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ABSTRACT

A complete PDE sparse matrix solver consists of several components. Its overall perfor

mance strongly depends on their mutual interactions and the effect of application properties,

especially when exploiting the parallelism of a distributed memory, message passing mul

tiprocessor. This paper systematically investigates various aspects of the structure and

performance of direct methods for solving sparse, nonsymmetric linear systems from PDE

applications on hypercube machines. a geometric approach is. used to construct and test

these POE solvers. The performance data on the NCUBE are reported which provide the

guidance for blending algorithm components to achieve high performance and for creating

new, efficient POE solvers.
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1. INTRODUCTION

The process of solving elliptic partial differential equation (PDE) problems on a

distributed multiprocessor can be divided into four major components: discretization,

assignment, indexing and solution. Discretization means that a PDE problem is

- approximated-- by- a -se~--of-discrete-algebraic -equations. An assignment-means_-thaLthe_

discrete equations and the associated subtasks are assigned to processors. Indexing

means that equations and unknowns are given an order, which establishes a system of

linear algebraic equations. Solution means applying a numerical methods (solver) to

solve this algebraic system. Potentially, one can apply any kind of algorithm in each of

these fOUf components. Various combinations of these algorithms will, of course, have

different perfonnances. Our Parallel ELLPACK system provides a test bed for evaluat

ing the performance of such combinations [Houstis, Rice, and Papatheodorou, 1989].

Direct and iterative methods are the two major types of algebraic solution algo

rithms. We consider the fonner in this paper, specifically, sparse matrix solvers. There

has been a lot of work on developing parallel algorithms for solving sparse systems

using Gauss elimination (e.g., [Duff, 1986J, [George, Heath, Liu, Ng, 1988], [Mu, Rice,

1989a]). The useful concept of elimination tree is first introduced from the algebraic

point of view for the sparse structure of matrices. Given a symmetric matrix: A, one

determines the sparse structure of its Cholesky factor L with A = LL T by applying sym

bolic factorization to A and then defines the elimination tree of A from the structure of

L with each tree node corresponding to one unknown. This tree reflects the dependency

of unknowns during elimination and thus shows the constraints on the order in which

unknowns can be eliminated using Gauss elimination. This tree can be used to exploit

the parallelisms available in the elimination. If A is nonsymmetric, the definition of the

elimination tree is not as natural. One can use traditional elimination trees by doing

either a symbolic Cholesky factorization on AT A (or A + AT) for the coefficient matrix

A [George, Liu, Ng, 1988] or a modified symbolic LU factorization with "worse case"

assumptions in the fill [George and Ng, 1988]. Note that the shape of this tree directly

affects the effectiveness of parallelism in the elimination. A "well shaped" elimination

tree should be balanced, wide and shon. One can improve tree shapes by reordering the

unknowns and equations [Liu, 1988], this is one goal of the indexing component. How

ever, an optimal indexing for the best tree shape to exploit parallelism is in general not

optimal for the lowest fill-in which minimizes the arithmetic work. This situation illus

trates the general fact that one cannot blindly and independently optimize the four com

ponents of a sparse matrix PDE solver. The algorithms must be "blended" together

and there is unlikely to be any algorithm for one component that is unconditionly
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optimal. The purpose of this paper is to explore the interaction between the algorithms

(both old and new) for different components and to provide guidance for the consrruc

tion of good PDE solvers using sparse matrix methods suitable for particular problems

or computing environments. We concentrate on the hypercube architecture, but most of

the considerations are applicable to other parallel maGhlnes.

The shortcomings of the standard algebraic, sparse matrix approaches for PDE

applications are outlined. First, these approaches start with a symbolic factorization for

generating an elimination tree. This is appropriate for some applications where many

linear systems with the same coefficient matrix and different right hand sides need to be

solved. However, it is not appropriate for many PDE software frameworks, such as

ELLPACK, where the factorization is normally used only once and where the informa

tion generated. by the symbolic phase can be much more easily obtained from the physi

cal and geometric properties of the given PDE and the discretization. Therefore, the

symbolic factorization is really an extra expense for each run. Second, the above treat

ments for nonsymmetry are not very efficient for PDE applications. Third, the efforts to

develop indexing to balance parallelism and fill-in are too limited in scope, the whole

problem solving process must be considered. Finally, and most importantly, it is very

hard to appropriately tailor and couple all major components to provide optimal overall

performance in solving a given PDE problem. In other words, they may be good

approaches for very general and pure algebraic problems, but not as efficient for PDE

applications as they do not allow one to easily exploit the special structure of such

problems. As argued. in [Rice, 1986], linear algebra is not the right model for develop

ing methods for PDEs and it is particularly inappropriate for parallel methods. A simi

lar conclusion is reached. in [Chan, 1988] by another line of reasoning.

A geometric (or physical) approach to develop parallel sparse solvers for solving

PDE problems is proposed in [Mu and Rice, 1989a], which has several advantages. By

extending the conventional elimination tree concept to a block one, we naturally allow

non-symmetry in the linear system and totally avoid symbolic factorization. This leads

to a well shaped. (block) elimination tree, and also allows one to flexibly combine vari

ous methods in different regions according to the local properties of the geometry and

physics. One is better able to tailor discretization, assignment, indexing and solution

components to achieve a satisfactory overall performance. We use this geometric

approach in this paper and systematically examine the four major components. Finally.

the structure of the implementation appropriate for this approach, as developed for the

Parallel ELLPACK system, is presented. It has been implemented on the NCUBE and

can be used as a tool for developing and testing algorithms for each of the major
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components for solving PDE problems.

I. a. Components of Sparse PDE Solvers on Hypercubes

We start with a listing and brief description of the algorithmic components we

may choose to create a parallel sparse matrix solver for elliptic PDEs on a hypercube

(or other distributed memory parallel computers):-This list probably contains a number

of concepts and items which are unfamiliar to most readers. These are described later

but we feel it is better to start with a "top down" approach and present a whole picture

of the structure first and then :fill in the details.

A representative of each of the ten components we identify need not appear in

every solver. Funher, there is not a unique order in which to select these components,

so a "flow chan" or sequential set of steps for the algorithm construction is not

appropriate either. Due to the high complexity of the creation of such algorilhms, our

approach is to choose one general path (our favorite, of course) through these com

ponents and discuss various alternatives along the way. Thus we do touch upon all the

major choices for components and variations of this path leads to most of the existing

algorithms. However, there are algorithms which we do not discuss and we may well

be overlooking paths and selections of components that create new algorithms with

superior perfonnance characteristics.

For each component we provide a name, a very brief description and a few exam

ple algorithmic choices.

1. Domain Decomposition. The strategy to divide the domains (or linear alge

bra problem) into large pieces that are completely or relatively independent

of one another. This leads to creating a block elimination tree for the result

ing linear system. Example components include:

Nested dissection

Super nodes

Static condensation

Node amalgamation

Square mesh

2. Interface Organization. The large pieces created by domain decomposition

usually have blocks that are completely independent leaving smaller pan

(interfaces or separators) of the problem which involves more than one

block. This pan can be amalgamated into a single system or internally

organized in various ways. Examples:

Nested dissection separators Capacirance matrix
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3. Matrix Orientation. The matrix problem can be organized in several ways.

