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Abstract. Transformations on {0, 1] which are piecewise monotonic and piecewise
continuous are considered. Using symbolic dynamics, the structure of their non-
wandering set is determined. This is then used to prove results about maximal and
absolutely continuous invariant measures.

0. Introduction

We consider dynamical systems ([0, 1], f), where [0, 1]= | J;, the J; are disjoint
intervals and f|J; is continuous and increasing. The f- expaxll_s%on gives rise to a shift
space 2 (cf. § 1). Our goal is to determine the structure of the non-wandering set
Q of If. In [4] it is shown how these results can be extended to the case where
f|J: is either increasing or decreasing.

§ 1 gives a summary of results proved in [3] and needed in this paper. In § 2 it
is shown that the non-wandering set Q of £; can be written as | Q,uY UZ.

i=1

There are finitely or countably many ;. The €; and Y are closed, o-invariant
subsets of 2}, and (; is topologically transitive. ; N Q,, for i #j, and Q; " Y are
empty or finite; Z is finite and wandering in ). The topological entropy of Y is
zero. (); is a finite union of intervals, a Cantor set or a periodic orbit. Furthermore,
O =X1uXu- - -uX,(g=1), the X, are closed and again pairwise disjoint up to
finitely many points; o(X;) < X« 1 for1=i=q -1, 0(X,) © X; and o/ X; is topologi-
cally mixing.

The rest of the paper deals with invariant measures. It is shown in [3] that (),
has a unique measure with maximal entropy if A.p(€2:)>0. In § 3 this measure is
characterized as the measure with respect to which the periodic points are uniformly
distributed. § 4 considers invariant measures of ([0, 1], f) which are absolutely con-
tinuous with respect to Lebesgue measure and gives an example in connection
with this.

Finally, I should like to thank Z. Nitecki for pointing out an error which was
contained in the first version of this paper.

t Address for correspondence: Dr Franz Hofbauer, Institut fiir Mathematik, Universitat Wien, Strudhof-
gasse 4, A-1090 Wien, Austria.
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1. Preliminaries

We give a description of results proved in [3]. Let f be as in the introduction.
Define the f-expansion ¢: [0, 11>, ={1,..., n}" by ¢(x) =ioiris. .., where i is
the number i of the interval J; with f'(x)e J.. If J = (7, 5), define a* = ]}{n $(t) and
b* =lim ¢ (1). Set '

Sr={x=xox1" €3, 0" SXpXpms1' - =0"X=<b*"" Vm =0}, (1.1)

where =< denotes the lexicographic ordering and o the shift transformation. We
have ¢ ([0, 1)) =27, 2/\¢ ([0, 1]) is countable, ¢ is order preserving and oo ¢ =
@ o f. ¢ is injective if and only if (J1, J5, ..., J,.) is a generator for ([0, 1], f).

37 can be characterized by all blocks xox; . . . X,,_; which are admissible in 27,
i.e.olxox1...xn_11={z€ 2/: z; = x; for 0 < i < m — 1}is not empty. This is equivalent
to o™ (o[xo...xm_1])# . We have o[xo]=[a™, b™], which denotes a closed
interval in 3;. We show by induction that there are i, j, k =1 and / =1 such that

" olxo -+ xma) =[c*'a’, " 'V] with ai_,=bi_, forl=r=min(k I).

(1.2)
The induction step is
o™ (o[x0 "+ Xm]) = olxm]N ™ (o[x0 " * * Xm—1])
=[a*, b ]n[c*a’, o'b]
(D, if xp <ak oOr xm>bi
[c*a’, b*™], ifx.=ai and x.<b)
={[a*, o'b'}, ifxn>ai and x,=b] (1.3)

[o*a’, o'b], ifxn.=al=>b)

[a™, b*"], if al <x,<bl

It is easy to see that o™ (o[xo * *  x,n]) is either empty or satisfies (1.2). Hence we
have shown (1.2) by induction. In particular, o™ “(o[xo" * * Xm_1]) is a closed
sub-interval of some o[i]eZf(1=<i=<n). If it is not empty, it is either
o-"_l(o[af, cevak_q]or crk—l(o[bf) ««+ bi_1]) for some i and k, because all intervals -
one obtains by repeated use of (1.3) are such sets:

(" 'a, o' W l=c" " [al -+ - ak1)) ifk=I
and
[o* e, " D)1= "N o[bh - - - bi_1]) ifk=L

This follows from lemma 11 of [3]. Hence many of the sets o™ *(o[x0 " * * Xm-1))

coincide.
We form a diagram with the sets o™ (o[x0 * * * Xm-1]) (We take n =2 for con-
venience). It will be called M.
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1 a([11]) <

<0[1]2<0(0[12]) <
1 o(o[21]) < (1.4)

< <

There is a 1-1 correspondence between paths in M which begin with one of the
arrows ending at some o[k}(1 =k =#n) and which do not lead to an empty set and
the points xe 2 (xo, x1 - * - are the numbers of the arrows on this path). We shall
call such paths special paths in order to distinguish them from paths beginning with
any other arrow of (1.4) (they represent also points of 37, but an xe Z? may have
many such representations).

M serves also for another purpose. Set

D={g""olxo" " Xm-1D: 0™ olx0* * * Xm—1]) # D}

={o" olal -+ at1]), 0™ olbb - biaD:1=i=nm=1}.

Together with the arrows o™ (o[Xo * * * Xm_1]) —5 0™ (o[x0 - - xm]), D becomes
the diagram M of (1.4). In [3] we have used o™ (o[x0" " * xm—1)) instead of
o™ Yolxo " * * Xxm-1]). This makes no difference for the results and the proofs of
[3], but the new definition is more convenient. For example, D need not be a set
of pairs (xm-1,5"(o[x0* ** Xxm—1])) as in [3] because x.,_; is determined by
Umgl(o[xo © Xm-1]) S olxXm-1].

Define =) ={ye D?: there is an arrow from y; to y;,1 in M Vie Z}. Now ;=
xe{l,...,n}: XmXms1" " * € 37Vm € Z}, the natural extension of 2}, can be written
as disjoint union of sets N and X which are o-invariant and measurable. N contains
no periodic points and is a null set for every measure with maximal entropy. (X, o)
and (Zy, o) are isomorphic, the isomorphism ¢ is given by representing y € Xy,
which is a two-sided path of vertices in the diagram M, by the numbers of the
arrows on this path giving an xe X <3, (cf. [3]). Two-sided paths exist in M
because many of the sets ™ (o[xo - * * xm—1]) coincide. Examples can be found in
[3]. The map x: (B, o) = (Z4, 0) 5 (27, o) is the composition of this isomorphism
¢ and the projection 7 to positive coordinates. y is continuous.

