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Abstract  

Fungi are ubiquitous – they are found in any conceivable environment, i.e., both aquatic and 

terrestrial habitats. They remain one of the most diverse groups of organisms on Earth. Because 

fungi are heterotrophic, they obtain their nutrients by colonizing their substrates with a vegetative 

mass of hyphae called mycelium. These hyphae secrete enzymes that digest nutrients locked in 

colonized substrates, after which the nutrients are then absorbed by the hyphae. Not only do hyphae 

constitute the mycelium of fungi, but they also form other structures – mycelial strand, mycelial 

cords, and rhizomorphs – through which fungi are able to spread in their environment in search of 

new substrates to colonize. The aim of this present paper is to explore the structure of mycelial 

cords and rhizomorphs. Rhizomorphs are among the most complex organs produced by fungi. They 

are root-like structures constituted by a series of differentiated tissues each with distinctive hyphal 

type, orientation, size, and function. Thus, rhizomorphs are produced as a result of a coordinated 

growth of millions of bundled hyphae. Rhizomorph-forming fungi thrive in nutrient-poor 

environment and are known to cause devastating destruction to homes and plantations. Because 

rhizomorphs serve as exploratory organs, and they enhance the survival of rhizomorph-forming 

fungi in plantations and homes, farmers, homeowners, attorneys, and even mycologists and plant 

pathologists, need to understand and appreciate their potential to wreak havoc that results in huge 

annual financial losses. 
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Introduction  

Fungi from the genera Armillaria, Auricularia, Coniophora, Fomitopsis, Meripilus, 

Meruliporia, Polyporus, and Serpula are well-known wood decomposers (Schmidt 2006). Wood-

decay fungi are classified into white rot and brown rot fungi. Although these wood-decay fungi 

secrete enzymes during growth and colonization of substrates, their ability to decompose wood 

substrates is attained through both enzymatic and non-enzymatic, chelator-mediated Fenton 

mechanisms (Eriksson et al. 1990, Highley & Illman 1991, Ritschkoff et al. 1992, Goodell 2003, 

Lindahl & Olsson 2004, Schwarze 2007, Goodell et al. 2017). The absorption of these nutrients 

sustains vegetative growth and allows an increase in hyphal biomass, which is achieved through tip 

extension and elaborate branching of the hyphae. This branching hyphal biomass is collectively 

called mycelium (Carlile 1994). Because fungi use an absorptive mechanism to acquire their 
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nutrients, with time, they deplete the nutrients from the colonized substrate, after which they search 

for new substrates to colonize.  

The search for nutrient-rich substrates is accomplished through liberated spores, and the 

production of mycelial strands, mycelial cords, and rhizomorphs. The constituent mycelia of the 

strands, cords, and rhizomorphs migrate from nutrient-poor substrates and explore the environment 

in search of nutrient-rich substrates and as a result translocate nutrients and water towards their tips 

during migration ((Hartig 1873, Falck 1912, Jennings et al. 1974, Anderson & Ullrich 1982, Eamus 

et al. 1985, Granlund et al. 1985, Cairney 1992). During this period of mycelial migration, the 

hyphae serve as a repository of absorbed nutrients, grow as a cohesive unit, but only lose this 

cohesive growth when they encounter a suitable substrate and spread out with a characteristic 

invasive pattern of growth to completely colonize the new substrate (Moore 1994, Money 2004). 

Apart from mycelial strands, cords, and rhizomorphs, most plants form an association with 

arbuscular mycorrhizal fungi through which both plants and fungi derive inorganic and organic 

nutrients from each other (Gerdemann 1968, Mosse 1973, Willis et al. 2012, Lekberg et al. 2015, 

Brundrett & Tedersoo 2018). 

Since Hartig (1873) described the apical region of rhizomorph of Armillaria mellea (Fig. 1), 

several studies have highlighted the distribution, structure, and functions of fungal rhizomorphs 

particularly in Armillaria spp (Granlund et al. 1985, Garrett 1970). For example, Townsend (1954) 

studied rhizomorph structure in sixteen basidiomycete fungi including Armillaria mellea, 

Marasmius androsaceus, Merulius lacrymans, and Phallus impudicus. Although the rhizomorph 

structure of some of these fungi was described, Townsend (1954) acknowledged that other fungi do 

not produce rhizomorphs in vitro, and further provided some insights into the effects of natural 

environmental factors on their production in soil or decaying wood. A study by Yafetto et al. 