The PDE source of the matrix problem makes organization by rows the most

desirable and, to simplify things a little, we only consider rows here. Within

these organizations there are various choices for specific sparse matrix data

-structfues;---Examptes: -

Rows Columns Blocks

4. Discretization. This is the technique used to approximate the continuous

PDE problem by a linear system. Examples:

Ordinary finite differences

High order differences

Collocation with cubic splines

Galerkin with Hermite cubics

For simplicity, we assume all these lead to linear systems with the same

"general" sparse matrix nature.

5. Parallelism Organization. Parallelism can be exploited at four different lev

els:

5-1: Subdomains. The completely independent pieces created by domain

decomposition may be processed in paralleL

5-2: Within Interface. Groups of equations at the nodes of the elimination

tree (with various sets of interface equations) often include some

independent equations even after the 5-1 eliminations are complete.

5-3: For One Unknown. The elimination of an unknown can be carried

out independently in all the equations containing it.

5-4: Within an Equation. The operations on an equation used to eliminate

an unknown in it usually involve many independent tasks.

The work done in parallel at these levels can be organized in many ways,

often intermixing the various levels. Examples:

Fan-out Fan-in Mu/tijroma/

6. Nodal Indexing. Within each node the indexing (elimination order) can be

chosen in many ways. At the subdomain level (parallelism 5·1) all the

sequential indexings can be considered. In the separator or interface groups

(nonleaf nodes of the elimination tree) many of these indexing can still be

applied. ExampleS:
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Minimum degree Nested disseco"on Random

7. Node Assignments. The equations at the nodes of the elimination tree are

assigned to processors (and their memories) in a fashion intended to minim

ize communication costs. Examples:

Subtree-subcube Grid-based subtree-subcube

8. Internal Node Assignments. Nodes at higher levels of the elimination usu

ally have several processors assigned to them. The equations within a node

must then be distributed among these processors. Examples:

Local wrapping Grid-based

9. Communication Protocol. Information between processors can be sent at

various times; the objective is not to delay other processors nor to spend too

much effort in communication. Examples:

Write as soon as possible

Read as soon as possible

Pipelined

Read as lale as possible

10. Back Solve. Almost all the work is in factorizing the coefficient matrix and

almost every thing in the previous nine components is oriented toward this

task. The back solve phase of solving the PDE must start with whatever is

left from the factorization. Since it is very difficult to exploit parallelism in

the solution of sparse triangular linear systems, this phase is relatively much

more expensive for parallel computation. Examples:

Fan-in Fan-out Copied blocks Cyclic

Finally, we note that the path we choose in selecting components is based in cer

tain directions due to the PDE source assumed for the sparse matrix problem.

*

*

Pivoting is not required because the problem is elliptic. For some discreriza

tions it may be necessary to use small diagonal blocks as •'pivots" rather

than single matrix elements.

The problems are non-symmetric. The lack of symmetry can arise from the

PDE itself, from the discretization used, from the domain, or from the boun

dary conditions.
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II. A GEOMETRIC APPROACH TO DEVELOP PARALLEL PDE SOLVERS

n. a. Domain Decomposition and Block Elimination Trees.

A geometric (or physical) approach based on domain decomposition to develop

parallel PDE solvers is briefly described in this section. For simplicity, we consider a

PDE problem on a rectangular domain n.- The approach cali be extended easily to - g e ~

era! domains. Suppose we have p(= 22d) processors available, 2d in each direction. By

a square mesh partition Q is divided into p subdomains Qij, i, j = 1, 2, ...• P 112 as

shown in Figure 2.1. One puts a local grid on each subdornain Q ij and discretizes the

local problem whose solution Uij only depends on unknowns at grid points of anij , the

boundary of Qjj. These unknows are the interface unknowns.

On 0'2 0 13 0'4

flz, 0 22 fln 0 24

0 31 0 32 0 33 0 34

0., 0.2 0.3 n..

Figure 2.1. Square mesh domain paniticn of a rectangle into p = 2
2d

subdomains for

d ~2.

Initially, all interior unknowns Uij are eliminated locally as in the standard domain

decomposition approach. This step is obviously totally parallel among all subdomains.

Then, all processors participate in eliminating interface unknowns. To exploit parallel

ism better, we use dissection in alternating directions to partition the interface set into

several levels suitable for a hypercube machine. each level consists of several separa

tors. groups of unknowns which separate regions. The partition, which we call the one

way nested dissection decomposition, is shown by Figure 2.2 with circles representing

the unknowns interior to the subdomain Qjj. the boxes representing the separators.

For simplicity, they are a11 called subdomains of this domain decomposition and are

numbered from top level to bottom level as shown in Figure 2.2.
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Figure 2.2. Partition of the subdomain interfaces in Figure 2.1 using one way nested

dissection. The circles (16-31) represent the 16 groups of interior

unknowns and the boxes represent groups of interface unknowns or

separators. All boxes of the same size are on the same level of the block

elimination tree. (See Figure 2.3.)

This domain decomposition naturally inherits cenain parallelism because the PDE

discretization process leads to a local or boundary dependence property for interfaces.

For example, if we consider the union of subdornains 16,17,8 as a more general sub

domain n'g then the local interior solution set U'8 is uniquely detennined by

unknowns on an'g. This relation holds similarly for groups at higher levels of the

dissection decompositions. This local dependency can be described by a binary tree as

shown in Figure 2.3 with each tree node corresponding to a subdomain in the decompo

sition as shown in Figure 2.2. We call it a block elimination tree because it plays a

role similar to that of the standard elimination tree in exploiting parallelism. However,

each node now corresponds to a block of unknowns and equations, rather than a single

unknown and equation. In addition, the tree has an excellent shape suitable for exploit

ing parallelism. Thus, the top level data structure preserves the symmetry and balance

derived from the nested dissection domain decomposition even though the linear system

itself might not be symmetric and its indexing might not be exactly nested dissection.

Such lack of symmetry occurs in PDEs from, for example, (a) lower order derivative

terms, (b) mixed boundary conditions, (c) irregular geometry, or (d) nonsymmetric

discretization such as collocation with bicubic Hermite piecewise polynomials.
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Discussion of the indexing issue is deferred to in Section IV. In summary, we are seek

ing the parallelism in the block sense no matter what local properties the linear system

has locally. This block elimination tree has the following properties: (a) Each node

corresponds to a set of unknowns from one location, local ordering and lack of sym

metry in _the lineaL_system do llo.t __affe.ct the tree strucJW:e.._ (b) EliIIJinat:iI1g. _~ node only

has effects on its ancestors. (c) The elimination of nodes that are not

descendants/ancestors of one another are independent of one another. It thus implies

several basic rules for assignment, indexing and solution to exploit the full parallelism

inherent in the block elimination tree.

leveI4(y)

level 3(x)

level 2(y)

level l(x)

level 0

Figurii-2.3. Block elimination tree produced by one way nested -dissection domain

decomposition. The numbering of nodes corresponds to the groups of

unknowns in Figure 2.2, the x, y levels refer to the directions of the bisec

tion.

This approach gives a block elimination tree with a very simple data srructure, one

does not have to store it and its manipulation is also very efficient. For cases arise from

standard nested dissection or a nonrectangular domain where the trees are not c o m ~

pletely binary, they can be handled by introducing some empty nodes as described in

EMu, Rice, 1990.].

