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Abstract When convection is parameterized in an atmospheric circulation model, what types of waves are
supported by the parameterization? Several studies have addressed this question by finding the linear waves
of simplified tropical climate models with convective parameterizations. In this paper’s simplified tropical
climate model, convection is parameterized by a nonlinear precipitation term, and the nonlinearity gives rise
to precipitation front solutions. Precipitation fronts are solutions where the spatial domain is divided into two
regions, and the precipitation (and other model variables) changes abruptly at the boundary of the two regions.
In one region the water vapor is below saturation and there is no precipitation, and in the other region the
water vapor is above saturation level and precipitation is nonzero. The boundary between the two regions is a
free boundary that moves at a constant speed. It is shown that only certain front speeds are allowed. The three
types of fronts that exist for this model are drying fronts, slow moistening fronts, and fast moistening fronts.
Both types of moistening fronts violate Lax’s stability criterion, but they are robustly realizable in numerical
experiments that use finite relaxation times. Remarkably, here it is shown that all three types of fronts are
robustly realizable analytically for finite relaxation time. All three types of fronts may be physically unrea-
sonable if the front spans an unrealistically large physical distance; this depends on various model parameters,
which are investigated below. From the viewpoint of applied mathematics, these model equations exhibit novel
phenomena as well as features in common with the established applied mathematical theories of relaxation
limits for conservation laws and waves in reacting gas flows.

Keywords Tropical atmospheric dynamics · Tropical convection · Moisture · Nonlinear relaxation equations ·
Hyperbolic free boundary problems

PACS 92.60.Ox · 92.60.Jq

1 Introduction

1.1 Background

Water vapor plays a major role in determining the earth’s climate because there is a large release of latent
energy when water vapor condenses. Phase changes of water are prominent in large, precipitating, convective
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clouds, and energy from these phase changes can drive large-scale atmospheric motions. This link between
precipitation and large-scale dynamics is seen in many parts of the earth’s climate, such as El Niño/Southern
Oscillation [38], the Hadley circulation [15], monsoons, the Madden–Julian Oscillation [24], and convec-
tively-coupled equatorial waves [41–43]. These climatic events have a major impact on our ability to predict
weather and climate not only in the tropics but also over the rest of the globe.

Arguably the most important type of convection in the tropical atmosphere is deep convection, which is
characterized by towering clouds extending approximately 12–16 km in height from the boundary layer to the
tropopause. Since more than half of total convective precipitation in the tropics is from deep convection [17], it
is clear that deep convection plays an important role in tropical thermodynamics and therefore in the interaction
between water vapor and large-scale dynamics. Global circulation models (GCMs), however, cannot resolve
deep convective clouds because they typically have horizontal spatial scales of less than 50 km whereas grid
spacings in GCMs are typically greater than 100 km. Therefore, instead of resolving deep convection, GCMs
must parameterize it; that is, the energy changes associated with phase changes of water are parameterized
in terms of large-scale variables. Such parameterizations are in need of improvement, though, since GCMs
cannot adequately capture important features such as the Madden–Julian oscillation and convectively-coupled
waves [31,39]. Various convective parameterizations have been developed over the past half century, and they
vary in effectiveness [8,40]. Some of the most popular convective parameterizations utilized in contemporary
GCMs are quasi-equilibrium models [9].

Quasi-equilibrium thinking was introduced by Arakawa and Schubert [1]. The premise is that regions of
deep convection are in a quasi-equilibrium state where the convective available potential energy (CAPE) is
nearly constant. Deep convection acts as an energy regulator – it holds the CAPE nearly constant by quickly
consuming any excess of CAPE that develops. One popular convective parameterization based on quasi-equi-
librium ideas was introduced by Betts and Miller [2]. A Betts–Miller scheme is used to parameterize convection
for the model used here.

Since interactions between water vapor and large-scale dynamics are so important in tropical climate, and
since GCMs parameterize this interaction, a fundamental question to ask about convective parameterizations
is, What types of waves are supported by the parameterization? This question was addressed by, among others,
Fuchs and Raymond [12] and Neelin and Yu [35], who studied the linear waves supported by Betts–Miller
parameterizations. Frierson et al. [11] (hereafter FMP) recently addressed this question and found nonlinear
precipitation front solutions for a simplified tropical climate model with a Betts–Miller convective parameteri-
zation. Their model has the form of shallow water equations and a water vapor equation coupled by a nonlinear
precipitation term. It is intermediate in complexity between simple models and full GCMs, and it is similar in
form to the Quasi-Equilibrium Tropical Circulation Model of Neelin and Zeng [36].

As was just explained, the simplified tropical climate model of FMP is used as a framework for studying
the waves supported by convective parameterizations; in addition, the model has a second purpose: to provide a
new mathematical theory for the propagation and interaction of precipitation fronts. By a precipitation front, we
mean the boundary between a convective, precipitating region and a nonconvective, nonprecipitating region.
Areas of transition between precipitating and nonprecipitating regions over scales of roughly 1,500 km have
been seen in observational studies [32,41–43]. For instance, the Madden–Julian oscillation and convectively-
coupled waves are examples of propagating convective regions with spatial scales of thousands of kilometers.
Convectively-coupled waves are seen in observations of outgoing longwave radiation, which is a proxy for
cloudiness – hence the name convectively-coupled waves. There has been a large amount of theoretical work
to explain the spatial structures and slow phase speeds of the convectively-coupled Kelvin wave (≈15 m/s)
and the Madden–Julian oscillatioon (≈5 m/s) [7,28–30,33,34,45,46], but no theory is yet generally accepted
for these waves.

In this paper, exact analytical precipitation front solutions are found to the simplified tropical climate
model of FMP. Whereas FMP found discontinuous precipitation front solutions, we show that precipitation
fronts are realizable with continuous spatial structure; this clarifies the numerical results of FMP, which
showed continuous precipitation fronts. These precipitation fronts are solutions when no forcing or dissi-
pation besides convective heating is included in the model. For all choices of model parameter values that
are typically used, we show that there are precipitation front solutions, and the structure of the fronts de-
pends on the model parameter values. More work with the model used here is presented by Pauluis et al.
[37], who discuss the nonlinear interaction between precipitation and coupled convective-gravity waves, and
Khouider and Majda [21,22], who add realistic geophysical effects to the model used here. A high-resolution
balanced numerical scheme for this model with rotational effects was also recently developed by Khouider and
Majda [19,20].
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1.2 Outline

The model of FMP will be presented in Sect. 2, and their precipitation front solutions will be reviewed in Sect. 3.
Precipitation fronts are solutions where the spatial domain is divided into two regions, and the precipitation
(and other model variables) changes abruptly at the boundary of the two regions. In one region the water vapor
is below saturation and there is no precipitation, and in the other region the water vapor is above saturation level
and there is precipitation. The boundary between the two regions is a free boundary that moves at a constant
speed. It was shown that the allowed boundary speeds classify the fronts into three types: drying fronts, slow
moistening fronts, and fast moistening fronts. The adjectives “drying” and “moistening” refer to whether the
boundary is moving toward the saturated region or the unsaturated region. The slow and fast moistening fronts,
however, violate Lax’s stability criterion for moving discontinuities in hyperbolic systems (the precipitation
is discontinuous at the boundary) [23,26]. Nevertheless, FMP demonstrated that all three types of fronts are
robustly realizable numerically. In this paper the realizability of all three types of fronts is demonstrated further,
including the detailed structure with finite relaxation times, both analytically and numerically.

The results in this paper generalize those of FMP in the following way. To arrive at their results, FMP took
a model parameter to its limiting value. In their model, the convective adjustment time τc is the time scale
over which the atmosphere adjusts to convection. For the Betts–Miller parameterization scheme, the moisture
and temperature are relaxed back to reference profiles, and τc is the relaxation time. FMP took the limit of
instantaneous convective adjustment, τc → 0. Here finite adjustment times (τc �= 0) are considered, and the
results of FMP are obtained in the limit τc → 0. The exact analytical structure of the precipitation fronts for
τc �= 0 is developed in Sect. 4. From the viewpoint of applied mathematics, the nonlinear relaxation system
that is studied has novel phenomena as well as features in common with established applied mathematical
theories of relaxation limits for conservation laws [5,16,18] and waves in reacting gas flows [6,3,25].

In Sect. 5 the spatial structure of the fronts is illustrated. Finally, in Sect. 6, the slope of the precipitation
fronts is investigated in order to assess the practical physical dimensions of the fronts with finite relaxation
times. As mentioned earlier, the precipitation is discontinuous for τc → 0. Although the precipitation is con-
tinuous for τc �= 0, it can have a very steep gradient for small τc and certain other situations. These other
situations arise because the slope of the front depends on four parameters: the adjustment time τc, the front
velocity, and two other parameters that will be introduced below.