(2009) has expanded further the understanding of critical biomechanical attributes of the 

rhizomorph structure in Armillaria gallica that enhance its exploratory abilities; interestingly the 

rhizomorph morphology of A. mellea illustrated by Hartig (1873) bears a striking resemblance to 

that of A. gallica studied by Yafetto et al. (2009) (Fig. 1). The aim of this present paper is to review 

the structure of mycelial cords and rhizomorphs as agents of spread and infection in plants.  

 

 
 

Figure 1 – A Apical region of rhizomorph of Armillaria mellea as described by Hartig (1873); 

adopted from Garrett (1970). B Apical region of rhizomorph of Armillaria gallica growing in an 

agar medium (Photo courtesy of L. Yafetto). 

 

Mycelial cords and rhizomorphs 
Hyphae aggregate to serve as building blocks of more complex structures in fungi. These 

aggregations of fungal hyphae, particularly those formed by basidiomycetes, have been named 

variously as strands, cords, rhizomorphs, or syrrotia (Rogers & Watkins 1938, Garrett 1970, 

Watkinson 1971, Thompson 1984). These terms had been used interchangeably in the literature by 

mycologists. To solve this situation, Rayner et al. (1985) suggested the adoption of the terms 
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mycelial cords and rhizomorphs to denote apically diffuse mycelia aggregates and apically 

dominant growing tips, respectively. These terms have been readily accepted and been in use since.  

Three common constituent hyphal types have been identified in mycelial cords and 

rhizomorphs: (i) tendril hyphae (or narrow hyphal branches) from the older regions of the main 

hyphae that interlace around the other hyphae; (ii) central vessel hyphae (wide in diameter and 

thin-walled); and (iii) thick-walled, but narrow fiber hyphae of old cords that are formed, running 

longitudinally through a mature cord to provide strength (Nuss et al. 1991). 

Mycelial cords and rhizomorphs of wood-decay and pathogenic fungi serve as important 

sources of inoculum that enable fungi to make an initial contact with newly, yet-to-be-colonized 

substrates. Although both mycelial cords and rhizomorphs are constructed from hyphae and 

function in a similar manner, they are structurally different in two respects; first, a mycelial cord is 

less complex than a rhizomorph; second, a mycelial cord is a linear aggregation of hyphae formed 

behind an advancing mycelial front where the hyphae are loosely separated and assume a fan-like 

mat appearance, while a rhizomorph is a complex multicellular root-like organ formed through 

aggregation, interlacing, and adhesion of scores of hyphae, characterized by a prominently 

organized tip growth (Yafetto et al. 2009, Watkinson et al. 2016, Fig. 3). The rhizomorph is 

uniquely characterized by a waterproof surface and a melanized rind that encloses a central open 

medulla cavity, which serves as a channel for the conduction of water and dissolved nutrients.  

Mycelial cords, on one hand, are constituted by hyphae that are relatively loosely aggregated; 

they develop as a result of adhesion and growth of young branches of hyphae over an older leading 

hypha, which serves as the building block for the development of the mycelial cord (Moore 1994, 

Watkinson et al. 2016). Unlike rhizomorphs, mycelial cord formation is considered a secondary 

process that occurs behind growing hyphal apices distal to the colony margin, and it involves 

increasing aggregation of hyphae within the aging, mature mycelium (Garrett 1981). During this 

process of hyphal aggregation, anastomoses between the hyphae on the surface of the cords occur, 

fusing them into a bundle. 

Rhizomorphs, on the other hand, have a similar appearance to the roots of higher plants (Fig. 

2). They both function as organs of nutrient and water absorption and translocation, although 

rhizomorphs can pass also air along their entire lengths to prevent suffocation of the fungus while 

they explore the anoxic interior of substrates for nutrients (Money 2004, Watkinson et al. 2016). 

Like the plant roots, rhizomorphs have a highly organized apical growing tip with extreme apical 

dominance (Fig. 3). This apical region contains a compact growing point of tightly packed hyphae 

that is protected by a cap of intertwined hyphae in a mucilaginous matrix (Fig. 3). Because of these 

root-like appearances, rhizomorphs were initially thought to have meristems responsible for 

organized tip growth similar to the growth mechanism of roots (Garrett 1963, 1970, Rayner et al. 