This block tree fonnulation includes or is closely related to previous similar

approaches, such as the node amalgamation in multifrontal methods [Duff, 1986], the

supernode in symbolic factorization and the compute-ahead, fan-in Cholesky factoriza

tion [Liu, Ng and Peyton, 1990] as well as in sparse factorization on workstations

[Rothberg and Gupta, 1990], and even earlier, the static condensation technique in

finite element methods. Note that this approach allows general local irregularities
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during the whole PDE solution process, such as the lack of symmetry in the elimination

tree representation.

IT.b. Parallelism

There are four-kinas-bf-p-oterttial--paralle1ism i-n these problems. First; elimination

steps in independent nodes (nodes not ancestors/descendents of one another) of the

block elimination tree can execute simultaneously. To see this, consider two indepen

dent nodes Sand T. Property (b) above says that eliminating S and T will not affect

with each other, while property (c) means that the effects on their common ancestors, if

any. are also independent. Therefore. we can independently start to eliminate a node as

soon as all of irs descendants have been eliminated. We call this the outer parallelism.

Second, if there are several processors available for a single node, we can also exploit

inner parallelism within the node. This does not occur at leaf nodes if each leaf node

has only one processor as is usual. For the other nodes we can apply various efficient

parallel dense solvers to explOit the inner parallelism. Third, the tasks to modify an

equation to eliminate an unknown (or simply, a modification) are independent for

different equations, just as for dense matrices. Finally and fourth, modifications, even

on the same equation, due to independent descendant nodes can be performed in arbi

trary order and hence in parallel. Different ways of exploiting these kinds of parallel

isms iLan .algorithm organization generate different parallel algorithms. Example

organizations include fan-out [George, et al., 1988], fan-in [Ashcraft, et aI., 1990],

multifrontal [Duff, 1986], and a new Gauss elimination organization [Mu, Rice,

1990b]. Some of these are discussed in more detail in Section V.

1lI. DISCRETIZATION

By discretization, we mean both discretizing a geometric domain by a grid or ele

ments and approximating a PDE operator by a set of discrete algebraic equations.

Potentially, local grids (geometric discretization) and local discrete systems (POE

discretization) can be different depending on the local geometric and physical proper

ties. In other words, each tree node can have its own discretization. For example, with

a nonrectangular domain n, a rriangular subdomain would have a triangular finite ele

ment grid while a rectangle subdomain could have a simpler tensor product grid. Even

with a rectangular domain n and a uniform domain decomposition one might put

coarser grids on subdomains near an for the sake of load balancing [Zmijiwski, 1989]

or put finer grids on certain subdomains where some physical singularities are

presented. As to PDE discretization, one might apply a Galerkin finite element scheme
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[Strang, Fix, 1973] on cenain subdomains where the local physical problems are well

presented in an energy fonn, a finite difference or collocation scheme [Forsythe,

Wasow, 1960], [Houstis, Mitchell, Rice, 1985] on subdomains where the PDE operator

is in a more general form. For properly coupling these local algebraic systems on the

interfaces of subdomains, see [Rice, 1989].

IV. ASSIGNMENT

By assigning an unknown to a processor we mean assigning both the problem data

and the computation subtask associated with this unknown. From the algebraic point of

view, these are basically row-wise assignments. To achieve high parallelism, load

balancing and low communication costs, it is generally required to (a) avoid assigning

independent nodes [0 the same processor, and (b) assign processors to a single node so

as to have minimal communication connections. The standard wrapping assignment is

not as effective here even though it achieves load balancing.

In [George, Liu, Ng, 1987] an attractive subtree·subcube with local wrapping

assignment is proposed. We refer to it as the standard subtree-subcube assignment. It

is a top to bottom process. First. the root node of the elimination tree is assigned to the

whole hyperCUbe and then the hypercube is split into two subcubes to which the two

descendent subtrees are assigned. This process goes on recursively until all subtrees

become assigned to single processors. The assignment within each node is simply in

wrapping manner. Note that: (a) eliminating an unknown in a node need not affect all

of its ancestor nodes, and (b) even when effects occur in some ancestor nodes, they

need not affect all equations in them. Geometrically, the effect of elimination spreads

in a multifrontal manner with each processor starting with one subdomain and continu

ing to work on ·'merged" domains containing it as interface (separator) unknowns are

eliminated. However, one cannot represent these properties completely by elimination

trees and yet they may affect the parallel efficiency very much. This suggests that

unknown assignments be made in a multifrontal manner with a processor responsible

only for those unknowns located at the fronts of some nodes to which the processor has

been assigned. If several processors (usually a subcube) correspond to the same set of

unknowns, then local wrapping can be applied within this set. This is made more pre

cise below.

We define the grid based subtree·subcube assignment as follows. It is a boHom

to top assignment process. Let us denote the levels in the block elimination tree from

bottom to top by 0, l(x), 2(y), 3(x). 4(y), . .. as in Figure 2.3. The x and y refer to

the horizontal (j or x) and vertical (i or y) directions, respectively. The process is
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related [0 Figure 2.2 where level zero consists of the leaves, lex) consists of the eight

separators 8-15, 2(y) consists of the 4 separators 4-7, 3(x) consists of separators 2 and

3, and 4(y) consists of separator 1. The first step is to map the given hypercube to a

two dimensional grid (for domain decomposition) by the well-known gray code such

that adjacenLproceSSQ[s are djrectly c o n n ~ ~ d Mt4. nij. is assigned to p_roce~sor Pij .

This defines the assignment at the leaves of the block elimination ttee, the 0 level.

Next, we subdivide each separator on the (i + l)SI(x) level and the i th (y) level into 2i /2

segments. This subdivision of separators corresponds to the natural geometric seg

ments along the separators of the domain decomposition. We lake care of the intersec

tion points of adjacent segments in each separator by adding an intersection point to its

top (left) segment for the x(y) direction. Then we assign each segment on the i 'h level

to the closest processors as follows: for i odd (x direction) use 2(i + 1)12 processors, for

i even (y direction) use 2i12 processors. The assignment within each segment uses

wrapping. This scheme is illustrated in Figure 4.1. Thus, processors P 11 and P 12 are

assigned to the interface unknowns of separator 8 (the upper left box in Figure 4.1).

For comparison Figure 4.2 illustrates the standard subtree-subcube assignment strategy.

The potential of this assignment for reducing communication is seen by eXamining

separator 4 which is the top, left horizontal box in Figures 2.2, 4.1 and 4.2. In Figure

4.1 we see the unknowns of seperator 4 divided into two separate groups (segments).

In the grid based s u b t r e e ~ s u b c u b e assignment (Figure 4.1), the processors P 11 and P21

only handle the interface between the two subdomains (16 and 18) they handled at the

lower level. In the standard subtree-subcube assignment (Figure 4.2), the processors

P 11 and P21 are part of a group of processors handling the four sllbdomains (16, 17, 18

and 19). Thus P11 and P21 must now obtain information about subdomains 17 and 19

at this step while this is not required in the grid based subtree-subcube assignment.

This reduction in the communication occurs in a similar manner for every separator.