We conclude § 1 with two remarks. This first one explains how the results of this
paper can be extended to maps f, for which f|J; is continuous and increasing for
some is and decreasing for the other is. The only difference to the piecewise
increasing case is that we have another order relation in the shift space such that
¢ is order preserving (cf. [4]). £; is defined as in (1.1), but with this different order
relation. o is then not order preserving, hence the intervals occurring in (1.3) may
have also o“b’ for some i and k as initial point or o'a’ for some j and [ as endpoint
or both. One can define the diagram M as in (1.4) and also the map x. In [4], a
piecewise increasing transformation g is constructed such that (27, o) is a two-to-
one factor of (2;, o). The only proofs in this paper which will use the explicit form
of the intervals in (1.3) are those of lemmas 1,4 and (ii) of lemma 7. These proofs
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can be extended to the piecewise increasing—decreasing case in the same way as
one obtains the diagram M for f from that of g (cf. [4]). The definitions and all
other proofs work unchanged. Hence all results of this paper are also valid for
piecewise increasing—decreasing transformations.

The second remark shows how one can determine the structure of the non-
wandering set of ([0, 1], ) from that of (27, o). If (J1,...,J,) is a generator for
({0, 11, f), then ¢ is injective and ¢ ' can be easily extended on all of 3 to a map
p which is continuous and preserves the ordering. An x €[0, 1] is wandering under
f if and only if ¢ (x) £ (), unless x is an inverse image under some iterate of f of an
endpoint of some J;, not equal to 0 or 1_ which can be non-wandering, and ¢ (x) ¢ .
These are exactly those x €[0, 1] such that p~'(x) is not a single point but two
points x and x'. If x is non-wandering and x£ (), x' £ (), then there is an £ >0 such
thatfk(x —&,x)n(x—¢e)=Tand f*(x, x +&) N (x, x + &) = for all k =1 (the inter-
vals (x — ¢, x) and (x, x + £) correspond to neighbourhoods of x and x’ respectively).
Hence x is isolated in the non-wandering set of ([0, 1], f) and non-periodic (other-
wise X or x' is periodic). If we transfer the structure of () to ([0, 1], f) via p, then
we can add these points to p(Z). Hence the non-wandering set of ([0, 1], f) has
the same structure as that of (Z}', o) described in § 0: one has only to allow that
the set corresponding to Z is countable.

If (J1,...,J,) is not a generator, then ¢ maps certain intervals to single points

(cf. [4D).

2. The non-wandering set of (E}L, o)

We show that (27, o) has the structure described in § 0. To this end we consider
M as a 0-1-matrix with index set D. M,, =1 if and only if there is an arrow from
d to ¢ in M. We divide M into irreducible submatrices M; with index set D;(i = 1),
i.e. D; is a maximal subset of D such that, if d, e € D,, then there is a path from d
to e in M, and M; = M/ D.. 3, < 25 denotes the shift space corresponding to M,
If i # j, then D; ~nD; = and | D; = D. It may happen that | D, # D. As

i=1 i=1

D={c"(las - am)),oc™([bo -+ bw]): 1<i=<n,m=0}
and because of the arrows

Um(o[a(i) the ain])"’a'mﬂ(o[af) T ain-i—l])’
o™ (o[bo - b)) > olbo - b)),
it is easy to see that, for every D, there are p;, q;, u;, v; (1=j<n)withO=p,<q, <
and 0 =< y; < v; <00 such that
Di={o'(c[ab -+ - al]), o™ (o[b5 -+ brD: 1=j k=<n, p=I<qyue=m<ud.
(2.1)
We introduce an order relation among the D as follows:
D; = D, if there is a path from D; to D; in M. (2.2)
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As the M3 are the irreducible submatrices of M, this is an order relation. Let the
indices i € N of the D; be such that D; =< D, implies i <j. Set

D= {d € D: there is a path from some e € |_ D, to d},

j=i

D: = D_,'\D,'.

We then have D; > D} 2 D;.,. It is easy to see that D; and D! are subsets C of D,
which have the following property.

If d € C and there is a path from d to ¢ in M, thene € C. (2.3)

Remark. Suppose o olab -+ ak)eD (or o*([b} - - - bL]) consists only of the
single point y=o"a’ (¢*b’) such that o™y is not periodic for m =k. Then
a™(olab + - - al]) ={o™a’}e D has only one successor in M for all m = k. We then
cancel the vertices o™ (o[af - - * ain]) for m=k in M and the corresponding (via

[+ e}
X—l) set | o77(c*a") in 37 which is open, countable, o '-invariant and consists
i=0

only of wandering points. We denote the remainder of £; again by 37, which is
closed, o-invariant and contains all non-wandering points of the original 2. After
this modification, every element of D is either a non-trivial interval or a single
point y, such that o*y is periodic for some k. As there are only finitely many a’
and b, there are among the elements of D only finitely many single points, i.e.
trivial intervals.

LeMMA 1. Let C < D have the property (2.3). Then \ J{d: d € C} is a finite union
of intervals and is o-invariant.

Proof.Set¥; ={de C: d =[a, 0'b*1forsome I, k} and B, = {d € C: d =[o'a", b']for
some /, k}. A;= U d and B;= |J dare intervals in £ or are empty. Letd € D be

de¥; de®B;
non-trivial and y,; the minimal number of steps to go on a path in M from d e ¥,

or B; to an element of some U, or B, Because d is not a single point, ;<.
This part of M looks as follows (d = [/, o'b*], cf. (1.3)):

[aj, O'Ibk]—) vy [o_yd—lai’ 0_I+yd—1bk]_) [at’ a_l+‘ydbk]
¥ {
[a_'ydaj’ bS][as+l’ bs+l] - [a!—l, b'_l].
Set a; =min {y4: d € A;} and B; =min {y,;: d € B;}. We show that

o(A)=B;UuA,u | A, forsomesand?(s<t).

s<k<t

Let d =[a’, albk]e A; with y2 = @;. Then
a%i(d)=[oa’, b Ju[a**, b U - U2, b

ula’, e b*]cB,uA, U U As

s<k<t
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If y4>a;, then _
o%i(d) =[a%al, ' *ib*]. o b* <1,
because bﬁai = a{.,. =g (cf. (1.2)) and b* e 27 (cf. (1.1)). Hence
a%(d)c[o%a, b’ ]< B..

