
The Structure of Online Diffusion Networks

SHARAD GOEL, Yahoo! Research

DUNCAN J. WATTS, Yahoo! Research

DANIEL G. GOLDSTEIN, Yahoo! Research

Models of networked diffusion that are motivated by analogy with the spread of infectious disease have
been applied to a wide range of social and economic adoption processes, including those related to new
products, ideas, norms and behaviors. However, it is unknown how accurately these models account for the
empirical structure of diffusion over networks. Here we describe the diffusion patterns arising from seven
online domains, ranging from communications platforms to networked games to microblogging services,
each involving distinct types of content and modes of sharing. We find strikingly similar patterns across all
domains. In particular, the vast majority of cascades are small, and are described by a handful of simple tree
structures that terminate within one degree of an initial adopting “seed.” In addition we find that structures
other than these account for only a tiny fraction of total adoptions; that is, adoptions resulting from chains
of referrals are extremely rare. Finally, even for the largest cascades that we observe, we find that the bulk
of adoptions often takes place within one degree of a few dominant individuals. Together, these observations
suggest new directions for modeling of online adoption processes.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Sociology

General Terms: Economics, Measurement

Additional Key Words and Phrases: Computational social science, contagion, diffusion, social networks

1. INTRODUCTION

A longstanding hypothesis in diffusion research is that adoption of products and ideas
spreads through interpersonal networks of influence analogous to the manner in which
an infectious disease spreads through a susceptible population [Anderson and May
1991]. Accordingly, theoretical models of diffusion have generally imitated disease
models in the sense that popular products are assumed to diffuse multiple steps from
their origin in the manner of epidemics, “infecting” large numbers of people in the pro-
cess [Watts 2002; Leskovec et al. 2006]. Although this assumption is entirely plausible,
empirical diffusion research has historically relied on aggregate data, such as cumu-
lative adoption curves [Coleman et al. 1957; Bass 1969; Young 2009; Iyengar et al.
2010], which reveal only the total number of adopters at any given time. While these
curves are consistent with the hypothesis of “viral”, disease-like diffusion, they are also
consistent with other mechanisms, such as marketing or mass media [Van den Bulte
and Lilien 2001]. As a consequence, the extent to which adoption processes are driven
by these different mechanisms, and therefore the extent to which prevailing models
accurately describe online diffusion, is unknown.

In recent years, the increased availability of online social interaction data has of-
fered new opportunities to map out the network structure of diffusion processes [Adar
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and Adamic 2005; Leskovec et al. 2006, 2007; Bakshy et al. 2009; Sun et al. 2009;
Bakshy et al. 2011]. Here we leverage online diffusion data to address the question of
how much total adoption derives from viral spreading versus some other process, as
well as the implications of this empirical result for theoretical models of diffusion, in
particular online diffusion.

In order to identify generic features of online diffusion structure, we study seven
diverse examples comprising millions of individual adopters. As opposed to biological
contagion, our domain of interest comprises the diffusion of adoptions, where “adop-
tion” implies a deliberate action on the part of the adopting individual. In particular,
we do not consider mere exposure to an idea or product to constitute adoption. Conta-
gious processes such as email viruses, which benefit from accidental or unintentional
transmission are therefore excluded from consideration.

Although restricted in this manner, the range of applications that we consider is
broad. The seven studies described below draw on different sources of data, were
recorded using different technical mechanisms over different timescales, and varied
widely in terms of the costliness of an adoption. This variety is important to our con-
clusions, as while each individual study no doubt suffers from systematic biases arising
from the particular choice of data and methods, collectively they are unlikely to all ex-
hibit the same systematic biases. To the extent that we observe consistent patterns
across all examples, we expect that our findings should be broadly applicable to other
examples of online—and possibly offline—diffusion as well.

The remainder of this paper proceeds as follows. After reviewing the diffusion liter-
ature in Section 2, in Section 3 we describe in detail the seven domains we investigate.
We present our main results in Section 4, showing that not only are most cascades
small and shallow, but also that most adoptions lie in such cascades. In particular, it
is rare for adoptions to result from chains of referrals. Finally, in Section 5 we discuss
the implications of these results for diffusion models, as well as the apparent discord
between our results and the prevalence of popular products, such as Facebook and
Gmail, whose success is often attributed to viral propagation.

