
AD-A0SI 967 CARNEGIE-MELLON UINIV PITTS13URGH PA DEPT OF COMPUTER -ETC F/S 9/2
THE STRUCTURE OF PARALLEL ALGORITHMS. (U)

GG AUG 79 H T KUNG N00014-76-C-0370

NLICLASSIEDIOC-CS-79-1433
NL

-4

111 2~l hi1 =.

IJ3

MICROCOPY RESOLUTION TEST CH*T
NAI;')NAL BUREAU OF STANDARDS- 963'

-I

TL1

TESTRUCTURE OF WAM.f 4AL

__ D.nwm O comur 5SW

PittbirA Pemfvhl 51

Aiiuat 1979.

ipDEPARTMENT D1IC

of ILCOMPUTER SCIENCE

illi jDiSTRIBUTION STATEMENT A
________ I Appgoved tot public release;

Distribution Unlimited

L>

Garng9e -Mel Io Universy

80 3 008

C"T-CS-79-143

THE STRUCTURE OF PARALLEL .ALGORITHMS

H. T. Kung

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania i 5213

August 1979 DTIC
S ELECTE

MAR 1 9 1980 j9
B

(To appear in the forthcoming Advances in Computers Volume 19, Academic Press)

Copyright -C- 1979 by .T. Kung

AU Rights Reserved

This research is supported in part by the National Science Foundation under Grant
UCS 78-236-76 and the Office of Naval Research under Contract NOO014-76-C-0370.

DUM IMa1fOI S7AT =ENT A

ApWove tat puble release;
Diattibutiou Unlimted

ABSTRACT

The purpose of this article is to create a general framework for the study of parallel

algorithms. A taxonomy of parallel algorithms, based on their relations to parallel computer

architectures, is introduced. Examples of parallel algorithms for many architectures are given;

they include algorithms for SIMD array processors, for MIMO multiprocessors, and for direct

chip implementations. By presenting these algorithms in a single place, issues and techniques

in designing algorithms for various types of parallel architectures are discussed and

compared.

NIS white S Iem

UNANNOWCEO 0

JUSTIICATION

By

at. AVAIL a, WE

ki

Table of Contents

1. Introduction 1

2. The Space of Parallel Algorithms: Taxonomy and Relation to Parallel Architectures 2

2.1 Introduction 2

2.2 The Three Dimensions of the Space of Parallel Algorithms 2

2.3 Matching Parallel Algorithms with Parallel Architectures 3

2.4 A Taxonomy for Parallel Algorithms 6

3. Algorithms for Synchronous Parallel Computers 8

3.1 Introduction 8

3.2 Algorithms Using One-dimensional Linear Arrays 9
3.3 Algorithms Using Two-Dimensional Arrays 17

3.3.1 Algorithm , Using Two-Dimensional Hexagonal Arrays 18

3.3.2 AlIorithms Using Two-dimensional Square Arrays 23

3.4 Algorithms Using Tree Structures 25
3.5 Algorithms Using Shuffle-Exchange Networks 28
3.6 Remarks for Section 3 30

4. Algorithms for Asynchronous Multiprocessors 32

4.1 Introduction 32
4.2 Concurrent Database Systems 33

4.2.1 The Serialization Approach 33
4.2.1.1 The Two-Phase Transaction Method 34

4.2.1.2 Validation Methode - An Optimistic Approach 37

4.2.1.3 Remarks 39

4.2.2 The Approach Using Semantic Information -- A Non-Serialization 40"
Approach

4.3 Algorithms for Specific Problems 41

4.3.1 Concurrent Accesses to Search Trees 41

4.3.2 Asynchronous Iterative Algorithms for Solving Numerical Problems 43

4.3.3 Concurrent Database Reorganization 44

4.4 Remarks for Section 4 45

5. Concluding Remarks 46

References 47

II

SECTION I INT PODUCI ION I

I. Introduction

There is a laroe body of literature on parallel algorithms. Parallel algorithms have been

studied since the early sixties (see the survey [Miranker 71]), although at that time no

parallel computers had been constructed. It has always been the case that many researchers

find designing parallel aloorithms fascinating and challenging, regardless of whether or not

their algorithms will be used in practice. Increasing interests in parallel algorithms are

created by the emergence of large scale parallel computers in the past decade. As a result, a

variety of algorithms have bean designed for various parallel computer architectures. For

surveys of parallel architectures and parallel algorithms see [Anderson and Jensen 75, Stone

75, Kung 76, Enslow 77, Kuck 77, Ramamoorthy and Li 77, Sameh 77, Heller 78, Kuck 78]. The

recent advent of large scale integration technology has further stimulated interests in parallel

algorithms. Algorithms have been designed for direct chip implementation (see, e.g., [Kung

79]). Hence there is a vast amount of parallel algorithms known today, designed from many

different viewpoints.

This article presents many examples of parallel algorithms and studies them under a

uniform framework. In Section 2 we identify three important attributes of a parallel algorithm

and classify parallel algorithms in terms of these attributes. Our classification of parallel

algorithms corresponds naturally to that of parallel architectures. Algorithms for synchronous

parallel computers are considered in Section 3, where examples of algorithms using various

communication geometries are presented. Section 4 considers algorithms for asynchronous

parallel computers. In that section, we discuss a number of techniques to deal with the

difficulties arising from the asynchronous behavior of computation, and our examples are

mainly drawn from results in concurrent database systems. Section 5 contains some

concluding remarks.

The author hopes that by presenting parallel algorithms of many different types in a single

place, this article can be useful to readers who wish to understand the basic issues and

techniques in designing parallel algorithms for various architectures. The article can be

useful as well to readers who wish to know what parallel algorithms are available, in order to

decide on the best way to design or choose a parallel architecture.

°,C1 IMN 2 THE SPACE OF PARALLEL ALVGRlTHMS 2

2. The Space of Parallel Algorithms: Taxonomy and Relation to
Parallel Architectures

2.1 Introduction

We view a parallel algorilhm as a collection of independent task modules which can be

executed in parallel and which communicate with each other during the execution of the

algorithm. In Section 2.2, we identify three orthogonal dimensions of the space of parallel

algorithms: concurrency control, module granularity, and communication geometry. Along

each dimension, we illustrate some important positions that parallel algorithms can assume,

but no attempt will be made to list all possible positions. In Section 2.3, we characterize

parallel algorithms that correspond to three important parallel architectures along the

concurrency control and module granularity dimensions. In Section 2.4, this characterization

together with the third dimension -- communication geometry -- forms a taxonomy for

parallel algorithms. Our taxonomy is crude and is by no means meant to be complete. The

main purpose of introducing it here is to provide a framework for later discussions in this

paper. We hope that future work on the taxonomy will make it possible to unambiguously

classify parallel algorithms at a conceptual level and to relate each parallel algorithm to those

parallel architectures to which it naturally corresponds.

2.2 The Three Dimensions of the Space of Parallel Algorithms

Concurrency Control

In a parallel algorithm, because more than one task module can be executed at a time,

concurrency control is needed to ensure the correctness of the concurrent execution. The

concurrency control enforces desired interactions among task modules so that the overall

execution of the parallel algorithm will be correct. The leaves of the tree in Fig. 2-1

represent the space of concurrency controls which can be used in parallel algorithms. For

example, the left most leaf represents the concurrency control of an algorithm whose task

modules execute in lock-step the same code broadcast by the central control, while the

second left most leaf represents a synchronous distributed control achieved by simple local

control mechanisms.

Module Granularity

The module granularity of a parallel algorithm refers to the maximal amount of computation

a typical task module can do before having to communicate with other modules. The module

granularity of a parallel algorithm reflects whether or not the algorithm tends to be

communication intensive. For example, a parallel algorithm with a small module granularity

SECTION 2 WHE SPACE OF PARALLEL ALGO .'AS 3

I

[CONCURRENCY CONTROL]

i I 1 I

[CENTRALIZED CONTROL] [DISTRIBUTED CONTROL] [CONTROL VIA SHARED DATA)I , i I
[SYNCHRONOUS] [SYNCHRONOUS] [ASYNCHRONOUS] [ASYNCHRONOUS]

IIMPLE 1OPE S~IMPLE COMPLEX 1
LOCAL CONTROL LOCAL CONTRO LOCAL CONTRO~OCAL CONRAk

Figure 2-1: A classification of concurrency controls of parallel algorithms - leaves of the
tree representing various types of concurrency controls.

will require frequent intermodule communication. In this case, for efficiency reasons it may

be desirable to provide proper data paths in hardware to facilitate the communication. For

the purpose of this paper, we shall classify module granularities of parallel algorithms into

only three groups. See Fig. 2-2.

[MODULE GRANULARITY)

I I I
[SMALL CONSTANTS] [SMALL] [LARGE]

Figure 2-2: A classification of module granularities of parallel algorithms.

Communication Geometry

Suppose that task modules of a parallel algorithm are connected to represent intermodule

communication. Then a geometric layout of the resulting network is referred to as the

communication geometry of the algorithm. The leaves of the tree in Fig. 2-3 represent the

space of communication geometries. For example, leaf HEXAGONAL represents communication

geometries that correspond to regular 2-dimensional hexagonal arrays (see Fig. 3-9 (b)).

2.3 Matching Parallel Algorithms with Parallel Architectures

It is straightforward for one to assess the matching between parallel algorithms and

parallel architectures along the communication geometry dimension. Here we discuss the less

obvious matching along the other two dimensions: concurrency control and module

I,
... --I.._

SECI; , 2 71E SPACE OF P, ZALtEL AL5 ;T,,14S 4

[COMMUNICATION STRIJCTURE]
IJ I. !

[RFGIJLAR) [IRREGULAR]

lI I - I

(TREE] [ARRAY] [SHUFFLE] ... [CROSSBAR]

I 1
F_

(1-DIMENSIONAL] [2.OIMENSIONALI ...

III I

[SQUARE] [HEXAGONAL] [TRIANGULAR] ...

Figure 2-3: A classification of communication geometry of parallel algorithms - leaves of the

tree representing various types of communication structures.

granularity. We consider three architectures and their matching algorithms that are relevant

to our discussions in Sections 3 and 4.

SJMD and MIMD Machines and Algorithms

The notion of single-instruction stream multiple-data stream (SIMD) and multiple-instruction

stream multiple-data stream (MIMD) parallel computers (Flynn 66] is often used in the

literature for classifying parallel computers. With a SIMD machine such as ILLIAC IV (Barnes

et al. 68], one rtream of instructions issued by the central control unit controls all the

processors, each operating upon its own memory synchronously. With a MIMD machine such

as C.mmp [Wulf and Bell 72), Cm* (Fuller, et al. 77, or Pluribus (Heart et al. 73], the

processors have independent instruction counters, and operate asynchronously on shared

memories. SIMO machines correspond to synchronous lock-step algorithms that require

central controls, whereas MIMD machines correspond to asynchronous algorithms with

relatively large granularitics [Kung 76). Algorithms that match with SJMO and MIMD machines

are called SIM0 and MiMO algorithms, respectively. See Fig. 2-4.

Systolic Machines and Algorithms

Developments in microelectronics have revolutionized computer design. Large Scale

Integration (LSI) technology has increased the number and complexity of components that can

fit on a chip. In fact, component density has been doubling every one-to-two years for more

than a decade. Today a single chip can contain hundreds of thousands of devices. As a

result, machines-on-a-chip have emerged; these machines can be used as special purpose

devices attached to a conventional computer. "Systolic machines" represent one class of such

machines that have regular structures. Intuitively a systolic machine is a network of simple

,. cT2 111[I"AC[Cit I',AI LI. ALLO2c, IbMS5

CONCURRENCY CONTROL MODULE GRANULARITY

SYSTOLIC DISTPIRUITED CONTROL AC1I4EVED BY SIMPLE SMALL CONSTANTS

LOCAL CONTROL MECHANISMS,

LOCK STEP IN GENERAL

SIMO CENTRAI.ED, SMALL CONSTANTS,

LOCK STEP SMALL, OR LARGE

(SINGLE-INSTRUCTION MULTIPLE-DATA STREAM)

MIMD VIA SHARED DATA, LARGE

ASYNCHRONOUS

(MULTIPLE-INSTRUCTION MULTIPLE-DATA STREAM)

Figure 2-4: Characterizations of parallel algorithms that match with systolic, SIMD, AND MIMD
machines, along the concurrency control and module granularity dimensions.

and primitive processors that circulate data in a regular fashion [Kung and Leiserson 79].

The word "systole" was borrowed from physiologists who use it to refer to the rhythmically

recurrent contractions of the heart and arteries which pulse blood through the body. For a

systolic machine, the function of a processor is analogous to that of the heart. Each

processor regularly pumps data in and out, tach time performing some short computation, so

that a regular flow of data is kept up in the network. At every processor the control for

communication and computation is very simple, and the storage space is only a small constant,

i-dependent of the size of the network. For a low cost and high performance chip

implementation, it is crucial that the geometry of the communication paths in a systolic

machine be simple and regular. The geometric problem will be treated in detail in Section 3.

Systolic machines correspond to synchronous algorithms that use distributed control achieved

by simple local control mechanisms and that have (small) constant module granularities.

Algorithms that match with systolic machines are called systolic algorithms. See Fig. 2-4.