Similar results hold for d € B;. Hence

n a;—1 8,-1

Ud=U(U o @po U o ®))u U,
deC i=1 \k=0 k=0 deT

where T < C is a finite (or empty) set whose elements are trivial intervals (cf. the

remark above). This is a finite union of intervals in 2;. It is o-invariant, because

C satisfies (2.3). 1

By lemma 1, F;:=|{d: d € D} and G; :=\_{d: d € D/} are finite unions of intervals
which are o-invariant. We have F; > G; © F;,;. We set Go:=3;. Hence we have
split £} into a sequence of decreasing sets which are o-invariant. For i = 1 we define

Qiz m o (E\G,),
k=0
and for i =0 we define
Q=M o “(G\Fvy).
k=0

If D,,1 does not exist, we set Fi.,=. {}; may be empty. As Q;<F,\G; and
f),-CE,-_\EH, which are finite unions of closed intervals, it follows that the sets
Qi 8, for i #j, and Y, for any i and j, are at most finite.

If there are infinitely many M, we have to consider also an Q. and an Q. Set

[ o]

D!, = (M) D.. This set has the property (2.3), because every D; has the property (2.3).
i=1

Hence G =\ {d:de D%} and Qo = G are finite unions of intervals which are

o-invariant. Because Qo © F, | for all i, we have that (; n Qo and Q; N o are at most

finite. If there are only finitely many M, we set (o= . Now set H; = F;\G.

Then H, is closed and H; > H,.,. Hence H = ) H; is closed and not empty. Set

i=1

Qw= () o “(H), which is closed and o-invariant. If D), =, then Q. =H. As
k=0

Qo< H;, 1 for all i, the sets QN (), Qw O and Qw Qo are at most finite. If
there are only finitely many M, we set Qo = (.

We need one more definition. Let Z; be the set of all xe bd F;\bd G; (bd means
boundary) such that there is a k with ¢”xebd G, for all m =k and of all xe
bd G;\bd F.,; such that there is a k with c"xebd F;;; forall m = k. If G # O, let
Z, be the set of all xe( )bd F;\bd G« for some i such that there is a k with

j=i
o"xebd G for all m=k.
Now we have the following result.
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LEMMA 2. The set Q of non-wandering points of ¢ is contained in

U QiU U ﬁiU U Zi-

1=<j=oo O=<i=oo O=i=co

Proof. If xe F; for all i and there are infinitely many Ms, then xe H U Go. We
consider this case below. As Gg = 2?, we find otherwise an i <0 with xe F\G; or
xe G\F,.. We consider first the case xe F}\G_,-. The following three possibilities can
occur.

(i) xe Q..

(i) x€Q; and xeint (F;\G;) (int means interior). As x£ ();, there is a k with
X¢& o-—]E(Fi\Gi). Since this set is closed, there is a neighbourhood U of x contained
in int (FAG;)o[xo" - - x«] such that Uno *(F\G,)=<. But then o“(U)n
F\G;=@ and ¢"(U)<c G, because o(F,)cF, Because o(G;)c G, we have
o™ (U) < G; for all m = k. This means that x is wandering, i.e. xZ Q).

(iii) xe¢ Y and xebd Fi\bd G; As x¢Q,, there is a k with x¢ o “(F\G)), i.e.
okx¢ E\—G,-, hence o*x e G, If o "x € int G; for some m, then there isa neighbourhood
U of x with U n G; = and o™ (U) = G, because o is continuous. Because o(G;) <
G,, we then have x£ Q). If "' xebd G; for all m =k, then xe Z,.

Now we consifler the case x& G;\F.1. We have the same three possibilities.

(i) xeQ.

(ii) x€ Q; and x e int (G;\Fi.1). As above, it follows that x & Q.

(iii) x# ); and xe bd G;\bd F,.. As above, we have either x# Q) or x€ Z,.

If now xe F, for all i and there are infinitely many M,, then xe H U G». We
consider again the three possibilities as above.

(i) x€ QoL Qoo

(ii) x€ Qo U Qe and x € int (Fi\Go) for all i. As

s o]

Qo= o™ (:0 H) = ﬁo i\o o (H),

k=0
O
there is an i with x& () o “(H,). As xe int H,, it follows as above that x Q.
k=0

(iii) X£ QoL Qo and xe bd F; for some i. Because F,; < F; and x e F, for all j,
one has from x € bd F; that xe bd F; for all j =i. Then it follows again as above that
either o™ x € int Go for some m, and hence x £ () (note that X ¢ G = ﬁw), orxeZy.

In any case, we have shown that either x¢ Q or x e | _JQ; U\ ULUZ,. This proves
the lemma. : O

Examples which show how the ); look like can be found in [3]. We give here an
example where a Z; occurs. The transformation f on [0, 1] shown in figure 1 is a
modification of an example given by L. Block and L. S. Young (cf. [7]). We have
O<x<d<c<p<e<l, f is increasing on the intervals [0, d), [d, ¢), [c, ¢) and
[e, 1], and it satisfies

f([O, d)=[c,1), f(ld,c)=[x,1), f(c,e))=[x,1) and f(le,1])=[p, 1]
Furthermore, f(x)=f(p)=p.
The diagram M is as follows (we take the elements of D here as sub-intervals
of [0, 1]).
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FIGURE 1
[0,d)
D;={d, c),[c, e)}
[d, )& D,={le, 1},[p, e)}
\ D,=D,uD;u{x,d)}
[x, ) D} =D, u{lx, d)}

" D,=D,

[cle'b D} =0

[e, 1]1=—=[p.e)
N\ N\,

GO=[0, 1]’ Fl = [xv 1]’ Gl =[x, d)U[p, 1], F2=[p’ 1]9 G2=®- ﬁ():@s

Q= F*“(d p)), a Cantor set, =@, Q=[p 1] Zi={x} and Q=
k=0

Oy quu{x}.

One sees that x£ Q; and x£ Q,. Hence the Z; in lemma 2 are necessary.
Before we are able to investigate ; and (); further, we need two technical
lemmas.