2. RELATED WORK

The adoption of new products or behaviors has been described rhetorically in the lan-
guage of contagion for centuries [Mackay 1841; Le Bon 1896]. By the late 1960’s, the
conceptual link between adoption and diffusion had been greatly reinforced by their
enshrinement in simple mathematical models, which were derived by analogy either
from mass-action laws of chemical reactions [Coleman et al. 1957], or from classical
models of mathematical epidemiology [Bass 1969]. These various models, however, all
embodied the core substantive assumption that new adopters are influenced by the
proportion of the population that has adopted previously. The main empirical predic-
tion of these models was that viewed over time, the cumulative number of adopters in
a population ought to be described by an “S shaped” curve—a prediction that was at
least broadly consistent with a large number of empirical studies [Rogers 1962; Bass
1969].

Subsequently a large literature has developed in marketing and related fields that
has explored the mathematical properties of disease-like models. In addition, related
but distinct families of models have emerged that begin from different assumptions
about the psychology of the adoption process. Granovetter [1978] and others [Lopez-
Pintado and Watts 2008], for example, have argued that many adoption decisions—
especially costly ones—are more appropriately modeled as a nonlinear “threshold,”
whereupon adoption takes place only after some critical number or fraction of some
sample population had adopted. Dodds and Watts [2005] have proposed a model of
“generalized contagion” that contained both disease-like and threshold models as spe-
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cial cases, while Young [2009] has proposed a model of observational learning that also
exhibits threshold-like behavior. Although they differ in their psychological motivation
and formal properties, a common feature to all these models is that a small “seed” set
of initial adopters—possibly just one—can, under the right circumstances, trigger a
much larger “cascade” of subsequent adoptions that builds upon itself over multiple,
possibly many, generations.

The dynamics and precursors of large cascades, or “social epidemics” as they are also
known [Gladwell 2000], have also been studied extensively in networked models of
adoption, where the classical uniform mixing assumption—namely that the probabil-
ity of adoption depends only on the global ratios of adopters and non-adopters [Ander-
son and May 1991]—is replaced with the assumption that individuals are influenced
only by some relatively small number of network neighbors [Moore and Newman 2000;
Watts 2002]. An important contribution of these network diffusion models is that un-
like in the case of uniform mixing, for which all seeds are effectively interchangeable,
both the local and global structural properties of networks can greatly influence the
size and likelihood of a cascade that is triggered by any given seed.

Motivated by this observation, a growing number of papers have addressed the nat-
ural question of how seeds can be selected so as to maximize the total amount of
influence that some exogenous agent can hope to exert over a network with some
given structure. Assuming a simple variant of a network influence model, for exam-
ple, Domingos and Richardson [2001], estimated the “viral lift” that could be attained
by incentivizing a single consumer to adopt. Subsequently, Kempe et al. [2003] found
approximately optimal algorithms for selecting a maximally influential set of seeds for
a variety of simple models. And recently Kitsak et al. [2010] showed that for simple
disease-like models of adoption, diffusion was maximized when initiated by individu-
als in the dense core of the network.

Whereas much of the earlier literature focuses on the conditions required for a large
cascade to occur at all, the influence maximization literature focuses on the operational
question of how to efficiently trade off between the cost of seeding and the size of the
cascade generated. Nevertheless, both literatures start from the assumption that a
relatively small number of seeds can trigger a relatively large number of adoptions
via some, usually multistep, diffusion process. In their numerical experiments, for ex-
ample, Kempe et al. [2003] find that depending on the assumed infection probability,
optimal targeting can generate cascades from several times to several hundred times
the size of the seed set. Domingos et al. [2005] report an even more extreme result,
that the viral lift from a single targeted consumer can be as high as 20,000 others.
Finally, many models of adoption [Bass 1969; Granovetter 1978; Watts 2002] find that
under the right circumstances, cascades triggered by a single seed can encompass the
entire population, regardless of size.