1985). This view of an apically-dominant growing tip of fungal rhizomorphs was erroneous. It is 

now known that rhizomorphs do not grow as a result of meristematic activity, but rather by 

extension of the organized apical hyphae (Yafetto et al 2009, Watkinson et al. 2016).  

According to Moore (1994), the medullary region behind the tip of a rhizomorph contains 

vessel hyphae composed of swollen, vacuolated and often multinucleate cells surrounded by 

copious air- or mucilage-filled spaces. However, other studies have reported wide-lumen vessel 

hyphae in the medullary region of field-collected rhizomorphs which lack cytoplasmic content, and 

have suggested further that the major role of these vessel hyphae is for the translocation of nutrients 

and water over long distance (Eamus et al. 1985, Jennings 1987, Cairney et al. 1988a). Mycelial 

cords and rhizomorphs in Serpula lacrymans and A. mellea, respectively, have been reported to 

grow long distances over non-woody, nutrient-poor substrates such as concretes, rocks, metals, 

tiles, insulation materials (Butler 1957, 1958, Rishbeth 1968, Watkinson 1971, Jennings & 

Watkinson 1982, Arora 1986, Jennings 1991, Money 2004).  

 

Mycelial cords of Serpula lacrymans 
The extent to which hyphae are organized and differentiated varies between species (Butler  
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1966). Mycelial cords from S. lacrymans (Wulf ex Fr.) Schroet have earlier been reported to be 

constituted from wide, but empty vessel hyphae and narrow, but thick-walled fiber hyphae running 

longitudinally through the hyphal aggregate (Hartig & van Tubeuf 1902, Falck 1912). Hornung & 

Jennings (1981) studied the development of surface mycelium of S. lacrymans with emphasis on 

different stages of growth and observed the following hyphal types: undifferentiated hyphae 

common to all stages of mycelial development; main hyphae of faster growth rate that have the 

tendency to form hyphal aggregates; tendril hyphae from which hyphal aggregates originate; fiber 

hyphae which are often coenocytic, but thick-walled, and vessel hyphae which are often thin-walled 

with a wide lumen.  

 

 
 

Figure 2 – Root-like structure of Armillaria rhizomorphs in potato dextrose agar medium, after 3 

weeks of growth at 30°C (Photo courtesy of L. Yafetto). 

 

 
 

Figure 3 – Scanning electron micrograph of rhizomorph tip of Armillaria gallica. A protective cup 

of mucilage (arrow) is localized to the tip, and a mucilaginous sheath (mu) covers the entire length 

of the rhizomorphs. Scale bar = 100 µm (from Yafetto et al. 2009). 
 

Jennings & Watkinson (1982) compared initial stages of mycelial cord development of S. 

lacrymans in culture with the structure of mature strands from infected wood, and reported that 

cultures with mycelial cords stained with 1% Nile blue at early stages of development had three 

types of differentiated hyphae: (i) approximately 10 µm diameter wide, empty aseptate hyphae that 

stained evenly blue; (ii) non-stained, septate hyphae with visible cytoplasmic contents and (iii) 

narrow and septate unbranched tendril hyphae with dark-stained dense cytoplasm of about 2 µm 

diameter. Meanwhile, a comparative transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM) studies by Jennings & Watkinson (1982) of mature mycelial cords of  
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S. lacrymans obtained from an actively growing colony in a house revealed three distinguishable 

regions: (i) an outer surface covered by colorless thin-walled hyphae growing separately from one 

another; (ii) a zone lying beneath the outer surface characterized by a few hyphae that were cracked 

with holes; and (iii) a central portion characterized by longitudinal channels.  

 

Rhizomorphs of Armillaria spp 

Granlund et al. (1984) studied A. mellea rhizomorphs with SEM to investigate their internal 

and external features in relation to their reputed ability to translocate water and other solutes over 

long distances. The internal structure revealed the arrangement of hyphal tissues of different zones 

of the A. mellea rhizomorphs as follows: (i) peripheral hyphae that formed a layer approximately 

between 20 and 30 µm thick, (ii) cortical hyphae, (iii) medulla hyphae and (iv) the central space, 

usually occupied by a cottony pith of fine, loosely-woven hyphae. Furthermore, Granlund et al. 

