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THE STRUCTURE OF PSEUDO-INVERSE SEMIGROUPS
BY

iF. PASTIJN1

Abstract. A regular semigroup S is called a pseudo-inverse semigroup if eSe is an
inverse semigroup for each e = e1 G S. We show that every pseudo-inverse semi-
group divides a semidirect product of a completely simple semigroup and a semi-
lattice. We thereby give a structure theorem for pseudo-inverse semigroups in terms
of groups, semilattices and morphisms. The structure theorem which is presented
here generalizes several structure theorems which have been given for particular
classes of pseudo-inverse semigroups by several authors, and thus contributes to a
unification of the theory.

Completely (0-) simple semigroups and inverse semigroups form the first proto-
types for the study of pseudo-inverse semigroups. We therefore can say that the
theory of regular semigroups began with the study of pseudo-inverse semigroups [40,
45].  "

We may distinguish four successful trends in the papers which since then have
dealt with some wider classes of pseudo-inverse semigroups: 1. the subdirect
products of completely 0-simple and completely simple semigroups, 2. the gener-
alized inverse semigroups (orthodox pseudo-inverse semigroups, 3. the normal band
compositions of inverse semigroups, and 4. Rees matrix semigroups over inverse
semigroups (with zero).

Subdirect products of completely 0-simple semigroups and completely simple
semigroups were initiated in [13, Chapter 2] and studied in great detail in [18] (see
also §4 of [14]); this class contains several interesting subclasses: (a) the trees of
completely 0-simple semigroups [18] which include the primitive regular semigroups
[7, Vol. II, 16, 39, 44, 46], (b) the regular locally testable semigroups [50] which
include the normal bands [36] and the combinatorial completely 0-simple semi-
groups, (c) the normal bands of groups [37] which include the semilattices of groups
[7, Vol. I], (d) the subdirect products of Brandt semigroups which include the locally
testable semigroups which are inverse semigroups [50] and the primitive inverse
semigroups [39]. The generalized inverse semigroups were introduced in [48] as a
special class of orthodox semigroups; they include (a) the inverse semigroups, (b) the
orthodox completely 0-simple semigroups [9] and the rectangular groups, (c) the
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632 F. PASTIJN

various classes of &■ [%■] unipotent pseudo-inverse semigroups [35], (d) the various
classes of orthodox normal bands of inverse semigroups [33, 35, 42], in particular the
orthodox normal bands of groups. The normal band compositions of inverse
semigroups occur as special cases of more general considerations [33, 35, 38,
Chapters 3 and 4, 42]; rectangular bands of inverse semigroups have been investi-
gated in [35]; several authors consider semilattice compositions of particular inverse
semigroups [8, 10, 49] which of course yield special inverse semigroups. The idea of a
Rees matrix representation has been exploited and applied to produce numerous
classes of sophisticated semigroups; we refer the reader to [17, 35, §4], for the
peculiar pseudo-inverse semigroups which have a structure theorem of Rees type.

The above considered classes of pseudo-inverse semigroups may overlap. How-
ever, so far no attempt has been made to establish a comprehensive classification.

Independently from the above-mentioned cases several devices have been invented
to build pseudo-inverse semigroups [1, Chapter 4, 2, 19, 25, 47...]. Some recent
papers concentrate on idempotent-generated nonprimitive pseudo-inverse semi-
groups [2, 3, 4, 15, 24, 34], and in [32] a countably infinite set of pairwise
nonisomorphic bisimple nonprimitive pseudo-inverse semigroups with 3 idempotent
generators has been constructed.

The class of pseudo-inverse semigroups was introduced in [29 and 30] as an
overall generalization of the specific classes listed above. The structure theorem for
pseudo-inverse semigroups, which is given in [29], presupposes the knowledge of the
biordered set, the structure mappings and the trace products. The structure theorem
which will be given in this paper follows a far different approach and is the result of
a detailed investigation of the pseudo-semilattices as presented in [24].