2 A simplified tropical climate model

2.1 Derivation of the simplified tropical climate model

The simplified tropical climate model used here is a barotropic–first baroclinic mode model with a vertically
averaged moisture. The equations for the barotropic and first baroclinic modes are derived from a Galerkin
projection of the hydrostatic Boussinesq equations, which are

∂U
∂t

+ U · ∇U + W
∂U
∂z

+ βyU⊥ = −∇� + SU, (1)

∇ · U + ∂W

∂z
= 0, (2)

∂�

∂t
+ U · ∇� + W

∂�

∂z
+ N 2θ0

g
W = S�, (3)

∂�

∂z
= g

�

θ0
, (4)

W
∣
∣
z=0,H = 0, (5)

where the last equation represents rigid lid boundary conditions at the surface z = 0 and the top of the tropo-
sphere z = H . The coordinates x , y, and z are the zonal, meridional, and vertical coordinates. U = (U, V )
is the horizontal (zonal and meridional) velocity, W is the vertical velocity, � is the pressure, and � is the
potential temperature anomaly. The full potential temperature of the system (including the background state)
is actually

�total = θ0 + d�̄

dz
z + �.
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Table 1 Model parameters and scales

Parameter Derivation Value Description

c N H/π 50 m/s Velocity scale
β 2.28 × 10−11 m−1 s−1 Variation of Coriolis parameter
L

√
c/β 1,500 km Equatorial length scale

T L
c 8.3 h Equatorial time scale

θ0 300 K Typical atmospheric temperature
g 9.8 m/s2 Gravitational acceleration
cp 1,000 J/K/kg Specific heat at constant pressure
N 10−2 s−1 Buoyancy frequency
H 16 km Tropopause height

ᾱ H N 2θ0
πg 15 K Potential temperature scale

W0
H

πT 0.18 m/s Vertical velocity scale
Lv 2.5 × 106 J/kg Latent heat of vaporization
cpᾱ/Lv 6 × 10−3 Scale factor for scaled moisture
α Parameter in moisture saturation profile q̃(θ)

Q̄ Background mean moisture gradient
(or gross moisture stratification)

cd c 50 m/s Dry gravity wave speed

cm

√

1−Q̄
1+α

Moist gravity wave speed
τc Convective adjustment time

(or moisture relaxation time)
s Front velocity

a − 1+α
s

c2
m−s2

1−s2 a(s) > 0 if and only if
s is an allowed front speed

Lc τc/a Convective length scale

The background potential temperature appears in the model in the buoyancy frequency N 2, which is defined as

N 2 = g

θ0

d�̄

dz
.

The symbol U⊥ represents the orthogonal vector with components (−V, U ). SU and S� are source terms for
the momentum and temperature. The material derivative is

D

Dt
+ W

∂

∂z
= ∂

∂t
+ U · ∇ + W

∂

∂z

= ∂

∂t
+ U

∂

∂x
+ V

∂

∂y
+ W

∂

∂z
,

where ∇ is the horizontal gradient. The parameters used in this paper are listed in Table 1.
The barotropic–first baroclinic mode equations are derived from the hydrostatic Boussinesq equations by

using a vertical Galerkin projection. The inner product used for the projection is

〈F, G〉 = 1

H

H∫

0

F(z)G(z) dz.

Due to the boundary condition (5), the vertical velocity W is expanded in terms of the basis {√2 sin(kπ z/H)}∞k=1.
For consistency in the hydrostatic Boussinesq equations (1)–(5), and also to represent prominent features of
deep convection in the tropical atmosphere, the potential temperature � is also expanded in terms of this
sine basis, whereas the horizontal velocity U and the pressure � are then expanded in terms of the basis
{√2 cos(kπ z/H)}∞k=0. With the barotropic–first baroclinic mode approximation, only the barotropic mode
(k = 0) and the first baroclinic mode (k = 1) are kept; that is, we impose the ansatz

(

U
�

)

(x, y, z, t) =
(

ū
p̄

)

(x, y, t) +
(

u
p

)

(x, y, t)
√

2 cos
(π z

H

)

, (6)
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



W
�
S�



 (x, y, z, t) =




w
θ
P



 (x, y, t)
√

2 sin
(π z

H

)

, (7)

where the only source S� will be the precipitation P , and we set SU = 0. The hydrostatic equation (4) then
gives the relation

p = − H

π

g

θ0
θ,

and the continuity equation (2) yields

w = − H

π
∇ · u. (8)

The variables are converted to nondimensional form using the dry gravity wave speed c = N H/π ≈ 50 m/s,
the equatorial deformation length L = √

c/β ≈ 1500 km, the time scale T = L/c ≈ 8 h, the temperature scale
ᾱ = H N 2θ0/πg ≈ 15 K, and the pressure scale c2. Table 1 lists the scales used and their definitions. Using the
Galerkin projection outlined above, the barotropic–first baroclinic mode equations are, with nondimensional
variables now,

∂ū
∂t

+ ū · ∇ū + u · ∇u + (∇ · u)u + yū⊥ = −∇ p̄, (9)

∇ · ū = 0, (10)
∂u
∂t

+ ū · ∇u + u · ∇ū + yu⊥ = ∇θ, (11)

∂θ

∂t
+ ū · ∇θ − ∇ · u = P. (12)

where P is the nondimensional precipitation. The parameterization for the precipitation will be given later.
The other source terms have been dropped and will not be considered here. FMP gives more details of this
derivation.

In the simplified tropical climate model derived by FMP, the moisture equation that accompanies the
barotropic–first baroclinic mode equations is

∂q

∂t
+ ū · ∇q + Q̄∇ · u = −P, (13)

where q is the vertically averaged mixing ratio for water vapor, scaled by the nondimensional quantity cpᾱ/Lv.
(cp is the specific heat at constant pressure, ᾱ is the temperature scale, and Lv is the latent heat of vaporization.)
We omit the overbar on the vertically averaged mixing ratio since it is the only moisture of the dynamical model.
P is the same nondimensional precipitation that appears in (12). The constant, nondimensional parameter Q̄,
which is sometimes called the gross moisture stratification, arises from a background mixing ratio. See FMP
for a detailed derivation of this equation. The variable q will be referred to simply as the moisture throughout
this paper. The barotropic–first baroclinic mode equations (9)–(12) and the moisture equation (13) make up
the simplified tropical climate model. Further simplifications will be made later.

The model described above has a vertical structure with only one baroclinic mode. One might suspect
that a model with such a crude vertical structure would not be able to capture many features of the observed
atmosphere. While such models can capture some features of the large-scale circulation [36,11], there are
many details that are not represented. A model with two baroclinic modes of vertical structure can capture
more details [21,22], and a model with full vertical structure can presumably represent the atmosphere in
full, but such models would add more levels of complexity. For the purposes of this paper, the setting of one
baroclinic mode is chosen for its simplicity so that some analytical results can be found.

2.2 Precipitation parameterization

On the large scales (∼1,500 km) considered here, the formulation of Betts and Miller [2] is a natural choice for
modelling precipitation. In this model, when the moisture exceeds a reference saturation profile, it is relaxed
back to saturation over a time scale of a few hours. Mathematically, this takes the form
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P = 1

τc
(q − q̃(θ))+, (14)

where τc is the relaxation time, q̃(θ) is the prescribed reference profile for moisture saturation, and the super-
script + denotes the positive part:

(q − q̃)+ =
{

q − q̃ if q − q̃ > 0,
0 if q − q̃ ≤ 0.

Neelin and Zeng [36] and Betts and Miller [2] use relaxation times of order τc ≈ 2 h, whereas Bretherton et al.
[4] estimate τc ≈ 12 h from current observations.

Two common choices are made for the saturation moisture profile. The simplest choice mathematically is
a constant moisture threshold,

q̃(θ) = q̂.

This is justified physically since atmospheric temperatures in the tropics are approximately uniform. The other
common choice, used by Neelin and Zeng [36], is a linear profile,

q̃(θ) = θ. (15)

This is known as the CAPE parameterization. The CAPE (convectively available potential energy) for the
model used here is q − θ . Thus, for this choice of q̃(θ), CAPE is kept in quasi-equilibrium. Convection
schemes such as those of Arakawa and Schubert [1] and Betts and Miller [2], which are used in full GCMs,
would reduce to this in the first baroclinic mode system. The parameterization used here is therefore a simpli-
fied model for the behavior of a GCM. See Smith [40] for more information on convective parameterization
schemes. A combination of these two choices, utilized by FMP, will be used here:

q̃(θ) = q̂ + αθ.