(1984) reported that the diameter of the hyphae constituting the various tissues in A. mellea 

increased towards the center of the rhizomorph. They recorded 2.2 µm, 2.3 µm, and 13.9 µm as the 

mean diameter of peripheral hyphae, cortical hyphae and medulla hyphae of the rhizomorph, 

respectively. In addition, the distance between septa of hyphae increased towards the center; for 

example, while a distance of 20 µm between septa was recorded in the cortex, a 70 µm distance 

was recorded between septa in the medulla zone.  

Yafetto et al. (2009) confirmed similar zones of hyphal tissues within A. gallica rhizomorphs 

which they described from the outside to the inside as follows: (i) an outer layer of peripheral 

hyphae, (ii) an inner cortical layer of radial hyphae, (iii) a medulla region, consisting of two layers 

of longitudinal hyphae – an outer layer of thick-walled, narrow lumen, tightly packed hyphae, and 

an inner layer of thin-walled, wide lumen, loosely packed hyphae usually called the vessel hyphae; 

and (iv) a central cavity (Fig. 4). Yafetto et al. (2009) concluded that indeed A. gallica has well-

organized rhizomorphs characterized by strikingly arranged hyphal types. These descriptions of the 

hyphal tissues have undoubtedly provided more insight into the structure of rhizomorphs, which 

further help to elucidate their functions as organs for the translocation and transportation of 

nutrients and water along their lengths towards their tips. Not only did Yafetto et al. (2009) confirm 

findings of Granlund et al. (1984) about the structure of A. gallica rhizomorphs, but their study also 

provided better micrographs from their SEM studies, and comprehensively revised terminologies 

used to identify the different hyphal types, based on their arrangement, to assuage the usual 

confusion that normally associated rhizomorphs with their descriptions. 

 

Rhizomorph structure and function 

It is suggested that the central cavity described in Fig. 4 and those previously mentioned in 

studies by Granlund et al. (1984) are used as air-conducting channels, and may be generated as a 

result of the collapse of vessel hyphae (Fig. 5), supporting the views of Hartig & van Tubeuf 

(1902), Falck (1912). The arrangement of the different hyphae within a rhizomorph is of 

importance to the translocation in rhizomorph-forming fungi since an aseptate lumen is required for 

mass translocation of nutrients and water within the vessel hyphae towards the rhizomorph tip, with 

less expenditure of energy in the form of the application of pressure. This may also suggest why 

vessel hyphae are thinly walled to allow easy passage of water and osmolytes across the wall 

surface (Fig. 5). Eamus et al. (1985) provided evidence that supports the view that long-distance 

translocation in mycelial cord and rhizomorphs occurred predominantly by the movement of a 

solution along the vessel hyphae.  

According to Granlund et al. (1984), peripheral hyphae of rhizomorphs could serve as a 

source of infection in plants, such that these infective hyphae could be used by A. mellea to make 

contact and invade new plant hosts, particularly through the roots. Granlund et al. (1984) further 

argued that the peripheral hyphae may also serve absorptive role for the rhizomorph such that they 

may constantly supply the rhizomorph with nutrients and water to support its active tip growth; 

they explained that as the tip extends, the peripheral hyphae, which provides a large surface area in 

the mature region, may have the potential to laterally absorb nutrient and water from the immediate 
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surroundings of the rhizomorph into its interior. The dissolved nutrients and water are thus 

transported into the inner medulla region for translocation to the tip. Yafetto et al. (2009) suggested 

that with such intake of nutrients and water, and the accumulation of osmolytes, an internal turgor 

pressure is created within the rhizomorph, which is eventually converted into the driving force for 

the growing tip to invade hard, compact substrates.  