" LEMMA 3. Let de D. Then x€d, if and only if x can be represented as a path in
M, which begins with an arrow ending at d.
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Proof. Suppose d = o-k(o[af) -+ +ai]).Letxed. Thismeansy = a6 ak_1xox1° €
37. By the 1-1 correspondence of points in =; and special paths in M (cf. § 1),
we have that y corresponds to the special path

;
a4

i 1 c a3 X0 : : Xy
—olao]——o(lacai) — -+ —>0o"Glas - - - ak) — -
in M. This means x can be represented as a path in M beginning with an arrow
which ends at d. Now let x correspond to a path which begins with an arrow ending
at d. Then ag - - - ak_1xox; " €3} because it corresponds to a special path as
above. Hence xe a*(o[ab - - - ak]) =d. O

LEMMA 4. Lety', y’ €3,y Ifx(y)=x(y)=xeE, where E={c™a’,c™b': 1=<i=<n,
m =0}, then there is a K with y; = y? forallt =K.

Proof. Suppose yj is the interval [o“a’, *'b"]. Using (1.3) one can determine what
y% is. If x;=ak.1, then yi has initial point o**'a’ If x1 # ak.1, then y} has initial
point 2”2, where i, = x;. Proceeding in this way, we can determine the initial points
of y} for t=0. We obtain the following result. Determine ry, r3,...(r;=1) and
i1=1,is,...(1=i<n) inductively according to

ade=x forO0=t<ry, Aiiry # Xr

aik=x forR<t<Ru, aii#xg., (I=1), (2.4)
where we have written R, for ry+: - - +r. Then it follows from (1.3) that the initial
point of y; is o**'a" for 0=¢<r, and o' Fa’1 for Ryt <Ry, (I=1).

We do the same for y°. Suppose ys =[c™a’, o™ b']. We determine sy, 52, . . . (5: =
1) and j, =j, j,, .. . (1 =j, = n) inductively according to

at,,=x, for0=t<s,, Ahvs, & Xy
Jia i
alls,=x for§=t<8.,, a'sl,:ll # XSy (I=1), (2.5)

where we have written S, for s;+ - - +s, By (1.3) we have that the initial point of
yZiso™ 'a for 0=t <s, and o' a1 for §, =< S, (I=1). :

Without loss of generality, we can assume that r, <s,. Because x¢ E, we have
s1<oo. If ry<s,, it follows then from lemma 4 of [3] that there is a u with
rteo+r,=s:. If ry=s,, we set u=1. Now it follows from (2.4) and (2.5) that
Putt =81+ and i ;= J14, for /= 1. Hence y} and y,2 have the same initial points for
allt=s,=K".

We can perform the same also for endpoints of y; and y? and find a K” such
that y; and y; have the same endpoints for all t=K". If one now sets K =
max (K', K"), one has y,1 =y? for all t=K and the lemma is proved. O
Remarks. (i) Lemma 4 asserts a kind of injectivity of y. In particular, if y' and y
are distinct periodic points in ZM\,\/_I(E ), then X(yl) # X(yz).

(ii) The proof of lemma 4 works also if one has instead of y' and y* only one-sided
paths yoyiys - - - and yay3ys in M, which correspond to the same xe 3/\E. We
shall sometimes apply lemma 4 in this form.

We return to the investigation of (}; and ..
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LEMMA 5. If X, does not consist of only a periodic orbit, then x(Zag,) < Qs

Proof. Let y="- - - dod1d> - - * € S, and suppose o*x¢ E for k =0, where x= x(y).
By definition of x and lemma 3, we have x€ do€ D,, hence xe F,. We show x£ G.
If xe G;, then xe do for some dg € D|. By lemma 3, there is a path in M, beginning
with an arrow ending at do, which corresponds to x. Let dod1d5 - - * be the vertices
on this path. By lemma 4 there is a K >0 such that d, = d;, for k =K, since x& E.
As d, € D;, we have found a path from D; to D,, a contradiction to the definition
of D!. Hence x€ F;\G,. But also o*(x) = X(a-ky) & E and therefore, as for x above,
it follows that o“x € F;\G; for all k =0. This implies x€ Q..

Now suppose that *x € E for some k. As =, does not consist of only a periodic
orbit, we can find y" € Z,,, with ak(x(y" )) £ E, for all k, converging to y in 2y, (M,
is irreducible). As y is continuous and (); is closed, it follows that x(y) =1lim x(y") €
Q. Hence we have shown that X)) = Q. a

Now set D;=D/\D,,,, Do=D\D,, Douw=D! and M;=M/D; for 0=<i=c. Let
S;=3 be the set of all x which can be represented as one-sided paths in M. If D,
is finite, then S; =, because M, contains no closed paths. All closed paths must
be contained in the M;s by definition.

We have now:

LEMMA 6. ), éx(EM) for i <00, ;<=8 for i< and the set Q,\x(Zn,) is at most
countable and contains only finitely many periodic points.

Proof. We give the proof only for Q).. It is the same for €).. First we show that xEa)
is dense in €);. Suppose o[xo - * * xx—1] N Q; # . Because o[xo - * * xx—1] is open, there
is at least one deD; with o[xo- - xx_1]nd #D. For every such d, xo " xi—1
corresponds to a path of length k beginning with an arrow ending at d (lemma 3).
If all these paths leave M,, we have

k~1
olxo" " xk—1]m (F.'\ L=Jo O'_M(Gi)) =.

As o[xo -+ * xx—1]is open, this implies o[ xq * - * xx-1]~ Q; =, a contradiction. Hence
we have a path of length k in M; which corresponds to x¢ + -+ * x4-1. Let do * - * di—1
be the vertices on this path. As M; is irreducible, we can extend dg- - dik_; to a
two-sided path in M; giving rise to a y € X4 By definition of x, x (¥) €olx0 * * * xx-1].
(In the case of §); we extend do - - - di_; to a one-sided path in D; giving rise to an
element of S;.) This proves that Q; < x(Zy,).

Now let V be the set of all xe Q; with o*x € E for some k or with xe bd F.. Then
V is countable and contains at most finitely many periodic points. In order to show
the second assertion it suffices to prove that Q\V < x(Zay,).