In FMP it was established that the convective parameter α must satisfy −Q̄ < α for uniform stability, and
q̂ should be nonnegative. Regions of space where P = 0 will be referred to as unsaturated or dry regions
interchangeably, and regions of space where P > 0 will be referred to as saturated or moist regions inter-
changeably.

2.3 Conservation principles

Several conservation principles exist for this simplified tropical climate model. First, the equivalent potential
temperature θe = q + θ is conserved:

D̄θe

Dt
= (1 − Q̄)∇ · u,

where advection by the barotropic velocity is denoted by

D̄

Dt
= ∂

∂t
+ ū · ∇.

This quantity θe is also sometimes called the moist static energy, since it is the sum of thermal energy and
latent energy stored as moisture that could be released by condensation.

Second, the variable Z = q + Q̄θ is decreasing along barotropic particle paths:

D̄Z

Dt
= −(1 − Q̄)P ≤ 0.

The inequality holds because, as will be shown below, Q̄ must satisfy Q̄ < 1 and the precipitation is nonnegative
by definition (14).
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Finally, the system conserves a total energy, which is the sum of a dry energy and a moist energy. The dry
energy density is the sum of kinetic and available potential energy terms, and it is given by

εd = 1

2
(|ū|2 + |u|2 + θ2).

The moist energy density is related to Z , and it is given by

εm = 1

2

(q + Q̄θ)2

(1 − Q̄)(α + Q̄)
. (16)

The energy must be positive definite so that it can be used as a norm; therefore, from (16) it follows that 1 − Q̄
and α + Q̄ must have the same sign. From (9)–(13) the total energy density ε = εd + εm then satisfies

∫

ε(t) dx dy =
∫

ε(0) dx dy −
t∫

0

∫
q − αθ

α + Q̄
P dx dy dt. (17)

When moisture is ignored, the total dry energy is conserved; the addition of moisture is expected to dissipate
energy through precipitation. In order for (17) to represent dissipation of energy, the last term must satisfy

q − αθ

α + Q̄
P ≥ 0.

Since P ≥ 0 by definition (14), and since q − αθ is also positive when P �= 0 (again by (14)), this occurs
when α and Q̄ satisfy

−Q̄ < α < +∞. (18)

Another constraint on Q̄ is obtained by recalling that 1 − Q̄ and α + Q̄ must have the same sign to ensure the
moist energy density (16) is positive:

Q̄ < 1. (19)

These constraints on α, Q̄ will be used throughout the paper. Note that this energy conservation principle is
independent of relaxation time τc.

2.4 Gradient equations

It was shown by FMP that, in the absence of a barotropic wind, the variables u, θ , q satisfy a smoothness
property, which we summarize now. This is shown by producing an energy estimate for the gradient of the
simplified tropical climate model (9), (10), (11), (12) and (13). The assumption ū = 0 here is crucial, since
the barotropic–baroclinic interaction term makes the estimate invalid otherwise. Another key feature of the
estimate is that it is independent of relaxation time τc.

Setting the barotropic velocity to zero in (9), (10), (11), (12) and (13) and then taking the gradient gives
the gradient equations:

∂∇u

∂t
= y∇v + vŷ + ∂∇θ

∂x
, (20)

∂∇v

∂t
= −y∇u − uŷ + ∂∇θ

∂y
, (21)

∂∇θ

∂t
= ∇(∇ · u) + ∇ P, (22)

∂∇q

∂t
= −Q̄∇(∇ · u) − ∇ P. (23)
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We define the gradient energy density to be

εgrad = 1

2

(

|∇u|2 + |∇θ |2 + (∇q + Q̄∇θ)2

(1 − Q̄)(α + Q̄)

)

.

Under the evolution of (20)–(23), the gradient energy satisfies

∫

εgrad(t)dxdy =
∫

εgrad(0)dxdy +
t∫

0

∫ (

v
∂u

∂y
− u

∂v

∂y

)

dxdydt

−
t∫

0

∫ |∇(q − αθ)|2
α + Q̄

P ′dxdydt

≤
∫

εgrad(0)dxdy +
t∫

0

∫ (

v
∂u

∂y
− u

∂v

∂y

)

dxdydt,

where P ′ is the derivative of P with respect to moisture deficit q − q̃. Since P ′ ≥ 0, the third term above is sign
definite and can be dropped to get the inequality. This inequality shows that, for any finite time interval, ∇u,
∇θ , ∇q are bounded in L2 if bounded initially. Therefore, by Sobolev’s Lemma [10], smooth initial conditions
cannot develop discontinuities in u, θ , q in a single space dimension. In particular, for one-dimensional fronts,
u, θ , q are continuous if continuous initially.

Since this result is independent of relaxation time τc, it still holds in the limit τc → 0. However, since there
are no energy estimates for second derivatives (because the terms with P ′′ are no longer sign definite), one
can expect discontinuities in ∇u, ∇θ , ∇q to develop in the limit τc → 0. Formal solutions of this type were
demonstrated by FMP, and they will be summarized in the next section. Then fronts with continuous ∇u, ∇θ ,
∇q , for τc �= 0 will be developed in the remainder of the paper.

3 Precipitation fronts for instantaneous convective adjustment (τc → 0)

3.1 Instantaneous convective adjustment

In the formal limit τc → 0, convective adjustment takes place instantaneously. This is known as “strict quasi-
equilibrium.” (Recall that the parameterization choice (15) kept CAPE in a state of quasi-equilibrium for
τc �= 0.) Since the gradient estimates mentioned above are independent of τc, the equations arising from the
limit τc → 0 will be well-posed formally.

The free boundary problem in the limit τc → 0 was studied by FMP. The boundary is between an unsat-
urated region with no precipitation and a saturated region with precipitation. Before getting into the free
boundary problem, disturbances that remain within one region are first described here. The linear waves for
the model behave differently for the saturated and unsaturated regions; specifically, moist disturbances have a
slower wave speed than dry disturbances, as has been reported in observational studies such as that of Wheeler
and Kiladis [42]. To see this for our model, note that dry disturbances (P = 0), in the absence of a barotropic
wind, satisfy

∂u
∂t

+ yu − ∇θ = 0,

∂θ

∂t
− ∇ · u = 0.

These are the well-known linearized shallow water equations on a beta-plane (see [13] or [27]). The Kelvin
wave of this system has speed cd = 1 in our nondimensional units. On the other hand, for a moist disturbance
in the limit τc → 0, the moisture is saturated at its reference value,

q = q̂ + αθ.
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Using this relation, and adding Eq. (12) and (13) to cancel P , one obtains

∂u
∂t

+ yu − ∇θ = 0,

∂θ

∂t
− 1 − Q̄

1 + α
∇ · u = 0.

The Kelvin wave of this system has speed

cm =
√

1 − Q̄

1 + α
. (24)

Since −Q̄ < α, the moist wave speed cm is slower than the dry wave speed cd = 1. The parameters Q̄, α will
be chosen so that cm ≈ 15 m/s (cm ≈ 0.3cd), in agreement with observational data such as that of Wheeler
and Kiladis [42].

These dry and moist Kelvin waves are solutions propagating entirely within either the dry or moist region.
More interesting waves arise from the free boundary problem, where the boundary between the dry and moist
regions propagates. These solutions are called precipitation fronts and were studied by FMP for the limit
τc → 0. These solutions will be reviewed next, and then the main result of this paper—the exact analytical
structure of precipitation fronts for τc �= 0—will be presented.

3.2 One-dimensional setup

In the limit τc → 0, FMP found discontinuous precipitation fronts for the simplified tropical climate model
presented above. The equations used were the one-dimensional equations

∂u

∂t
= ∂θ

∂x
, (25)

∂θ

∂t
= ∂u

∂x
+ P, (26)

∂q

∂t
= −Q̄

∂u

∂x
− P, (27)

where the precipitation P was defined in (14) as

P = 1

τc
(q − q̃(θ))+.

Here the barotropic wind was set to zero, and the Coriolis force was ignored. Since the Coriolis force vanishes
at the equator, this setup can be considered zonal circulation at the equator. These one-dimensional zonal equa-
tions are meaningful in the tropics since many important features of tropical dynamics – such as the Walker
circulation, propagation of superclusters, and the Madden–Julian oscillation – occur in the zonal direction.