 

 
 

Figure 4 – Scanning electron micrograph of transverse sections of freeze-fractured rhizomorph of 

Armillaria gallica. A Complete arrangement of hyphae in rhizomorph. B A close up micrograph of 

hyphal arrangement: From the outer layer to the inner zones are; a cortical layer of loosely-packed, 

radially arranged, thin hyphae (r), covered with peripheral hyphae (p); an inner medulla of tightly-

packed, longitudinally arranged, thick-walled hyphae with narrow lumens (m) with cellular 

contents (arrows); longitudinally arranged thin-walled vessel hyphae with wide lumens (v), and a 

central cavity that may be formed by degeneration of vessel hyphae (c).  Scale bar = 100 µm (A); 

Scale bar = 10 µm (B) (from Yafetto et al. 2009). 

 

 
 

Figure 5 – Scanning electron micrographs of Armillaria gallica rhizomorph. A Vessel hypha (v) in 

close association with tightly packed longitudinal hyphae (Arrow ). Some of the vessel hyphae 

have wrinkled wall (*), while others have collapsing wall (Arrow ). Scale bar = 10 µm. B Wide 

lumen vessel hyphae (arrows) in close association with narrow lumen, thick-walled longitudinal 

hyphae (m) that form a rind around the vessel hyphae. Scale bar = 10 µm. (C) Wrinkled, collapsed 

vessel hyphae (v), protruding from the freeze-fractured surface. Scale bar = 10 µm (Micrographs 

courtesy of L. Yafetto). 

 

Armillaria: A model system for the study of fungal rhizomorphs  

The genus Armillaria (Fr.: Fr) is a cosmopolitan pathogenic basidiomycete that contains 

about 40 species known for causing root and butt rot diseases (Watling et al. 1991, Volk & Burdsall 

1995, Pegler 2000, Baumgartner et al. 2011). The term “honey fungus” has been used to describe 

many species of Armillaria because of its yellowish caps and the sweet taste of their mushrooms. 

Armillaria has a wide range of hosts including deciduous and coniferous trees, shrubs, and vines 

(Smith et al. 1992), and it is considered one of the most devastating disease-causing plant 
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pathogens; it kills and decomposes plants in forests and plantations in both temperate and tropical 

regions of the world (Garraway et al. 1991).  

Of all species of the genus Armillaria, A. mellea is the most pathogenic, and the best studied. 

Other species, including A. luteobubalina and A. ostoyea, have also been reported to be pathogenic 

(Fox 2000). A. mellea, like other Armillaria species has the ability to produce reddish- to black-

colored rhizomorphs, which have a unique internal structure (Townsend 1954).  

Interestingly, the mycelium and rhizomorphs of some Armillaria species have been studied 

over a century and are shown to be bioluminescent, but, surprisingly, not their fruiting bodies 

(Murrill 1915, Buller 1924, Harvey 1952, Wassink 1978, Mihail & Bruhn 2007).  

As a root pathogen, the direct control of Armillaria spp is practically impossible to 

accomplish, but they are easily detected in the terrestrial environment, since they occur everywhere 

in the soil; they produce fruiting bodies at the base of a tree trunk as well as black rhizomorphs that 

are found beneath forest leaf litter and in association with roots of forest trees (Fox 1990, Schmidt 

2006). In 1992, for example, Smith et al. (1992) detected A. bulbosa in Michigan using molecular 

genetics techniques. The A. bulbosa was reported to have occupied an area of 15 hectares, weighed 

about 10,000 kg and was more than 1,500 years old, making it one of the largest and oldest living 

organisms ever known. Similarly, clones of A. ostoyae and A. gallica have been detected in soils in 

Oregon (USA) and England to have colonized an area over 9 km2 and 9 hectares, respectively 

(Marximüller & Holdenrieder 2000). 

In most cases, Armillaria is a saprobe, colonizing dead tree stumps, but it becomes parasitic, 

either as a necrotroph or biotroph when it infects the roots of a healthy host using its networks of 

rhizomorphs (Watling et al. 1991, Baumgartner et al. 2011, Tsykun et al. 2012). A rhizomorph 

adheres firmly to root tips of healthy plants after the mucilaginous material on its tip dries, sends 

out mycelia and continues to grow and spread beneath the bark of the tree producing mycelial fan. 

Competition from neighboring trees, insect attack and the prevalence of adverse climatic factors 

further affect the health of the infected host. In such a compromised condition, the host is killed 

outright if it fails to successfully defend itself and the mycelium manages to reach the xylem to 

interfere with the flow of sap in the cambium (Wahlström & Johansen 1992, Woodward 1992, 

Schmidt 2006). Thus, rhizomorphs are used by Armillaria as a means to propagate itself to effect 

infection in other healthy trees over long distances (Hartig 1874, Garrett 1970).  