Whether it is stated explicitly or not, in other words, the assumption that a relatively
small number of seeds can trigger a relatively large number of adoptions via some, usu-
ally multistep, diffusion process is central to many of the interesting questions posed
by the modeling literature. But this assumption provokes two related empirical ques-
tions: how frequently do such large cascades occur in real diffusion processes; and how
much total adoption do they account for? The central contribution of this paper is to
directly address these two questions in the context of online diffusion.

Answering these questions has been difficult for offline adoption processes, for which
the data have historically suffered from two limitations. First, most empirical diffusion
studies have relied on aggregated data, reflecting the total number of adoptions in a
population. As has been pointed out elsewhere [Van den Bulte and Lilien 2001], al-
though these adoption curves are consistent with diffusion processes, they are also
consistent with alternative explanations such as marketing or advertising efforts, or
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simply heterogeneity in adoption propensity. To address this problem, individual-level
diffusion data are required, meaning that one can observe precisely who influences
whom to adopt which product at a given time. In an offline context, however, data
of this kind are extremely difficult to collect, especially at the scale required to study
large cascades spreading over potentially many generations of adopters. A second prob-
lem with empirical diffusion studies has been that they are highly subject to selection
bias, as examples of successful diffusion are much easier to observe than examples of
unsuccessful ones [Liben-Nowell and Kleinberg 2008].1 More generally, without a rep-
resentative sample of diffusion attempts, it is difficult to quantify the overall rate at
which diffusion takes place or how much total adoption it accounts for.

A major advantage of studying diffusion in an online context, therefore, is that it
is increasingly possible to overcome these limitations, allowing researchers first, to
obtain very large samples of potential online diffusion—for example all news stories
published on Twitter, all videos posted to YouTube, or all third-party applications
launched on Facebook—regardless of whether they actually diffuse or not; and sec-
ond, to map out the precise network structure of the corresponding diffusion processes
as they propagate from individual to individual.

In recent years, a number of studies [Adar and Adamic 2005; Bakshy et al. 2009;
Sun et al. 2009; Bakshy et al. 2011] have made use of online data to study various
diffusion processes. As we discuss later, the results of these studies are consistent with
ours; however, they have not directly addressed the central question of how much total
adoption derives from viral spreading versus some other process. Of particular rel-
evance is Leskovec et al. [2006, 2007], who analyzed product recommendations in a
network of users of an e-commerce website with the primary objective of enumerating
and counting the types of diffusion cascades that arose. As we do, they find that most
cascades are small; however, they do not consider the subsequent—and from our per-
spective key—question of how much adoption is accounted for by the minority of large
cascades.

In addition to this different objective, we note that Leskovec et al. [2006, 2007] inves-
tigate one domain with a high barrier to adoption: users must receive a recommenda-
tion and purchase a product to be counted as adopters. In contrast, we compare seven
domains in which the type and the cost of adoption ranges greatly, from “retweeting”
on Twitter to sending an email to purchasing. Furthermore, our analysis covers do-
mains in which there is ambiguity as to which is the parent node in the cascade (as
in the recommendations domain of Leskovec et al. [2006, 2007]) but also domains in
which parents are uniquely identified through tracking URLs. The larger point is that
because each prior study of online diffusion focused on a single web platform, such as
Facebook [Sun et al. 2009], Twitter [Bakshy et al. 2011], Second Life [Bakshy et al.
2009], or blog networks [Adar and Adamic 2005] and also invoked different metrics,
it has previously been difficult to draw conclusions about online diffusion processes in
general.

3. DATA AND METHODS

For each domain, we define a diffusion event or “cascade” [Watts 2002; Kempe et al.
2003] as comprising a “seed” individual, who takes the relevant adoption action in-
dependently of any other individual in our dataset, followed by other non-seed indi-
viduals who are influenced either directly or indirectly by the seed to take the same
action. From this definition, it follows that every individual in a diffusion event can be

1Even modeling efforts have tended to focus on the mechanics of successful diffusion rather than on its
likelihood. For example, the Bass model deterministically predicts universal diffusion, and is hence unable
to account for attempts at diffusion that do not succeed.
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connected by some unbroken path of adoptions back to the original seed, hence each
diffusion event can be represented as a single connected graph. Moreover, in instances
where an adopter may have been influenced by more than one previous adopter, we
ascribe influence exclusively to the earliest such “parent” node; thus in contrast with
related work [Leskovec et al. 2007], where multiple parents are allowed, we map all
diffusion events to tree structures that originate with a single seed and terminate at
one or more “leaf” nodes.2 Finally, having reconstructed all distinct diffusion events, we
calculate two key quantities: first, the frequency of distinct diffusion structures (trees)
that we observe, and second, the proportion of total adoptions that are accounted for
by each of these structures. Given the scale of the data, calculations are carried out
with the MapReduce parallel computation framework [Dean and Ghemawat 2008].