Although the model variables u, θ , q are guaranteed to remain continuous if they were initially (as was men-
tioned earlier), the derivatives of these quantities might be discontinuous. Taking the x-derivative of (25)–(27)
gives

∂w

∂t
= −∂θx

∂x
, (28)

∂θx

∂t
= −∂w

∂x
+ ∂ P

∂x
, (29)

∂qx

∂t
= Q̄

∂w

∂x
− ∂ P

∂x
, (30)

where w = −ux from (8). Now suppose there is a discontinuity in w, θx , and qx propagating at speed s. The
jump conditions for (28)–(30) at the discontinuity are

−s[w] = −[θx ], (31)

−s[θx ] = −[w] + [P], (32)

−s[qx ] = Q̄[w] − [P], (33)

where [w] = w+ − w− is the jump in w across the discontinuity.
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Before considering the precipitation fronts, notice that there are solutions to the jump conditions that occur
entirely within the dry or moist region. For a discontinuity within the dry region, where P = 0, Eq. (31) and
(32) yield s = ±1 = ±cd, the dry wave speed. This is a dry gravity wave, the analog (without rotation) of the
Kelvin wave solution discussed earlier. On the other hand, for a discontinuity entirely within the moist region,
(32) and (33) can be added to give

−s[θx ] − s[qx ] = −(1 − Q̄)[w]. (34)

In the limit τc → 0, the moisture in the moist region is q = q̂ + αθ , so that (34) and (31) yield s =
±

√

1 − Q̄/1 + α = ±cm, the moist wave speed. This is a moist gravity wave, the analog of the moist Kelvin
wave solution discussed earlier. These solutions were to be expected, since the disturbance speed within the
moist or dry region is the same whether the disturbance is continuous or not.

3.3 Three branches of precipitation fronts

Now consider a discontinuity at the interface between a dry and a moist region. Without loss of generality,
assume the dry region is initially on the negative side of the real axis, and the moist region is on the positive
side of the real axis. Then s < 0 corresponds to a moistening front, and s > 0 corresponds to a drying front.
It is shown by FMP that the front speed s must satisfy one of

cm < s < cd Drying Front, (35)

−cm < s < 0 Slow Moistening Front, (36)

s < −cd Fast Moistening Front. (37)

The drying front has speed between the moist and dry wave speeds, which is precisely the range of speeds
needed for stability of the front under Lax’s stability criterion. The moistening fronts, on the other hand, violate
Lax’s stability criterion; moreover, the fast moistening fronts travel at speeds that, physically, are unreasonably
fast. Nonetheless, it was shown by FMP that the moistening fronts are realizable as numerical solutions to
(25), (26) and (27) for nonzero τc. In the rest of this paper, the following questions are addressed: What is the
analytical structure of these fronts for nonzero τc? How is the structure influenced by the model parameters?

4 Precipitation fronts for nonzero convective adjustment time (τc �= 0)

In this section the structure of the precipitation fronts for τc �= 0 will be derived. The variables u, θ, q will
have a simple linear structure in the dry region, as they did for the case τc = 0 in the previous section. In the
moist region, the front will be approximately linear; it will also include a correction term for τc �= 0.

To find the moist region solution, the gradient equations (28)–(30) will be solved first, and their solutions
will be integrated to get solutions to (25), (26) and (27). The solution to (28), (29), (30) is derived by seeking
travelling wave solutions that are functions of x − st/τc. A simple ordinary differential equation (ODE) with
exponential solutions will arise, and the three branches of precipitation fronts will arise by excluding solutions
that grow exponentially in favor of those that tend to a finite limit.

In short, to calculate the precipitation fronts, use constant dry region solutions w, θx , qx to (28), (29) and
(30), find moist region travelling wave solutions w, θx , qx to (28), (29), (30) as functions of x − st/τc, match
the dry and moist region solutions at the boundary of the two regions, and integrate w, θx , qx to find solutions
u, θ, q to (25), (26) and (27). This is the task of this section. Many of the actual calculations are relegated to
appendices.

4.1 Dry region solution to derivative equations

The gradient equations (28), (29) and (30) have constant solutions for the dry region (P = 0) of the form

w = w−, (38)

θx = θx−, (39)

qx = qx− (40)

provided the dry region constraint
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qx− > αθx− (41)

is met to ensure the moisture is unsaturated (q < q̃) and the precipitation is zero.
The next step is to find solutions for the moist region, and then the dry and moist solutions must be matched

at their boundary.

4.2 Moist region solution to derivative equations

To have a moist region solution, the moist region constraint

q − αθ − q̂ > 0 (42)

must be met. We define new variables to rewrite Eqs. (28), (29) and (30) in a simpler form. The new variables
are useful for waves in moist regions, and they are

θe = θ + q, Z = Q̄θ + q. (43)

In terms of the variables w, (θe)x , Zx , Eqs. (28), (29) and (30) are

∂w

∂t
= 1

1 − Q̄
(Zx − (θe)x )x , (44)

∂(θe)x

∂t
= −(1 − Q̄)wx , (45)

∂ Zx

∂t
= − 1

τc
((1 + α)Zx − (Q̄ + α)(θe)x ), (46)

where the moist region constraint (42) is assumed to be met. Note that the right hand sides of (44) and (45) are
perfect x derivatives, which will allow us to easily integrate these two equations below. Also, (46) is a simple
ODE that is coupled with (44) and (45) for the moment and will become an ODE for Zx alone below.

For travelling wave solutions to the free boundary problem, let s be the constant speed of the boundary.
Also, define the moving reference frame variable x̃ = x − st , and, without loss of generality, assume the dry
region is x̃ < 0 and the moist region is x̃ > 0. As a travelling wave ansatz, the moist region variables are
written as functions of x̃/τc:

w = w

(
x − st

τc

)

,

(θe)x = (θe)x

(
x − st

τc

)

,

Zx = Zx

(
x − st

τc

)

.

Inserting this ansatz into Eqs. (44), (45) and (46) gives

−s
dw

d(x̃/τc)
= 1

1 − Q̄

(
d Zx

d(x̃/τc)
− d(θe)x

d(x̃/τc)

)

(47)

−s
d(θe)x

d(x̃/τc)
= −(1 − Q̄)

dw

d(x̃/τc)
(48)

−s
d Zx

d(x̃/τc)
= −((1 + α)Zx − (Q̄ + α)(θe)x ) (49)

where the moist region constraint

x̃∫

0

qx̃ − αθx̃ d x̃ > 0 (50)
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must be satisfied. This version (50) of the moist region constraint is equivalent to (42) above, since q̂ =
q(0) − αθ(0). It is sufficient to have

qx̃ − αθx̃ > 0.

From (47) and (48), the variables w, (θe)x can immediately be written in terms of Zx as

w = 1

1 − Q̄

s

1 − s2 Zx + Cw (51)

(θe)x = 1

1 − s2 Zx + Cθ , (52)

where Cw and Cθ are constants of integration that will be determined later. Then the ODE (49) for Zx becomes

d Zx

d(x̃/τc)
= −aZx − b, (53)

where

a = −1 + α

s

c2
m − s2

1 − s2 , (54)

b = Q̄ + α

s
Cθ , (55)

cm =
√

1 − Q̄

1 + α
. (56)

cm is the moist wave speed introduced in (24).
We take a respite from our calculation now to consider the coefficient of Zx in (53). In order to rule out

solutions that grow exponentially as x̃ → +∞, we must have

a > 0.

As shown by (54) and (56), a depends on s, Q̄, and α. For fixed Q̄ and α satisfying (18) and (19), a(s) is shown
in Fig. 1. From this plot, or from examining the definition of a in (54), one finds a(s) > 0 for the allowed front
speeds

cm < s < 1, (57)

−cm < s < 0, (58)

s < −1. (59)

–2 –1 1 2

–2

0

2

 s

a(
s 

)

–cm cm

Fig. 1 A qualitative plot of a(s) when 1 − Q̄ > 0 and Q̄ + α > 0. Values of s for which a(s) > 0 are allowed front speeds
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These are precisely the three branches of allowed precipitation fronts found by FMP: drying fronts, slow
moistening fronts, and fast moistening fronts. These three branches of fronts were summarized earlier here for
τc → 0 in (35), (36) and (37).

Returning to the task of calculating w, θx , qx , the next steps on the agenda are to integrate (53) to find Zx ,
convert back to the variables w, θx , qx , and match these moist regions solutions to the dry region solutions
(38), (39) and (40) to get continuous solutions (as stated earlier, it is only in the limit τc → 0 that we expect
w, θx , qx to become discontinuous). These steps are carried out in Appendix A. The result is

w = w+ − [w]e−ax̃/τc, (60)

θx = θx+ − [θx ]e−ax̃/τc, (61)

qx = qx+ − [qx ]e−ax̃/τc, (62)

where

w+ := lim
x̃→+∞

w

is defined as the asymptotic moist region value of w, and

[w] = w+ − w−
is the jump in w across the boundary between the dry and moist regions. w+ could equivalently be defined as

w+ := lim
τc→0

w.