Above all, the genus Armillaria, unlike other rhizomorph-producing genera (Meruliporia 

incrassata and Serpula lacrymans), readily produces rhizomorphs in vitro making it a suitable 

candidate as a model system to further study fungal rhizomorphs (Yafetto et al. 2009). 

Additionally, Armillaria spp. have been well studied in North America and Europe, but sparingly in 

Africa, and findings from such studies are well represented in literature, some of which are 

presented in Table 1.  

 

Mycelial cords and rhizomorphs: dry rot by Meruliporia incrassata and Serpula lacrymans  

The rhizomorph-forming fungus Meruliporia incrassata causes dry rot of wooden 

components in buildings. Its damage is sometimes referred to as brown-rot. Since its description 

from pine as Merulius incrassatus Berk. & Curt. in South Carolina, M. incrassata (Berk & Curtis.) 

Murr. (Family Coniophoraceae) has been recognized as a wood-decay fungus in North America 

(Berkley & Curtis 1849). It has a wide distribution in the southeastern United States of America 

and has been reported occasionally in Canada (Verall 1968, Palmer & Eslyn 1980). Its occurrence 

in the southern British Columbia, Canada is an interesting observation, since this region is very 

moist. There has been no report of the occurrence of M. incrassata in Arizona or New Mexico, an 

observation attributed to the dry climate of the desert in the southwest USA. Its distribution pattern 

suggests that M. incrassata develops best in warm climates (Burdsall 1991). 

M. incrassata causes severe damage to homes in California using its rhizomorphs (Fig. 6). 

During attacks on homes, M. incrassata develops rhizomorphs from its depleted food base mostly 

from outside the home (tree stumps, landscaping lawns with woodchips, etc.). The rhizomorph is 

capable of translocating nutrients and water, under warm and moist conditions, to its tip until it 
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encounters a wooden component of the building. It then begins to colonize the wood swiftly by 

digesting and extracting cellulose, leaving behind the brown lignin component of the wood. The 

description of M. incrassata as a dry rot fungus can, therefore, be regarded as erroneous because its 

participation in wood decomposition is impossible without water. M. incrassata fungus destroys 

dry wood by transferring water through its rhizomorphs to the sites of active growth and 

decomposition (Verall 1968, Brownlee & Jennings 1981a, b). 

 

 
 

Figure 6 – Field-collected rhizomorphs of Meruliporia incrassata from an infested home in 

California. Note the root-like, woody appearance (Specimen courtesy Luis De La Cruz Wood 

Preservation Services, Pasadena, CA, USA; Photo courtesy of L. Yafetto). 

 

Possible conditions for infestations of homes in California by M. incrassata may include the 

following: first, when lands are cleared of trees for construction of homes, tree stumps are 

sometimes left in the soil. An array of fungi colonizes these tree stumps until the nutrients are 

depleted, at which time rhizomorph–forming species develop rhizomorphs in search of new sources 

of food; second, topsoil and wood mulch used in landscaping may often provide a combination of 

optimum conditions (moisture and poor ventilation) for wood-decay fungi to develop rhizomorphs. 

This second condition normally results from the continuous supply of water by sprinklers under 

low nutrient conditions. As long as the fungus has the continuous supply of water and can channel 

it to the tips of its rhizomorphs, it survives until it locates a nutrient-rich substrate in the building; 

third, an untreated wood used to construct buildings is another potential source of M. incrassata 

growth and rhizomorph development. Under all these conditions, the destructive abilities of the 

rhizomorphs manifest themselves when they contact wooden components of a building (Money 

2004). 

Meanwhile, a different fungal species, Serpula lacrymans, is known to be responsible for 

similar destruction in Europe (especially in Britain), and other parts of the world, including Japan 

and Australia (Money 2004). For example, S. lacrymans, together with other fungi, caused 

enormous historical damage to wood in ships, where in one instance, rotting of timber was 

responsible for sinking the ship Royal George in 1782 and necessitated rebuilding of Queen 

Charlotte in 1810 (Money 2004).  