In [George, Liu, Ng, 1987] it is proved that the total amount (or volume) of com

munication for the standard subtree-subcube assignment is 0 (PN). This order is

optimal in the sense of minimizing traffic volume for nested dissection algorithms, our

grid based subtree-subcube assignment has the same optimal order as the analysis in

[George, Liu, Ng, 1987] applies for all types of subtree-subcllbe assignments. We give

an analysis in [Mu, Rice, 1989b] which provides estimates for the communication com

plexity of start ups as well as of traffic volume for both assignments when applied to a

modified nested dissection indexing and fan-out organizations as described in Sections

5 and 6, respectively. The grid based subtree-subcube assignment gains an additional

o (log 2P) reduction in start up cost compared to the standard assignment, and that it
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achieves the optimal order of start ups for the nested dissection algorithms. As a by

product, this assignment also reduces the volume of communication by a factor of about

two. For more details. see [Mu, Rice, 1989b].

r=
- -
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P" - - ~

P" P" P" P" P"
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P" P" P.,
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P" PM PM - -
L..:

Figure 4.1. Grid based subtree-subcube assignment for 16 processors. Within the sub

domain interfaces we show how the processors are assigned to unknowns

in parts of the separators.
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Figure 4.2. Standard subtree-subcube assignment for 16 processors. Within each box

unknowns are assigned in wrapping manner to processors shown in the

box.

V. INDEXING

Two important characteristics of a parallel sparse solver are the parallelism and the

fill-in, both of which depend on the indexing used. On a message-passing, distributed

memory machine, the amount of communication involved is also a very important

characteristic. The nested dissection ordering generates well shaped elimination trees

and preserves moderately low fill-in and is thus currently widely recommended for

parallel sparse computations. However, we notice that there exist orderings. such as

minimum degree. which may have less fill-in than nested dissection does [Liu, 1989],

especially for irregular domains where nested dissection is not as efficient. But these

fill-in oriented orderings often generate poorly shaped elimination trees and are there

fore less well suited for parallel computation. Several questions are appropriate here.

First, are there indexings which preserve good parallelism and which have fill-in lower

than nested dissection? Second, we expect nested dissection to be efficient primarily
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for regular, or nearly rectangular domains of solving the PDE. How should one modify

the nested dissection domain partitioning strategy for mOre general domains? Third, is

the conununication cost for nested dissection nearly minimal?

We know of no work on the first question but conjecture that the fill-in using

nested dissection is rather low. There is-extensive-work related to the second question.

Many people are using geometry based heuristic methods for PDE problems. see

[Chrisochoides. HOllStiS, Papachiou, Kortesis and Rice, 1990J for an example and refer

ences to other recent literature. There is some related work from an algebraic approach,

for example, [Liu, 1988] improves the parallelism using rotation. We believe the alge

braic approaches are not well suited for this problem in POE applications compared to

the geometric approaches. Most effons related to the third question involve assigning

the processors well. The mU/lifronta/ idea described in the last section is an attractive

geometry based approach as one can visualize keeping the elimination froms separated

and thus not requiring as much communication. We see that the goals of low fill-in,

high parallelism and low communication require blending the algorithms in order to

preserve their best features. In the remainder of this section we illustrate how to create

an indexing by blending ideas from the nested dissection, minimum degree and mul

tifrontal methods. We then show how to further tailor the indexing to improve load

balancing. From now on we generically use minimum degree to mean whatever

indexing generates the lowest fill-in to a given set of unknowns. The classic minimum

degree is not necessarily the only choice because it is a heuristic algorithm and some

times is not the best one.

V.a. The Combination of Nested Dissection, Minimum Degree and Mul

tifrontal Techniques

The one way nested dissection domain decomposition insures that the parallelism

is as high as that of standard nested dissection and it keeps the fill-in from eliminating

interface unknowns fairly low. It retains the advantage of nested dissection at the stage

of eliminating interface unknowns because it keeps the number of them to be 0 (N 1/2),

a lower order compared to the number N of total unknowns. We believe that parallel

ism is more imponant than fill-in at this stage. However, we do not perform the dissec

tion all the way on the linear system (using incomplete nested dissection) in order to

minimize its disadvantages. Recall that we are interested in the case where p, the

number of processors or subdomains Q ij is much less than the number N of unknowns.

Therefore. performing the nested dissection domain decomposition is both more

efficient and easier than doing the complete (or standard) dissection of the linear
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system. Further, because each Qjj is usually assigned to a single processor, the elimi

nation within Qjj is, therefore, essentially a sequential computation. So fill-in is more

important than parallelism at this stage and we should use a minimum degree indexing

for reducing fill-in. However, there is also communication involved at this stage even

though it is .computationally sequential within eac.h subdomain. Both nested dissection

and minimum degree are not good in this respect since they make the elimination fronts

involve interfaces at the very beginning. To minimize communication at this stage, we

apply a multifrontal scheme as shown in Figure 5.1.

Denote the boundary layer of grid points in Q ij (those next to anij) by Bij'

Without loss of generality assume that only unknowns on Bij are related to [hose on

aQij in the linear system, such as five point star would generate. We first eliminate

the unknowns on the interior of Q ij using a minimum degree ordering. There is no

communication required at this stage. Then the unknowns on Bij are eliminated. These

unknowns and equations are linked to the interface unknowns in the separators so

inter-processor communication is involved. For some other PDE discretizations in Qij.

the boundary layer Bij will be thicker but it is still relatively thin.

This new indexing exploits the advantages of all techniques involved. For fill-in,

it achieves the same order as the optimal indexing scheme would, (such as minimum

degree used locally in Qij) because the order of the fill-in generated by the 0 (N l12
)

interface unknowns is not worse than 0 (N). Its parallelism is comparable to that of

nested dissection since it is essentially sequential in each Qij. It also reduces the com

munication start ups to an order of O(Nlp) compared to the standard nested dissection

and, together with our new grid-based subtree-subcube assignment, achieves the optimal

orders of communication for both start ups and message volume [Mu, Rice. 1989b].

If the hardware favors collecting messages for bulk: communication, then this

approach is compatible as all the boundary lines are separately identified and easily

associated with communication destinations. For improving communication efficiency,

Zmijiwski proves that the fan-in organization ([Zmijiwski, 1989], [Ashcraft, et al.,

1990]) achieves the same effect as our multifrontal variation of indexing. However, the

fan-in scheme can only be applied to symmetric matrices as pointed out in [Mu, Rice,

1990b]. On the other hand. [Liu, 1989] uses an idea similar to that presented above to

reduce the sensitivity of minimum degree to the initial matrix ordering by mixing the

classic minimum degree with nested dissection. Liu remarks on its application in

parallel computation; he does not consider the rnultifrontal approach.
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Interior of

Q;j

(minimum degree ordering)
1

Figure 5.1. View of a typical subdomain D.ij of the domain decomposition. In the

PDE discretization there are k2 unknowns (grid points) in Qij, (k - 2)2 in

the interior and no = 4(k - 1) in B ij • the boundary layer (dashed area).

The separators (shown as boxes) are lines of grid. points separating the

subdomains.

V.b. Local Indexing for Seperators and Local Balance

The local indexing in the interface separators has little effect on computation and

fill-in since the local problems are almost dense by the time elimination comes. With a

subtree-subcube assignment it also does not affect communication much. The simplest

local indexing in a separator is a geometric wrapping. But, as we have seen in Section

IV, the assignment within each separator does affect communication substantially and

the grid-based subtree-subcube segment-wise assignment strategy achieves the optimal

communication order. If we couple this assignment with the local geometric wrapping

indexing, then the assignment for the local dense problem in each separator is handled

algebraicly in a block manner. It is well known that the algebraic wrapping assignment

achieve better load balance for a dense system than a block one does [Geist, Heath,

1986]. Therefore, we also need to modify the local indexing in order to couple the

efficient assignment strategy and to achieve a good local balance. One simple remedy

is to do local indexing also in a segment-wise manner similar to that of the assignment
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as illustrated in Figure 5.2 and its performance is shown in Section Vill.