1;CTI("4 2 111E SP'ACE Or PA, A(LrL A[IC',OWTIAS 6

2.4 A Taxonomy for Parallel Al orithms

Let {CONCURRENCY CONTROLS), (MODULE GRANULARITIES), and (COMMUNICATION GEOMETRIES) be the

sets of leaves in Fig. 2-1, 2-2, and 2-3, respectively. Then the cross product (CONCURRENCY

CONTROLSjx (MODULE GRANULARITIESx [COMMUNICATION GEOMETRIES) represents the space of parallel

algorithms. One could give a taxonomy for parallel algorithms which classifies algorithms in

terms of their positions in this three-dimensional space, but the space is seen to be large and

contains quite a few uninteresting cases. We therefore restrict ourselves to a small subspace

which nevertheless contains, we believe, most of the interesting and significant parallel

algorithms. This subspace is the cross product (SYSTOLIC, SIMD,

M]MD}x{COMMUNICATION GEOMETRIES), where SYSTOLIC, SIMD AND MIMO are three particular positions

in the space (CONCURRENCY CONTROLS~x!MODULE GRANULARIES) that represent systolic, SIMD, AND

MIMO algorithms, respectively (c.f. Fig. 2-4).

We name algorithms in (SYSTOLIC, SIMO, MIMO}x[COMMUNICATION GEOMETRIES) in a natural way.

For example, an algorithm is called a systolic algorithm using a hexagonal array, if it is

systolic and its communication geometry is a hexagonal array.

Generally speaking, among the three types of algorithms (SYSTOLIC, SIMD and MIMD), systolic

algorithms are most structured and MIMO algorithms are least structured. For a systolic

algorithm, task modules are simple and interactions among them are frequent. The situation is

reversed for MIMO algorithms. Systolic algorithms are designed for direct hardware

implementations, while MIMD algorithms are ddsigned for executions on general purpose

multiprocessors. SWID algorithms may be seen as lying between the other two types of

algorithms. Using the central control, SIMD algdrithms can broadcast parameters and handle

exceptions rather easily. These reasons make SIMD algorithms attractive in some cases.

In summation, along the concurrency control and module granularity dimensions we have

classified parallel algorithms into three classes: SYSTOLIC, SIMO, and MIMD. Each class of

algorithms can further adopt various communication geometries. Figure 2-5 presents

examples in the space JSYSTOLIC, SIMO. MMD}xCOMMUNICATION GEOMETRIES). Most of these

parallel algorithms will be discussed in the rest of Ihe paper. Systolic and SIMD algorithms

will be treaded in Section 3, whereas MIMo algorithms will be studied in Section 4.

--- - ---- --

SECTION 2 THE SPACE OF PARALLEL ALGOPITHMS

ALGORITINM TYPES EXAMPLES

SYSTOLIC ALGORITHMS USING-

I-DIM LINEAR ARRAYS REAL-TIME FIR-FILTERING, DISCRETE FOURIER TRANSFORM (DFT).

CONVOLUTION, MATRIX-VECTOR MULTIPLICATION, RECURRENCE EVALUATION

SOLUTION OF TRIANGULAR LINEAR SYSTEMS, CARRY PIPELINING,

SORTING, PRIORITY QUEUE, CARTESIAN' PQODUCT, PIPELINE ARITHMETIC UNITS

2-DIM SQUARE ARRAYS PATTERN MATCHING, GRAPH ALGORITHMS INVOLVING ADJACENCY MATRICES,

DYNAMIC PROGRAMMING FOR OPTIMAL PARENTHESIZATION

2-DIM HEXAGONAL ARRAYS MATRIX PROBLEMS (MATRIX MULTIPLICATION, LU-DECOMPOSITION BY

GAUSSIAN ELIMINATION WITHOUT PIVOTING, OR-FACTORIZATION),

TRANSITIVE CLOSURE. DFT, RELATIONAL DATABASE OPERATIONS

TREES SEARCHING At GORITHMS (QUERIES ON NEAREST NEIGHBOR, RANK, ETC,

SYSTOLIC SEARCH TREE), PARALLEL FUNCTION EVALUATION,

RECURRENCE EVALUATION

SHUFFLE-EXCHANGE FAST FOURIER TRANSFORM, BITONIC SORT

SIMO ALGORITHMS NUMERICAL RELAXATION FOR PARTIAL DIFFERENTIAL EQUATIONS OR

IMAGE PROCESSING, GAUSSIAN ELIMINATION WITH PIVOTING, MERGE SORT.

(IN GENERAL, CORRESPONDING TO EACH SYSTOLIC ALGORITHM THERE IS A SIMI)

ALGORITHM CONSISTING OF TASK MODULES WITH LARGER GRANULARITIES.)

MIMO ALGORITHMS CONCURRENT DATABASE ALGORITHMS (CONCURRENT ACCESSES TO

B-TREES OR BINARY SEARCH TREES, CONCURRENT

DATABASE REORGANIZATION - GARBAGE COLLECTION), CHAOTIC

RELAXATION, DYNAMIC SCHEDULING ALGORITHMS, ALGORITHMS WITH

LARGE MODULE GRANULARITIES

Figure 2-5: Examples in the parallel algorithm space.

SECTj.)N 3 AL[;0kO T11M FOP SY.CHROtoUS PA A.IL CY.PUIERS 8

3. Algorithms for Synchronous Parallel Computers

3.1 Introduction

We consider in this section parallel algorithms for synchronous parallel computers, which

include systolic and SIMD machines de!.cribed in Section 2. These algorithms will be classified,

to first order at least, according to their communication geometries. Results in this section

should provide useful insights into the problem of selecting interconnection networks for

systolic or SIMD machines.

As mentioned in Section 2.3, the existence of a cost effective chip implementation of a

systolic algorithm in LSI technology depends crucially on the communication geometry of the

algorithm. It is highly desirable that communication geometries be simple and regular. Such

structures lead to cheap implemientations and high densities. In turn, high density implies

both high performance and low overhead for support components. For more discussions on

this matter, see [Sutherland and Mead 77, Foster and Kung 79]. In this section, special

attention will be paid to those struclurer. which are simple and regular.

One of the main concerns in the design and verification of synchronous algorithms defined

on networks is to ensure that required data items will reach the right places at the right

times to interact with each other. For this reason, we shall often illustrate algorithms by

their data flow diagrams. For systolic machines, further attention is needed to ensure that

the execution of a task module requires only a small constant amount of time and space. We

assume throughout the section that it takes a unit of time to send a unit of data from a

processor to any of its topological neighbors. (See discussions in Section 3.4 for the

rationale of this assumption for a case involving wires of different lengths.) Under this

assumption, we shall show that many problems which require nonlinear (e.g., 0(n log n), 0(n 2),

or 0(n3)) times on uniprocessors can be solved in linear times on systolic machines with

enough processors. Algorithms for systolic machines can run on corresponding SIMD machines

with similar underlying interconnection structures without losing efficiency, but not vice

versa. The unique capabilities of SIMD machines for broadcasting data and instruction codes,

and for storing a relatively large amount of data local to each processor can be crucial to the

efficiency of some algorithms. Algorithms presented in this section are in general suitable for

systolic machines, unless stated otherwise.

,• -. " , .- q' r -.=' -- l
MONO--,*

*Ow .

SECTION 3 AMcCRlITM..3 rOP S' ,,C!,OU PAiAtIEL COMPUTERS 9

3.2 Algorithms Using One-dimensional Linear Arrays

One-dimensional linear arrays (Fig. 3-1) represent the simplest and also the most

fundamental georrietry for connecting processors. Shift-resisters can implement linear arrays

directly. Surprisingly enough, for a large number of important algorithms this simple

structure is all that is needed for communication.

0 2 3

Figure 3-1: A one-dimensional linear array.

In the following, we give four algorithms using linear arrays. The first algorithm

concerning odd-even transposition sort is perhaps the most well-known algorithm using a

linear processor array (see, for example, [Knuth 73] and [Mukhopadhyay and Ichikawa 72]).

The latter three algorithms demonstrate an important way of using linear arrays. That is, a

linear array can be viewed as a pipe and thus is natural for pipeline computations.

Depending on the algorithm, data may flow in only one direction or in both directions

simultaneously. We show that two-way pipelining is a simple and powerful construct for

realizing complex computations. Following the discussions of the four algorithms, we mention

the use of linear pipelines in the implementation of arithmetic operations.

For ease in describing these algorithms, we shall number the prbcessors from left to right

by integers 0, 1, ... , as in Fig. 3-1.

Odd-Even Transposition Sort

Given n keys 'tored in a linear array of processors, one key in each processor, the

problem is to sort them in ascending order. The problem can be solved in n steps by using

the odd-even transposition sort. Odd and even numbered processors are activated

alternately. Assume that the even numbered processors are activated first. In each cycle,

the following comparison-exchange operations take place: the key in every activated

processor is first compared with the key in its right hand neighboring processor, and then

the smaller one is stored in the activated processor. Within n cycles, the keys will be sorted

in the array (see Fig. 3-2).

The idea generalizes directly to the case where each processor holds a sorted

.~ ~ . .

SE-Ti. N 3 A :,T O S OYG.FRuS P-ALLEL COMPUTERS 10

STEP NUMBER 0 1 2 3 4 5

Figure 3-2: The odd-even trans,.position sort on a one-dimensional linear array.

sub.sequence of keys rather than a single key (B~audet and Stevenson 78]. For this case, the

comparison-exchange operation becomes the merge-splitting operation. Using this

generalization, one can sort n keys on k linearly connected processors in

O((n/k)log (n/k)) + 0(k (n/k)) time, provide that each processor can hold n/k keys (this is

possible for SIMD machines). In the above ei pression, the first term is to the time to sort an

(n/k)-subsequence at each processor, and the second term is to the time to perform the

odd-even transposition .sort on k sorted (n/k)-subsequences. It is readily seen that when n is

large relative to k, a speed-up ratio near k is obtained. This near optimal speed-up (with

respect to the number of processors used) is due to the fact that when n is large relative to

k, the computation done within each processor is large, asi compared to interprocessor

communication. Thus, the overheads arising from interprocessor communication become

relatively insignificant.

Real-Time Finite Impulse Response (FIR) Filtering

One of the most frequently performed computations in signal processing is that of a FIR

filler. The computation of a p-tap FIR filter can be viewed as a matrix-vector multiplication

where the matrix is a band upper triangular Toeplitz matrix with band width p. Figure 3-3

represents the computation of a 4-tap filter.

j i

W-W-V1WJ-W-

• .-UJ±JEPQ- IT "- '...

llr ... W WW..........E IL +W, ... I _. .. -' -r.. ;i._

SECTION 3 AI.roORITHMS FOR S'eCi. O';OU3 Pf..-ALLEL COY.PUTERS II

0I, a tJ a s 0 4, X ,I Y

0
Q, O2 3 Ck 14 X2. Y2

a IC 0 3 a 4 X3 Y

Q, O a3 C14 -X4 " Y4

0

Figure 3-3: The computation of a 4-tap FIR filter with coefficients a,, a2 , 83, and a4.

In the figure, the sequence x1, x2, x3 ... corresponds to a real-time data stream obtained

by sampling the signal at times t, t + 8 , t + 26 ... , and constants al, a2, a3, and a4 are the

taps of the filter. A p-tap filter can be implemented efficiently by a linear array consisting of

p inner product step processors, each capable of performing one multiplication and one add

in a unit of time. We illustrate the operation of the linear array by considering the filtering

problem in Fig. 3-3. The taps ai are stored in the array at the beginning of the computation,

I z1111 -As

SECT I N 3 At GCQ;,,3 FOZ SYNChiIONOUS PA.ALLEL C01APUTERS 12

one in each processor, ;ind they do not move during the computation (cf. Fig. 3-4). The yi,

which are initially zero, marches to the left, while the xi are marching to the right. All the

moves are synchronized, and the xi'-. and yi's are separated by two time units. It is readily

seen that each yi is able to accumulate all its terms, namely, axi, a2 xi+I, a3 xi+ 2 , and a4 xi+ 3 ,

before it leaves the array at the left end processor. Therefore the yi's are computed in

real-time in the sense that they are output in the same rate as the xi's are input.

0 1 3

X3 .X2 X I

•<=- Y1 Yz

QLt q a 2. Q1

Figure 3-4: The one-dimensional linear array for the computation of the 4-tap

filtering in Fig. 3-3.

We now specify the operation of the linear array more precisely. Each processor has

three registers, Rat RX and Ry, which hold a, x, and y values, respectively. Initially, all R. and

Ry registers contain zeros, and the R. register at processor i contains the value of a4_i.

Each step of the array consists of the following operations, but for odd numbered steps only

even numbered processors are activated and for even numbered steps only odd numbered

processors are activated.

1. Shift.

- Rx gets the contents of register Rx from the left neighboring processor.

(The Rx in processor 0 gets a new component of x.)

- R gets the contents of register R from the right neighboring processor.

(rocessor 0 outputs its Ry content and the Ry in processor 3 gets zero.)

2. Multiply and Add.

Ry.Ry + Ra x Rx.

After p units of time final results of the yi's are pumped out from the left end processor at

the rate of one output every two units of time. Fig. 3-5 illustrates four steps of the linear

array. Observe that when yl is ready to get out from the left end processor at the end of

the seventh step, y1 w alxl+a 2 x2
+ a3 x3 +a4 x4, and Y2 = ax 2 a2 x3

•

S.CT1ON 3 AL31NITH-; I O' 5Y',C10,",JOUS PARALLEL COMt PUTERS 13

STEP 0 1 2 3

NU MEER

X3 XX

Of a C3 •Q2 al

)(4 X 3 X1c~

6 Y1 J4 YZ Y3 [

7l
Y F Y3

Figure 3-5. Four steps of the linear array in Fig,. 3-A.

The FIR result mentioned here is a special case of a result in [Kung and Leiserson 79]

concerning linear processor arrays for general matrix-vector multiplications. Similar results

hold for the computation of convolutions or discrete Fourier transforms. In general, if A is an

nxn matrix of band width w, then a linear array of w processors can multiply A with any

n-vector in O(n) time, as compared to 0(wn) time needed for a sequential algorithm on a

uniprocessor computer.