Before describing the data in detail, we note that although the definitions just out-
lined are consistent across all seven domains, the manner by which we infer influence
differs across them. In three of the applications, we directly observe interpersonal dif-
fusion (influence), whereas in the remaining four we infer influence from the under-
lying network of interpersonal connections and the temporal sequence of adoptions.
Although in the latter case it is possible that apparent influence can be accounted for
simply by homophily [Aral et al. 2009; Shalizi and Thomas 2011], our inferred diffu-
sion trees nevertheless provide an effective upper bound on the actual diffusion taking
place via the respective underlying networks. Moreover, while it is possible that some
amount of diffusion goes undetected (e.g., if it occurs over a channel, such as literal
word-of-mouth, that we cannot track), given the relative ease with which one can share
content via Twitter, Facebook, email and other modes of electronic communication, we
suspect this unobserved adoption accounts for only a small fraction of total adoptions
of the online products investigated here.

3.1. Observed-Diffusion Domains

(1) Yahoo! Kindness. Over a one month period in 2010, Yahoo!’s philanthropic arm
launched a website (kindness.yahoo.com) that asked users to create status updates
describing kind acts they had performed, after which these updates were propa-
gated via Yahoo!, Facebook, Twitter, and other means in order to attract new users
to visit the site and post updates of their own. Because all users were logged in,
and because each user received a unique coded URL when arriving at the site (e.g.,
kindness.yahoo.com/1QvTu) that was used to bring others to the site, it was pos-
sible to trace the chain of adopters through which each new user arrived. Because
this tracking method works regardless of how people chose to share links (e.g., by
email, blog, instant message, status update, forum, etc.), we could reconstruct the
diffusion of the new site across the Internet. During the course of the experiment,
approximately 59,000 users “adopted” the campaign, meaning that they visited the
site and also posted at least one status update.

(2) Zync [Liu et al. 2007; Shamma and Liu 2009] is a plug-in for Yahoo! Messenger,
an instant messaging (IM) application, that allows pairs of users to watch videos
synchronously while sending instant messages to one another. Individuals initiate
a session by sending a video URL to another user through the Yahoo! instant mes-
saging client. The invited user must accept the invitation before the video com-
mences; thus in contrast with our other examples, a single use of Zync requires
two users. Since 2009, Zync has been activated by approximately 1.3 million users;
however, to avoid counting spurious dyads, we define adoption in this instance

2Given the structural simplicity of the vast majority of cascades we find—detailed in Section 4—our results
are qualitatively the same regardless of which particular cascade representation is chosen.
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as having initiated a session, not merely having accepted an invitation, yielding
374,000 adopters.

(3) The Secretary Game is an online variant of the “secretary problem” [Ferguson
1989], a sequential search game in which players attempt to find an optimal stop-
ping rule. Players are encouraged to share the game’s URL with at least three other
people with an explanation that the game designers are seeking the world’s best
players. As with Yahoo! Kindness, user-specific URLs tracked player-to-player dif-
fusion. Between 2008 and 2011, the game was played over 37,500 times by nearly
2,900 adopters.

3.2. Inferred-Diffusion Domains

In the following cases, we observe time-stamped adoptions occurring over a known
network. Here, we did not directly observe interpersonal transmission of information
but rather inferred that the “parent” of an adopting node—if one existed—was its first
network contact to adopt before it did.