1. Introduction and preliminary results. We assume that the reader is familiar with
the standard notation and terminology of semigroup theory as established in [7 and
11]. We also assume that the reader is acquainted with the basic results by
Nambooripad concerning biordered sets, the fundamental representation of a regu-
lar semigroup, and the fundamental regular semigroup TE which is associated with
the biordered set (E, to', 03r, t) [5, 6, 26, 27, 28]. The notation and terminology which
is listed below is in accordance with [24] and slightly modifies Nambooripad's
terminology of [29 and 30].

A regular semigroup S is called a pseudo-inverse semigroup if, for all e = e2 E S,
eSe is an inverse semigroup. The class of pseudo-inverse semigroups is closed for
taking regular subsemigroups, homomorphic images and direct products [30].

Let S be a regular semigroup. The set of idempotents of S will be denoted by
E(S). We introduce the relations to' and o3r on E(S) in the following way: if
e, f E E(S), then we put eJf [eo3rf] if and only if e = ef [e = fe] in S. The
relations «' and cor are quasi-orders, the relation to = co' n tor is a partial order, and
the relations 03' D («') \ w' n ("') ' are equivalence relations. If S is a pseudo-in-
verse semigroup, then (E(S), «', 0/) will be called a pseudo-semilattice. Pseudo-semi-
lattices were introduced in [29 and 41]. Pseudo-semilattices have been characterized
axiomatically in [29], and they were constructed in terms of semilattices and
semilattice-morphisms in [24].
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PSEUDO-INVERSE SEMIGROUPS 633

The natural partial order < on a regular semigroup S was introduced and
investigated in [30]. If x and y are elements of the regular semigroup S, then we put
x < y if and only if

(1.1) Rx « Ry and for some (all) e = e2 E Ry there exists / = f2 E Rx such that
/we and x = fy.

One can show that this definition is self-dual [30]. Remark that 03 is the restriction
of < to E(S). A subset A of 5 will be called an order-ideal of 5" if, for all y G S,
x G A,y < x implies thaty G A.

Let 5 be a regular semigroup, and suppose that e, f, g E E(S), with eo3rg, fo/g.
The mappings

9g,,,• «g -» ne,     x      ex,
(l-¿) i t r t

are called structure mappings of S [26] (see also [23]). Remark that for all x E Rg and
for all y G Lg we have x«i»    < x and y ̂  ^ < y.

We are now in the position to state Nambooripad's alternative characterizations
of pseudo-inverse semigroups [28, 29].

Result 1. Let S be a regular semigroup. The following conditions are equivalent:
(i) For all e E E(S), eSe is an inverse semigroup (i.e. S is a pseudo-inverse

semigroup).
(ii) For all e E E(S), 03(e) is a semilatice.
(hi) For all e E E(S), «'(e) forms a left normal band and o3r(e) forms a right normal

band.
(iv) The natural partial order =£ on S is compatible with the multiplication.
(v) For all e, f G E(S) there exists an element of e A/ G E(S) such that 03r(e) D

«'(/) = «(eA/).
(vi) If e, /, g G E(S) and e<3l/, e, / G «(g), then e = /; if e, f, g E E(S) and

etf, e, / G «(g), then e = /.
(vii) // e, /, g, h E E(S) and e<&fo3rg%h, then 9g,e = <PhJ\ if e, /, g, h E E(S)

andetfJgth, then ^e = iphtf.
Let 5 be a pseudo-inverse semigroup, and let us suppose that e, f E E(S), eurf.

From Result 1 it follows that for every y G R, there exists a unique x E Re such that
x < y: this element x is given by x = ey = y<Pie. Furthermore, the structure mapping
which maps Ry into Rx is unique, and independent of the choice of/in 7x and e in
7?^. A dual statement applies for structure mappings which map £-classes into
Ê-classes.

Let (E, «', o3r) be any pseudo-semilattice. For every e, f E E define e A/ by
Result l(v); E, A then becomes an idempotent binary algebra. We shall say that the
pseudo-semilattice (£', «', «r) is an order-ideal of the pseudo-semilattice (E, «', «r)
if F/, A is a subalgebra of E, A, and if for every / G E, e E E', fose implies that
/G£'.