Priority Queue

A data structure that c.n process INSERT, DELETE, and EXTRACT.MIN operations is called a

priority queue. Priority queues are basic structures used in many programming tasks. If a

priority queue is implemented by some balanced tree, for example 2-3 tree, then an

operation of the queue will typically take O(Iog n) time when there are n elements stored in

the tree [Aho et al. 75]. This O(IoS n) delay can be replaced with a constant delay if 0 linear

array of processors is used to implement the priority queue. Here we shall only sketch the

,,,4 -.. .

3FCi I-N Z ALGOR1TIIHMS io1R izo.ous rA0O ALLEL (:O,?.LTEQS 14

basic idr.a behind the linear array implemrentation. A cormplete description will be reported

elsewhere.

To visualize the algorithm, we assume that the linear array in Fig. 3-1 has been physically

rotated 90 degrees and that processors are capable of performing comparison-exchange

operations on elements in neighboring processors. We try to maintain elements in the array

in the sorted order according to their weights. After an element is inserted into the array

from the top, it will "sink down" to the proper place by trading positions with elements

having smaller weights (so lighter elements will "bubble up"). For deleting an element, we

insert an "anti-element" which first sinks down from the top to find the element, and then

annihilates it. Elements below can then bubble up into the empty processor. Hence the

element wilh the smallest weight will always appear at the top of the processor array, and is

ready to be extracted in constant time. An important observation is that "sinking down" or

"bubbling up" operations can be carried out concurrently at various processors throughout

the- array. For example, the second insertion can start right after the first insertion has

passed the top processor. In this way, any sequence of n INSERT, DELETE, or EXTRACT MIN

operations can be done in O(n) time on a linear array of n processors, rather than O(n log n)

time as required by a uniprocessor. In particular, by performing n INSERT operations followed

by n EXTRACT.MIN operAtions the array can sort n elements in 0(n) time, where the sorting

time is completely overlapped with input and output. A similar result on sorting was recently

proposed by [Chen et al. 78]. They do not, however, consider the deletion operation.

Recurrence Evaluation (Recursive Filtering)

Many computational tasks such as recursive digit filtering are concerned with evaluations

of recurrences. A k-th order recurrence problem is defined as follows: Given

xo, X. 1 , ... , xk+j, compute x1 , x2 , ..., defined by

x a Ri(xi. , ... , xi- k) for i>0,

where the Ri's are given "recurrence functions". For a large class of recurrence functions, a

k-th order recurrence problem can be solved in real-time on k linearly connected processors

[Kung 79]. That if., a new xi is output at regular time intervals, at a frequency independent of

k. To illustrate the idea, we consider the following linear recurrence:

xi m axi . ! + bxi. 2 + cxi_3 + d,

where the a, b, c and d are constants. Clearly feedback links are needed for evaluating such

a recurrence on a linear array, since every newly computed term has t'o be used later for

computing other terms. The classical network with feedback loops is depicted in Fig. 3-6.

Each processor (except the right-most one, which has more than one output port) is the

inner product step processor similar to the one used before for FIR filtering. The xi,

. . ..

StCTION 3 ALCOITi W.3 FOR SVPCr -"',OUS PAALEL COI.d'UTERS i5

Xi I ii-2 4i-3 o X

C b C

Figure 3-6: A linear array with feedback loops

initialized as d, gets cxi. 3 , bxi. 2 , and axi_ ! at time 1, 2 and 3, respectively. At *time 4, the

final value of xi is output froon the right-most processor, and is also fed back to all the

processors for use in computing xi+1 , xi+ 2 and xi+ 3 . The feedback loops in Fig. 3-6 are

undesirable, since they make the network irregular and non-modular. Fortunately, these

irregular fecdbacl'. loops ran be replaced with a regular, two-way data flow scheme. Assume

that each proces.or is capable of performing the inner product step and also passes data as

depicted in Fig. 3-7 (b). A two-way pipeline algorithm, without irregular feedback loops, for

evaluating the linear recurrence is schematized in Fig. 3-7 (a). The additional processor,

drawn in dotted lines, passes data only and is essentially a delay. Each xi enters the right

most processor with value zero, accumulates its terms as marching to the left, and feeds back

its final value to the array through the left-most processor for use in computing xi+|, xi+ 2

and xi+3. The final values of the xi's are output from the right-most processor at the rate of

one output every two units of time.

This example shows that two-way pipelining is a powerful construct in the sense that it

can eliminate undesirable feedback loops as those encountered in Fig.-3-6. Extensions of the

two-way pipelining approach to more general recurrence problems are considered in [Kung

791. Basically the two-way pipelining idea is as follows: By having two data streams travel

in opposite directions, a data item in one stream can meet all data items in the other stream

and thus their Cartesian product can be formed in parallel in all stages of the pipe. Since

Cartesian product-like computations are common in many applications, we expect to find more

use of two-way pipelining in the future.

Pipeline Processing of Arithmetic Operations

One of the most successful applications of pipeline processing has been in the execution of

arithmetic operations. Pipeline algorithms for floating-point addition, multiplication, division,

and square root have been discussed and reviewed in [Chen 75, Ramamoorthy and Li 771

For these algorithms, the connection among various stages of the "pipe" is by and large

SECTI '4 3 ALGORIIHMS FOR SYNCHRONOUS PARALLEL COMPUTERS is

IJa X. XiX• i---X I1-2s

Q b C

X in 4Xout- Xin
Y ou Yi n Yout <- Yin + QCofn

Figure 3-7: (a) A two-way pipeline algot ilhm without irregular feedback loops, and
(b) the inner product step processor.

linear, although additional feedback links may sometimes be present. For example, the Cray

Research CRAY-i uses 6-s.tae floating-point adders and 7-stage floating-point multipliers,

and the CDC STAR-iO0 uses 4-stage floating-point adders. For a pipeline floating-point

adder, the pipe typically consists of stages for performing exponent alignment, fraction shift,

fraction addition, and normalization. A pipeline arithmetic unit can be viewed as a systolic

machine composed of linearly connected processors that are capable of performing a set of

(different) operations.

The pipeline approach is ideal for situations where the same sequence of operations will

be invoked very frequently, so that the start-up time to initialize and fill the pipe becomes

relatively insignificant. This is the case when the machine is processing long vectors. One of

the main concerns in using pipeline machines such as the CRAY-I and the STAR-100 is the

average length of the vectors to be processed (see, for example, [Voigt 77]).

For integer arithmetic, bits in the input operands and carries generated by additions are

often pipelined (see, e.g. [Hallin and Flynn 72]). The following pipeline digit-adder using a

linear array is described in [Chen 75]. Suppose that we want to add two integer vectors (U1 ,

U2 , . . .) and (V 1 , V2 , . . .), and that Ui -w i iu,, . . .u i k and Vi - vi i 2vi k in their binary

representations. We illustrate how the adder works for k - 3 in Fig. 3-8. The uij and vii

march toward the processors synchronously as shown.

At each cycle, each processor sums the three numbers arriving from the three input lines

and then outputs the sum and the carry at the output lines. It is easy to check that with the

SECTION 3 AL iT I WMS FOR SY CI[mONOU3 PA ALLEL CO!.PUTERS 17

I

u 5 U2 2 U31

NU

NU
11

suml, sum2Z 5urn

ca'yccrry

I2.

I 7

I - ' ,,.

I.

IV3 Vin VS

Figure 3-8: A pipiline integer adder

configuration shown, when the pair (uj, vij) reaches a processor, the carry needed to

produce the correct j-th digit in the result of Ui+V i , will also reach the same processor. As a

result, the pipolined adder can compute a sum Ui + Vi every cycle in the steady state.

3.3 Algorithms Using Two-Dimensional Arrays

We restrict ourselves to two-dimensional communication geometries which are simple and

regular. Consider the following problem: how can processors be distributed in a

two-dimensional area so that they can be mesh-connected in a simple and regular way, in the

sense that the connections are all symmetric and of the same length? It turns out that there

are only three solutions to the problem. This problem is related to that of finding regular

figures which can close pack to completely cover a two-dimensional area. The only three

2___fit,

I CT ION. At G,] !..3 FO ,' ;YC "' rPALLrL CC'.;UTERS i8

rcgular f, ure which po ,o rs t'iS property are the !,quare, the heyagun and the equilateral

triangle (Q.ce Fig. 3-9). In the following, we consider algorithms using hexaGonal and square

arrays. Interesting algorithms u,,ing equilateral triangular arrays are yet to be discovered.

(a) (b) (ci
Figure 3-9: The three types of regular arrays:

(a) square array, (b) hexagonal array, (c) triangular array.

3.3.1 Algorithms Using Two-Dimensional Hexagonal Arrays

We demonstrate that two matrix algorithms, matrix multiplication and LU-decompositici, can

be done naturally on hexagonal arrays. The basic processor used by these two algorithms is

the inner product step processor (Fig. 3-10), which is similar to the ones used in Section 3.2

for FIR filtering and recurrence evaluations. The processor has three registers RA, RB, and

RC, and has six external connections, three for input and three for output. In each unit time

interval, the processor shifts the data on its input lines denoted by A, B and C into RA, RB

and RC, respectively, computes RC -- RC + RA x RB, and makes the input values for RA and

RB together with the new value of RC available as outputs on the output lines denoted by A,

B and C, respectively. All outputs are latched and the logic is clocked so that when one

processor is connected to another, the changing output of one during a unit time interval will

not interfere with the input to another during this time interval. This is not the only

processing element we shall make use of, but it will be the work horse. A special processor

for computing reciprocals will be specified later when it is used. For details about these two

algorithm-s and other related results, see [Kung and Leiserson 78, Kung and Leiserson 79).

The hexagonal array connection is also natural for computing the transitive closure of a

Boolean matrix. In this case, the inner product step processor computes RC +- RC V RA A RB.

Other examples of computations using hexagonal arrays include QR-factorization [Brent and

Kung 79a, relational database operations [Kung and Lehman 79a], and the tally circuit [Mead

SECTION 3 Ai ,PITHMS FOR SC.O,.'U PAPALLEL COMPUIEPS 19

C.

A B

C

Figure 3-10: The inner product step processor.

and Conway 79).

Matrix Multiplication

6111 Q 0 b, b C,, b3 0C 1 C,. 0

0z CL2 Qz2 ba b2l 6a, b2 , C4, C za cz C",

o3 i Q3Z Gt33 Q34 b. ba b4 ._ C3 1 CI CS C4

I 0 0
AB C

Figure 3-11: Band matrix multiplication.

It is easy to 'ee that the matrix product C - (cij) of A - (aij) and B , (bij) can be computed

by the following recurrences.

M - 0,

(f) + aikbkj, k-I , 2, .. .,

cij - c- -

-A.t 3 AI TC, SiT ." r2 . ' C U .T[;S 20

Lr't A and 13 be nxnl l),nd ralrices' of band width wI and w 2 , re.pectively. We show how

the rcurrncf ". ,ibove (;n be evaluated by pipelining the aij, bij and cii through an array of

w 1 w 2 hex-connected incr product step processors. We illustrate the algorithm by

considering the band matrix multiplication problem in Fig. 3-11. The diamond shaped

hexagonal array for this case is shown in Fig. 3-12, where arrows indicate the directions of

data flow.

The elements in the bands of A, B and C march through the network in three directions

synchronously. Each cij is initialized to zero as it enters the network through the bottom

boundaries. (For the gcneral problem of computing C = AB + D where D = (dij) is any given

matrix, cij should be initialized as dij.) One can easily see that with the inner product step

processors depicted in Fig. 3-10, each cij is able to accumulate all its terms before it leaves

the network through the upper boundaries. If A and B are nxn band matrices of band width

w, and w 2 , respectively, then an array of wjw2 hex-connected processors can pipeline the

matrix multiplication AxB in 3n+min(wl, w 2) units of time. If A and B are nxn dense matrices

then 3n 2 -3n+l hex-connected processors can compute AxB in 5(n-1) units of time. We

mention an important application of this result. It is well-known that an n2 -point discrete

Fourier transform (DFT) can be computed by first performing n independent n-point DFT's

and then using the resulls to perform another set of n independent n-point DFT's. The

compittation of any of lhrsp two sntr. of n independent n-point DFT's is simply a matrix

multiplication AxB, where the (ij) entry of matrix A is (i-)(i-1) and W is a primitive nth root

of unity. Hence, using 0(n2) hex-connected processors, an n2 -point DFT can be computed in

0(n) time.

The LU-Decomposition of a Matrix

The problem of factoring a matrix A into lower and upper triangular matrices L and U is

called LU-decomposition. Figure 3-13 illustrates the LU-decomposition of a band matrix with

p - 4 and q - 4. Once the L and U factors are known, it is relatively easy to invert A or to

solve the linear system Ax - b.

We assume Ihat matrix A has the property that its LU-decomposition can be done by

Gaussian elimination without pivoting. (This is true, for example, when A is a symmetric

positive-definite, or an irreducible, diagonally dominant matrix.) The triangular matrices

L - (Ij) and U - (uij) are evaluated according to the following recurrences.

IiI

....
.L~~ ~~~-. ,. L'Jl ',p '.A _-,l. . .. - ,

~C 'J3 Al ' C I.UPARA1LEL CC,.'PUTLZS 2

4+3

~a I ~ 7 { ~ b zt baa

I bit

lvt

IC~q4 C-21 C.Z C14

C~d

Figure 3-12: The hexagonal array for the matrix multiplication problem in Fig. 3-11.