(1) Twitter News Stories. We tracked the diffusion of 80,000 news stories posted on
the microblogging service Twitter during November 2011, where the original arti-
cle was distributed by one of five popular news sites: The New York Times, CNN,
MSNBC, Yahoo! News, and The Huffington Post. Individuals were said to have
“adopted” an article if they posted (i.e., “tweeted”) a link to the story. In total,
we observed 288,000 adoption events. To mitigate left-censoring, we only counted
URLs that had not appeared for two weeks prior to the first adoption we observed
(i.e., any previous diffusion must have occurred at least two weeks prior and then
completely disappeared only to restart). Because the timescale of diffusion on Twit-
ter lasts only a few days in the vast majority of cases, this approach avoids almost
all possible left-censoring. Correspondingly, we addressed the possibility of right-
censoring by considering only diffusion events that had been initiated at least two
weeks prior to the end of the observation period; all cascades where thus observed
for at least two weeks.

(2) Twitter Videos. Analogous to the news articles, we tracked 540,000 YouTube videos
posted on Twitter during November 2011, where users were again said to have
“adopted” a particular video if they tweeted a link to it. 1.3 million adoption events
were observed.

(3) Friend Sense was a third-party Facebook application that queried respondents
about their political views as well as their beliefs about their friends’ political
views [Goel et al. 2010]. Because the analysis required knowing the friends’ actual
views, various sharing features were built into the application to encourage viral
growth. Over the course of a four-month period in 2008, close to 2,500 individuals
used the application, providing over 100,000 answers to more than 80 questions.

(4) Yahoo! Voice is a paid service launched in 2004 that allows users to make voice-
over-IP calls to phones through Yahoo! Messenger. Between 2004 and 2009, 1.8
million users purchased voice credits, all of whom we define to be adopters. Dif-
fusion in this case is considered to occur over the Yahoo! Messenger IM network,
which comprises over 200 million users with a median of 6 network neighbors each,
where two individuals are connected if they list each other as a “buddy” (i.e., social
contact).

3.3. Tree Canonicalization

In computing the frequency of cascade structures across the diffusion datasets, care
needs to be taken to aggregate all variations of the same fundamental structure. For
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x (x) (x,x) ((x)) (x,(x))

Fig. 1. Canonical names for some example trees.

example, the two trees below, while superficially different, should clearly be taken to
represent the same cascade structure for the purposes of our analysis.

In particular, we would like to aggregate all isomorphic trees (i.e., trees that are iden-
tical under a relabeling of the vertices.)

Definition 3.1 (Tree Isomorphism). Consider two rooted trees T1 = (V1, E1, r1) and
T2 = (V2, E2, r2), with vertices Vi, edges Ei ⊆ Vi × Vi, and roots ri ∈ Vi. Then T1 and
T2 are isomorphic if there exists a bijection φ : V1 → V2 such that φ(r1) = r2 and
(v1, v2) ∈ E1 ⇐⇒ (φ(v1), φ(v2)) ∈ E2.

Determining whether two arbitrary graphs are isomorphic is, in general, a difficult
computational problem. No polynomial-time algorithm has been found, and somewhat
surprisingly, it is not even know whether the problem lies in either P or NP-complete.
In the case of trees, however, there are standard and efficient ways for determining
isomorphism, one of which we detail below.

Definition 3.2. The canonical name c(T ) of a rooted tree T is a string defined induc-
tively on the height of the tree by the following two rules:

(1) (Basis) The canonical name for the one-node tree is x.
(2) (Induction) If T has more than one node, let T1, . . . , Tk denote the subtrees of the

root indexed such that c(T1) ≤ c(T2) ≤ · · · ≤ c(Tk) under the lexicographic order.
Then the canonical name for T is

(c(T1), . . . ,c(Tk)).

Figure 1 shows the canonical names for a few example tree structures. It is clear that
two trees have the same canonical name if and only if they are isomorphic. Moreover,
as shown in Aho et al. [1974], c(T ) can be computed in time linear in the number of
nodes. These canonical tree names thus allow us to efficiently aggregate all isomorphic
variations of each cascade structure.