If (E, «', 03r) is a pseudo-semilattice, then there exists a unique family t of partial
transformations of E such that (E, «', «r, t) is a biordered set [29].
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634 F. PASTIJN

If 5 is a regular semigroup and x, y elements of 5 such that there exists an
idempotent e E E(S) in the £-class of x and in the írVclass of y, then xy will be
called a trace product of x and y in S. It follows from [7, Theorem 2.17], that xy is a
trace product of x and y in S if and only if xy E Rx n Ly. Let us now suppose that
5 is a pseudo-inverse semigroup, and e, / G E(S). If e A / G F(5) is the idempotent
which is defined by Result l(v), then {e A/} = S(f,e) constitutes the so-called
sandwich set of / and e in S [26]. Let x, y E S, e, f E E(S), and suppose that /Êx
and e<5ly in S; then

(1.3)       xy = x(e A/)y = (x(e A/))((e A/)y) = (x^A/)(y9e,eA/)

where x(e A/)£e A/<3l(e A/)y and x(e A/) < x, (e Af)y =£y [26]. This implies
that every product of elements of S can be reduced to a trace product, and that the
multiplication on S is completely determined if we know the natural partial order <
and the trace products (see also [23]).

Let (E, «', o3r) be a pseudo-semilattice. In [35, Theorem 4.25] it has been shown
that (E, «', «r) is the pseudo-semilattice which is determined by some pseudo-in-
verse semigroup which has injective structure mappings if and only if E is the
disjoint union of its maximal subsemilattices (with respect to the partial order «).
Theorem 2.10 of [4] and Theorem 3.4 of [35] show how such pseudo-semilattices may
be constructed. In this paper we only need a construction for a pseudo-semilattice
which is the disjoint union of its maximal subsemilattices all of which are semi-
lattices with an identity. We proceed to give an outline of this construction.

Let I, A he index sets. Let (Lx, X G A) and (R¡, i G I) be indexed families of
semilattices. Let (MiX, (i, X) G I X A) be an indexed family of pairwise disjoint
semilattices such that for every (i, X) E I X A, M¡x is a semilattice with identity 1,A.
Let 9,x: MiX -* Lx, \piX: MiX ~* R¡, (i, X) E I X A, he monomorphisms such that

(V,) MiX<piX is a principal ideal of Lx and MiXipiX is a
,     . principal ideal of 7x, for all (i, X) E I X A,

(V2) Lx = Uj&Mflfa and Rt = UKeA M^iK for all X E
A and all ; G F

Let us put E = U/e/AeA MiX. On E we define the relations «' and o3r as follows.
If eiX G M¡x,fjfL G MJfí, i, j E I, X, p G A, then we put

«íX«%i Íf and °nly Íf ' = J and e.A'r'.A < flJPtt in R,■.

«ii&'fjnif and only ií A = J» and eiX<j>¡x =£ fjX<t>jX in Lx.

This structure (E, «', «') will henceforth be denoted by E = (Lx, R¡; MiX; <¡>¡x, \¡/iX;
FA).

Result 2. E = (Lx, Ä,; MiX; <piX, \¡/¡x; I, A) is a pseudo-semilattice which is the
disjoint union of its maximal subsemilattices all of which are semilattices with an
identity. Conversely, any such pseudo-semilattice can be so obtained.

It should not cause any confusion if we denote the meet operation in the
semilattices Lx, R¡, MiX, (i, X) G I X A, by A. If we take eiX E Mik,fJfL E AF, then
we define eiX A f. in E by

(1-5) e,x A4 = (e,^,x A l,^,,)^1 A (|¿¿ A 1 „^)9,>'•
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PSEUDO-INVERSE SEMIGROUPS 635

It is easy to check that this operation A on £ extends the meet operations which are
given for the M¡x, (i, X) E I X A, and that

-^,x)n«'(4) = «(e,xA4).
This is in accordance with Result l(v).