θx+ and qx+ are defined analogously. Expressions for w+, θx+, qx+ in terms of other parameters are given in
Appendix A. The important relations involving the new parameters are

s[w] = [θx ], (63)

qx+ = αθx+, (64)

[qx ] =
(

1 − Q̄

s
− s

)

[w]. (65)

(See Appendix A for more details.) These relations were also found by FMP for the limiting case τc → 0.
At this stage we can also calculate the precipitation. Using the forms of θx , qx in (61) and (62), and using

(64), we write

qx − αθx = (qx− − αθx−)e−ax̃/τc .

Note that this is positive because the dry region constraint (41) is qx− − αθx− > 0. To have the precipitation
be continuous at the boundary of the dry and moist regions, we must have q̂ = q(0) − αθ(0). Therefore, the
precipitation in the moist region is given by

P = 1

τc
(q − αθ − q̂)+ = 1

τc

x̃∫

0

(qx̃ − αθx̃ ) dx̃

= 1

a
(qx− − αθx−)(1 − e−ax̃/τc) (66)

Note that P > 0 for a > 0, the allowed front speeds. We also define P+ as

P+ = lim
x̃→+∞

P = 1

a
(qx− − αθx−). (67)

Using the definition of a from (54), and using (96) from Appendix A, P+ can also be written as

P+ = (1 − s2)[w]. (68)
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And since there is no precipitation in the dry region, we have

P− = 0.

The precipitation can then be written as

P = P+(1 − e−ax̃/τc),

or, to put it in the same form as the moist region solutions (60)–(62),

P = P+ − [P]e−ax̃/τc . (69)

4.3 Integrating solutions to derivative equations

At this point solutions w, θx , qx to the derivative Eqs. (28), (29) and (30) have been constructed, but the goal
is to find solutions u, θ, q to the simplified tropical climate model (25), (26) and (27).

To find u, θ, q , integrate the solutions (38), (39) and (40) and (60), (61) and (62) for w, θx , qx to obtain

u = −w− x̃ + fu(t), (70)

θ = θx− x̃ + fθ (t), (71)

q = qx− x̃ + fq(t), (72)

in the dry region and

u = −w+ x̃ − τc

a
[w]e−ax̃/τc + gu(t), (73)

θ = θx+ x̃ + τc

a
[θx ]e−ax̃/τc + gθ (t), (74)

q = qx+ x̃ + τc

a
[qx ]e−ax̃/τc + gq(t) (75)

in the moist region. The functions fu, fθ , fq , gu, gθ , gq are determined by requiring u, θ, q to be continuous
at x̃ = 0 and by requiring (70), (71), (72) (73), (74) and (75) to actually be solutions to equations (25), (26)
and (27). This work is carried out in Appendix B. The result is the dry region solution

u(x̃, t) = −w− x̃ + (θx− − sw−)t + u(0, 0), (76)

θ(x̃, t) = θx− x̃ + (sθx− − w−)t + θ(0, 0), (77)

q(x̃, t) = qx− x̃ + α(sθx− − w−)t + q̂ + αθ(0, 0). (78)

and the moist region solution

u(x̃, t) = −w+ x̃ + τc

a
[w](1 − e−ax̃/τc) + (θx− − sw−)t + u(0, 0) (79)

θ(x̃, t) = θx+ x̃ − τc

a
[θx ](1 − e−ax̃/τc) + (sθx− − w−)t + θ(0, 0) (80)

q(x̃, t) = qx+ x̃ − τc

a
[qx ](1 − e−ax̃/τc) + α(sθx− − w−)t + q̂ + αθ(0, 0). (81)

The similarity between the dry and moist region solutions is evident. In the limit τc → 0, the moist region
solutions will be of the same linear form as the dry region solutions. Although the solutions w, θx , qx of (38),
(39), (40), (60), (61) and (62) and the precipitation (69) were travelling waves, the solutions u, θ, q of (76),
(77), (78), (80) and (81) are not precisely travelling waves, since they contain linear-in-time terms; this feature
will be discussed below. Also note that the linear-in-time terms can be written in terms of θx+ and w+ by using

θx− − sw− = θx+ − sw+, (82)

sθx− − w− = sθx+ − c2
mw+, (83)

which follow from (63), (68), and (85).
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In the process of obtaining (76), (77), (78), (79), (80) and (81) (see Appendix B), three important constraints
arise. The first two are

s = − Q̄ + α

qx− − αθx−
w−, (84)

P+ = Q̄ + α

1 + α
w+. (85)

These are consistent with our physical intuition. The front speed has the same sign as the divergence in the
dry region, so divergence in the dry region corresponds to a drying front, and convergence in the dry region
corresponds to a moistening front. The formula for P+ also makes physical sense, with precipitation propor-
tional to the moist region convergence. The effect of α is to slightly increase the precipitation over the α = 0
case given a value of w+. And since we must have P+ > 0, we have the new constraint

w+ > 0, (86)

so the moist region is a region of convergence.

4.4 Summary of the realizability of precipitation fronts

Here we summarize our demonstration of the realizability of the precipitation front solutions. In FMP precipi-
tation front solutions were found using formal arguments for the limit of instantaneous convective adjustment
(τc → 0). Three branches of precipitation fronts were found: drying fronts, slow moistening fronts, and fast
moistening fronts. The two moistening fronts, which satisfy s < −cd and −cm < s < 0, do not satisfy Lax’s
stability criterion [23,26], which requires the front speed to be intermediate between the disturbance speeds
of the two adjacent regions: cm < s < cd. As was shown by Majda [26],
discontinuous fronts are linearly structurally stable if and only if Lax’s stability criterion (and another condi-
tion) is satisfied.

Since the two moistening fronts violate Lax’s stability criterion, it was not immediately clear that the moist-
ening fronts would be stable, realizable solutions. FMP addressed this concern with numerical experiments
for finite adjustment times (τc �= 0). Their results show how discontinuous initial conditions evolved into
continuous precipitation front solutions for numerical simulations with finite adjustment times. This was the
case for all three types of fronts, thereby demonstrating the robust realizability of all three fronts numerically
(for τc �= 0) even though the moistening fronts violate Lax’s stability criterion.

All three types of fronts were robustly realizable in FMP’s numerical experiments, despite the stability
theorem of [26], because the stability theorem holds only for inviscid conservation laws (or, in the case of this
tropical climate model, the theorem holds only for relaxation systems in the limit of instantaneous relaxation
time, τc → 0). When finite relaxation times are used, the theorem does not apply, and fronts that violate Lax’s
stability criterion might be realizable. The exact analytic solutions found in this paper show why all three
types of fronts are realizable analytically for finite adjustment times. It is because, remarkably, there are exact,
continuous precipitation front solutions to the model equations for finite relaxation times.

The three types of precipitation fronts (slow moistening, fast moistening, and drying) are reminiscent of
the three types of wave fronts in reacting gas flow: flame fronts, weak detonations, and strong detonations [44].
Table 2 lays out the characteristics of the analogous fronts from the two theories. In the table, “subsonic” refers
to a speed slower than the gravity wave speed, and “supersonic” refers to a speed faster than the gravity wave

Table 2 Analogy between precipitation fronts and reacting gas fronts

Precipitation front Slow moistening front Fast moistening front Drying front
Reacting gas font Flame front Weak detonation Strong detonation
Lax’s shock inequalities Violated Violated Satisfied
Front speed Subsonic Supersonic Subsonic from one side,

supersonic from the other
Realizability of Always Always Always

precipitation front
Realizability of Unique speed arises as Only for special coefficient Always

reacting gas front nonlinear eigenvalue values of viscosity and
problem heat reduction
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speed. For instance, since slow moistening fronts satisfy |s| < cm < cd, they are subsonic from the viewpoint
of both the dry side and the moist side of the front; an analogous inequality is also true for flame fronts in
reacting gas flows. Drying fronts and strong detonations are subsonic when viewed from one side of the front
and supersonic when viewed from the other side. Interestingly, whereas all three types of precipitation fronts
are always realizable, all three reacting gas fronts are not always realizable.

As indicated by Table 2, the three fronts from reacting gas flow satisfy front speed bounds analogous to
those in (57), (58), and (59). Flame fronts, which are analogous to slow moistening fronts, propagate at speeds
that are determined as a nonlinear eigenvalue problem through a subtle balance of reaction and diffusion [44].
Weak detonations, which are analogous to fast moistening fronts, are realizable only for special values of
diffusion and reaction coefficients [6,25]. Strong detonations, which are analogous to drying fronts and satisfy
Lax’s shock inequalities as in (57), are always realizable [3,25]. The exact analytical solutions derived here
show that all three types of precipitation fronts are realizable for finite relaxation times τc.