SiCI-O0. 3 A6.jY 0SX,03 PA ALLEL COMAPUTERS 22

9

Qc~1 0,, aQ1.QUl U12 U1 U14 0

CZ21 QZ C12 Q2 r.2 I
1"~I Uz2 UZI U2"'i

Q!2 aS3 Aj' - ~ 132 1 U U U

0 0

a ba ,

aft' - k)ifk j

ik kif i J

It turns out that the evaluation of these recurrences can be pipelined on a hexagonal array.

A global view of this pipc'Iined computation is shown in Fig. 3-14 for the LU-dlecomposition

problem in Fig. 3-13. The array in Fig. 3-14 is constructed as follows. The processors below

the upper boundaries are the standard inner product step processors and are hex-connected

exactly the same as thc mat~irix multiplication network presented above. The processor at the

top, denoted by a circlc, is. a special processor. It computes the reciprocal of its input and

pumps the result soijthwe-. and also pumps the same input northward unchanged. The other

processors on the upper boundarics are again inner product step processors, but their

1.TIN3 At GCPlTW-'3 F(1.1 yvf.CiZONOdS rPAALEL CCYPUTERS 2

L U

t .I '

0

I 0

I

.1 22

of the badmti ii.3 13 .

/A

24
SEC' ION' 3 Ai.C,O;I'TH.S FOR SVr,.CHRi 1OU3 PARALLEL COI.,PUTERS

orientation is changed: the ones on the upper left boundary are rotated 120 degrees

clockwise; the ones on the upper rilht boundary are rotated 120 degrees counterclockwise.

The flow of data in the array is indicated by arrows in the figure.

If A is an nxn band matrix with band width w = p+q-1, an array having no more than pq

hex-connected processors can compute the LU-dcecornposition of A in 3n+min(p,q) units of

time. If A is an nxn dense matrix, then an nxn hexagonal array can compute the L and U

matrices in 4n-2 units of time which includes I/O time. The remarkable fact that the matrix

multiplication network forms a major part of the LU-decomposition network is due to the

similarity of the defining recurrences.

Transitivo Closure

Given a Boolean matrix A=(atj), the transitive closure of A can be computed from the

recurrence:

a,")= i,

aaj 44V m aW) v (a''))A

(see, e.g., (Aho et al. 75]). We observe that this recurrence is analogous to the recurrence

for matrix multiplication- or LU-decomposition, as far as structures for subscripts and

superscripts are concerned. This suggests that we use hexagonal arrays to solve the

transitive closure problem, too. Indeed, an efficient transitive closure algorithm using the

hexagonal array has recently been discovered. The algorithm differs from the matrix

multiplication and LU-decomposition algorithm in that it computes the solution in two passes

rather than one pass. A full description of the algorithm will appear in the revised version of

[Guibas et al. 79].

3.3.2 Algorithms Using Two-dimensional Square Arrays

The square array is perhaps one of the first communication geometries studied by

researchers who were interested in parallel processing. Work in cellular automata, which is

concerned with computations distributed in a two-dimensional orthogonally connected array,

was initiated by von Neumann in the early fifties [Von Neumann 66). Theorists in cellular

automata have been traditionally interested in the "power" of a cellular automaton system

using, say, a particular number of states at each cell. More recently, because of the advent

of LSI technology, there has been an increasing interest in designing algorithms for cellular

arrays. Cellular algorithms for pattern recognition have been proposed in [Smith

71, Kosaraju 75, Foster and Kung 79), for graph problems in [Levitt and Kautz 72), for

I.CI' ION 3 I M3 FOR S HCH;ONDUS PARALLEL CMPIUTERS 25

switching in [Kautz et al. 6a], for sorting in [Thomp.on and Kung 77], and for dynamic

progr.rmming in [Guibas et al. 79]. The algorithrns for dynarnic programming in [Guibas et al.

79] are quite s"pecial in that they involve data being transmitted at two different speeds,

which give the effect of "time reverse" for the order of certain results. The pattern matching

chip described in [Foster and Kung 79] has recently been designed and fabricated.

In parallel to the developments of cellular algorithms for solving combinatorial problems,

there have been major activities in using the array structure for solving large numerical

problems. Many of these activities are motivated or influenced by the ILLIAC [V computer,

which has an Sx8 processor array (see [Kuck 68]). Relaxation methods for solving partial

differential equations match the square array structure naturally. Typically, the variable uij

representing the solution at mesh point (i, j) is updated by a difference equation of the form:

uij= F(ui, 1 , j' ui-I, j' ui, j+1' ui, j-1).
Hence, if uij is stored at processor (i, j) of the processor array, then each update (or

iteration) involves conmunications only among neighboring processors. The central control

provided by SIMO machines such as the ILLIAC IV is useful for broadcasting relaxation and

termination parameters, which are often needed in these relaxation methods. Relaxation

algorithms on two-dimensional grids are also used in image processing, for which mesh points

correspond to pixels (Peleg and Ros.enfeld 78].

3.4 Algorithms Using Tree Structures

The tree structure, shown in Fig. 3-15 (a), has the nice property that it supports

logarithmic-time broadcast, search, and fan-in. Fig. 3-15 (b) shows an interesting "H" shaped

layout of a binary tree, which is convenient for placement on a chip.

Unlike the array structures considered earlier, the connections in the tree structure are

not uniform. The distance between two connecting processors increases as they move up to

the root. For chip implementation, the time that it takes a signal to propagate along a wire

can nevertheless be made independent of the length of the wire, by fitting larger drivers to

longer wires. Thus, by using appropriate drivers the logarithmic property of the tree

structure can still be maintained. It is demonstrated in [Mead and Rem 79] that in spite of the

fact that large drivers take large areas, with the layout in Fig. 3-15 (b) it is possible to

implement a tree using a total chip area essentially proportional to the number of processors

in the tree. Moreover, in this implementation drive currents ramp up from the leaves to the

root, and consequently, off-chip communication can be conducted at the root without serious

delay. In the following, we shall assume that the time to send a data item across any link in

the tree is constant, and that the root of the tree is the 1/O node for outside world

C; ci IzC. 3 ',, IT,' .i'3 O SNC L.ONOU : . LEL C [.Q 3 26

(a) (b)

Figure 3-15: (a) A binary tree structure, and (b) embedding a binary tree
in a two-dimensional grid.

communication.

The logarithmic-time property for broadcasting, searching, and fan-in-is the main advantage

provided by the tree structure that is not shared by any array structure. The tree structure,

however, has the following possible drawback. Processors at high levels of the tree may

become bottlenecks if the majority of communications are not confined to processors at low

levels. We are interested in algorithms that can take advantage of the power provided by

the tree structure while avoiding its drawback.

Search Algorithms

The tree structure is ideal for searching. Assume, for example, that information stored at

the leaves of a tree forms the data base. Then we can answer questions of the following

kinds rapidly: "What is the nearest neighbor of a given element?", "What is the rank of a

given element?", "Does a given element belong to a certain subset of the data base?" The

paradigm to process these queries consists of three phases: (i) the given element is

broadcast from the root to leaves, (ii) the element is compared to some relevant data at

every leaf simultaneously, and (iii) the comparison results from all the leaves are combined

into a single answer at the root, through some fan-in process. It should be clear that using

the paradigm and assuming appropriate capabilities of the processors, queries like the ones

above can all be answered in logarithmic time. Furthermore, we note that when there are

S CTI .jN 3 ALfl O T, .l O " C 3'' uALLEL CC ,UIERS 27

rrs.ny queries, it is po ..'iblc to pipeline them on the tree. See [Bentley and Kung 79) for

discus.sions of using the trce-structured machine for many searching problems.

A similar idea has been pointed out in [Browning 79. Algorithms which first generate a

large number of solution candidates and then select from among them the true solutions can

be supported by the tree structure. NP-complete problems (Karp 72] such as the clique

problem and the color cost problem are solvable by such algorithms. One notes immediately

that with this approach an exponential number of processors will be needed to solve an

NP-complete problem in polynomial time. However, with the emergence of very large scale

integration (VLSI) teclhnology this brute force approach may gain importance. Here we

merely wish to point out that the tree structure matches the structure of some algorithms

that solve NP-complete problems.

Systolic Search Tree

As one is thinking about applications using trees, data structures such as search trees (see,

e.g., [Aho et al. 75, Knuth 73)) will certainly come to mind. The problem is how to embed a

balanced search tree in a network of processors connected by a tree so that the O(log n)

performance for the INSERT, DELETE, and FIND operations can be maintained. The problem is

nontrivial because most balancing schemes require moving pointers, but the movement of

pointers is impossible in a physical tree where pointers are fixed wires. To get the effect of

balancing in the physicat tree, data rather than pointers must be moved. Common balanced

tree schemes such as AVL trees and 2-3 trees do not map well onto the tree network

because data movement, involved in balancing are highly non-local. A new organization of a

hardware search tree, called a systolic search tree, was recently proposed by [Leiserson 79],

on which the data movements for balancing are always local so that the desired O(log n)

performance can be achieved. In Leiserson's paper an application of using the systolic

search tree as a common storage for a collection of disjoint priority queues is discussed.

Evaluation of Arithmetic Expressions and Recurrences

Another application of the tree structure is its use for evaluating arithmetic expressions.

Any expression ot n variables can be evaluated by a tree of at most 4rlog2 nl levels [Brent

74), but the time to input the n variables to the tree from the root is still 0(n). This input

time can often be overlapped with the computation time ir. the case of recurrences evaluation

(see [Kung 79)).

SECI ION 3 ALGORITIMS FOQ SVNCIIkOOUS PA ALLEL COMPUIERS 28

3.5 Algorithms Using Shuffle-Exchange Networks

Consider a network having n=2r' nodes, where m is an integer. Assume that nodes are

named as 0, 1, , 2r"-i. Let iMim ... i i denote the binary representation of any integer i,

0 5 i 5 2 m--1.. The shuffle function is defined by

S(imim.] .. id - 'm-l'm-2 'i' m,

and the exchange function is defined by

E(imim. 1 ... i) = imim-1 ... i2 i1 .

The network is called a shuffle-exchange network if node i is connected to node S(i) for all i,

and to node E(i) for all even i. It is often convenient to view each pair of nodes connected

by the exchange function as a 2x2 processor which has two input ports and two output

ports. Fig. 3-16 illustrates the shuffle function for the case when n=2m=8.

0 i

3
4-

- -- _ ---
6

I I I I

7 1

Figure 3-16: The shuffle function and 2x2 processors for the case when n-8.

Observe that for i-J, ..., m, by executing the shuffle function i times, data originally at two

nodes whose names differ by 2 m-i can be brought to the same 2x2 processor. This type of

communication happens to be natural to a number of algorithms. It was shown by [Batcher

68] that the bilonic sort of n elements can be carried out in 0(o&2 n) steps on the

shuffle-exchange network when the 2x2 processors are capable of performing

comparison-exchange operations. It was shown by (Pease 68] that the n-point fast Fourier

transform (FFT) can be done in O(log n) steps on the network when the 2x2 processors are

capable of doing addition and multiplication operations. Other applications including matrix

transposition and linear recurrence evaluation are given in (Stone 71, Stone 75]. The two

3ka;,*il'!:_

'. ' ON 3 At[.);01.43 'FOW 3'y.C- '-OUS PtA-"ttUL COP P S 29

.ric,' by Stone give clear eypoit ons for ail thes.e algorithms and have good dli!cussions o

the basic idea behind them. Hetre we illustrate the use of the network for performing the

8-point FFT. The comptitation has three stages. Stage i, i-I, 2, 3 involve combining data

from two nodes whose narnes differ by 23-'. This it, indicated by the graph in Fig. 3-17 (a).

A topologically equivalent graph is shown in Fig. 3-17 (b). The tatter graph demonstrates the

fact that the computation at each stage can be done entirely inside the Wx processors,

provided that res.ults from the previous stage have been "shuffled". Note that the same

shuffle network can be used for shuffling inputs for all the stages if so desired.

5TAGE1 I T~:25AE 5TAGEJ I TAGCE 2 STN-:Er3

2-- 2

3~ - __

4 ~~1JI4

S L J _jS
66

Figure 3-17: (a) The communication structure of the 8-point FFT, and
(b) ils realization by the shuffle-exchange network.

Many powerful rearrangeable permutation networks, such as those in [Benes 65] which are

capable of performing all possible permutations in Oflog n) delays, can be viewed as

multi-stage shuffle-exchange networks (see, e.g., [Kuck 78)). The shuf fle -exchange network,

perhaps due to its great power in permutation, suffers from the drawback that it has a very

low degree of regularity and modularity. Indeed, it was recently shown by [Thompson 79aJ

that the network is not planar and cannot be embedded in silicon using area linearly

proportional to the number of nodes in the network.

C iON 3 Ai r, ' V T-%'"S PA:, LIL CO.,PUTEmS 30

3.6 Remarks for Section 3

For a fixed problem, it is often possible to design aloorilhms using different communication

topologies. A good exarmple of this is the sorting problem. A performance hierarchy for

sorting n clements on n proces,,ors connected by various networks is given in Fig. 3-18

[Knuth 73, Thompson and Kung 77, Batcher 68].

NETWORK SORTING TIME

1-dim array 0(n)

2-dim array 0(n 112)

k-dim array O(nil/ k)
Shuffle-Exchange O(log

2 n)

Figure 3-18: Sorting times on various networks

Each of these algorithms can be useful under appropriate circumstances. For a discussion

on the related problem of mapping a given algorithm (rather than a given problem) on

different networks, see [Kung and Stevenson 77].

