mathcal{F}_{i}\right|=5:$

$$
\begin{aligned}
\mathcal{F}_{14} & =\left\{J_{3}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\} \\
\mathcal{F}_{19} & =\left\{J_{2}, J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+2\right)\right\} \\
\mathcal{F}_{28} & =\left\{J_{3}, J_{4}, J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{31} & =\left\{J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\} \\
\mathcal{F}_{82} & =\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+2\right)\right\} \\
\mathcal{F}_{94} & =\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\} \\
\mathcal{F}_{99} & =\left\{J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right), J_{10}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+2\right)\right\}, \\
\mathcal{F}_{108} & =\left\{J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{6}\left(s^{\prime}+1\right), J_{7}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\} .
\end{aligned}
$$

If $\left|\mathcal{F}_{i}\right|=6$:

$$
\begin{aligned}
\mathcal{F}_{5} & =\left\{J_{2}, J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\} \\
\mathcal{F}_{33} & =\left\{J_{2}, J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\} \\
\mathcal{F}_{45} & =\left\{J_{4}, J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{13}\left(s^{\prime}\right), J_{7}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{68} & =\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{85} & =\left\{J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right), J_{12}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+2\right)\right\}, \\
\mathcal{F}_{96} & =\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\} .
\end{aligned}
$$

If $\left|\mathcal{F}_{i}\right|=7$:

$$
\begin{aligned}
\mathcal{F}_{0}=\mathcal{F}_{16} & =\left\{J_{1}, J_{2}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\} \\
\mathcal{F}_{40} & =\left\{J_{4}, J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{11}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}
\end{aligned}
$$

If $\left|\mathcal{F}_{i}\right|=8$:

$$
\begin{aligned}
\mathcal{F}_{2} & =\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right)\right\} \\
\mathcal{F}_{21} & =\left\{J_{2}, J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right), J_{12}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+2\right)\right\}, \\
\mathcal{F}_{30} & =\left\{J_{3}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\} \\
\mathcal{F}_{35} & =\left\{J_{2}, J_{4}, J_{7}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right), J_{10}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+2\right)\right\}, \\
\mathcal{F}_{42} & =\left\{J_{3}, J_{4}, J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{11}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{98} & =\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right), J_{10}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+2\right)\right\} .
\end{aligned}
$$

If $\left|\mathcal{F}_{i}\right|=9$:

$$
\mathcal{F}_{18}=\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+2\right)\right\},
$$

$$
\mathcal{F}_{84}=\left\{J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right), J_{12}\left(s^{\prime}+1\right), J_{8}\left(s^{\prime}+2\right), J_{9}\left(s^{\prime}+2\right)\right\}
$$

If $\left|\mathcal{F}_{i}\right|=10$:

$$
\begin{aligned}
\mathcal{F}_{4} & =\left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right), J_{9}\left(s^{\prime}+1\right)\right\} \\
\mathcal{F}_{44} & =\left\{J_{3}, J_{4}, J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{11}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{13}\left(s^{\prime}\right), J_{6}\left(s^{\prime}+1\right), J_{7}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}
\end{aligned}
$$

If $\left|\mathcal{F}_{i}\right|=11,13$ or 14 , we get precisely one family for each size:

$$
\begin{aligned}
\mathcal{F}_{32}= & \left\{J_{1}, J_{2}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{11}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right), J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right)\right\}, \\
\mathcal{F}_{20}= & \left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{10}\left(s^{\prime}\right),\right. \\
& \left.J_{9}\left(s^{\prime}+1\right), J_{12}\left(s^{\prime}+1\right), J_{8}\left(s^{\prime}+2\right), J_{9}\left(s^{\prime}+2\right)\right\}, \\
\mathcal{F}_{34}= & \left\{J_{1}, J_{2}, J_{3}, J_{4}, J_{6}\left(s^{\prime}\right), J_{7}\left(s^{\prime}\right), J_{8}\left(s^{\prime}\right), J_{9}\left(s^{\prime}\right), J_{11}\left(s^{\prime}\right), J_{12}\left(s^{\prime}\right),\right. \\
& \left.J_{8}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+1\right), J_{10}\left(s^{\prime}+1\right), J_{9}\left(s^{\prime}+2\right)\right\} .
\end{aligned}
$$

Note, in particular, that $|\mathcal{F}(4, n)| \leq 14$ for all sufficiently large n. Computer simulations suggest the same may be true for any even k, with a similar result for odd k, but we leave the investigation of this possibility to a subsequent paper.

Appendix

As a prototype for a type of calculation which appears in several places in the paper, we now show, in the notation of Lemma 4 , that $s^{\prime}=S+1$ when k is even.

We must investigate the condition $l_{3}(s)<s$. By definition of l_{3} this is just

$$
\begin{aligned}
\left\lfloor\frac{2 r_{3}}{k}\right\rfloor<s & \Leftrightarrow \frac{2 r_{3}}{k}<s \Leftrightarrow r_{3}<\frac{k s}{2} \Leftrightarrow\left\lfloor\frac{l_{2}+s}{k}\right\rfloor<\frac{k s}{2} \Leftrightarrow \frac{l_{2}+s}{k}<\frac{k s}{2} \\
& \Leftrightarrow l_{2}<\left(\frac{k^{2}}{2}-1\right) s \Leftrightarrow \frac{2 r_{2}}{k}<\left(\frac{k^{2}}{2}-1\right) s \Leftrightarrow r_{2}<\left(\frac{k^{3}}{4}-\frac{k}{2}\right) s \\
& \Leftrightarrow \frac{l_{1}+s}{k}<\left(\frac{k^{3}}{4}-\frac{k}{2}\right) s \Leftrightarrow l_{1}<\left(\frac{k^{4}}{4}-\frac{k^{2}}{2}-1\right) s \\
& \Leftrightarrow \frac{2 n}{k}<\left(\frac{k^{4}}{4}-\frac{k^{2}}{2}-1\right) s \Leftrightarrow n<\left(\frac{k^{5}}{8}-\frac{k^{3}}{4}-\frac{k}{2}\right) s \Leftrightarrow s>\frac{8 n}{k^{5}-2 k^{3}-4 k} \\
& \Leftrightarrow s>S .
\end{aligned}
$$

Thus $s^{\prime}=S+1$, as required.

Acknowledgments

We would like to thank the anonymous referee whose detailed comments greatly helped us improving our paper.

References

[1] J. M. Deshoulliers, G. Freiman, V. Sós, and M. Temkin, On the structure of sum-free sets II, Asterisque 258 (1999), 149-161.
[2] F. R. K. Chung and J. L. Goldwasser, Integer sets containing no solutions to $x+y=3 k$, in "The Mathematics of Paul Erdős", R. L. Graham and J. Nešetřil eds., Springer Verlag, Heidelberg, (1996).
[3] F. R. K. Chung and J. L. Goldwasser, Maximum subsets of $(0,1]$ with no solutions to $x+y=k z$, Electron. J. Combin. 3 (1996), R1.
[4] K. Roth, On certain sets of integers, J. London Math. Society 28 (1953), 104-109.

[^0]: *supported by DFG, Grant SR 7/9-2
 ** research partially supported by KBN Grant 2 PO3A 00724