Let xe Q,\V. As x¢ bd F; there is a do € D; with xe do. By lemma 3 there is a path
in M which begins with an arrow ending at do and which corresponds to x. Let
dod1d; - - - be the vertices on this path. We show that d € D;. Suppose dr £ D, then
we have d, € D;. By lemma 3 we have_o-"xe di. As the endpoints of the interval
d, arein E and x£ V, o“x is in the interior of di. Hence oc*xeint G, ie. oc*xe2 F\G,
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a contradiction to x < (). Hence d; € D, for all k. Because M, is irreducible, we can
extend the path dodid, -« - to a two-sided one in M,, which gives a ye Z,.. By
definition of x, x(y) =x, hence x € y(Zas,). This proves that Q\V < x(Zpy,). O

Remarks. (i) If 2,4 is only a periodic orbit, then ; = x(Z,4,) or is empty. In this
case we redefine €); as x(Zas,). Then we have ); = y(3,,) for all i by lemmas 5
and 6.

(ii) If D; is finite, then 2,4, is compact. As x is continuous, this implies that y (Zps,)
is closed. Hence x(Zar,) = Qi An open question is whether this also happens if D;
is infinite.

(iii) If D, is finite, then S, = . By lemma 6 we then have Q. =0.

The next two lemmas give properties of {); for i # co.

LeMMA 7. (i) alQ; is topologically transitive.

(i) If xe X} is periodic, then x € Q); for some i.

Proof. (i) Because M, is irreducible, we can find a y € 3, such that {o*y: k =0} is
dense in 2. As y is continuous and commutes with o, the set {o*x: k =0}, where
x = x(y), is dense in {}; by lemma 6.

(ii) Let xe X} satisfy o°x=x for some p. Choose a path yoy, - - - in M(y; € D)
which corresponds to x. Suppose first that x ¢ E. Because o”x = x, the path y,y,1 - -
also corresponds to x. Hence it follows from lemma 4 that there is a K with
VYm+p =¥m for all m=K. Now suppose that xeE, say x= ob. Set Vm =

" (o[bh - - - bism]). Then yoyi - - - is a path in M which corresponds to x. As in
the proof of lemma 4 define r(, r»,...(n=1) and iy, i, ... inductively such that,
for [=0,

ajh =bl forR/<t<Rpi, aii}#bk., (2.6)

where we have written R, for r1+- - - +r,(Ro = 0). It follows again from (1.3) that
Vi = [o‘k+"'_R’a"’“, ak+'"bf], where [ is such that R, =k +m < R,,;.

If r, = o0 for some ¢, then y,, ={o-k+"'b"} form=R,_;—k =K and hence yp+p = ym
for all m=K. If r,<oo for all /, let u and v be such that R, _;<k=R, and
R, 1<k+p=R, If R,+p<R, it follows from o***b’' = ¢*b’ and lemma 4 of [3]
that there is a w > u with R, +p=R,. If R, +p > R,, we can increase v to obtain
equality. Hence it follows from (2.6) that r,,.; = r,4; and i,,+; = i,+; for all / = 1. This
implies y;+p =ym forallm=R,, —k = K.

Hence in any case we have found a closed path yx > ygi12 > ygip =y in
M, which must then belong to some M; by definition of the M;s. As x is the point
which corresponds to this closed path, we have by lemma 5 that x € ; (cf. also the
remark after lemma 6). O

LemMA 8. (i) If D; is maximal with respect to (2.2) and D, = &, then §; is a finite
union of intervals.

(ii) If 2y, is a periodic orbit, ); is also a periodic orbit.

(iii) Otherwise, (); is a Cantor set.
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Proof. (i) Let xe F;\G,. Then xe€ d for some d € D;. By lemma 3, x corresponds to
a path which begins with an arrow ending at d. Because D; is maximal and D.=@,
this path cannot leave M, Extending it to a two-sided path gives a ye 2, with
x(y) =x. Hence Q; = x(Z,) = Fi\G, a finite union of intervals.

(i) We have Q; = x(Zas) by definition (cf. the remark after lemma 6).

(iii) The set kﬂ o “(F\Gy) is a finite union of closed intervals. The intersection

=0

of these sets for m =1 gives {},. Furthermore, {}; cannot contain an interval. Suppose
olxo * - - xx—1]< Q;. Then one finds a path of length k in M, which corresponds to
X0 Xx—1. We can extend this path to an infinite one which leaves M; and find
an xe€o[xg * * * xx—1] with ¢ x € int G; for some m. Hence x ¢ (),, a contradiction to
olxo0* * * Xxk—1]1<= ;. As Ty, contains uncountably many elements, the same is true
for (); by lemmas 5 and 4. Therefore (}; is a Cantor set. d

Next we investigate (2, for 0=i=oo.

LEMMA 9. (i) Awop(€;) = 0.
(ii) Among the O; for 0=<i =<0 there are only finitely many which are not empty.

Proof. (i) We have shown in lemma 6 that Q.<S.. Hence it suffices to show that
PIEO (1/k) log N, =0, where N, is the number of admissible blocks of length k in

S.. But if the block xo- - xx_1 is admissible in S, i.e. o[xo- - Xk 1]NS;# D,
then we also have o[xy -« * xx_1]N S; # D, because o[xo - * * x,—1] is open. Hence N,
is also the number of admissible blocks of length k in §;. Furthermore, we can
suppose that G, is all of £7. Otherwise we restrict f to ¢ (G;), which again gives
a piecewise monotonic transformation. Then N, is the number of special paths of
length k in M,

Fix some & >0. By lemma 13 of [3] there is a finite subset A of D; such that the
spectral radius r(M,/B) of M, restricted to B = D;\A is less than ¢. This implies
that the number of paths of length / in M,/B which begin with one of the finitely
many arrows leading from A to B, is less than C exp (2¢l) for some constant C
(cf. § 3 of [3]). Making A larger if necessary, we can also suppose that the finitely
many elements of D; at which special paths begin are contained in A.

Now let K be the cardinality of A. In a special path of length k in M, every
element of Ii» can occur at most once, because 1\2, contains no closed paths. Hence
this special path contains at most K blocks consisting of elements of A, each of
which has length at most K. One of these blocks is at the beginning of the special

k
path. Hence there are not more than (K) possibilities to choose the places of these

blocks in the special path of length k. In between there are blocks consisting of
elements of B which begin with an arrow leading from A to B. They have lengths

i
I, by ..., L (j=K) with ¥ [;<k. Hence we have
i=1

K\ o o
NkS(K)"K - Cexp(2el) - - - C exp (2elj)S(II;)nK . C' exp (2¢k).
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This implies that lim (1/k)log N, =<2¢. As ¢ was arbitrary, we obtain
lim (1/k) log N, =0.