Sorting can also be done on the tree structure in 0(n) lime in a straightforward way. But

the same performance is achievable by the simpler one-dimensional linear array using the

priority queue approach (cf. Section 3.1.). For this reason, we did not include tree sort as

one of the algorithms for the tree network in Section 3.4. The general guideline we have

been using in this section for choosing algorithms under a given communication structure is as

follows: An algorithm is included only if it uses the structure effectively, in the sense that

the same performance does not seem to be possible on a simpler structure. One should note,

however, that sometimes it may be worthwhile to consider solving a problem on some

network which is not inherently best suited for the problem. For instance, at an installation a

fixed network may have to be used for solving a set of rather incompatible problems.

Up to this point, we have been considering almost exclusively the case when there are

enough processors for the problem one wants to solve. The only exception is that for the

odd-transposition sort we discussed how to sort n elements by k processors where k<n, and

concluded that a near-optimal speed up ratio can be achieved if k<<n. In general, there are

three approaches one can take for solving a large problem on a small network.

i. Use algorithms with Lar module granularity. Each processor handles a large
group of elements rather than a few elements. For the odd-even transposition

-~- -- -. ~ -- --- ~:,-

SECTION 3 10P'.~IO SN'.CH O.OUS 'ALF CMU(S31

sort m~entioned M)(w~e, a fsuh'e.quc'nce ronsisting of n/k elements is rtored in

eaich proce ,,or. For niatrix(problews, a row, a column, or a submatrix may be

stored in ai proces!,or. This approach is suitable for SIAO machines where

process.ors can have relatively large local memories. In this case, one must

carefully design tie global data structure, which is now distributed over the local

memories, so as to ensure that needed memory accesses can be performed in

parallel without conflicts [Lawrie~ 75, Kuck 78).

ii. Dc onpose lhe problom. The idlea is that after decomposition each subproblem

will be small enough so that it can be solved on the given small network of

processors. A ma~,trix multiplication involving large matrices, for example, can be

done on a small network by performing a sequence of matrix multiplications

involving submalrices.

iii. Decompose an alfgorithm that qfjj'ina X reauirts a Lmng network. Simultaneous

operatio~ns invoked in one step of the original algorithm are now carried out in a

number of steps by the small network. With this approach, the LU-dlecomposition

algorithm for an nxn matrix in section 3.3.1 can be performed on a kxk hexagonal

array in O(n3 /k 2) time, when n is large and k is fixed.

Using one of the three approaches, one should be able, in principle, to design algorithms for

small networks to solve large problems.

C 40- ,, ? ..o ' bG A%, , I S'.u P,LP-CE SC S 32SLCT P.' 4 A L ,r , r ; . CY~ .IVC

4. Algorithms for Asynchronous Multiprocessors

4.1 Introduction

In this section we consider parallel algorithms for an asynchronous MIMD multiprocessor

like C.mmp or Cm*, which is composed of a number of independent processors sharing the

primary memory by means of a switch or connecting network. Such an algorithm will be

viewed as a collection of cooperating proce'ses that may execute simultaneously in solving a

given problem. It is important to distinguish between the notion of process, which

corresponds to the execution of a program, and the notion of processor, which is a functional

unit by which a process can be carried out. At the decision of the operating system, the

same process may be executed by any processor at a given time.

In the design and analysis of parallel algorithms for asynchronous multiprocessors, one

should as.ume that the time required to execute the steps of a process is unpredictable

[Kung 76]. Ba,.ed on measurements obtained from C.mmp, six major sources for causing

fluctuations in execution times have been identified [Oleinick 78]. The six sources include

variations in computation time due to different instances of inputs, memory contention,

operating system's scheduling policies, variations in the individual processor speeds, etc. This

asynchronous be;,dvior leads to serious issues regarding the correctness and efficiency of an

algorithm. The correctness issue arises because during the execution of an algorithm

operations from different processes may interleave in an unpredictable manner. The

efficiency issue arises because any synchronization introduced for correctness reasons takes

extra time and also reduces concurrency. In the following, we shall examine various

techniques for dealing with the correctness and efficiency issues that are encountered in the

use of asynchronous multiprocessors.

Asynchronous multiprocessors can support truly concurrent database systems, where

simultaneous access to a database by more than one process is possible. Recent research

results concerning the integrity of multi-user database systems are directly applicable to

concurrent database systems. Some of these results will be examined in Section 4.2. A

concurrent database system can be viewed as an asynchronous algorithm consisting of

processes that execute so-called transactions. In designing a general database system, one

usually has little control over the set of transactions that will be allowed to run in the

system. However, in designing an algorithm to solve a fixed problem, one does have control

over the tasks to be included in the algorithm. As a result, it is often possible to design

parallel algorithms without costly synchronizations for solving specific problems. We shall

consider several of these highly efficient algorithms in Section 4.3. Finally, in Section 4.4, we

shall discuss some of the guidelines for designing efficient algorithms for asynchronous

, T,

SECTION 4 ALGORTIiS iOR ASY.Crn, O%.O 'VULTIPPOCESSRS 3

multiproce .s.or s.

4.2 Concurrent Database Systems

In a concurrent database system, a number of on-line transactions are allowed to run

concurrently on a shared databa,,e. One of the important issues arising from the concurrent

execution of tran,.actions is the consistency problem. A database is said to be consistent if

all integrity constraints defined for the data are met. A transaction is said to be correct if

starting from a consistent state the execution of the transaction will terminate and preserve

consistency. A concurrent execution of several correct transactions may, however, transform

a consistent database into an inconsistent one! We illustrate this fact with a simple example.

Suppose that the integrity constraint is z > 0. Then the transaction, if x > 1 then --z - 1,

is correct, but the concurrent execution of two such transactions may transform a consistent

state, x = 2, into an inconsistent state, z = 0. The mechanism in a concurrent database

system that safeguards database consistency is usually called a "concurrency control". (In

Section 2, we have used the same term with a more general meaning.)

There have been two major approaches in contending with the consistency problem. The

first approach, discussed in Section 4.2.1 below, is the "serialization approach", which

requires no knowledge of the integrity constraints, but does require syntactic information

about the transactions. The second approach, considered in Section 4.2.2, will use specific

knowledge of the integrity constraints to construct correct and hopefully more efficient

concurrent database systems. In [Kung and Papadimitriou 79) maximum degrees of

concurrency are proved to depend upon the types of knowledge that are available.

Besides the consistency issue, there are a number of other important issues concerning

concurrent database systems. Among them is the recovery problem. Solution of the

recovery problem often closely related to solutions to the consistency problem. The

recovery problem will not be explicitly treated in this paper. The reader is referred to [Gray

78] for a good discussion of recovery.

4.2.1 The Serialization Approach

Throughout our discussion, transactions are assumed to be correct in the sense that they

preserve database consistency when executed alone. Serial execution of a set of

transactions is one-tran.action-at-a-lime execution. It preserves consistency, since the

execution of each transaction does so (see Fig. 4-1).

The serialization Aproach makes sure that a concurrent execution has the same overall

effect as some serial execution and therefore preserves consistency. This approach is very

-,& A,

SECT)N 4 ALr,c2.1TiY3 FOR AS ?,C:.-J,,T;-c;OCE.SO;S 34

CONSISTENT Ti CONSISTENT T . Tk CONSISTENT

STATE STATE STATE

Figure 4-1: A serial execution of correct transactions, T1 , T2 which
preserves consistency.

general in the sense that it applies to any concurrent database system and requires no

information on the semanlics of the transactions and integrity constraints. In fact, it has been

shown in [Kung and Papadimitriou 79] that serialization is the weakest criterion for

preserving consistency if only syntactic information can be used.

4.2.1.1 The Two-Phase Transaction Method

In [Eswaran et al. 76] a serialization method is proposed in which each transaction employs

a locking protocol to insure that it "sees" only a consistent state of the database. Here we

briefly describe their scheme. It is assumed that a transaction must have a share lock or

exclusive lock on any entity it is reading, and an exclusive lock on any entity it is writing.

Fig. 4-2 shows the compatibility among the lock modes.

SHARE EXCLUSIVE

SHARE YES NO

EXCLUSIVE NO NO

Figure 4-2: Compatibilities among lock modes.

A transaction is a two-phase transaction if it does not request new locks after releasing a

lock. Hence a iwo-pha,e transaction consists of a growing phase during which it requests

locks, and a shrinking phase during which it releases locks. A schedule of a set of concurrent

transactions is a history of the order in which statements in the transactions are executed. A

schedule can be totally ordered or partially ordered. The latter case corresponds to the

multiprocessor environment where a set of statements from different transactions can be

executed simultaneously by a number of processors. A serial schedule is a schedule

corresponding to a serial execution of tlhe transactions. A schedule is legal if it does not

schedule a lock action on an entity for one transaction when that entity is already locked by

some other transaction in a conflicting mode. In Fig. 4-3 we illustrate a possible legal

schedule of two-phase transactions T, and T2 .

The numbering in the left hand side specifies the execution order of the schedule (so the

A, CI ION 4 [,t (,0 10S FC; A 5V.CihO0.O1JS MULTI; OCESSORS 35

1. exclusive lock x

2. exclusive lock y

3. read x

4. read y

5. write x

6. unlock x

7. Jexclusive lock x

8. "write x

9. write y

10. (A' unlock y

11. share lock y

12. unlock x

13. read y

14. unlock y

Figure 4-3: A legal schedule of two-phase transactions T1 and T2.

schedule is totally ordered). Note that actions in (A) are independent from actions i,"n (B) in

the sense that (A) and (B) involve disjoint variables. Thus, the input and output of any action

in (A) or (B) is unchanged if actions in (A) precede actions in (B) instead. This implies that the

effect of the schedule is the same as that of the serial schedule that executes Ti first and

then T2 . Theorem 4-1 below asserts that the same phenomenon holds for any legal schedule

of two-phase transactions. To understand the theorem, we need to introduce some additional

terminology. The dependency raoh of a schedule is a directed graph whose nodes are

transaction names and whose arcs, which ate labeled, indicate how transactions depend on

each other. More precisely, an arc from Ti to Tj exists if and only if during the execution Tj

reads an entity Ti has written or Tj writes an entity Ti has read or written, and the label of

the arc in this case is the name of the entity. The dependency graph of a schedule

completely determines the state of the database each transaction "sees" when transactions

are executed according to the schedule. We say two schedules are equivalent if they have

the same dependency graph. We state the main theorem regarding the two-phase transaction

method:

Theorem 4-1: Any legal schedule of two-phase transactions is equivalent to a
serial schedule.

The theorem implies that at the termination of any concurrent execution of two-phase

C C . 4 t (,);i~hiM, FOP A5YCH;OT.jS .j LTIP.OCESSORS 36

trarlsl"ctfoils the consistency of the database is mantained. A concurrent execution of

two-pha..e tran,,action, may le;id to a dc',idlock however. In this case, after the deadlock is

detected, any transaction on the deadlock cycle can be backed up. 13ecau.e all the

transactions are two-phase locked, it is guaranteed (why?) that backing up a transaction for

breaking a deadlock will neither cause other transactions to lose updates, nor require backing

up other transactions.

Much insight into locking can be gained by a simple geometric method [Kung and

Papadimitriou 79]. Consider the concurrent execution of two transactions T, and T2 . Any

state of progress towards (he completion of T, and T2 can be viewed as a point in the

two-dimensional "progress space", as shown in Fig. 4-4.

rZ F

pond to a curve,

ex lu iv lo,- I

exc.-,us,,e lIc] _I

0 -- U/ , >~

¢ T I

Share lock Y . -unlor- x

exclubive. lock x Lknoc.K

Figure 4-4: The "progress space" for transactions T, and T2

A schedule of T, and T2 corresponds to a nondlecreasing curve, called a progress curve,

from the origin to point F. The progress curves lying on the two boundaries, OT 2 F and OT 1 F,

represent the two serial schedules. Locking has the effect of imposing restrictions in the

form of forbidden rectangular regions (see the two blocks in Fig. 4-4). It is easy to see that

a schedule is legal if and only if its progress curve avoids all blocks. Region D in the figure is

a deadlock region, in the sense that any progress curve trapped in the region will not be able

to reach F. The important observation is that two schedules are equivalent if and only if

their progress curves are not separated by any block. Consequently, if all the blocks are

..%C1ION 4 At RO YTli, fOR A:Y, ,C:C.f j3 ? , -OCI5 S 37

connected as in Fi,. 4-4, then any !egal schedule (which avoid blocks) must be equivalent to

,ore serial schodtile. The idca of two-phase transactions is now extremely easy to explain.

It sinply keeps all blocks connected by letting tlhern have a point u in common. The

coordinales ul, u 2 of u are the phase-shift points, at which all locks have been granted, and

none have been released.

4.2.1.2 Validation Mothods - An Optimistic Approach

Validation methods represent another general approach for achieving serialization [Kung

and Robin_"on 79. The methods rely on transaction backup rather than locking as a control

mechanism. The methods are "optimistic" in the sense that they "hope" that conflicts between

transactions will not occur and thus transaction backup will not Le necessary. The idea

behind this optimistic approach is quite simple, and may be summarized as follows:

- Since reading a value or a pointer from a node can never cause a loss of
integrity, reads are completely unrestricted (however, returning a result from a

query is considered to be equivalent to a write, and so is subject to validation as

discussed below).

Writes are severely restricted. It is required that any transaction consist of two

or three phases: a read phase a validation phase, and a possible write phase

(see Fig. 4-5). During the read phase, all writes take place on local copies of the

nodes to be modified. Then, if it can be established during the validation phase

that the changes the transaction made will not cause a loss of integrity, the local

copies are made global in the write phase. In the case of a query, it must be

determined that the result the query would return is actually correct. The step
in which it is determined that the transaction will not cause a loss of integrity (or

that it will return the correct result) is called vrlidratiom

read validotioR write
\ \ /

T -

___ ___ ___ ___ ___ ___ ___ ___ ___ ___ time

Figure 4-5: The three phases of a transaction T.