Let us now suppose that S is a pseudo-inverse semigroup and that E — (Lx, R¡;
MiX; 9,x, ^,x; F A) is the pseudo-semilattice which is determined by S. Let (i,X) E I
X A, and suppose that SiX is the subset of S which consists of the elements x for
which there exist/ G /, p G A, e¡ G M¡ , fjX G MjX withfjXZxCj\e¡ . We then have
the following result.

Result 3. Let S be a pseudo-inverse semigroup and let E = (Lx, R¡; MiX, <piX, \pjX;
I, A) be the pseudo-semilattice which is determined by S. Then S is a rectangular band
I X A of the semigroups S¡x, (i,X) E I X A. For every (i, X) E I X A, we have
E(SjX) = MiX, and l,x51/x is the maximal inverse subsemigroup of SjX which has MiX
as its semilattice of idempotents.

Proof. Anyhow 5 = U(S/XeAS,x since S is a regular semigroup. Let us now
suppose that x,x G SiX and yj{i E SJlt, and x,.x<3le,K, yJlt£fkll for some k E A, k E I,
eiK E MiK, fkfL E Mk)l. Let xiXyjtl E Snv and h„txikyj^,gna for some a E A, s E I,
Sn„ G Mna, h„ E Msv. From Jt,^ < RXa and Lw> < Lyjf then follows that gna03reiK
and hsv03lfk{i. Consequently i = n, v = p and Snv = S¡„, and we conclude that
SjxSjn E Sifl. Thus S is a rectangular band I X A of the semigroups 5,x, (/', X) EIX
A. It is now clear that for every (i, X) E I X A, l,x51,x is a subsemigroup of SiX and
that E(SiX) = E(ljXSliX) = MiX. From Result 1 we know that l,x51,x is an inverse
semigroup. Let D he any inverse subsemigroup of S for which E(D) = MiX. Since
llX is the identity of MiX, l,x must be the identity for D and so D Ç 1,X.S1,X. We
conclude that l¡x51tt is the maximal inverse subsemigroup of SjX which has MjX as
its semilattice of idempotents.

If S is a pseudo-inverse semigroup and E = (Lx, R¡; MiX; <piX,ipiX, I, A) the
pseudo-semilattice which is determined by S, then I X A is the greatest rectangular
band homomorphic image of S, whereas the partitioning of S into the subsemi-
groups S,x, (/', X) EIX A, determines the least rectangular band congruence on S.
If y is a congruence on S such that S/y is completely simple, then y will be called a
primitive congruence on S. The least primitive congruence ponS must be contained
in the least rectangular band congruence on S, and then S/p may be identified with
a Rees matrix semigroup 5lll(G; P; /, A). For every (i, X) E I X A, p induces a
group congruence on 5,x and the quotient is precisely the maximal subgroup GjX of
91t((r; P; F A). In [30] Nambooripad gives a very convenient way to construct the
least primitive congruence on the pseudo-inverse semigroup S: if < is the natural
partial order on 5, then the least primitive congruence p on S is given by < ° (=£)" '.
This is in accordance with the fact that, given any x, y G S with x < y, x and y
belong to the same subsemigroup 5,x for some (/, X) E I X A. The semigroup 5 has
injective structure mappings if and only if every p-class intersects every iaVclass and
every £-class of S in at most one element; one can easily show that in this case the
restriction of < to a p-class structurizes this p-class to a semilattice (when considered
as an ordered structure). For all (/, X) G / X A, the semilattice MiX is contained in a
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636 F. PASTIJN

p-class, and p* maps all elements of Af/X onto the identity of the group G,x. It should
be remarked that MiX may be properly contained in a p-class, even in the case when
S has injective structure mappings. The following result will be useful for our future
considerations.

Result 4. Let S be a pseudo-inverse semigroup, and let E = (Lx, 7x,; MiX; <piX, \pjX,
I, A) be the pseudo-semilattice which is determined by S. Then S has injective structure
mappings if and only if S satisfies the following condition and its dual:

(1.6) // (i, X) E I X A, xlX E S,x, eiX, fx G MiX, fiX < e;X, fiX < x,x, and e,x£x,x,
then eiX = x,x.