(ii) If D is finite, then S; =, and hence Q=0 by lemma 6. If D; is infinite,
then it contains a set of the form

{e*Glab - - ak]): k=m} or {o-"(o[b(") «++bi]): k=m} forsomeiandm,

because D! and D, have the property (2.3Ywhich implies that D',- satisfies (2.1).
Hence there can be at most 2n different D~,~, which contain infinitely many elements,
and hence at most 2n different non-empty Q.. ]
Remark. The transformation x » x +« (mod 1) on [0, 1], ¢ Q, is an example where
Do=D and §}, ==} It would be interesting either to find an example where 0 #D
for some i such that there is a j > i with D; = D,, or to show that this cannot happen.

LEMMA 10. If there are infinitely many M, then hiop (ﬂ F',) =0. In particular,
N 3 i=1
h(op(Qw) = O.
Proof. Fix some ¢ > 0. We have D; = (D;\D/) U Dk. As () (D:\D%) = J, there is an
i=1

i with r(L;)<exp &, where L; = M/(D;\D,), by lemma 13 of [3].
Let xox; * - * xx—1 be an admissible block of length k in F. Tt follows from the
proof of lemma 1 that F; is a finite union of intervals

o"A;=U([o"a,e™"'p']) and o"B;=U(o™""a’, c™b).
rl r.l

If o[x0 - * * xxe_1]N o™ A;# I, then there are r and [ such that
[o™a, o™ "' b 1nolxo " * * Xk11# .

Bylemma 3, x; * - - xx~1 can then be represented as a path of length k in M/ D; which
begins at [0™a’, ™ *'b" ] D.. Let z be the number of intervals of which F; consists.
Then for every k, we can find z elements d5, . . . , d, of D, such that every admissible
block in F; of length k can be represented as path of length k in M/D; beginning at
one of these z elements.

By definition of D, no path leads from D& to D;\D’%. Hence for every admissible
block xo - * * x,—; there is an / (0 </ = k) such that x, - - * x;_; corresponds to a path
in DAD, and x; - - - x4, to a path in D). Hence the number of admissible blocks

k
of length k beginning at some d; (1=j=<z) is less than Y N N%.;, where N| is
1=0

the number of admissible blocks of length / in D,\D/, beginning at d; and N}, is
the maximal number of blocks of length k —/ in D& beginning at some element
of D¢,

Let u be the vector, with index set li-\Déo, which has entry 1 at the djth coordinate
and entry 0 otherwise. If d; € D, then u has only zero entries (this corresponds to
the case / = 0). Then N} = |[Liull, <||L}; = C exp (2&l), for some constant C, because
r(L)<e.
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In the proof of lemma 9, we have shown that A,,(Sw)=0. Hence Ni- =
C' exp (2e(k — 1)) for some constant C'. If N, is the number of admissible blocks of
length k in D,, we therefore have N, < zkCC"’ exp (2¢k). This implies that A, (F;) <
2¢ and hence

htop ( m F‘,) <2e.
i=1

As e was arbitrary, this gives the desired result. O

Remark. An example, where one has infinitely many M;s and Qo #J, is x>
ax(1—x) on [0, 1] for certain values of a €[2, 4].
Let Z be the set of all non-wanderingxe | Z; which are not contained in some

Osi<oo
Q,‘ or Q,‘.

LeEMMA 11. (i) If x€ Z, then X is an isolated point of Q which is not periodic. Hence
X is wandering in ().

(ii) Z is finite.
Proof. (i) Let xe Z nZ; (i <o0). Then

X£E+1 =] U (Q] o 6]' | Z]').

i>i

Alsox£J (Q,; U ﬁj), which is a closed set because ); and €}; are closed. By lemma

j=<i
2, we have

QcU@u)uFiauUZ,
j=i j=i
As | Z; is finite, we find a neighbourhood U of x such that U nQ ={x}. The
j=i

non-periodicity of x follows from the definition of Z,.

(ii) It follows from (2.1) that there are only finitely many D;, say D;, ..., D;,
which have infinitely many elements. By the proof of (ii) of lemma 9, there are
only finitely many D, say 151'1, ..., Dj, which have infinitely many elements.

If D; is finite, then | {d: d € D/} is already closed, because every d € D is closed.
Hence bd F)\bd G; =\ {d: d € D;} and an xe bd F;\bd G; is at the boundary of some
d e D, But then x=0"a™ or a*b™ for some k and m (cf. (1.2)). As o'xis periodic
for some I, we then have ¢**'a™ (or ¢**'b™) is periodic. Similar arguments apply
for a finite 15,-. Hence

Zcloka, o™l :1=<i,j=n0<k <K, —1,0=m=M,~1,
ofa' and oMb are periodic}

r s
() U Z,‘, | U Zj,.
=1 =1
This is a finite set. O

We collect the results in the following theorem.
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THEOREM 1. Q= |J Q; U Y U Z (finite or countable union) such that:

i=1
(i) Q; and Y are closed, o-invariant sets. Z is finite and wandering in ().
(ii) Q:nQ,fori#jand Q; Y are at most finite. \;NZ =3, Y nZ =.
(iii) All periodic points are contained in \_) Q..

i=1
(iv) Q; is topologically transitive. It is either a finite union of intervals, a Cantor
set, or a periodic orbit.
(V) htop( Y) =0.

o0

Proof. We set Y=( U Qv F‘,) N if there are infinitely many Ms, and
1

O=i=o0 i=

Y= U Q:~Qif there are finitely many Ms. Because Qo U Zo < () F, it follows
i=1

O=<i=<oo

from lemma 2 that Q= |J Q,u Y U Z. By (ii) of lemma 9, | ), is a finite union

i=1 O=i=<o0
of closed sets, hence Y is closed. Y is o-invariant, because ﬁ,-, F. and Q are
o-invariant. Together with lemma 11, this implies (i). (ii) follows from definitions,

because |J ), is a finite union. (iii) and (iv) are lemmas 7 and 8, (v) follows
O=si=s©

from lemmas 9 and 10. O

Now we investigate (); for some fixed i # 00. One says that the 0-1-matrix M; has
period g if D;=CiuCyu---uC, (disjoint) and if de C, and My, =1 imply
d' € Ci..1 (we take the indices of the C;s modulo g). g is taken as large as possible.
If g = 1, M; is called aperiodic. Set K; = (F\G;)~(_Kd: d e C}}.