We use Fig. 4-6 to illustrate how validation works. Suppose that transaction T2 completes

its write phase by time t 4 . At time t 4 transaction T1 finishes its read phase and starts its

validation. If as far as the writes of T, are concerned, T1 can be thought of as if it started

SEC, 10. 4 ALC' flY7iV FOR AS'vNC!4C GOUS YUIL111PrPOCESZORS 38

after T 2 had buen validated, then T, will be validated in our scheme. This is the case when

the write s-et of T2 (the !-et of variables T2 writes) and the read set of T, (the set of

variables T, reads) are disjoint. Assurie that T, is successfully validated at time t 6 , and T3

finishes its read phase at time t 7 . For validating T3 , the set of variables T3 reads and the

set of variables T, and T2 write have to be compared. If the two sets are disjoint then T3

can be validated. Suppose that T3 is validated at time t 9 . Then we see that the schedule

corresponding to the concurrent execution of T1 , T2 and T3 in Fig. 4-6 is equivalent to the

serial schedule which executes T2 first and then T, and then T3 . This illustrates how the

validation method enforces serialization.

T- I -- - --

T3 [(. ..F--

tO 0 I t 2 t 3 tA t 5 t 6 t7 t V tj ti Me

Figure 4 -6 Three concurrent transactions

A straightforward implementation of the va!idation method is as follows. A set W is kept,

which contains the write sets along with the validation completion times of all validated

transactions. For validating.a transa ction T that just completed its read phase, the following

steps are involved:

1. Compare the read ;et of T with the write sets of those transactionb which are

successfully validated between the start time and finish time of T.

2. If the read set is disjoint from any of those write sets examined in step (1)

above, then do the following; otherwise restart T.

i. Lock W in exclusive mode.

ii. Compare the read set of T with the write sets of those transactions which
have been successfully validated since the time T completed its read

phase.

iii. If the read set is disjoint from any of those write sets examined in step (ii)
above, then validate T by performing the following operations; otherwise

unlock W and restart T.

a. Insert the write set of T along with the current time as the
validation completion time of T into set W.

- -I k ., L ~ . J.. . ;.+ _ ,.+ _ ' '" ' + J - " - ' , ' "" • " 'r
'

" o - • ,' . - - 'I
o

SECT ON 4 At . FO: A,..:-: ?.: 3 .;PTrCES5OPS 39

b. Make the local '"ipies of T, ,..h contain all the writes of T, global.

c. Unlock W.

The set W can be pruned down by deleting information concerning validated transactions

whose validation completion times are smaller than the start time of any currently active

transaction. When several transactions are ready to be validated, the main cominarison step

(step (1)), for one transaction can be carried out in parallel with the main comparison steps

for other transactions on a multiprocessor. It is possible to optimize the implementation

outlined above in a number of ways. We will not elaborate them here.

Validation methods are superior to locking methods for systems where transaction conflict

is unlikely. Examples include query dorroinant systems and very large tree structured indexes.

For these cases, a validation method will avoid locking overhead, and may take full advantage

of a multiprocessor environment in the validation phase using the parallel validation technique

presented. Some techniques are needed for determining all instances where an optimistic

approach is better than a locking approach. See [Kung and Robinson 79] for more

discussions on this serialization method which is not based on locking.

4.2.1.3 Remarks

Serialization methods somewhat similar to validation methods are considered in [Stearns et

al. 76] for both centralized and distributed database systems. It is pointed out there that if

the ordering of the equivalent serial schedule is determined on-the-fly as requests are

processed, then a situation similar to deadlock may occur. The situation is called "cyclic

restart", in which a finite set of transactions are caught in a loop of continually aborting and

restarting each other. They solve the problem by using a preassigned ordering of

transactions. The mothod outlined in Section 4.2.1.2, on the other hand, uses validation

completion times to determine the ordering of transactions. Though the ordering is dynamic,

the method is not subject to cyclic restart because in this method only validated transactions

can restart other transactions. C. Papadimitriou considers the general problem of determining

whether a given sequence of read and write operations corresponding to requests from

several transactions is serializable [Papadimitriou 78). He proves that the problem is

NP-complete. Thus it is unlikely that there exist efficient schedulers which will recognize all

serializable sequences of requests by the transactions. For discussions of serialization

methods for distributed database systems, see, for example, [Bernstein et al. 78, Rosenkrantz

et al. 78, Stonebraker 78).

.. - "-- - - . ' -, , -, • . ..

SECTIC . 4 ALU '];:HT S iO; AS\'CZ.i;C.CUS ,.4L T1 OCESSORS 40

4.2.2 The Appro.,ch Using Semantic information -- A Non-Serialization Approach

As mentioned carli ,, the serialization approach requires no semanlic information about

transactions and intc;;rily consiraints, and if such semantic information is not used,

serialization is actually the only approach one can take for solving the consistency problem in

a concurrent system. However, if the meanings of the transactions and integrity constraints

are known a" priori, then, as one would expect, it is often possible to design concurrent

systems or algorithms enjoying high degrees of concurrency.

We assume as before that each transaction under consideration is correct if executed

alone. Here we further assume that some correctness proof for each transaction is available.

Such a proof must rely on and also must reflect the meanings of the transactions and the

integrity constraints imposed on the database. Therefore a natural way to capture semantic

information is to examine correctness proofs of the transactions.

We consider proofs using assertions [Floyd 67). A transaction is represented as a

flowchart of operations which manipulate a set of variables. Executing the transaction is

viewed as moving a token on the flowchart from the input arc to an output arc. An assertion,

defined in terms of the variables, is attached to each arc of the flowchart; in particular, the

assertions on the input and any output arcs are the integrity constraints. A correct proof of

a serial transaction amounts to demonstrating that throughout the execution of the

transaction the token will always be on an arc whose assertion is true at that time, and will

eventually reach an output arc. The consistency of a database under the concurrent

execution of several correct serial transactions can be insured by the following scheduling

policy [Lamport 76]:

The request to execule one step in a transaction is granted only if the execution

will not invalidate any of the assertions attached to those arcs where the tokens

of other transactions reside at that time.

It is possible that at some lime none of the transactions can be granted to execute their next

steps. This "deadlock" situation can be resolved, for example, by backing up some

transactions. The above scheduling policy demonstrates that at least in principle the

consistency of a concurrent system can be preserved by using correctness proofs of serial

transactions. In (Larnport 76), efficient schedules are derived from this scheduling policy for

some concurrent systems. The schedules have the property that they preserve consistency

but are not equivalent to serial schedules.

The similar idea of establishing the correctness of a concurrent system by showing that the

proof of any of its sequential programs cannot be invalidated by the execution of any other

program has been studied by several people, including [Ashcroft 75, Keller 76, Lamport

-1 ALAL

SECTION 4 i N A' . ,CJOU 41

77, Owicki 75).

The approach of solving the consistency problem of a concurrent system by utilizing the

correctness proofs of the serial tran.-actions seerns to be quite general and powerful. In this

framework, with enough human ingenuity,. difficult consistency problems (or their solutions)

can often be solved efficiently (or explained elegantly). Some of the results in Section 4.3

below can in fact 1)e cast in this framework. Much work remains to be done in developing

mechanical ways of using this approach in designing concurrent database systems.

4.3 Algorithms for Specific Problems

When designing an asynchronous algorithm for solving a specific problem, we have control

over the tasks that will be included in the algorithm. Therefore, it is possible to keep the

required synchronization among the processes of an algorithm as weak as possible, by a

careful design of these processes. This would not be possible for general database systems

where a transaction has no idea about other transactions it might have to interact with. As a

result, algorithms in this section enjoy much higher dclgrees of concurrency than those

algorithms which are derived from the general techniques in Section 4.2.

4.3.1 Concurrent Accesses to Search Trees

We discuss how a file organized as a B-tree or a binary search tree can be accessed

simultaneously by a number of processes. The goal is to insure integrity for each access

while at the same time providing a high degree of concurrency and also avoiding deadlock.

Concurrent Access to B-trees

The organization of B-trees was introduced by (Bayer and McCreight 72) and some

variants of it appear in [Knuth 73]. We assume that the reader is familiar with the definition

of B-trees. Here we mention only that for a B-tree the leaves are all on the same level and

the number of keys contained at each node except the root is between k and 2k for some

positive integer k. The problem concerning multiple access to B-trees has been addressed in

a number of papers. It appears that [Samadi 76] gave the first published solution. In his

solution, exclusive locks are used by all the processes. As a search proceeds down the tree,

it locks son and unlocks father until it terminates. On the other hand, an updater (insertion or

deletion) locks successive nodes as it proceeds down the tree, but when a "safe" node is

encountered, all the ancestors of that node are unlocked. For the insertion (or deletion) case

a node is considered to be "safe" when a key can be inserted into (or removed from) that

node without causing an overflow (or underflow). It is relatively easy to see that the solution

preserves integrity for each access and is deadlock free.

SECTION 4 ALGORITHMS FOR ASYNCHRONOUS MULTIPROCESSORS 42

(Bayer and Schkolnick 77] observe that when k is large the chance that an updater will

cause splits or merges on nodes, especially at top levels of the tree, is small. Therefore, they

propose that an updater should place weak locks such as share locks on nodes at a top

section of the tree, and only later (in the second pass) convert some of these weak locks into

strong locks such as exclusive locks if necessary. They present and prove the correctness of

a general schema, which involves certain parameters that can be tuned to optimize the

performance of the schema. Bayer and Schkolnick's solution is expected to have good

average performance, especially when k is large. In the worse case however, an updater can

still lock out the entire tree.

Concurrent Access to Binary Search Trees

In [Kung and Lehman 79b] algorithms for a binary search tree which can support

concurrent searching, insertion, deletion and reorganization (especially, rebalancing) on the

tree are proposed. In these algorithms, only writer-exclusion locks are used, simply to

prevent the obvious problems created by simultaneous updates of a node by more than one

process. Moreover, in these algorithms, any process locks only a small constant number of

nodes at a given time, and a searcher is not blocked at all until possibly at the very end of

the search when it is ready to return its answer. We discuss some general techniques that

were used for achieving this high degree of concurrency.

Unlike the concurrent solutions for B-trees described above, updaters are no longer

responsible for rebalancing. An update just does whatever insertion or deletion it has to do,

and postpones the work of rebalancing the (possibly) unbalanced structure caused by the

updating. Other processes can perform the postponed work on separate processors.

Through this idea of postponement, the multiprocessing capability of a multiprocessor

environment can be utilized. The same idea is used in garbage collection. Rather than

performing the garbage collection itself, the deleter simply appends deleted nodes to a list of

nodes to be garbage collected later. In this way, the deleter need not wait until it is safe to

do the garbage collection (i.e. the time when no one else will access the deleted node), and

garbage collectioi can be done by separate processors.

Another idea used by the algorithms is that a process makes updates only on a local copy

of the relevant portion of the tree and later introduces its copy into the global tree in one

step. With this technique one can get the effect of making many changes to the database in

one indivisible step without having to lock a large portion of the data. However, one faces

the problem of backing up processes which have read data from old copies. It turns out that

because of the particular property of the tree structure, the backup problem can be handled

efficiently. The copy idea is closely related to the validation method discussed in Section

St Cl I N 4 Ai I ; I O I !PWOCA !OPS 43

4.2.1.2.

4.3.2 Asynchronous Iterativo Algorithms for Solving Numerical Problems

Many numerical problems in practice are solved by iterative algorithms. For example,

zeros of a function f can be approximated by the Newton iteration,

ri+l
= 2i - f(z 1)'

1 f(zj),

and solutions of linear systems by iterations of the form,

Xi+ 1 = AX i + b,

where the Xi , bi are n-vectors and A is an nxn matrix. In general, an iterative algorithm is

defined as:

Xi+ 1 = iP(Xi, Xi_ 1 , •.,Xi-d+l),

where (p is some "iteration function". Here we are interested in parallel algorithms through

which an asynchronous multiprocessor can be used efficiently to speed up the iterative

process. We shall follow terminologies introduced in [Kung 76] for various classes of parallel

iterative algorithms.

Iteration function jP can typically be evaluated concurrently by a number of independent

processes. For example, for the Newton iteration f and f* can be evaluated concurrently, and

for the matrix iteration all the components of the vector Xi+ 1 can be computed

simultaneously. In a straightforward synchronized (parallel) iterative algorithm the

concurrent processes that evaluate the iteration function are synchronized at each iteration

step, i.e., a process is not allowed to start computing a new iterate until all the processes

have finished their work for the current iterate. Thus, processes in a synchronized parallel

algorithm may have to wait for each other. It has been observed that by and large iterative

processes are insensitive to the ordering of evaluation as far as convergence is concerned.

This observation leads to the notion of an asynchronous (parallel) iterative alporithm in which

processes are not synchronized at all. In particular, by removing the synchronization

imposed on a synchronized iterative algorithm an asynchronous iterative algorithm will be

obtained. In a truly asynchronous iterative algorithm, a process keeps computing new

iterates by using whatever information is currently available and releases immediately its

computed results to other processes. Thus, the actual iterates generated by the method

depend on the relative speeds of the processes. A slightly restricted form of asynchronous

iterative algorithms for solving linear systems is known as chaotic relaxation [Chazan and

Miranker 69] in the literature. G. Baudet, in (Baudet 78a, Baudet 78b], reports the

experimental results from the implementation of various parallel iterative algorithms on C.mmp

to solve the Dirichlet problem for Laplace's equation on a rectangular two-dimensional region.

*SECTI NJ 4 F~ ~~1d~OR ASYN.Chio0%311G ?AJ.uw;; SSURS 4

His rc-.ults indicate clearly that on C.mmp as ynchronous itertive ntOhods are sUperior to the

synchronized counterparts will respect to overall cornpu!ation times. For a concise survey

of parallel methods for !,olvisg equations the reader it; referred to [Miranker 77].