4. RESULTS

Before presenting our results, we note that in addition to variations in the method
of data collection, our examples also varied widely with respect to a number of di-
mensions thought to be important to adoption decisions, such as the costliness of the
adoption, the nature of the network over which the adoptions are diffusing, and the
timescale on which the diffusion process proceeded. For example, whereas Yahoo! Voice
represents an adoption decision that costs money, adoptions in the gaming domains
are costly only in time, and Twitter retweets are next to costless. Whereas the IM net-
work represents a network of reciprocated, private communication ties, the majority of
Facebook edges do not involve active communication, and edges on Twitter are largely
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Fig. 2. The distribution of diffusion cascade structures

unreciprocated and public. Whereas Zync, Friend Sense, and Yahoo! Voice clearly ex-
hibit positive externalities in the sense that the utility of the products in question
increases with the number of adopting neighbors, such network effects are less likely
in the remaining domains. And whereas the diffusion cascades on Twitter generally
terminated within a day or two, the Secretary Game and Friend Sense spread actively
for several weeks, while cascades on Yahoo! Voice extended over several years.

Given the heterogeneity in data collection, timescales (ranging from days to years),
and the nature of adoptions described above, the distribution of diffusion structures
across all seven cases is striking in its similarity. Fig. 2A shows the frequency of cas-
cades accounted for by the most commonly occurring tree structures across the seven
domains we study. The vast majority of instances—ranging from 73% to 95% across
domains—show no diffusion at all (i.e., the tree consists only of the seed), while the
next most frequent outcome is in all cases a single additional adopter. In fact, the
same seven simple tree structures account for upwards of 97% of cascades in each do-
main. Figs. 2B and 2C complement this result, showing that the distributions of tree
size and depth, respectively, are likewise extremely skewed. In all domains, less than
1% of cascades consist of more than seven nodes, and less than 4% extend further than
one degree from the seed node.

Although the similarity across domains is striking, our finding that most cascades
are small and shallow is not, on its own, surprising. A number of recent empirical stud-
ies of online diffusion [Adar and Adamic 2005; Leskovec et al. 2007; Bakshy et al. 2009;
Sun et al. 2009; Bakshy et al. 2011] have also observed that the size distribution of dif-
fusion events is right-skewed and heavy-tailed, which necessarily implies that most
events are small; indeed, Leskovec et. al [Leskovec et al. 2007] even identify many of
the same motifs. The usual intuition regarding heavy-tailed distributions, however, is
that large events, although rare, are sufficiently large to dominate certain key proper-
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Fig. 3. The distribution of adoptions across cascade structures (i.e., the fraction of adopters residing in each
tree type).

Table I. Summary diffusion statistics.

Domain % of One-Node
Cascades

Mean Cascade
Size

Mean Cascade
Depth

% of Adoptions Within
One Degree of a Seed

Yahoo! Kindness 89% 1.2 0.1 99%
Yahoo! Zync 73% 1.4 0.3 96%
The Secretary Game 94% 1.2 0.1 97%
Twitter News Stories 95% 1.2 0.1 98%
Twitter Videos 96% 1.1 0.1 96%
Friend Sense 84% 1.4 0.2 94%
Yahoo! Voice 92% 1.2 0.1 94%

ties of the corresponding system. To illustrate, it is likely that in the course of human
history avian influenza has jumped from birds to humans hundreds or even thousands
of times, and that the vast majority of such events have led to only one or at most a few
infections, much as we see here. Nevertheless, the vast majority of infections belong
to a handful of very large cascades, which are the epidemics of historical record. Ar-
guably, the majority of all humans who have ever been infected with avian influenza
were infected during a single event, namely the 1918 pandemic, during which more
than 500 million individuals are thought to have been infected [Taubenberger and
Morens 2006]. In our domain, therefore, even if it is the case that 99% of cascades are
small, if it is also the case that the remaining 1% are extremely large, epidemic-like
trees, the large cascades could still account for the bulk of all adoption activity.