One significant difference between the system (25), (26) and (27) studied here and the system for reacting
gas flow is that here the basic jump discontinuities occur in the derivative of the solution. Also, the nonlinear
source term P involves the solution itself and not its derivative; this creates a smoother and more realizable
background environment for the propagation of discontinuities in first derivatives. For reacting gas flow, on
the other hand, both the discontinuities and nonlinear source terms occur at the level of primitive variables
such as temperature.

The numerical simulations in Figs. 5 and 6 of [20] for the simplified tropical climate model provide further
evidence for the robust realizability of all three types of precipitation fronts in general dynamical solutions
with finite relaxation time including the fast moistening front. In particular, in Figs. 6 from [20], a fast moist-
ening front arises from the interaction of the strong convergence zone of a dry gravity wave with a region of
precipitation bounded by slow moistening and drying precipitation fronts. These results confirm the robust
realizability of fast moistening fronts discussed in the present paper through traveling wave analysis in contrast
with the rarely observed weak detonations of combustion theory.

5 Illustration of precipitation front structure

In this section, precipitation front solutions are constructed and illustrated to give a clearer picture of the
analytical form in (76), (77), (78), (79), (80) and (81).

5.1 Constructing precipitation fronts

There are several parameters in the solutions (76), (77), (78), (79), (80) and (81), and several of these parameters
are determined from others. In this subsection, we make clear which parameters must be chosen to construct
precipitation front solutions.

Constructing precipitation fronts by specifying dry region solutions One can construct precipitation front
solutions to, (25), (26) and (27) by specifying the dry region solutions:

1. Choose parameter values Q̄ and α satisfying

Q̄ < 1,

−Q̄ < α.

2. Choose the constant dry region solution values θx− and qx− satisfying

qx− − αθx− > 0,

3. Choose the dry region convergence w− satisfying one of

−qx− − αθx−
Q̄ + α

< w− < −qx− − αθx−
Q̄ + α

cm,

0 < w− <
qx− − αθx−

Q̄ + α
cm,

qx− − αθx−
Q̄ + α

< w−
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corresponding, respectively, to the front speeds

cm < s < 1,

−cm < s < 0,

s < −1.

4. Choose u(0, 0) and θ(0, 0), the values of u and θ at x = t = 0.

Step 3 above follows from (84) and (57), (58) and (59). Both the dry region solutions (76), (77) and (78) and the
moist region solutions (79), (80) and (81) are then determined by these parameters. This is a seven-parameter
(Q̄, α, w−, θx−, qx−, u(0, 0), θ(0, 0)) family of solutions where four of the parameters are constrained and
three parameters (u(0, 0), θ(0, 0), and either θx− or qx−) are free.

Constructing precipitation fronts using the convergence parametersw− andw+. Instead of specifyingw−, θx−, qx−
to construct precipitation front solutions, one could specify w− and w+. This can be seen once clearer relations
among w−, w+, and the other parameters are established. From (84) and (96) one finds

w− = c2
m − s2

1 − s2 w+. (87)

Note that, from (87), a can then be written as

a = −1 + α

s

w−
w+

. (88)

Also, solving (87) for s gives

s = ±
√

c2
mw+ − w−
w+ − w−

, (89)

where the ± is determined by sw− < 0 from (84). (Note that (88) and (89) show that a and s are functions
of the ratio w−/w+.) Since cm < 1 and w+ > 0, (89) shows that s will be an allowed front speed for the
following values of w− and w+:

cm < s < 1 for w− < 0 < w+,

−cm < s < 0 for 0 < w− < c2
mw+,

s < −1 for 0 < w+ < w−.

Note that the dry region constraint qx− − αθx− > 0 (and therefore the moist region constraint as well) is
automatically satisfied for allowed front speeds; to see this, note that (63) and (65) are used to determine qx−
and θx−, which then satisfy

qx− − αθx− = −[w](1 + α)
c2

m − s2

s
= a P+ > 0,

where P+ = (1−s2)[w] was used. The constant θx+ or qx+ is then freely chosen, and the remaining parameters
θx− and qx− are determined using (63), (64) and (65).

Precipitation fronts can therefore be constructed in the following way:

1. Choose parameter values Q̄ and α satisfying

Q̄ < 1,

−Q̄ < α.
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2. Choose convergence values w− and w+ satisfying one of

w− < 0 < w+,

0 < w− < c2
mw+,

0 < w+ < w−

corresponding, respectively, to the front speeds

cm < s < 1,

−cm < s < 0,

s < −1.

3. Choose either qx+ or θx+ freely
4. Choose u(0, 0) and θ(0, 0) freely.

Removing linear-in-time terms The precipitation front solutions (76), (77), (78), (79), (80) and (81) are not
precisely travelling waves, since they include linear-in-time terms. The convergence w and the precipitation
P , however, are always travelling waves, and the moisture q is a travelling wave for α = 0. Furthermore, it is
possible to remove some of the linear-in-time terms, since there is some freedom in choosing the parameters
w−, θx−, qx−.

As one can see from (76), (77), (78), (79), (80) and (81), the solutions would be travelling waves if both
of the following held:

−sw− + θx− = 0,

sθx− − w− = 0.

But these hold simultaneously only for s = ±1 or for s = ±cm (cf. (82) and (83)), and ±1,±cm are not
allowed front speeds. Therefore, we can remove the linear-in-time term from u or from θ and q , but not from
all three.

To remove the linear-in-time term from u, one would choose

θx− = sw−, θx+ = sw+.

Since w+ > 0 from (86) and sw− < 0 from (84), the signs of θx+ and θx− are then determined to be

θx− < 0, (90)

sθx+ > 0. (91)

To remove the linear-in-time terms from θ and q instead of u, one would choose

θx− = 1

s
w−, θx+ = c2

m

s
w+.

The signs of θx− and θx+ are then given by (90) and (91) in this case, too.
It is not clear whether one should remove the linear-in-time term from u or whether one should remove it

from θ and q . Since θ and q are thermodynamic quantities, they are bounded, so one might argue that their
linear-in-time terms should be removed. On the other hand, physically unreasonable wind speeds are also
undesirable. Perhaps one of θx− = sw− or θx− = w−/s makes more sense than the other based on typical
temperature gradients, front speeds, and zonal wind gradients.

Also note that the model variables u, θ, q in (76), (77), (78), (79), (80) and (81) grow linearly in x away
from the front. For these precipitation fronts to represent physical solutions on a physical domain, their form
would have to be altered away from the dry region–moist region boundary. In this sense the precipitation
front solutions (76), (77), (78), (79), (80) and (81) are local solutions in the vicinity of the dry region–moist
region boundary, and they might need to be matched with their environment to provide physical solutions. One
approach to fitting precipitation fronts on a periodic domain is shown in Fig. 6 of [20]. In that case, there is a
discontinuity where two fronts are matched, and gravity waves are initiated from the matching point.
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5.2 Numerical solutions

The precipitation front equations (25), (26) and (27) were integrated numerically by FMP using a high order
ENO (essentially non-oscillatory) scheme [14]. FMP used a discontinuous initial condition with τc �= 0 in the
parameterization for the numerics, and they noted that a continuous precipitation front formed. Looking back
at their results, it is clear that the continuous front that formed has the exponential structure found in this paper.
Here a continuous precipitation front of the form (76), (77), (78), (79), (80) and (81) will be used initially,
and it will evolve just as shown in (76), (77), (78), (79), (80) and (81). This will be confirmed here for a fast
moistening front. The parameter values chosen were the same ones used by FMP:

Q̄ = 0.9, α = 0, q̂ = 0.9, τc = 0.25

s = −2

w− = 0.013 w+ = 0.01

θx− = −0.006 θx+ = 0

qx− = 0.00585 qx+ = 0

The spatial domain in nondimensional units was −8 < x < 8; 1,600 grid points were used, so the grid
spacing was 
x = 0.01. The time step used was 
t = 0.00125 = 
x/8 in nondimensional units.

Figure 2 shows the evolution of precipitation P and convergence w. These two quantities are travelling
waves. No-flux boundary conditions were used, and this led to waves forming at the boundary and propagating
inward. Figure 3 shows the evolution of velocity u, temperature θ , and moisture q . The velocity and temper-
ature plots show that u and θ are not legitimate travelling waves, but q is because α = 0 for these numerical
solutions.

We plotted these numerical solutions with the exact solutions (76), (77), (78), (79), (80) and (81), and there
was no visible difference between the numerical and exact solutions, so we have not shown the comparison
here; this comparison confirms the quasi-travelling wave solutions (76), (77), (78), (79), (80) and (81).