4.3.3 Concurrent Database Reorganization

In many database organizations, the performance for accesses will gradually deteriorate

due to structural changes cau.ed by insertions and deletions. By reorganizing the database,

the access costs can be reduced. The garbage collection in classical Lisp 1plementations can

also be viewed as a database reorganization. In such an implementation when the free list is

exhausted, the list processor is suspended and the garbage collector is invoked to find nodes

which are no longer in use (garbage nodes) and append them to the free list. Database

reorganizations are typically very time-consuming. Thus, it is desirable to reorganize a

database concurrently without having to biock the usual accesses to the database.

Recently there has been quite sone interest in concurrent garbage collection. The goal is

to collect garbage concurrently with the operations of the list processor. The first published

solution is due to [Steele 75], which uses semaphore-type synchronization mechanism.

[Dijkstra et al. 78] gave a solution whose synchronization is kept as weak as possible, but

made no claim on the efficiency of the solution, [Kung and Song 77] gave an efficient solution

by using very weak synchronization. These solutions are extremely subtle. We refer the

reader to the original papers for descriptions of these solutions. Here we just discuss some

experience we gained from the concurrent garbage collection problem. Contrary to what one

might expect, it is no. automatically true that because of the concurrent garbage collection

the list processor will not be suspended too often and thus on the average be able to do

more computations in a fixed time period. For correctness reasons, it is necessary that some

synchronization overheads be introduced to the list processor, and consequently the list

processor is slowed down. Also, it is inevitable that the garbage collector will sometimes

perform useless work. For example, the garbage collector can be marking a set of nodes

without knowing that their ancestors have just been made into garbage by the list processor.

All of this affects the effectiveness of the parallel garbage collection. Similar types of

performance dparadation are expected in other instants of concurrent database

reorganization. The central question is how to make the reorganization process effective

wifhout committing excessive synchronization costs. The problem can be extremely

challenging as we have experienced in the concurrent garbage collection case. This may

explain the scarcity of results available on concurrent database reorganizations today.

Memory reorganization is just one of the many *housekeeping activities" performed

regularly in any large-scale computer system. Ideally, these system activities should all be

sf Ci ;,iP 4 ,,iT,.Y ', C; ::'O7 .'L; iP; -'E - ;S 45

carried out by i(ditional pro(ce.sorS operating concurrently with the proce! .ors directly

devoted to the ti,,ers* cormputalcnrs. The system should constantly reorganize itself to

improve its .,ervice to the user. The user at his end -,imply sees a more efficient system

providing rapid responses. A feature of this approach, which is highly desirable for practical

reasons, is that the speed-up can be achieved without requiring the users to rewrite their

codes. It seems thal con(urrent reorganizalion (or housekeeping) represents one of the most

attractive applications that a,.ynchronous multiprocessors are capable of supporting. We

expect that significant pro-ress along this tine will be made in the near future, as

multtiprocessors becorre prevalent.

4.4 Remarks for Section 4

All the efficient algorithms mentioned in Section 4.3 share a common property, namely, a

process in an algorithm is never made to wait for other processes to complete their tasks.

The same philo.ophy is us.ed in validation methods in Section 4.2.1.2, in task scheduling

[Baudet et al. 77], and in several other examples [Kung 76, Robinson 79). This suggests that

this "never-wait" principle is a useful criterion to follow in designing efficient algorithms for

asynchronous multiprocessors. A typical way to achieve this goal is to use copies. After a

process completes its current task, it immediately starts working on a copy of the most

recent global data. Of course, validation is needed later on to determine whether or not the

updated copy can be made global. Validation is not necessarily costly when it can be carried

out in parallel on separate processors. Another technique to achieve the "never-wait" goal is

the postponement idea as used in the concurrent binary search algorithm: a proceis simply

ignores for the time being any work it is not allowed to perform immediately, but comes back

to perform the work at a later time.

SC'TIC - 5 C",C', " ;05 ' .'46

5. Concludinl, Remarks

One can see from the preceding sections that issues concerning algorithms for synchronous

parallel computers are quite different from those for asynchronous parallel computers.

For synchronous parallel computers, one is concerned with algorithms defined on networks.

Task modules of an algorithm are simply computations associated with nodes of the

underlying network. Comrunication geometry and data movement are a major part of an

algorithm. For chip implementation it is essential that the communication geometry be simple

and regular, and that silicon area rather than the number of gales alone be taken into

consideration. One of the important research topics in this area is the development of a new

theory of algorithms that addresses issues regarding communication geometry and data

movement. In particular, it would be extremely useful to have a good notation for expressing

and verifying algorithms defined on networks, and to have a good complexity model for

computations on silicon chips. Sorne initial steps along these directions have been taken by

(Cohen 78, Brent and Kuna 79b, Thompson 79a, Thompson 79b3.

For asynchronous parallel computers, one is concerned with parallel algorithms whose task

modules are executed by asynchronous processes. The major issues are the correctness and

efficiency of an algorithm in the presence of the asynchronous behavior of its processes. *For

the general database environment where only syntactic information can be used, the

serialization approach is the rrethod for ensuring correctness. Serializaion can be achieved

by either locking or transaction backup. If semantic information about integrity constraints

and transactions is available as in many special problem instances, then more efficient

algorithms that support higher degrees of concurrency may be designed. Efficiency analysis

of algorithms for asynchronous computers is usually difficult, since execution times are

random variables rather than constants. Typically, techniques in order statistics and queueing

models have to be employed (see, e.g., [Robinson 79]). Generally speaking, algorithms with

large module granularity are well suited to asynchronous multiprocessors. In this case, a

process can proceed for a lone period of time before it has to wait for input from other

processes. Many database applications fall into this category. Further znd more detailed

discussions on the programming issues raised by asynchronous multiprocessors can be found

in (Newell and Robertson 75, Jones et al. 78, Jones and Schwarz 78].

QDE._.C ES 47

Reforences

[Aho et al. 75] Aiko, A., 1topcroft, J.E. and Ullnan, iD.

The Dcsign and Analysis of Comnpttcr Algoritthirs.

Addi!on-Wesley, Reading, Massachusetts, 1975.

(Anderson and Jen,.en 75)
Anderson G. A. and Jensen, E. D.

Computer Interconnection Structures: Taxonomy, Characteristics, and
Examples.

ACM Crlplttift SiLrueys 7(4): 197-213, December 1975.

(Ashcroft 75] Ashcroft, E.A.
Proving Assertions about Parallel Programs.

J. Com put. Syst. Sci. 10:110-135, January 1975.

(Barnes et al. 68) Barnes, G. H., Brown, R. M., and Kato, M., Kuck, 0. J., Slotnick, D. L. and
Stokes, R. A.
The ILLIAC IV Computer.
IEEE Transactions on Comnputers C-17(8):746-757, August 1968.

[Batcher 68) Satcher, K.E.
Sorting network!; and their applications.
1968 SPring Jotnt Computer Conf. 32:307-314, 1968.

(Baudet 7Sa] Baudot, G.M.
Asynchronous Iterative Methods for Multiprocessors.
Journal of the ACM 25(2):226-244, April 1978.

(Baudet 78b) Baudet, G. M.

The Design and Anzalsis of Algorithmns for Asynchronous Multiprocessors.

PhD thesis, Carnegie-Mellon University, Department of Computer Science,
April, 1978.

[Baudot and Stevenson 78]
Batidet, G. and Stevenson, 0.
Optimal Sorting A!gorithms for Parallel Computers.

IEEE Transactions on Computers C-27(1):84-87, January 1978.

[Baudet el al. 77] Baudet, G., Brent, R.P. and Kung, H.T.
Parallel Exectition of a Sequernce of Tasks on an Asynchronous

Multiprocessor.

Technical Report, Carnegie-Mellon University, Department of Computer

Science, June 1977.

(Bayer and McCreight 72)
Bayer, R. and McCreight, E.

Organization and Maintenance of Large Ordered Indexes.
Acta Jnformattca 1(3):173-189, 1972.

(Bayer and Schkolnick 77)
Bayer, R. and Schkolnick, M.
Concurrency of Operations on B-trees.
Acta Informatica 9(1):1-21, 1977.

L _ ,, ,_ , - - - -- *r*- - ; _ . ,- -

REFIRENCES 48

[Senes 65] Ocines, V.E.

MathenzaLcal Theory of Connecttng Networks and Telephone Traffic.

Acadcric Press, New York, 1965.

[Bentley and Kung 79)
Bentley, J.L. and Kung, R.T.
A Tree Machine for Searching Problems.

In Froc. 1979 Intcrnational Conference on Parallel Processing, pages

257-266. IEEE, August, 1979.
Also Available as a CMU Computer Science Department technical report,

August 1979.

[Bernstein et al. 78]
Ber..tein, P.A., Goodman, N., Rothnie, J.B. and Papadimitriou, C.H.
A System of Distributed Databases (the Fully Redundant Case).

IEEE Transactions on Software Engineering SE-4:154-168, March 1978.

[Brent 74] Brent, R.P.
The Parallel Evaluation of General Arithmetic Expressions.
Journal of the ACM 21(2):201-206, April 1974.

[Brent and Kung 79a)
Brent, R.P. and Kung, H.T.
In preparation.

[Brent and Kung 79b]
Brent, R.P. and Kung, H.T.
The Area-Tinic Complexity of Binary Multiplication.

Technical Report, Carnegie-Mellon University, Department of Computer
Science, July 1979.

[Browning 79] Browning, S.
Algorithms for the Tree Machine.
In Introduction to VLSI Systems by C. A. Mead and L. A. Conway,

Addison-Wesley, 1979, Section 8.4.2.

(Chazan and Miranker 69]
Chazan, D. and Miranker, W.
Chaotic Relaxation.
Linear Algebra and its Applications 2:199-222, 1969.

[Chen 75] Chen, T.C.

Overlap and Pipeline Processing,
In Stone, H.S., editor, Introduction to Computer Architecture, pages

375-431. Science Research Associates, 1975.

[Chen et al. 78) Chen, T.C., Lum, V.Y. and Tung, C.
The Rebound Sorter: An Efficient Sort Engine for Large Files.
In Pror'cedtnps of the 4th International Conference on Very Large Data

Ba..es, pages 312-318. IEEE, 1978.

[Cohen 78] Cohen, D.
Mathematicol Approach to Computational Networks.

Technical Report ISI/RR-78-73, University of Southern California,
Information Sciences Institute, November 1978.

'J - r

[Djlkstra et al. 7S) Oijks~tra, E.W., Lanport, L., W'~rtin, A.J., Shcolten, C.S. and Steffen, E.F.M.

On-thc-Fly Garbag3e Collection: An Exercise in Cooperation.

Cortuuucctio'is of the ACMI 21(1 1):966-976, November 1978.

[Enstow 77] Enslow, P. H.
Multiprocessor Orginizat ion: A Survey.
ACMf COMPIUtng Survcys 9(1):103-129, March 1977.

[Eswaran et al. 76)Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger, I.L.
The Notions of Consistency and Predicate Locks in a Database System.
COM01zunica t ions of tiw ACMl 19(00i:624-633, November 1976.

[Floyd 67] Floyd, R.W
Asi:igninv Meanings to Proorams.
In Proc. Sym~positurt in Applicd hMathcmnatics, pages 19-32. American

Mathematics Society, 1967.

(Flynn 66) Flynn, M. J.
Very High-Speed Conriput ing Systems.

Proccedings of the IEEE 54(12):1901-1909, December 1966.

(foster and Kung 79]
Foster, M. and Kunoa, R.T. i
Design of SpcciaL PUrpose VLSI Chips: Example and Opinions.
Technical Report, Carnegie -Mellon University, Department of Computer

Science, September 1979.
Also appears in the CMLI Comnpter Science Research Rev~iew 1978-79.

[Fuller, et at. 77) Fuller, S. H., Jones, A. K. and Durham, 1. (Eds.).
The CrY'* Review Report.

Technical Report, Carnegie-Mellon University, Department of Computer
Science, .June 1977.

[Gray 78) Gray, J.
Notes on Data Base Operating Systems.
In Lcctare Not .'s in Comzputcr Sci ene 60: Operating Systems, pages

393-481. Springer-Verlag, Berlin, Germany, February, 1978.,

[Guibars et at. 79] Guibits, L.J., Kuno, H.T. and Thompson, C.D.
Direct VLSI Implementation of Combinatorial Algorithms.
In Proc. Coniference or% Very Large Scale Integration: Architecture, Design,

Fab~ricat ion, California Institute of Technology, January, 1979.

[Rallin and Flynn 72)
Hallin, T.G. and Flynn, M.J.
Pipelinint; of Arithmetic Functions.
IEEE Transacttons on Comnputers C-21:880-886, 1972.

[Heart et at. 73) 1 earti, F. E., Ornstein, S. M., Crowther, W. R. and Barker, W. B.
A New Minicomputer /Multiprocessor for the ARPA Network.
In Arips Contference Proceedings, NCC '73, pages 529-537. AFIPS, 1973.

[Helter 78] Heller, D.
A SUrvey of Parallel Algorithms in Numerical Linear Algebra.
SIAM Roiltew 20(4):740-777, October 1978.

[Jones and Schwarz 78]

! -.0

ZE i E [%,,-ES 50

Jorne , A.K. and Sclevarz, P.

A Stalu- Report: Expcren(ce Using Multiproce.or Systems.

M,anu'.cript, CMU Computer Science Dep,,rhtent.

To appear.