What is surprising, therefore, is that we find no evidence of such epidemics in our
data. On the contrary, Fig. 3A shows that the seven tree structures from Fig. 2A also
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Fig. 5. For the approximately 16,000 videos and news stories posted on Twitter independently by at least
ten users, the distribution of the proportion of adoptions occurring beyond one generation of a seed. In partic-
ular, less than 1% of these “products” have the majority of their adoptions occurring beyond one generation
of a seed.

account for around 90% of all adoptions, and thus only a minority of adoptions are
found within large cascades. Fig. 3B, in fact, shows that in each of the seven domains
less than 10% of adoptions occur in cascades consisting of more than 10 nodes, and
similarly Fig. 3C shows that less than 10% occur in trees that extend more than two
generations from the seed. Finally, Fig. 4 demonstrates that very few adoptions (1%–
6% across domains) take place more than one degree from a seed node, regardless of
the size or depth of the tree in which they occur. In other words, in contrast with the
intuition of viral spread leading to rare but large, multi-step epidemics, we find that
the vast majority of adoptions occur either without peer-to-peer influence or within one
step of such an independent adopter. Large cascades, that is, are not only rare, but are
also insufficiently large to appreciably alter average cascade size, which varies within
a remarkably narrow range of 1.1–1.4 across domains (Table 1).

Although we have considered a diverse set of examples of online diffusion, where
in all cases the platform designers (or message initiators in the case of Twitter) had
the intention of promoting the diffusion of their “products”, it is possible that we have
simply not studied enough distinct instances to witness a case of truly viral spread, in
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largely invariant with respect to adoption threshold, suggesting that our conclusions
are also robust with respect to particular definitions of adoption.

5. DISCUSSION

Our observation that multi-step diffusion is not only rare in these online domains, but
that the vast majority of adoptions occurs within one degree of a seed node, has several
implications for theories of diffusion as they apply to online content and possibly for
adoption processes more generally. First, although the motifs cataloged in Figs. 2 and
3 are quite likely consistent with those predicted by standard epidemiological models
for sufficiently low rates of infectiousness, we would argue that the academic literature
on diffusion has paid little attention to this “low infectivity” parameter range, focusing
instead on the so-called supercritical parameter regime, which yields large, epidemic-
like events that propagate for many generations and “infect” large populations [Bass
1969; Moore and Newman 2000; Watts 2002; Kempe et al. 2003; Liben-Nowell and
Kleinberg 2008]. As we have noted, the implicit justification for this focus is that even
if epidemic-like events are rare, they are occasionally so large that understanding and
predicting them is of both theoretical and practical importance. Our results challenge
this conventional wisdom. We find not only that multi-step diffusion occurs rarely on
these platforms, but that even when it does, it accounts for only a small percentage
of total adoptions. To the extent that such theoretical models of adoption are intended
to explain typical diffusion events, we thus advocate more emphasis on subcritical
processes.

A second, related, point is that even if one could explicitly encode low transmis-
sion rates into diffusion models, we argue that doing so would ignore a key scientific
goal, namely identifying the underlying causes of these observed rates. Elaborating
on this point, consider a hypothetical model that incorporates just two effects: (1) the
propensity for individuals to encounter products outside their immediate social net-
work (e.g., via mass media); and (2) the degree of similarity in product taste between
social contacts. The dynamics of such a model would therefore be governed by two
countervailing forces. On the one hand, as individuals are exposed to more products
through advertising and mass media, adoptions due to social referrals—and hence vi-
ral cascades—become less prevalent. On the other hand, as the preferences of network
neighbors become more similar, social referrals exhibit more value, increasing the fre-
quency of viral adoptions. Although a formal analysis of a model of this type is left
for future work, and although there are no doubt many other factors that one might
think to include in such a model, our general claim is that by explicitly modeling the
psychological antecedents of adoption, even a relatively simple model could lend in-
sight to our empirical observations beyond simply asserting that they correspond to
low-infectivity examples.

Finally, our observation that the vast majority of adoptions we study do not result
from multi-step diffusion naturally raises the question of what, then, does account for
truly large adoption events that do occur, such as online videos that generate many
millions of views in a short period of time, or products like Facebook, Gmail, or Hot-
mail, the sudden popularity of which is often attributed to viral diffusion over net-
works of individuals? One possibility, consistent with our results, is that events such
as these are not strictly viral at all in the sense implied by infectious-disease mod-
els, but rather obtain the bulk of their attention either from traditional advertising or
from other coverage by the mass media. Media efforts, that is, might generate a large
wave of adopters without requiring any viral, peer-to-peer growth of the sort implied
by epidemic models. Indeed, it is precisely a version of this “broadcast diffusion” that
we observe for the largest cascades in our data. As shown in Fig. 7, the four largest
cascades (all from Twitter) are relatively shallow, spreading only a few steps from the
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Fig. 7. Structure of the four largest cascades observed, all of which occurred on Twitter. Colors indicate
node depth, with the large, green points corresponding to seed nodes.