Both M. incrassata and S. lacrymans produce brown basidiomes, with brown, thick-walled, 

dextrinoid basidiospores; both cause brown rot of their wood substrates; both produce water– and 

nutrient–conducting rhizomorphs and mycelial cords, respectively (Burdsall 1991, Moore 1994). 



    992 

Table 1 Selected relevant literature highlighting some key studies of Armillaria spp and 

rhizomorphs. 

 

Area of Study Reference 

 

Development/Distribution Snider 1959, MacDonald & Cartter 1961, Weinhold 1963, 

Motta 1967, 1969, Went 1973, Motta & Peabody 1982, 

Eamus et al. 1985, Cairney et al. 1988b, Masuka 1989, 

Twery et al. 1990, Gray et al. 1996, Horner et al. 1995, Volk 

et al. 1996, Tsopelas & Tjamos 1999, Baumgartner & Rizzo 

2001, Mansilla et al. 2001, Otieno et al. 2003, Prange & 

Nelson 2006, Freymann 2008, Baumgartner et al. 2011 

 

Ecology Garrett 1953, 1960, Masuka 1989, Rizzo et al. 1990, Horner 

et al. 1995, Isaac 1995, Tsopelas & Tjamos 1999, Wallander 

et al. 2002, Prange & Nelson 2006, Rigling et al. 2006, 

Vargas & Allen 2008a, 2008b, Freymann 2008, Tsykun et al. 

2012, Kubiak et al. 2017 

 

Forest pathology Garrett 1953, 1956, 1960, Gibson 1960, Azevedo 1976, 

Rishbeth 1978, Thompson & Boddy 1983, Twery et al. 

1990, Tsopelas & Tjamos 1999, Coetzee et al. 2000, 

Wallander et al. 2002, Morrison 2004, Treseder et al. 2005, 

Vargas & Allen 2008b, Baumgartner et al. 2011 

 

Molecular Characterization/  

Phylogeny/Taxonomy/Systematics 

Korhonen 1978, Anderson & Ullrich 1979, Guillaumin et al. 

1985, Roll-Hansen 1985, Anderson 1986, Motta & 

Korhonen 1986, Termorshuizen & Arnolds 1987, Watling et 

al. 1991, Volk & Burdsall 1995, Volk et al. 1996, Zolciak et 

al. 1997, Ota et al. 1998, Coetzee et al. 2000, 2001, 2003, 

Qin et al. 2007, Tsykun et al. 2013 

 

 

Future perspectives 

Rhizomorphs and mycelial cords continue to play vital roles in the survival, propagation, and 

pathogenicity of fungi, and, as such, interest in their study should be intensified and sustained. 

Professor Lynne Boddy of Cardiff University, UK, and her collaborators, over the years, have 

extensively studied mycelial strands and cords, and have produced insightful findings of the 

structure, functions, and behavior of mycelial cords which (Fricker et al. 2017). To this end, some 

specific areas of biomechanics of Armillaria rhizomorphs need urgent attention. Armillaria species 

remain a well-studied group, but their rhizomorphs are excellent models for such biomechanical 

studies (Yafetto et al. 2009), and remain inadequately studied by mycologists and plant 

pathologists.  

M. incrassata continues to remain one of the best candidates for rhizomorph studies, because, 

although it is known to produce rhizomorphs, there is no information in the literature on its ability 

to produce in vitro rhizomorphs with organized tip growth as seen in Armillaria. This necessitates a 

renewed interest in the study of in vitro production of rhizomorph in M. incrassata, the success of 

which shall be a breakthrough in rhizomorph studies.  

Since data on profiled gene sequence of Armillaria already exist, work to identify genes that 

control the growth and development of rhizomorphs should be initiated. This can be extended to 

other rhizomorph-producing fungi, particularly M. incrassata for comparative purposes. There is a 
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good prospect for understanding the molecular basis of these processes in Armillaria and 

Meruliporia that will eventually guide the development of effective control strategies in the future. 

As a crucial step, investigations that seek to address key aspects of the biomechanics of 

rhizomorphs should adopt a multidisciplinary approach. This multidisciplinary approach is critical 

since there are biological, molecular, physical and mathematical components necessary for better 

understanding of rhizomorph growth, development and invasive behavior.  
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