LeEMMA 12. K is a finite union of intervals. K; n K,,,(j # m) is empty or finite.

Proof. One shows that, if d;, d>€ D; and the interval d, nd, contains more than
one point, then d; and d, are in the same C;. This proves both assertions. It proves
the first assertion, because it implies that the As and Bs in the proof of lemma 1
are subsets of one of the Ks. If d; nd, is a non-trivial interval, one can choose yl,
y* €Sy, with yb =d; and y§ = d> such that x(y")=x(y*)¢E (lemma 3 and E is
countable). By lemma 4 there is a ¢ with yi =y? e C, for some m. Hence y:l—i and
y2; are in C,,_;. In particular, yo =d; and y§ =d, are both in C,,_, proving the
lemma. Od

Set X; = K; ~ ;. We have
q
THEOREM 2. ; = | X,. X; is closed and X; N Xy is empty or finite (j # k). o(X;) <
i=1

Xi1. o’ X; > X is topologically mixing.
Proof. It remains to prove the last assertion. (X}, o) is an (1, for the piecewise
monotonic transformation (¢ '(K;), f*). The matrix M corresponding to (X;, )
can be derived from M; as follows. Set

D={y " yq: yx € Cakc1, M,,.,=1 forl=k=gq—1}.
We have an arrow y; -« -+ y, —>~y’1 ceeyhinM iﬁ~there is an arrow y, -y} in M. M
is irreducible because M; is. M is aperiodic. If M has period 4, then it follows that
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M; has period ¢q. In the next section we shall see that there is a o-invariant, mixing
measure on Zy; which is positive on open sets if hyp(Zar) #0, i.e. Zpy, is not a
periodic orbit. It follows from proposition (6.7) of {2] that Z,; and hence also
(X}, o) are topologically mixing. If 2,4, is a periodic orbit, the desired result is trivial.

3. The maximal measure
In this section we consider a fixed Q; satisfying h.p(Q:)>0, i.e. {); is not only a
periodic orbit. Therefore we denote (};, F;, M;, D; simply by ), F, M, D respectively.
Qc 37 <3, is expansive, hence Q has at least one measure with maximal entropy
(cf. [2]). It is proved in [3] that (Q, o) and (24, o) have isomorphic sets of maximal
measures via u »>uox ' and that there is a unique maximal measure p on Sy
given by ulolyo - * * Ye-11) = TyoPyoys * * * Pyr_aye_1» Where g = ugvg, Pge = Myovo/Avy
(d, e e D). u is the unique (up to constant factors) positive left and v the unique
positive right eigenvector of M for the eigenvalue A satisfying Juv,=1. A =r(M)
is the spectral radius of the ll-operator w->wM(wel'). A>1, because logh =
hop(2)>0. § 3 of [3] shows that A,,(Q2)<log A. The converse inequality follows
from the variational principle (cf. [2]): Awp(Q2) = h{u) =log A.

o is a vector and P is a matrix with index set D satisfying 7, >0, P,, =0 (d, e € D),

wP=m, Y Pi=1(deD)and ¥ #;=1. Hence 7 and P give rise to a Markov
eeD deD

chain with countable state space. Assuming that M and hence also P are aperiodic,
we can use the results proved in probability theory (cf. [1]).

(s, P) is recurrent. 3.1
Py > m. (n>0) ford, eeD. (3.2)

P denotes an entry of the matrix P”". It follows from (3.2) that

wlolyo: - yi-xlnklzo® - - z;-1])  convergesto  w(olyo- - YiciDulolzo * - z-1])
as k - oo,

Hence u is mixing. This also completes the proof of theorem 2. M & is the
number of admissible blocks of length n +1 in Z,; beginning with 4 and ending

with e. Therefore p,= ¥ M ) is the number of periodic points of period n in S
deD

(pn <00 by remark (i) after lemma 4). Set u,,=(1/p,) Y 8y, where Q, is the set of

yeQ,

all periodic points of period n in X, and §, the measure concentrated in y € 2,

THEOREM 3. If M is aperiodic, we have:
() lim A "p, =1.
(ii) w, converges in the weak topology to the unique maximal measure p of Sy

Proof. Choose a sequence n; of integers such that A ~"p,, converges to C (0= C =< 0).
The sequence u,, has a limit point ». We suppose that it converges (take again a
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subsequence, if necessary). We have
tn(olyo "+ Yeo1) =pr, card{Xe Qu: Xm =ym forO=m=k—1}
=pn M35
=P AN T PO V0, 1 0y
>C7'A —k+l7TYOva—l/vY0
= C_I”'YoPYon “ Py oy

=C'ulolyo- - - ye-1l)-

Hence v(o[yo" * * yx-1]) = C 'ulolyo - yx—1]). As v is a probability measure, we
have C =1 proving (i). But then the computation above shows that every limit
point of w, is u. This is (ii). O

If M has period ¢ > 1, then Q = X; u- - - U X, and every X; is an {); for the piecewise
monotonic transformation f° In the proof of theorem 2 we have computed M
corresponding to (X}, o), which has period 1. Applying theorem 3 to M we have:

COROLLARY. If M has period q, we have:
(i) pn =0, if q is not a divisor of n, lim p,, A" " =1.

n-»o0

(ii) pnq converges in the weak topology to the unique maximal measure . of Zps.

By lemmas 4, 5 and the second assertion of lemma 6 these results are also valid
for Q.

Now we turn to a result about the number b, of admissible blocks of length k
in Q. For this we need that the left eigenvector u of M is in ' (the proof for this
result is not published).