seed node. Thus, not only are large cascades infrequent in these online domains, but
even when present they do not resemble the multi-step epidemics that arise in preva-
lent theoretical models of diffusion [Watts 2002; Kempe et al. 2003; Leskovec et al.
2007], in which cascades become large by spreading for many generations. Referring
again to the 1918 influenza epidemic, although it infected more than 500 million peo-
ple, individuals typically infected no more than a handful of others [Mills et al. 2002],
and hence its scale was determined almost entirely by the large number of generations
over which it spread. By contrast, Fig. 7 shows that the largest adoption cascades we
find spread for at most a few generations before dying out. In two of the top four cases,
in fact, almost all adoptions are directly attributable to a single user with a very high
follower count. Moreover, the first and fourth largest cascades correspond to indepen-
dent introductions of the same newly released music video by a popular artist (Justin
Bieber), and thus benefitted from intense media attention, marketing, and advertis-
ing. In short, the largest adoption events that we observe occur through mechanisms
qualitatively distinct from those in strictly peer-to-peer models of contagion. In turn,
this observation may motivate a more general class of diffusion models that follow clas-
sical influence studies [Katz and Lazarsfeld 1955] in explicitly differentiating media
“actors” from ordinary individuals.

An alternative explanation for the occurrence of such popular products is that truly
viral processes exhibit certain critical features that are unlikely to arise in the kind of
social media domains that we consider here. For example, email viruses such as the
Melissa Bug and Code Red [Smith 2004] spread over many generations to infect mil-
lions of computers on a global scale. Like biological epidemics, email viruses are capa-
ble of propagating themselves automatically, and without consent from the infected. In
all the domains we investigate, however, both the adoption and transmission of prod-
ucts are deliberate decisions, suggesting that willful adoption and transmission may be
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moderating factors of epidemic spread. Yet another possible explanation is suggested
by the example of respondent-driven sampling (RDS) [Salganik and Heckathorn 2004;
Goel and Salganik 2010]—a type of snowball sampling in which survey respondents
enlist the next wave of participants—where recruitment chains routinely propagate
for many generations, and usually terminate only as a result of deliberate action by
the survey organizers. The success of this sampling methodology, however, depends
critically on the provision of substantial financial incentives for recruiting [Malekine-
jad et al. 2008]. Thus, as with email viruses, the feature that drives the viral nature
of RDS is unlikely to be present in typical online adoption processes, which lack direct
financial incentives.

These alternative mechanisms notwithstanding, the possibility remains that viral
spread among networks of individuals is occasionally responsible for large online adop-
tion events, with potentially substantial consequences, and that we have simply not
witnessed any such events in our data. For example, Liben-Nowell and Kleinberg
[2008] study the propagation of an Internet chain letter that does in fact appear to
have spread virally for hundreds of generations over more than ten years. While under-
standing the process underlying this seemingly rare phenomenon is certainly an im-
portant goal, that such viral diffusion may occur in some instances should be weighed
against the very large number and diversity of observations that fail to exhibit any of
the requisite properties.

We conclude by noting that in addition to their scientific and theoretical implica-
tions, our findings have practical relevance. Specifically, although the idea that social
media can spread in the manner of biological epidemics is provocative, our findings
indicate that strategies based on triggering “social epidemics” are likely unrealistic.
Rather, we believe that marketers and others interested in efficiently diffusing infor-
mation should work to harness and enhance the potentially valuable gains from each
seed, where even incremental improvements in pass-along rates can lead to substan-
tial returns on investment [Watts and Peretti 2007]. By reducing sharing costs and
including various calls to action in word-of-mouth campaigns, reliable improvements
in performance are likely possible [Aral and Walker 2011], even if truly viral diffusion
of social media remains improbable.
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