10Q2® _'0®®
segment 1 segment 2

_$00@
segment 3

$~®@
segment 4

Figure 5.2 The segmentwise-wrapping local indexing in a typical separator.

VI. SOLUTION

VI. a. Factorization

The potential parallelism inherent in the block elimination tree provides many

ways to develop parallel algorithms. While the fan-in organization is efficient for data

srructure manipulation and communication, it is essentially restricted to symmetric

mattices or. a shared-memory environment. Therefore, we mainly consider fan-out

schemes. We first discuss the commonly used pipelining idea whose philosophy in the

context of sparse matrix algorithm is «as soon as something needed by another proces

s 5 ~ ~ is computed, send it off so the other processor will not have to wait on it". This is

clearly a good idea for increasing the effectiveness of parallelism as it reduces syn

chronization delays. If we paraphrase this idea as "write as soon as possible" we see

that there is also a corresponding strategy for reading, namely, anything between the

extremes of "read as soon as possible" to "read as late as possible". Abstractly, the

"read as late as possible" strategy should be preferred for this, again, minimizes the

synchronization delays. That is, a processor should keep busy computing the results

that it and others need so others will have to wait as little as possible on it.

A high level algorithmic description of a pipelined distributed sparse algorithm of

LV factorization by Gauss elimination for a processor P, as in the module PARALLEL

SPARSE, is as follows.

for level I from bottom to top, do:

for each node S, with equations assigned to p. on levell, do:

if I = 0, then

elim_local(S)

else
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elim--l:lobal(S)

elinUocal(S)

endif

endif

.end of Sloop

end of 1loop

The procedure eHm_local(S) is where processor P participates in eliminating unknowns

in S by perfonning the associated modifications on equations assigned to P. For those

equations of S assigned to P, it also calculates the corresponding multiplier vectors and

sends them to other processors. When level / = 0, one usually assigns S to only one

processor and in this case elim_local is a sequential sparse solver. Otherwise, it is a

sort of parallel dense solver using processors assigned to S.

The procedure eHm_global(S) is where processor P perfonns the modifications on

its equations due to eliminating unknowns in the descendants of S in the block elimina

tion tree which have no equations assigned to P. Therefore, the effects of elimination at

these nodes have not been processed by P unit! elim_global(S). The pipelining idea

applied here is for P to stan elim_local(S). and send the multiplier vectors to other pro

cessors as early as possible. It only processes the modifications in elim_global(S) due

to eliminating unknowns in the descendants of S without waiting for the completion of

eliminating other nodes independent of S. even though the associated modifications are

ready for this. This is pipelining in the block sense. Within elim local(S) a similar

pipelining idea, as in dense solvers (e.g., [Geist, Heath, 1986]), can also be applied. In

this case. if P has several equations to be modified by a pivot row it first processes the

first one among them. then checks if that row is the next pivot equation. and if so, send

it out immediately. It then resumes completing the modifications on the remaining

equations.

For a subtree-subcube type assignment. there is an eliminarion parh for each pro

cessor P in the block elimination tree from bottom to top with exactly one assigned

node S/ on each levell for l = 0, 1•...• L. Therefore. the general sparse algorithm can

be simplified as follows.

elim_local(S0)

for/-I toL,do:

elim--l:lobal(S,)

elim_local(S,)
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end of [loop

Ideally, a processor should interrupt its computation to read messages only when it

actually needs the message. However, one observes that those authors who say what

-they are doing in this-regard tend-to use the "read as soon as possible" strategy. We

believe the reason for this apparently illogical choice is as follows. The combination of

«write as soon as possible" and "read as late as possible" means that messages accu

mulate somewhere (in system buffers) between the writing and reading. These buffers

are not huge (one rarely can discover their size easily, they are a little bit larger on the

NCUBE 2 than the NCUBE 1), say 25,000 bytes, and when they overflow 'he results

are usually unpredictable, drastic, and hard [0 diagnose. Thus the "read as soon as pos

sible" strategy becomes attractive even though it does increase synchronization delays.

Just how much the delay is increased is hard to measure, but it is surely some.

The primary trouble with buffers currently may be their implementations, but the

size problem is inherent in the computation. A problem with 256 subdomains, each

with a 100 by 100 grid has about 100,000 subdomain boundary points which result in

messages being sent. If the computation were perfectly balanced, all these messages

would be sent before any was read. Recall that a single message may go to many pro

cessors and it is many bytes along. The system communication buffers would require

several hundred megabytes of memory, so the "read as late as possible" strategy for

pipelining is unlikely to be useful for sparse matrix algorithms on hypercubes. How

ever, it is plausible that something better than "read as soon as possible" can be dev

ised. Of course. a system option (hardware implemented) for a "full buffer interrupt"

could lead to both efficient computation and modest buffer size. We also notice that

recently [Ashcraft. Eisenstat. Liu, Peyton and Sennen. 1990] proposes a compute

ahead fan-in Cholesky scheme to reduce the synchronization delays in the "read as

soon as possible" strategy.

To maximize the potential pipelining for a given problem on a machine with a

known buffer limit, we introduce a new primative read_mod in elim)ocal. Suppose

there are n equations eqns;. i = I•...• n in node S. An algOrithmic description of

eHm)ocal is given as follows.

elimJocal(S)

for i = 1, ...• n. do

if mod(i,m) = 0, then

for j = 1, ..., k do
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read_mod

end j loop

endif

eHm_eqn (eqns)

__end Lloop

Two parameters m and k are used here. The procedure eHm_eqn(eqnE) has processor P

participating in eliminating eqnE. The procedure read_mod involves a non-blocking

read from each of the other processors, Le., processor P tests for each processor Q

whether there has been a pivot equation sent from Q which is ready for P to use. If so,

P reads the message from the communication buffer and perfonns the associated

modifications. For each cycle of an interval of m equations in S the procedure

read_mod is executed k times. The smaller m is, the fewer read interrupts P has.

When m ::;: I, P interrupts for read mod before processing each equation in S. When

m = n + I, P never interrupts and the algorithm thus reduces to the complete pipelining

version. On the other hand, the larger k is, the longer P delays at each interruption in

order to clear the communication buffer some before processing the next equation.

This approach has been tested in the NCUBE and it does help increase the size of

problems solvable but not very much. For example, using the complete pipelining

algori~hm (k = 0) to solve a PDE problem on a 37 x 37 ¢d made the NCUBE 1 sys

tem crash due to a communication buffer overwrote which overwrote the operating sys

tem (there was no system protection from this overflow). With (m,k) = (1,1), we could

solve problems up to a size 41 x 41 grid. On the other hand, the grid-based subtree

subcube assignment could solve larger problems than the standard subtree-subcube did.

We also tested it on the NCUBE 2 which has larger buffer size than the NCUBE 1. We

could only increase the solvable problem size up to a 49 x 49 grid before the same

trouble occurred. At any rate, for a given buffer size there is a limit, theoretically, to

the size of problems which can be solved for any given algorithm. This limitation is

very serious for direct solvers, in our experience, on currendy available machines

because direct solvers involve much more communication than iterative methods.

Efficiency is reduced in other ways by all the techniques we know to reduce this limita

tion, for example, splitting long messages into several small ones, increasing the fre

quency of interruptions, and synchronization delays.