[Jones et al. 78] Jone., A.K., Chanf-ler, R.J. Jr., Durham, I., Feiler, P.H., Scelza, D.A., Schwans,

K. and Vegdaht, S.R.
Proorarnmng Isues Raised by a Multiprocessor.

ProcccdLngs of the IEEE 66(2):229-237, February 1978.

[Karp 72) Karp, R. M.

Reducibility Am,ong Combinraional Problems,

Cornp- rity of Conipater CoMnpLtations, pages 35-104. Plenum Press, New
York, 1972.

[Kautz el al. 68] Kautz, W.H., Levitt, K.N. and Waksman, A.

Cellular Interconnection Arrays.

IEEE Transactions on Computers C-17(5):443-451, May 1968.

[Keller 76] Keller, R.M.

Formal Verification of Parallel Programs.
Communications of the ACM 19:371-384, July 1976.

[Knuth 73] Knuth, 0. E.

The Art of Computer Frogramming. Volume 3: Sorting and Searching.

Addison-Wesley, Reading, Massachusetts, 1973.

[Kosaraju 75] Kosaraju, S.R.

Speed of Recognition of Context-Free Languages by Array Automata.

SIAM J. on Computing 4:331-340, 1975.

[Kuck 77] Kuck, D. J.
A Survey of Parallel Machine Organization and Programming.

ACM ComputLng Surveys 9(1):29-59, March 1977.

[Kuck 78] Kuck, D. J.

The Structure of Computers and Computations.

John Wiley and Sons, New York, 1978.

[Kuck 68) Kuck, D.J.

ILLIAC IV Software and Application Programming.

IEEE Transactons on Computers C-17:758-770, 1968.

[Kung 76] Kung, H. T.

Synchronized and Asynchronous Parallel Algorithms for Multiprocessors,

In Traub, J. F., editor, AlgorLthms and Complezity: Net Directions and

Recent Results, pages 153-200. Academic Press, New York, 1976.

[Kung 79] Kung, H.T.

Let's Design Algorithms for VLSI Systems.

In Proc. Conference on Very Large Scale Integration: Archttecture, Design,

Fabrication, California Institute of Technology, January, 1979.

[Kung and Lehman 79a)
Kung, H.T. and Lehman, P.L.

VL.Si t,-'ortlhrns for ReI,'t.ilal DalaL'af.es.
T o a pr~~r

[Kung and Lehnmn 79b)]
Kung, H.T. and Lehinan, P.L.4

A Concurrent Database Problem: Binary Search Trees.
Ttchnical Report, Carnegic-Mcllon University, Department of Computer

Scienice, Septemnber 1979.
An abstract appears In the Proc. of the Fourth International Con ference on

Vcry Laijpc Databases. The full paper is to appear in ACMf Transactions
on Database Systems.

rKung, and Leiserson 79]

Kung, H.T. and Leiecrson, C.E.
Systolic Arrays (for VLSI).
In Duff, I. S. and Stewart, G. W., editor, Sparse Matrix Proceedings 1978,

pages 256-282. Society for Industrial and Applied Mathematics, i979.
A slightily different version appears in Introduction to VLSI Systemns by C.

A.Mead arid L. A. Conway, Addison-Wesley, 1979, Section 8.3.

[Kung and Leiserson 78]
Kung, H.T. and Leiserson, C.E.[
Systolic Array Apparatus~es for Matrix Computations.
U.S. Patent Application, Fiied December 11, 1978.

[Kung and Papadirnitriou 793
Kung, H.T1. and Papadlimitriou, C.R.
An Optirnality T~eory of Concurrency Control for DaVlbases.
In Proc. ACMI-SIC MOD 1979 Internatioal Conference on Managemnent of

Data, pages 116-126. ACM, May, 1979.

[Kung and Robinson 79]
Kung, H.T. and Robinson, J.T.
On Optim.sti.c Mcthods for Concurrency Conttrol.
Technical Report, Carnegie-Mellon University, Department of Computer

Science, September i979.
An abrstract appears in the Proc. Fifth International Conference o'z Very

Larg Data Bases, October 1979. The full paper is to appear in ACM
Transactions on Database Systems.

[Kung and Song 77]
Kunrg, 1-1. and Song, S.W.
A Parallel Garbage Collection Algorithm and Its Correctness Proof.
In Proc. Eightcenth Annual Symposium on Foundations of Computer

Science, pates 120-131. IEEE, October, 1977.
A revised version is to appear in Communications of the ACM.

[Kung and Stevenson 77]
Kung, H-.T. and Stevenson, D).
A Software Technique for Reducing the Routing Time on a Parallel

Computer with a Fixed Interconnection Network,
In Kuck., D. J., Lawrie, D.H. and Sameh, A.H., editor, High Speed Comnputer

and ALiyor~thrz Organization, pages 423-433. Academic Press, New
York, 1977.

......................- io"
WIN.. ..

52

(Lamiport 76] tLamport, L.

Touwarr: a Thcory of Correctness for 44idtt-iicr Data Base Systems.

Techni(cl Report CA-7610-0712, Massachusetts Computer Associates, Inc.,
October 1976.

[Lamport 77] Lamport, L.
Proving the Correctness of Multiprocess Proorams.

IEEE Transactions on Software Engineering SE-3(2):125-143, March 1977.

[Lawrie 75] Lawrie, D.H.
Access and Alionrment of Data in an Array Processor.
IEEE Transactions on Computers C-25(12):1145-1155, December 1975.

[Leiserson 79] Leiserson, C.E.
Systolic Priority Queues.
In Proc. Confercnce on Very Large Scale Integration: Architecture, Dcsigrt,

Fabrication, California Institute of Technoloby, January, 1979.
Also available as a CMU Computer Science Department technical report,

April 1979.

[Levitt and Kautz 72]

Levitt, K.N. and Kautz, W.H.
Cellular Arrays for the Solution of Graph Problems.
Coinaunicarons of the ACM 15(9):789-801, September 1972.

[Mead and Conway 79]
Mead, C.A. and Conway, L.A.

Introduetiorn to VLSI Systents.

Addison-Wesley, Reading, Massachusetts, 1979.

[Mead and Rem 79]
Mead, C.A. and Rom, M.
Cost and Performance of VLSI Computing Structures.
IEEE Journal of Solid State Circuits SC-14(2):455-462, April 1979.

[Miranker 71] Miranker, W.L.
A Survey of Parallelisrm in Numerical Analysis.
SIAM Rrview 13:524-547, 1971.

[Miranker 77] Miranker, W.L.
Parallel Methods for Solving Equations.

Technical Report RC6545, IBM T.J. Watson Research Center, May 1977.

[Mukhopadhyay and Ichikawa 72]
Mukhopadhyay, A. and Ichikawa, T.
An n-Step Parallel Sorting Machine.

Technical Report 72-03, The University of Iowa, Department of Computer

Science, 1972.

[Newell and Robertson 75]
Newell, A. and Robertson, G.

Some Issues in Programming Multiprocessors.
Behavior Research Methods and Instrumentation 7(2):75-76, March 1975.

[Oleinick 78] Oleinick, P.N.

' - - " - -,: - " , - r : l -- -
• - - 2 :. ,. :' : .. , , . , L ... ,i:L ,a m,, " ' : -- .

PE' -i [.CES 53

The In pcnwaitntion and Evolittiori of ParolcL, Algortt/ins on C.nirp.

Technical Report, Carnerie-Mcllon University, Department of Computer

Science, Novcwber 1978.

[Owicki 75] Owicki, S.
Arioniatic Proof Techuqucs for Parallel Program.
PhO thesis, Cornell University, Department of Computer Science, 1975.

[Papadirnitriou 78] Papadimitriou, C.H.
Serializability of Concurrent Updates.

Harvard University.
To appear in JACM.

[Pease 68] Pease, M.C.
An Adaptation of the Fast Fourier Transform for Parallel Processing.

Journal of the ACM 15:252-264, April 1968.

[Peleg and Rosenfeld 78)
Peleg, S. and Rosenfeld, A.
Determining Compatibility Coefficients for Curve Enhancement Relaxation

Processes.

IEF-E Transactions on systenms, Man, and Cybernetics SMC-8(7):548:556,

July 1978.

[Ramamoorthy and Li 77)
Rarnamoorthy, C.V. and Li, H.F.
Pipeline Architecture.
Conptng Surveys 9(l):6 1-102, March 1977.

[Robinson 79) Robinson, J.T.
Some Analysis Techniques for Asynchronous Multiprocessor Algorithms.

IEEE Transactions on Software Engineering SE-5(I):24-31, January 1979.

[Rosenkrantz et al. 78]
Rosenkrantz, D.J., Stearns, R.E. and Lewis I, P.M.

System Level Concurrency Control for Distributed Database Systems.
ACM Transactions on Database Systems 3(2):78-198, June 1978.

[Samadi 763 Sarnadi, B.
B-trees in a System with Multiple Users.
Information Processing Letters 5(4):107-112, October 1976.

[Sameh 77] Sameh, A.H.
Numerical Parallel Algorithms -- A Survey.

In Hifh Speed Computer and AlgorLthm Organization, pages 207-228.
Academic Press, New York, 1977.

[Smith 71] Smith 111, A.R.
Two-Dimensional Formal Languages and Pattern Recognition by Cellular

Aulomata.
In Proc. 12th IEEE Symposturn on Switchtng and Automata Theory, pages

144-152. IEEE, 1971.

[Stearns et al. 76] Stearns, R.E., Lewis , P.M. II and Rosenkrantz, D.J.
Concurrency Control for Database Systems.

~EF:P.:E, S 54

In P1-c .Sr;,cuith Anuaztl Sympostlnz on 'ofndations of Computer

Science, pares 19-32. IEEE, 1976.

[Steele 75] Steele, G.L., Jr.

Multiprocessing Compactifying Garbage Collection.

Conmnunicattons of the ACM 18(9):125-143, September 1975.

[Stone 75] Stone, H.S.
Parallel Computation.

In Stone, H.S., editor, Introduction to Computer Architecture, pages
318-374. Science Research Associate, Chicago, 1975.

[Stone 71] Stone, H.S.
Parallel Processing with the Perfect Shuffle.

IEEE Transactions on Computers C-20:153-161, February 1971.

[Stonebraker 783 Stonebraker, M.

Concurrency Control and Consistency of Multiple Copies of Data in

Distributed INGRES.

In Proc. Third Berkeley Workshop on Distributed Data Management and

Computer Networks, pages 235-258. Lawrence Berkeley L.aboratory,

University of California, Berkeley, August, 1978.

[Sutherland and Mead 77)
Sutherland, I.E. and Mead, C.A.
Microelectronics and Computer Science.
Scientific American 237:210-228, 1977.

(Thompson and Kung 77)
Thompson, C.D. and Kung, H.T.
Sorting on a Mesh-Connected Parallel Computer.

Communications of the ACM 20(4):263-271, April 1977.

[Thompson 79a] Thompson, C.D.

Area-Time Complexity for VLSI.

In Proc. Elezcyith Annual ACM Symposium on Theory of Computing, pages

81-88. ACM, May, 1979.

[Thompson 79b] Thompson, C.D.

A Complexity Theory for VLSI.

PhD thesis, Carnegie-Mellon University, Department of Computer Science,

1979.

[Voigt 77] Voigt, R.G.
The Influence of Vector Computer Architecture on Numerical Algorithms,

In Kuck, D.J., Lawrie, D.H. and Sameh, A.H., editors, High Speed Computer

and Algorithm Organization, pages 229-244. Academic Press, New

York, 1977.

[Von Neumann 66) Von Neumann, J.
Theory of Self-Reproducing Automata.

University of Illinois Press, Urbana, Illinois, 1966.

[Wulf and Bell 72) Wulf, W. A. and Bell, C. G.

C.mmp -- A Multi-Mini-Processor.

Proceedings Fau Joint Computer Conference 41:765-777, 1972.

la

-7 7 S,*l~ . 'rPC OF P.L:PORT 6 kI'-- .Z C-_[ED

T ,HE STRUCTURE OF -PARALLEL ALGORITHMS II p-Ttr-- - P _t
t. PARFGVO _W; R'-O5T w--metA

77 Q496 %~s B.£TRACT 0 RG RAN Tj.N .LR(IJ

~~~ 76/~ l 4_-*~ 0

S. Pr L ~ .~ F F ,.ZAT1Z,1. NAIA ANDO AZZR SS 
-b A ,

Carncgic--.cllon Uni.'Ersity /-ARCA & %ORK Ig.IT N5_kV6_A

Com.puter Science P2'artment

pittsbuirgh, PA 1521.3 ''* I-

11. COTROLLItjO OFFICE mAME AND ADORES$ I2 -AT ;'ATE

Office of Nav'al Research UiM 79
Arlington, VA 22217 13. wb4aE4Fv PAGES

14. I..OITORINC, t.C,LCSY .4AvE &ArO-RESS(if different I,=, Conue0Ilind 0l1cG) IS. SECURITY CLASS. (olf r .;:ct5)

L'NCLASSIFIED

16. 0;!sTkdeUTION STAI-EmENT oftui R.-Port)

Approved for public release; distribution unlim~ited.

17. DISTRIJBUTION S7ATEMENT (.1 5%. bs*,.CI ec.d Inz Block "P'. i Ift ..,f t 1o R *Port)

Is. SUPPLEMEfUARY NOTES

ig. KEY WORDS (C' ntlrna. on sloe o e I it necessary end Identify by blocx nlumb.er)

20. APST RAC T (Cvcjni'n' r.ro 5CT* ize It f1ecoos4I end Iconfity by block ,nwbr)

DD At 73 1473 uOTO O Cv xucSLT ~ls.rVJ
SCCUflI1Y CLA IIFICATIO" Of ImS PAGEC (11o Doteffet~