A semigroup S which is a rectangular band I X A of inverse semigroups SiX,
(i, X) E I X A, is a pseudo-inverse semigroup whose pseudo-semilattice of idempo-
tents is the disjoint union of its maximal subsemilattices [35, Theorem 3.1, Corollary
3.2]. Such a semigroup will be called an elementary rectangular band of inverse
semigroups if for all (/, X), (j, p) E I X A we have SjXSj^ = S^. A proper inverse
semigroup is an inverse semigroup which has injective structure mappings [21, 22,
31]. §4 of [35] gives a structure theorem for elementary rectangular bands of proper
inverse semigroups. We summarize this structure theorem as follows.

Result 5. Let %be a partially ordered set, and let L be a subsemilattice and an ideal
of %. Let G be a group which acts on % (on the left) as a group of order
automorphisms. Let I and A be index sets, and for every (i, X) E I X A, let pXi be an
element of G such that the action of pXi on % induces an order automorphism on L. Let
S be the set which consists of the elements (A, g)iX, A E L, g E G, i E I, X E A,
where g~ XA E L. Define a multiplication on S by

(1.7) (A, g),x(B, h)m =(AA gpXjB, gpXjh)iti.

S then becomes an elementary rectangular band of proper inverse semigroups. Con-
versely, every elementary rectangular band of proper inverse semigroups can be so
constructed.

The semigroup S which is constructed in Result 5 will be denoted by
91t(P(G\ %, L); P; I, A); in this notation P is the A X /-matrix which has the
element pXi in the (X, imposition. In case |/| = |A|= 1, Result 5 reduces to
McAlister's P-theorem which states that every proper inverse semigroup is isomor-
phic to some P-semigroup P(G, %, L). We refer the reader to [21, 22, 31] for more
information concerning P-semigroups. In case L — % is trivial, Result 5 reduces to
the well-known structure theorem for completely simple semigroups. The semigroup
cÜ\i(P(G, %, L); P; I, A) is a pseudo-inverse semigroup which has injective struc-
ture mappings. The maximal inverse subsemigroups of 91t(P(G\ %, L); P; I, A) are
all isomorphic to the P-semigroup P(G,%, L).

Any P-semigroup P(G, L, L) is a semidirect product of a group and a semilattice,
whereas a semigroup cd\i(P(G, L, L); P; I, A) is a semidirect product of a com-
pletely simple semigroup and a semilattice. O'Carroll showed that every inverse
semigroup divides an inverse semigroup of the form P(G, L, L) [31]. One of our
main results (see §4) shows that every pseudo-inverse semigroup divides a pseudo-in-
verse semigroup of the form G)\i(P(G, L, L); P; I, A).
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PSEUDO-INVERSE SEMIGROUPS 637

A congruence relation y on a regular semigroup S will be called a strictly
compatible congruence on S if the y-classes which contain idempotents form com-
pletely simple semigroups. Remark that every idempotent-separating congruence is a
rather special strictly compatible congruence [12]. McAlister shows that every inverse
semigroup is an idempotent-separating homomorphic image of an inverse semigroup
which has injective structure mappings [22]. In our structure theorem for pseudo-in-
verse semigroups we shall show that, given any pseudo-inverse semigroup S, there
exists a pseudo-inverse semigroup S which has injective structure mappings, and a
strictly compatible congruence y on S, such that S/y s S; we shall construct such a
pseudo-inverse semigroup S in terms of groups, semilattices and morphisms. §§2 and
3 prepare the way for this structure theorem.

2. The coextension. Let S be any pseudo-inverse semigroup. In this section we
shall show that there exist a pseudo-inverse semigroup S which has injective
structure mappings and a homomorphism 9 of S onto S such that the 99"'-classes
which contain idempotents are completely simple subsemigroups of §. We shall
factorize 9 as a composition 9,92 of epimorphisms 9,: S -> S and <j>2: S -» S such
that (i) 9i</>7 ' is an idempotent-separating congruence on S, and (ii) the <f>29j" '-classes
which contain idempotents are rectangular bands.