To give an idea of the structure of the velocity as a function of x and z, sample vector field plots are shown
in Figs. 4 and 5 for each of the three branches of precipitation fronts. These are snapshots in time of the exact
solutions (76), (77), (78), (79), (80) and (81) with their full vertical structure from (6) and (7). Figure 4 shows
the vector field for a drying front. The parameter values used were

Q̄ = 0.9, α = 0, q̂ = 0.9,

s = 0.742,
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Fig. 2 Numerical travelling wave solutions for a fast moistening front with speed s = −2. Four times are shown: t = 0, 1, 2, 3.
The evolution of precipitation P is shown in a, and the the evolution of convergence w is shown in b. The no-flux boundary
condition leads to a dry gravity wave forming at the left boundary and propagating rightward toward the oncoming precipitation
front
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Fig. 4 Velocity field for a drying front for τc = 2 h a, and a close-up of a near the dry region–moist region boundary b

w− = −0.01 w+ = 0.01,

θx− = −0.0148 θx+ = 0,

qx− = 0.0121 qx+ = 0.

(These values were also used by FMP.) Figure 4 uses τc = 2 h, and Fig. 4b is a close-up of Fig. 4a near the dry
region–moist region boundary. The dry region has large-scale downdrafts and divergence at the surface, and
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Fig. 5 Velocity field for a slow moistening front a and a fast moistening front b for τc = 2 h

the moist region has large-scale updrafts and convergence at the surface. There is a continuous change from
downdrafts to updrafts at x = 0 since τc �= 0.

Figure 5a shows the vector field for a slow moistening front. The parameter values used were

Q̄ = 0.9, α = 0, q̂ = 0.9,

s = −0.158

w− = 0.000769 w+ = 0.01

θx− = 0.00146 θx+ = 0

qx− = 0.00438 qx+ = 0

(These values were also used by FMP.) The plot uses τc = 2 h. The dry region has large-scale updrafts and
convergence at the surface, and the moist region also has large-scale updrafts and convergence at the surface,
but the dry region updrafts are less than one-tenth as strong as those in the moist region.

Finally, Fig. 5b shows the vector field for a fast moistening front with τc = 2 h. The parameter values
used were the ones listed above for the numerical confirmation. Both regions have large-scale updrafts and
convergence at the surface, and the updrafts in the dry region are stronger than those in the moist region.

6 Slopes of precipitation fronts and realistic length scales

The length scale τc/a determines how steep the front boundary of the solutions (76), (77), (78), (79), (80) and
(81) will be. We denote this length scale by Lc:

Lc := τc

a
. (92)

The travelling wave solution for precipitation in the moist region x̃ > 0 was given in (66) as

P = P+(1 − e−ax̃/τc),

where P+ is a positive constant, τc is the convective adjustment time from the precipitation parameterization

P = 1

τc
(q − q̃)+,

and a was given in (54) by

a = −1 + α

s

c2
m − s2

1 − s2 ,

where cm is the moist wave speed,
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cm =
√

1 − Q̄

1 + α
.

From this travelling wave form of P and (92), therefore, the length scale Lc = τc/a determines how steep the
precipitation front is.

In this section, we investigate the dependence of Lc on the parameters τc, Q̄, α, and s, and we consider the
physical significance of the parameters’ effects.

As mentioned earlier near (24), values for the parameters Q̄ and α will be chosen so that cm ≈ 15 m/s,
in agreement with the observations of Wheeler and Kiladis [42]. For 0 < α < 1, Q̄ is typically chosen to be
close to 0.8 or 0.9. These choices lead to moist wave speeds near the observed value of 15 m/s. Table 3 shows
the moist wave speed cm resulting from some combinations of Q̄ and α. The choices of Q̄ we will consider
are 0.8, 0.9, and 0.95. The value 0.95 is chosen mainly as a comparison for the smaller values of 0.8 and 0.9.
The choices of α we will consider are –0.3, 0, 0.5, 1, and 1.5. The choice –0.3 appears to be nonphysical, since
potentially warm air can hold more moisture than cold air; we include it to get an idea of the consequences of
the entire range of allowed α values, α > −Q̄.

We now consider the effect of these parameters on the steepness of the front in detail, and we show some
plots to make the dependencies clearer.

Dependence of Lc on τc Of the four parameters τc, Q̄, α, and s, it is easiest to see how Lc depends on τc, since
it is a linear relationship. Figure 6a shows what the precipitation would look like for two common values of τc:
2 and 12 h. The other parameter values chosen were Q̄ = 0.9, α = 0, and s = −4 m/s. The plot shows that the
front with τc = 12 h is probably too broad to be physically reasonable, since the front requires approximately
6, 000 km to get within 95% of its asymptotic value. In fact, the front with τc = 2 h might also be a little broad
in this case, since the front takes about 1, 500 km to reach 95% of its asymptotic value.

One should not conclude from this discussion that τc = 12 h always leads to fronts with physically unrea-
sonable slopes. One may, though, conclude that τc = 12 h leads to fronts with physically reasonable slopes for
a smaller range of s than τc = 2 h does. For instance, Figure 6b shows the fronts for τc = 2 and 12 h when
a moistening front of speed s = −1 m/s is chosen instead. In this case, both values of τc lead to fronts with
physically reasonable slopes.

Table 3 Moist wave speed cm in metre per second for three values of Q̄ and five values of α. Observational studies show 15 m/s
as a typical moist wave speed.

α

–0.3 0 0.5 1 1.5

0.8 27 22 18 16 14
Q̄ 0.9 19 16 13 11 10

0.95 13 11 9 8 7
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Fig. 6 a A precipitation front for two values of τc: 2 and 12 h. The other parameter values chosen were Q̄ = 0.9, α = 0, and
s = −4 m/s. b A precipitation front for two values of τc: 2 and 12 h. Whereas plot a used s = −4 m/s, plot b uses s = −1 m/s.
Both front profiles in plot b seem physically reasonable
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We will define a front profile as “physically reasonable” if 95% of its asymptotic moist value is reached
by 1,500 km (the dry/moist region boundary is at x = 0). This corresponds to

0 ≤ Lc ≤ 500 km,

or

0 ≤ Lc ≤ 1/3

in nondimensional units. The physically reasonable front speeds will then be a subset of the allowed front
speeds in (57), (58) and (59), and in the limit τc → 0, the physically reasonable front speeds are the same as
the allowed front speeds.

Figure 7a shows front profiles for several values of Lc. As an example, the physically reasonable front
speeds for α = 0, Q̄ = 0.9 are

30 m/s < s < 50 m/s,

−6 m/s < s < 0 m/s for τc = 2 h

−90 m/s < s < −50 m/s

and

45 m/s < s < 50 m/s

−1 m/s < s < 0 m/s for τc = 12 h

−55 m/s < s < −50 m/s.

When τc = 12 h is used, the range of physically reasonable front speeds is significantly smaller than it is for
τc = 2 h.

For fixed s, although the front’s physical structure changes as τc decreases, the front of speed s will always
be a realizable solution for any value of τc ≥ 0. Therefore, the strict quasi-equilibrium limit τc → 0 is useful
for prediciting propagation speeds of precipitating regions, even if no information of the physical structure of
the front survives in the limit.

In short, smaller τc values lead to steeper fronts and wider ranges of physically reasonable front speeds. As
we shall see below, Q̄ and α will also affect the physically reasonable front speeds but in a more complicated
way. In the rest of the plots in this section, the value τc = 2 h will be used.

Dependence of Lc on s. The front velocity s appears in three places in Lc:

Lc = −τc
s

1 + α

1 − s2

c2
m − s2 .
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Fig. 7 a Front profiles for four different values of Lc: 1,000, 500, 250, and 125 km. Each branch of fronts has a front with each
of these profiles. Fronts for which 0 ≤ Lc ≤ 500 km are called “physically reasonable.” b Plot of Lc = τc/a versus s for α = 0,
Q̄ = 0.9, and τc = 2 h. Vertical lines denote s = ±cm
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Figure 7b shows Lc versus s. For all three branches of fronts, Lc decreases as s increases; that is, the front steep-
ens as s increases. The steepest fast moistening fronts have speeds near −50 m/s, the steepest slow moistening
fronts have speeds near 0 m/s, and the steepest drying fronts have speeds near +50 m/s.

To get an idea of what a front of a certain speed looks like, the left plot of Fig. 7a shows front profiles for
Lc =1,000, 500, 250, and 125 km. For Q̄ = 0.9, α = 0, and τc = 2 h, these profiles correspond to fronts with
the following speeds:

Lc (km) s (m/s)
1,000 +24 −9.4 −150
500 +31 −6.0 −94
250 +38 −3.3 −69
125 +43 −1.7 −59

As discussed above, using different parameter values, such as τc, can change these front slopes dramatically.