The above factorization algorithm is basically a fan-out organization. Our experi

ments show that it is still rather inefficient even though the communication requirement

has been improved by our new assignment and indexing strategies. We find that there
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are two other big factors affecting its perfonnance. At first, it is more expensive in data

srructure manipulation than the symmetric matrix fan-in scheme. The other factor is

the extra cost in managing the column symbolic srrucrure due to the lack of symmetry.

We also find that it is inappropriate to use a unifonn organization or data structure

throughout the computation, especially for parallel computation, because the problem

structure varies widely during the process of Gauss elimination. Based on these con

siderations, a new efficient organization of Gauss elimination is proposed in [Mu, Rice,

199Gb] which uses the fan-in organization in ponions of the process as much as possi

ble and also employs different data structures at different stages. We illustrate its basic

idea as follows. This new algorithm is implemented as the module NEW GAUSS

ELIMINATION.

The linear system from the PDE problem can be written in its matrix form

Ax=f (6.1.)

with

A, B, x, f,

A2 B2 x2 f2

A= x= ,f= (6.lb),

Ap Bp xp fp

C, C2 Cp D xd fd

The matrices Ci and D contain all the elements of levels 1 to L. We first perform

Gauss elimination on the subdomain equations A;xj + B;Xd = fj to get

i = I, ...• P

(6.2.)

p

L CjXj + DXd = Cd
j =1

where

i = 1, ... , p (6.2b)

are the standard LU factorizations and

~ _ -1
B i -L; B i ,

The last set of equations is unchanged.

i = 1, ... , p (6.2c)
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The next step is to eliminate the subdomain unknowns [Xl, X2, ...• Xp]T from the

interface equations. From (6.2a), we have

U-1f U-1B-
Xj = i i - i jXd

and

i = 1, ... , P (6.3a)

(6.3b)

So, (6.1a) is transformed to

1
UiXi + SiXd = 1;

DXd = Cd

where

j = 1, ... , p

(6.4a)

- P l~
D = D - L CiUi Bi

i = I

This leads to the following algorithm.

Algorithm: A New Organization of Sparse Gauss Elimination.

(6.4b)

Factorization.

• for i = 1 to p, do

• compute Lj. Vi, Bj by performing Gauss elimination on subdomain

equations.

• compute Ri ( = UilBj ) by back substitution

end i loop

p "
• computeD(=D - L CiBi).

i = 1

• computer Ld • Ud(D = LdUd) by performing Gauss elimination on the

interface submatrix.

Solution.

• fori=ltopdo
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• computer f; and 1.-(L;7:· = fj , U;fj = 1.-) by fornrard and back

substitutions.

end i loop
p

• compute fdC = fd - L C.~)
i = 1--

• for i = 1 to p, do

"• compute f i ( = 1i - BjXd).

• compute Xj(UiXj = Ii) by back substitution.

end of i loop.

In the above algorithm, Li. Ui and Bj can be calculated in each processor by a

fan-in organization because they are totally local problems, neither the lack of sym

metry nor a DMMP architecture affects the application of the fan-in scheme to this pan.

Secondly, unlike in the standard approaches, the C pan of the matrix is never touched

here. This allows one to avoid monitoring the dynamic change of the symbolic struc

ture of the C pan. The communication between subdomains and interfaces can thus be

detennined statically. This also allows one to use a dense data structure for the D part

since its size is relatively small, which, in turn, makes the latter stages more efficient.

Finally, we apply the above fan-out parallel sparse solver to the factorization jj = LdUd

on the small interlace submatrix. For detailed discussions of this new scheme, see [Mu,

Rice, 199Gb].

VI. b Substitution

Back substitution on triangular linear system solution is difficult to speed up sub

stantially even for dense matrices [Eisenstat, Heath, Henkel and Romine, 1988], [Li,

Coleman, 1988]. For sparse matrices, reasonable speed up is even more difficult to

achieve. For example, [Ribbens, 1990] reports the results of an intense effort to speed

up the back solve for a PDE problem using ordinary finite differences and about 16

thousand equations. With from 4 to 16 processors, the maximum speed up achieved is

just over 2. This is a dismal result compared to what can be achieved in the factoriza

tion phase (or with iterative methods) in solving linear systems.

There are two phenomena here. First, the order of the back solve is essentially

sequential. Parallelism at the top level is available only in those blocks of the matrix

where domain decomposition has partitioned the equations into independent groups.

There seems to always be one large block which is not partitioned, and some of the

other blocks are not very small. Second, the amount of arithmetic in back substitution



- 24-

is dramatically reduced compared to factorization, but the amount of communication is

not. Since communication is very slow relative to arithmetic on current machines (and

we do not expect this to change soon), communication dominates the rime used.

The two paradigms of f a n ~ i n and fan-out are relevant to back substitution. The

fan-in- approach- -is-more- communication -efficient,- yet- not efficient -enough. One- can

attempt [Eisenstat, Heath, Henkel and Romine, 1988] to do part of the arithmetic on the

top part of the upper niangular systems concurrently with solving for unknowns on the

bottom part. If the problem is large enough, this cyclic approach evenrnally pays off,

but only for very large problems. The reason is that there is not enough arithmetic to

do in advance to compensate for the communication cost. Even if the communication

is completely overlapped with other work (and thus can be considered to be free), the

small amount of arithmetic to be done provides little benefit for modest sized systems.

Observe that most efficient methods for factorization leave the triangular system

poorly distributed among the processors for efficient back substitution. Almost every

rime a new unknown is to be found, the computation moves to another processor. The

idea of copied blocks [Mu and Rice, 1990c] remedies this at the cost of using additional

storage. The technique is to observe that in the factorization phase the pivot equations

are passed to processors for elimination purposes. These can be selectively saved so

that, at the end of the elimination, processor k has a copy of rows (k - l)Nlp + 1 to

kNlp for N equations and p processors. The back substitution is then carried out on the

copy of the triangular system and there are only p communication steps required rather

than the nearly N required if the triangular system is solved in its ordinary locations.

[Mu and Rice, 1990c] show that the compute ahead approach can be used with some

profit. It is, of course, difficult to evaluate the trade off between memory and time;

there are cases where each is the critical resource.

VII. IMPLEMENTATION

We briefly describe in this section the implementation of the geometric approach

as part of the current plO,otype of the Parallel ELLPACK system [Houstis, et al .• 1989].

The system structure consists of five phases as illustrated in Figure 7.1.

(1) Domain Decomposition

This phase is composed of two steps. At first, the ELLPACK domain processor

[Rice, Boisvert, 1985] discretizes a domain .Q to a domain-decoMposition-grid nd

using a tensor-product grid to numerically represent the geometry. Then we provide a
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domain decomposition module ONE-WAY-NESTED-DISSECfrON for perfonning the

decomposition as described in Section II. The output of this module is data for the

Parallel ELLPACK domain decomposition interface mainly consisting of two arrays

i9subd and i9intf which associate each subdomain element or interface grid point with

an id of a generalize_d subdornain (Qij or separator subdomain) of the dO_J!lain deC?'?I?P~

sirjan. The id is actually the corresponding node id of the subdomain in the elimination

tree. The geometric information of the domain decomposition is represented in this

data soucture in the same way as described in [HOllStiS. et aI. , 1989]. However, it also

provides the information of the elimination tree for the geometric approach. In other

words, i9subd represents the square mesh partition for .0, while i9intf represents the

further nested dissection decomposition in the separators for interfaces. An example is

illustrated in Figure 7.2 for a rectangular domain .0 with a 9 x 9 grid .Qd and a 2 x 2

square mesh is used for the domain partition.
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Domain

·E>ecomposition

Assignment
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Indexing

Domain
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Figure 7.1. The structure of parallel ELLPACK as it relates to the geometric approach

for parallel sparse matrix algorithms.
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Elimination

Tree

=

(~J 2 0)
-

I 1 I

0 3 (2)

i9subd

4 4 4 4 5 5 5 5

4 4 4 4 5 5 5 5

4 4 4 4 5 5 5 5

4 4 4 4 5 5 5 5

6 6 6 6 7 7 7 7

6 6 6 6 7 7 7 7

6 6 6 6 7 7 7 7

6 6 6 6 7 7 7 7

i9intf

0 0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0 0

1 i 1 1 1 1 1 1 1

0 0 0 0 3 0 0 0 0

0 0 0 0 3 0 0 0 0

0 0 0 0 3 0 0 0 0

0 0 0 0 3 0 0 0 0

Figure 7.2. A domain decomposition interface example.