THEOREM 4. If M is aperiodic, we have that im A ~*b, exists and is greater than zero.

k>
Proof. Without loss of generality assume that F = F; =3/, considering f|¢ '(F;)
instead of f. Set D' ={o[k]: 1=k =n}c D. b, is the number of admissible blocks
of length k in 35, which begin with an element of D', because of the 1-1 correspon-
dence of special paths in M and points in 2;. Hence

b= T T M.

deD' eeD

We have forde D' and eec D

—mpy #(m) _ p(m) -1 _ -1 -1 (m)
A "Ma’ =Pyvav, =ma vav. wiPac

-1 -1
=(ugv.)' ¥ mPe = (uave) .
geD

=u./ug<c 'u.,, wherec=min u,;>0.
deD’
Asuel 1, we have for every € >0 a subset D, of D with D\D, finite, such that
Y AT <e forallm=1.

eeD,
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Hence we can interchange the limit and the sums.

lim A%=2"1 ¥ Y lim P4 V0,0,
-»>00

deD' eeD
-1 -1
=A" Y Y mvisve=A"" ¥ ¥ uva
deD’' eeD deD' eeD
o . . . 1
This is a positive constant, since uel . d

As for theorem 3 we can generalize this result to the periodic case.

4. Absolutely continuous invariant measures

We consider the problem of finding an invariant measure u on ([0, 1], f), which is
absolutely continuous with respect to the Lebesgue measure A on [0, 1]. It suffices
to consider this problem for ¢ (Q) and ¢'1((~).,-) (we assume that ¢ is injective
and denote ¢ '(€) again by (},), because every invariant measure is a linear
combination of measures concentrated on these sets.

If f is piecewise C” and |f'(x)|=d >1 for all x €[0, 1], the sets L; considered in
[6] are exactly those s, which are finite unions of intervals. There is exactly one
ergodic invariant measure u absolutely continuous with respect to A on every L;.
All other Qs and all )5 have Lebesgue measure zero (theorem 2 of [6]).

In [5] one finds an example of an f on [0, 1], piecewise C 2 f(x)>1for xe(0,1]
and f'(0)=1, which has no finite invariant measure absolutely continuous with
respect to A. Below, we give an example of an f, piecewise C', f'(x)=2 for all x,
which has a Cantor set {}; with A (Q;)> 0 and A/, is f-invariant.

We consider [0, 2] instead of [0, 1]. Define fon (1,2]by f(x)=2x—1for1<x =3
and 2x -2 for3<x =<2 (or in any other way such that f((1, 2) <= (1, 2]). Q, =[1, 2}.

Now consider [0, 1]. Set a;=c/i22i_1, for some ¢ with 0<c<(} i We

i=1
define open sub-intervals A%, (1=k=<2™"", m=1) of [0,1]. A] has midpoint 3
and length a;. Let Bj and B2 be the two closed sub-intervals of which [0, 1]\Ai
consists. The midpoint of A5 is the midpoint of B5 and the length of A5 is
ax(k =1, 2). The mth step is as follows. Let B (1=<k=2""")be the closed intervals
of equal length of which

m—12i-1
[0, 1\ U U Aj
i=1 j=1
consists. Then the midpoint of A%, is the midpoint of BY, and the length of A% is
an(lsk=< 2’"_1). The A,’f,.s are pairwise disjoint, because the length of all the Af,.s
(1=k=2""", m=1) together is

Y 2" 'a,,= ¥ emTi<1. (4.1)
m=1 m=1
Set
o 2i-1 ) o 2i-1 .
c=[0,1\U U Ai=MN U B
i=1j=1 i=2 j=1
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To define f on [0, 1], we define first f'=ge C([0, 1]). Set g(x)=2 for x€ C. On
A% define g such that it is greater than or equal to 2 and continuous (i.e. lim g(x) =2,
where x € AL, approaches one of the endpoints of Ax, and

SUP{Ig(x)—2I:erA"m}->O as m - 00)
k

and that

Am-1 form=2,
= 4.2
Lkg(x)dx {1 form=1. 4.2)

m

This is possible, because a;/a;.1 =2[(i + 1)/iTl2, if i » 0. Define

I g(H)dt forxeBIUA]
0

x

g{t)dt forxe B3,
d
where d =3(1 + a,) is the initial point of B3. Then f/B} U A} and f/B3 are increasing
and C'. f'(x) = g(x)=2 for x €[0, 1]\{d}. We have

m—1 ] .
A(Bﬁ,mC)=2‘"'“(1— y 2"1a,-)—~ Y 27 G men.
) .

From this it follows that

2A(Bi,nC)=A(B5_1 N C), 4.3)
where k' =k (mod 2™ %). We show that f(AX)= Ak _1(=[1,2], if m =1). To this
end we prove that A(f(Ar)=A(AN_1)(=A(1,2]), if m=1) and A(f(BX))=
A(B%_1) (set Bl =[0,1]). The first assertion follows because of (4.2). For the
second assertion remark that

B, =(CABL)UAL VAT VAL, -,

This is a union of disjoint sets. Hence

A(F(BE)) = L;g(") dx =jc

=2A(B5 " C)+am-1+2a,, +4a,1+
=ABh-1 NC)+AAL_D)+AAZF LA )+ -
= A(B:(nl—l)-
Because f|B; UA] and f|B> are increasing and [0, 1] is the disjoint union of the
intervals A} (1=j=2"", 1=i=m—1) and Bl (1=i=<2™"), it follows that
f(A,;n—l) =A:(n‘—2 and f(Brkn) =B:(r;—l (m=2).
Now it follows that

2dx+J gx)dx+---
Ak,

r\B,’,‘.

oo 2i-1

2= =10, 0 U al=c

i=1j=1

By (4.3) we have that A/, is invariant and by (4.1) that A (Q,) > 0.

https://doi.org/10.1017/50143385700009202 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700009202

178 F. Hofbauer

REFERENCES

[1] L. Breiman. Probability. Addison-Wesley: Reading, Mass, 1968.

{2] M. Denker, C. Grillenberger & K. Sigmund. Ergodic Theory on Compact Spaces: Springer Lecture
Notes in Math. no. 527. Springer: Berlin, 1976.

[3] F. Hofbauer. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy.
Israel J. Math. 34 (1979), 213-237.

[4] F. Hofbauer. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy
IL. Israel J. Math. 38 (1981), 107-115.

[5] A. Lasota & J. Yorke. On the existence of invariant measures for piecewise monotonic transforma-
tions. Trans. AMS 186 (1973), 481-488.

[6] T. Li & J. Yorke. Ergodic transformations from an interval into itself. Trans. AMS 235 (1978),
183-192.

[7] L. S. Young. A closing lemma on the interval. Invent. Math. 54 (1979), 179-187.

https://doi.org/10.1017/50143385700009202 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700009202