Dependence of Lc on Q̄ The parameter Q̄ affects the moist wave speed significantly, as was shown in Table 3,
and it is through this dependence that Q̄ affects Lc. Its effect is through the term c2

m − s2 of a.
Figure 8a shows example plots of precipitation for α = 0, s = 35 m/s. The front becomes steeper as Q̄

increases. This is also the case for fast moistening fronts, but the opposite is true for slow moistening fronts.
In the rest of the plots in this section, the value Q̄ = 0.9 will be used.

Dependence of Lc on α. Increasing α decreases cm, which affects Lc through the term c2
m − s2. There is also a

1 + α term of Lc. As was the case with Q̄, α affects Lc in different ways for different fronts. Figure 8b shows
a precipitation profile for varying α. This is a drying front for s = 35 m/s, and the front steepens for increasing
α. This is also the case for fast moistening fronts, whereas increasing α broadens slow moistening fronts.

7 Summary

Exact analytical precipitation front solutions were found for a simplified tropical climate model. The model
includes two vertical modes – a barotropic mode and the first baroclinic mode – and precipitation is param-
eterized by a Betts–Miller scheme with a finite relaxation time. The precipitation fronts come in three types:
drying fronts, slow moistening fronts, and fast moistening fronts. The exact precipitation front solutions hold
for finite convective adjustment times (τc �= 0), thus demonstrating robust realizability of all three types of
fronts, even though the moistening fronts violate Lax’s stability criterion.

As a study of the waves supported by a convective parameterization, these precipitation fronts provide
some physically appealing solutions and some solutions that appear unphysical. The slow moistening fronts
are appealing, since large-scale regions of precipitation travelling at roughly 5 m/s are present in the tropics.
Fast moistening fronts, though, can travel at arbitrarily high speeds; and, as shown in Sect. 6, some fronts
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Fig. 8 a A precipitation front for three values of Q̄: 0.8, 0.9, and 0.95. This is a drying front with α = 0, s = 35 m/s. Fast
moistening fronts also show this trend (i.e., they steepen as Q̄ increases), whereas slow moistening fronts broaden as Q̄ increases.
b A precipitation front for five values of α: –0.3, 0, 0.5, 1, and 1.5. This is a drying front with speed 35 m/s. The drying front
steepens as α increases. Fast moistening fronts also show this trend, whereas slow moistening fronts broaden as α increases



Structure of precipitation fronts 401

of all three types are so broad that they can hardly be considered as fronts. The parameterization considered
here, along with the simplified tropical climate model in which it is used, thus supports a wide variety of
precipitation fronts.

The precipitation fronts found here for finite relaxation times τc have the same front speeds as the dis-
continuous fronts of FMP. Although a front’s steepness depends on τc, a front with front velocity s is always
realizable for any τc ≥ 0. Thus the strict quasi-equilibrium limit τc → 0 is useful for predicting propagation
speeds of precipitating regions, even if the front is not nearly discontinuous.

From the viewpoint of applied mathematics, exact analytic solutions were found to the remarkable new
system of partial differential equations1 (9), (10), (11), (12) and (13), a simplified tropical climate model. See
FMP for a list of several interesting problems for applied analysis with this model, and see [19–22,37] for
more geophysical results with this model.

Appendix A Calculating solutions to the derivative equations

Integrating the ODE (53) for Zx then gives

Zx = Cz exp

(
1 + α

s

c2
m − s2

1 − s2

[
x − st

τc

])

+ Q̄ + α

1 + α

1 − s2

c2
m − s2 Cθ .

Using (43) and (51) and (52) the variables w, θx , qx are then

w = Cz

1 − Q̄

s

1 − s2 exp

(
1 + α

s

c2
m − s2

1 − s2

[
x − st

τc

])

(93)

+ s

1 − Q̄

Q̄ + α

1 + α

1

c2
m − s2 Cθ + Cw

θx = Cz

1 − Q̄

s2

1 − s2 exp

(
1 + α

s

c2
m − s2

1 − s2

[
x − st

τc

])

+ 1

1 + α

1 − s2

c2
m − s2 Cθ (94)

qx = Cz

1 − Q̄

1 − Q̄ − s2

1 − s2 exp

(
1 + α

s

c2
m − s2

1 − s2

[
x − st

τc

])

+ α

1 + α

1 − s2

c2
m − s2 Cθ . (95)

There are three unknown constants of integration here: Cw, Cθ , Cz . These constants are found be requiring
these moist region solutions (93), (94) and (95) to match the dry region solutions (38)–(40) at the boundary
x̃ = 0. The result is a linear system of equations for the constants Cw, Cθ , Cz . Since it is straightforward but
messy to solve the linear system, the details are omitted here. Inserting the values of Cw, Cθ , Cz into (93), (94)
and (95) leads to the moist region solutions:

w = w+ − [w]e−ax̃/τc

θx = θx+ − [θx ]e−ax̃/τc

qx = qx+ − [qx ]e−ax̃/τc,

where a was given in (54) as

a = −1 + α

s

c2
m − s2

1 − s2 ,

and cm is the moist wave speed, given in (24) as

cm =
√

1 − Q̄

1 + α
.
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The parameters w+, θx+, qx+ are the moist region counterparts to w−, θx−, qx−, and they are given by

w+ := lim
x̃→+∞

w = − 1

1 + α

s

c2
m − s2 (qx− − αθx−) + w−, (96)

θx+ := lim
x̃→+∞

θx = − 1

1 + α

s2

c2
m − s2 (qx− − αθx−) + θx−, (97)

qx+ := lim
x̃→+∞

qx = − α

1 + α

s2

c2
m − s2 (qx− − αθx−) + αθx−. (98)

They could have been obtained alternatively by taking the limit τc → 0 instead of x̃ → +∞. The asymptotic
jump in the variables across the front is given by

[w] = w+ − w−,

[θx ] = θx+ − θx−,

[qx ] = qx+ − qx−.

From these definitions, one immediately sees that

s[w] = [θx ], (99)

qx+ = αθx+, (100)

[qx ] =
(

1 − Q̄

s
− s

)

[w]. (101)

Appendix B Integrating the solutions to the derivative equations

To find ODEs for the functions fu, fθ , fq , insert the formulas (70), (71) and (72) for the dry region solutions
into the model equations (25), (26) and (27). The dry region functions fu, fθ , fq must then satisfy:

d fu

dt
= θx− − sw−, (102)

d fθ
dt

= sθx− − w−, (103)

d fq

dt
= sqx− + Q̄w−. (104)

Integrating these gives

fu(t) = (θx− − sw−)t + u(0, 0),

fθ (t) = (sθx− − w−)t + θ(0, 0),

fq(t) = (sqx− + Q̄w−)t + q̂ + αθ(0, 0),

where u(0, 0) is the velocity at x = t = 0. The constants of integration have been chosen to make later
calculations easier.

The same procedure is done for gu, gθ , gq , and the result is

gu(t) = (θx+ − sw+)t + τc

a
[w] + u(0, 0)

gθ (t) = (sθx+ − w+ + P+)t − τc

a
[θx ] + θ(0, 0)

gq(t) = (sqx+ + Q̄w+ − P+)t − τc

a
[qx ] + q̂ + αθ(0, 0),

where the constants of integration have been chosen to make later calculations easier.
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The six functions of time gu, gθ , gq , fu, fθ , fq have now been determined, but continuity constraints still
must be met. First note that precipitation will be continuous if q̂ = q(0) − αθ(0). From (70), (71) and (72)
and from (73), (74) and (75), this is satisfied if

fq(t) = q̂ + α fθ (t), (105)

gq(t) = q̂ + αgθ (t) + τc

a
(qx− − αθx−). (106)

From the solutions for the f s and gs above, these constraints lead to

s = − Q̄ + α

qx− − αθx−
w−, (107)

P+ = Q̄ + α

1 + α
w+. (108)

Also, there are three more continuity constraints. To have continuous u, θ , and q , the dry and moist region
solutions must match at x̃ = 0. Therefore

gu(t) = fu(t) + τc

a
[w], (109)

gθ (t) = fθ (t) − τc

a
[θx ], (110)

gq(t) = fq(t) − τc

a
[qx ]. (111)

One can see that these constraints (105), (106) and (109), (110) and (111) are met by the f s and gs found
above by using the relations (63), (64) and (65), (67), (68), and (107) and (108); and one can see why the
constants of integration in the f s and gs were chosen as they were.
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