(2) Assignment

An assignment module assigns each grid point in Qd to a processor, which sets the

output assignment interface mainly consisting of array i9assn. Two assignment

modules SUBTREE-SUBCUBE and GRID-SUBTREE-SUBCUBE have been imple

mented for standard subtree-subcube and grid-based-subtree-subcube. respectively.

There are two steps in these modules. At first. the real hypercube architecture is
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mapped to a virtual mesh architecture by the gray code. Then grid points are mapped

to the virtual mesh according to their geometric positions located from the domain

decomposition interface. An array i91eaf is also set which gives the corresponding leaf

node id in the elimination tree (the starting point of the elimination path to the root

node) for each_processor_ Both decomposition and assignment are .executed on the host

processor.

(3) Discretization

The discretization phase potentially consists of two steps. The first step is the

geometric discretization. Local grids are set by the domain processor for all sub

domains (or tree nodes) of the domains decomposition. The union of these local grids

fOnTIS the solution grid Q s which is used to discretize the POE problem and the rela

tion between Os and Qd is also established. In general, ns is different from nd and

usually much finer than nd • In many applications, such as multigrid methods, adaptive

methods by grid refinement (or h-version finite element methods), there are even a

sequence of solution grids ns1 , !ls2' ... with respect to one decomposition grid nd .

The second step is the PDE discretization. Local discrete equations are fonned

based on the local grids and the correspondence between unknowns and grid points in

ns are established. Notice that an unknown is not necessarily a function value at a grid

point -as-in the case of COLLOCATION methods.

The assignment of unknowns/equations to processors is implied in the following

way. For each unknown/equation, we first locate its related local grid point x in ns

then from the relation between ns and nd , a corresponding grid point X in Q d found.

Finally, the processor, with id = i9assn (X) from the assignment interface, is assigned

to this unknown/equation. The discretization computation is distributed among the pro

cessors.

(4) Indexing

This phase sets lhe standard ElLPACK indexing inrerface. For the sake of

representing the elimination tree structure, two arrays i9fst and i91st are also set which

give the indices of the first and last, respectively, unknown/equation for each tree node.

A module DISSECTION·MINIMUM DEGREE-FRONTAL for the indexing as

described in Section V has been implemented. The indexing is done globally by the

host processor.
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(5) Solution

The solution phase solves the linear system of algebraic equations. Two solution

modules, PARALLEL SPARSE and NEW GAUSS ELIMINATION, have been imple

mented for solving general nonsymmetric systems. The factorization algorithms used

are-described in See-tton -VI- and the -back -substitution- just uses 3- standard algorithm_

because no efficient parallel sparse triangular solvers are available so far. Therefore, we

only measure the performance of the factorization pan in the data below. A dynamic

data structure is used for PARALLEL SPARSE as described [Mu, Rice, 1990aJ. The

mixed data structure used for NEW GAUSS ELIMINAnON is presented in [Mu, Rice,

1990b]. The standard data structure in Para/lei EUPACK interfaces is converted. to the

local data structures by the corresponding driver routines in these solution modules.

VIII. PERFORMANCE EXPERIMENTS

We present experimental performance data on both the first and the second genera

tions of the NCUBE hypercube machines to show the effects and importance of blend

ing algorithm components in solving PDE problems. Our model problem is a Poisson

equation with Dirichlet boundary condition on a rectangular domain using the

geometric approach with five-point-star discretization. Even though the problem is

actually symmenic. we still treat it as a non-symmenic one since we want to examine

the effects of algorithms for general problelIl!ol,-_

It is not our intention here to present an exhaustive, or even nearly so, set of per

formance data on algorithms that can be created using the various componems. Our

intention is to show that the component choices have major effects on performance

(which is no surprise) and that they interact in strong ways with each other and the

hardware characteristics. Our thesis is that there is probably no universally best choice

for any of the algorithm components. If this thesis is correct, it is a discouraging con

clusion as it implies that achieving very high performance requires the continual crea

tion of sparse matrix algorithms which exploit the special properties of the PDE prob

lem and the hardware/software environment.

Our approach is to carry Out experiments when most of the algorithm components

are held fixed. We then vary a few components. often just one, observe the results and

suggest conclusions about performance in general. We are also able to make comparis

ons with some performance data published by others involving particular algorithm

components. Our experiments were on the NCUBE 1 and NCUBE 2 machines, usually

using 16 processors. We do not discuss their architecture here, see [Palmer, 1986], but

note that they have considerably different performance parameters and yet both have the
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low communication to computation speed ratios typical of hypercubes and distributed

memory machines in general.

Throughout these experiments we have the following four algorithm components

fixed.

Doinizrn decomposition: square mesh

Interface organization: alternating one way nested dissection hierarchy

Matrix organization: by rows

Discretization: ordinary finite differences

We first compare the performance of two assignments, the standard subtree

subcube and grid-based subttee-subcube, in Section IV. The module combinations are

listed in Table 8.1.

Table 8.1. Module combinations for testing assignment components.

Assignment SUBTREE-SUBCUBE (standard) I GRID-SUBTREE-SUBCUBE (grid)

Indexing DISSECTION-MINIMUM DEGREE-FRONTAL (wrapping in each seperator)

Solution PARALLEL SPARSE

Figure 8.1 shows the number of messages versus N l/2 for both standard and grid.

The total message volume versus N is shown in Figure 8.2. We can observe a substan

tial reduction in communication requirements using the grid assignment strategy.

Figures 8.3 and 8.4 then show the individual timing curves of the 16 processors

for the grid and standard assignments, respectively. We see that the former has a

worse load balance than the latter even though the fanner has more efficient communi

cation. The reason for the worse load balance, as discussed in Section V, is that we do

not couple the grid assignment with a compatible local indexing component. The one

used, in each separator, favors Ihe communicationally inefficient standard assignment.

Therefore, the overall algorithm performance still has not been improved very much.
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We next experimentally examine how the local indexing affects the load balance

and the overall performance. Four local indexings as described in Table 8.2 are tested

in the module D1SSECfrON-MINIMUM-DEGREE-FRONTAL. The segmentwise

wrapping for a separator in Table 8.2 is illustrated in Figure 5.2.

Table 8.2 Local indexing components used in the second experiment. The level refers

to level in the block elimination tree.

Type Description

0 wrapping in each separator (standard)

1 segrnentwise-wrapping in all separators

2 segmentwise-wrapping in the top level separator only

3 segmentwise-wrapping in all separators but the top level

The assignment and solution modules used are GRID-SUBTREE-SUBCUBE and

PARALLEL SPARSE, respectively, and the test problem is a 37 x 37 grid with 1225

unknowns using 16 processors on the NCUBE 1. The corresponding timing data are

listed in Table 8.3.

From Table 8.3 we draw the following conclusions. The local indexing has sub

_stantial effects on the load balance_and_the overall efficiency. But, these effects are hard

to predict. Sometimes, such as for type 2, one gets good load balance, but a worse

overall performance because keeping every processor equally busy does not imply

overall efficiency. This indexing might introduce more synchronization and so on.

None of the tested local indexings behave satisfactorily in both load balance and overall

performance. Some adaptive sttategies might help to achieve better results. In addi

tion, the load balance effects above only relate to the computation ordering; one could

also distribute the work differently. For example. the processors assigned to those

corner or boundary subdomains obviously have less work to do. Similar situations

occur if a PDE presents singularities and an adaptive grid is used. [Zmijiwski, 1989]

suggests to use unbalanced separators to balance the work load. If this is done then the

local indexing should also take this factor into account. We believe that this is a

moderate complication in the algorithms but worthwhile for achieving very high perfor

mance.
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Table 8.3 Timing data for different local indexings. The maximum and minimum are

over the sixteen processors of the NCUBE 1.

InJerface Indexing

Type Maximum timing Minimum timing

0 28.86 19.88

1 28.37 27.53

2 29.20 28.36

3 28.05 19.40

We next study some effects of how parallelism is exploited in the solution com

ponent. We fix the assignment component to be GRID-SUBTREE-SUBCUBE, the

indexing to be DISSECITON-MINIMUM DEGREE-FRONTAL with the type 2 local

indexing.

We explore some of the trade-offs among parallelism. data structure, sparsity,

communication pattern, algorithm organization and so on in the overall performance of

the nested dissection domain decomposition. For a 4 x 4 domain decomposition, as the

example of Section V, there are five levels in the elimination tree. We test five cases,

case e, e= 1, ... , 5. where nodes on the top t levels are grouped and treated as one dense

system, or a generalized node, to which elim_local is applied. The two exrreme cases

t = I, and 5, respectively, correspond to the full dissection decomposition and no

decomposition at all. The case t = 2 is where the standard domain decomposition (or

substructure) is applied and no further partition is used to the interlace equations.

Table 8.4 lists the maximum timing data for this experiment. It shows that the

efficiency of parallelism in using the sparsity represented in the elimination rree

decreases as the level moves from bottom to top.
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Table 8.4 Maximum execution time in seconds using sparsity and parallelism to

different extents within the block elimination tree.

Case I = 1 2 3 4 5

Maximum time 29.20 35.18 39.77 41.33 63.49

We next study how the lack of symmetry seriously degrades the perfonnance of

parallel sparse matrix Gauss elimination. As mentioned earlier, the algorithm of

PARALLEL SPARSE monitors the column symbolic structure (C-INFO) which is used

to generate the destination lists for communicating pivot equations (multicast tasks).

This requires both manipulating the C-INFO data structure and extra communication.

Our experiment is as follows. For the last (top) node of the elimination tree, we con

sider in eHmJocal that the multicast tasks are very close to broadcast tasks because the

problem at this stage is almost dense. Therefore, the multicast is replaced by the broad

cast and involving the C-INFO data structure is thus avoided. This approach cannot be

used for all nodes since it introduces too much synchronization for sparse matrices as

seen in Table 8.4. If one merely replaces the multicast by directly sending a message

to all other processors (not a broadcast since no syncronization), then it will not only

heavily increase the corrununication cost, but it also causes communication buffer

overflow problems. Because our test problem is actually symmetric, we can, for all

other ttee nodes, make use of the information in the corresponding row instead of using

C-INFO. This is what symmetric (Cholesky) sparse matrix solvers do. This change

makes the execution time drop dramatically from 29.20 seconds to 6.41 seconds.

In order to convert this data into speed up, we use the ELLPACK sequential

module SPARSE GE to get the sequential timing of 39.93 seconds. This module is

developed by A.H. Sherman from the zero-tracking code in Yale Sparse Matrix Pack

age. We see the very poor speed up 39.93/29.20 = 1.4 of PARALLEL SPARSE osing

16 processors. Using symbolc factorization can also avoid processing the C-INFO, but

the numerical factoriation time can not be improved less than 6.41 seconds because the

symbolic factorization usually creates more computations than the dynamic data struc

ture does in PARALLEL SPARSE. Therefore, the speed up would be at most improved

to 39.93/6.41 = 6.2 if the symbolic factorizations were included in PARALLEL

SPARSE and even the extra preprocessing costs were not counted. All of the above

timing data were obtained from the NCUBE 1.
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Finally, we list our experiment data on the NCUBE 2 for the NEW-GAUSS

ELIMINATION module which uses different algorithm organizations and data struc

tures at different stages.

Table 8.5 Parallel speed up_perfonnance of NEW,GAUSS-ELJMI!'lATION on theNC;UBE2.

Decomposition Processors Grid Unknowns Speedup

2x2 4 23 x 23 441 4

2x2 4 33 x 33 961 4

4x4 16 37 x 37 1225 11.8

4x4 16 45 x 45 1849 13.6

We observe a substantial improvement in the parallel speed up of NEW-GAUSS

ELlMINATION over PARALEL SPARSE.

We also present in Table 8.6 the speed ups reponed in [Ashcraft, Eisenstert and

Lin, 1990] using 16 processors for similar PDE problems.

Table 8.6 Speed ups previously rep~rted for factorization using sparse matrix algo

rithms applied (0 PDE problems.

Method Speed up Problem Unknowns

fan-in 7.03 31 x 31 grid, nine-paint-star 841

fan-in 9.65 63 x 63 grid, nine-paint-star 3721

fan-in 10.62 125 x 125 grid, nine-paint-star 7503

fan-ollt 5.54 2614 unknowns 2614

multifrontal 9.50 65 x 65 grid, nine-paint-star 3969

All the algorithms in Table 8.6 are for Cholesky factorization, so no nonsymrnetric

difficulties are present. From Table 8.6 we see that even with an easier problem and

larger problem size, the existing algorithms still do not achieve as high a speed up as

our algorithm NEW-GAUSS-ELlMINATION.
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IX. CONCLUSIONS

We have studied various algorithmic components and performance aspects of PDE

sparse solvers. We observe that compatible coupling of the components of PDE solvers

is very erutical in achieving a satisfactory overall perfonnance. The geometric

approach -is -natural-and-flexible -for-consmIcring efficient PDE solveFS b-y- blending algo

rithmic components with each other; selecting appropriate assignments, orderings, data

sO"Uctures, organizations, communication protocols and so on. It is also effective for

tailoring the solver to problem properties, such as geometty, physics, symmetry, spar

sity, architecture etc. For general PDE applications, nested dissection is only effective

on the global domain decomposition level and in ordering subdomain interfaces. For

local subproblems, such as in one subdomain, an interface separator or a supernode, it

is better to insulate the interior effects from the outside as long as possible. Sparse

matrix techniques should be used in different ways at different elimination stages

because the problem's nature varies from very sparse to dense during the solution pro

cess. In one word, there is not an optimal choice for anyone of algorithmic com

ponents because of their numa! interactions and of the effect of application properties.
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