We need the following result from [24].

Theorem 2.1. Let S be any pseudo-inverse semigroup, and let (E, «', «r) be the
pseudo-semilattice which is determined by S. Let S = {(e, x, /)GFX5'X£|xG
eS n Sf), and define a multiplication on S by

(e,x, f)(g,y,h) = (e,xy, h).
Then S is a pseudo-inverse semigroup, and the mapping <p2: S -> S, (e, x, f) -> x is a
homomorphism of S onto S, such that the <¡>24>2 ' classes which contain idempotents are
rectangular bands. Furthermore E = F(S) = {(e, g, /)GFXFX£|gG «r(e) D
"'(/)}■ In the pseudo-semilattice (E, «', o3r) which is determined by S we have

(e,m,f)o3r(g,n,h)

if and only ife — g and mo3rn in S, and

(e,m,f)J(g,n, h)
if and only if f = h and mJn in S. For any e, / G E, Eef — {(e, g, f) \ g E 03r(e) D
w'(/)} ú a maximal subsemilattice of (E, «', «r), and Eef has an identity element
(e, e A/, /). The pseudo-semilattice (E, «', «r) is the disjoint union of its maximal
subsemilattices Ee ,, e, f E E.

Corollary 2.2. The pseudo-semilattice (E, «', «r) which is determined by S is of the
form E = (Lx, R¡; MiX; <piX, \piX; I, A), where

(i) I = A,
(ii)A, = L, = Mhforalii El = A,

(2.1)        (hi) 9,, = $H is the identity transformation on Mufor all i E I = A,
(iv)for every (i, j) E I X I, Mtj is a semilattice with an identity.
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Proof. Let us put / = A = E, and for all (e, f) G E X E, we put Mef = Eef,
Re = Le = Ee e, and

i,j. EeJ - Ee,e,     (e, g, /) - (e, g A e, e),

*ei/:Ee>/-EA/,     (e, g, /)-(/, /A g,/).

Then E = (Lx, R¡; MiX, </>,x, t//,x; /, A) is the pseudo-semilattice which is determined
by S, and the conditions (2.1) are satisfied.

Let us now suppose that D is a pseudo-inverse semigroup such that the pseudo-
semilattice (E(D), «', 03r) which is determined by D is of the form

E(D) = (Lx,R,;MiX;<piX,tiX;I,A)
where the conditions (2.1) are satisfied. For any i, j E I let D, • be the set of elements
of D which are ^related to some element of M¡¡ and £-related to some element of
Mif

Lemma 2.3. D is a rectangular band IX I of the semigroups DtJ, (i, j) E I X I. For
every (/', j) E I X I, Mi} is the semilattice of idempotents of DtJ, and Dtj is an
order-ideal of D, << . For every i E I, Dti is an inverse semigroup.J y- n or

Proof. Immediate from Result 3.
If x¡j E D¡j is any element of D, then there exist idempotents e„ G M¡¡ and

fjj E Mjj such that e,/3lx,7£/y. The inverse of xi} which belongs to Rf n Le will be
denoted by x~'. Observe that x¡jX E D¡t, and, due to the fact that M¡¡ and M^ are
semilattices, x/jX is the unique inverse of x¡¡ in Dj¡.

Lemma 2.4. For any (i, j) E I X I the mapping D^ -* Djt, x(- ■ -* xj] is an order-
preserving one-to-one mapping of D^ onto D ¿.

Lemma 2.5. Zyer xtJ E Du be an element of D, and (xij) = {yjj E D\yij < x,y}. 77ie
mappings

Kx:(xIJ)^(x,Jx-jx),    Ú-+W?,

K2 ■ (Xij > -» ( x/j 'x,7 ),    ytJ ^ y~j xyu,

are order-preserving one-to-one mappings onto the principal ideals (xtJXy ) and
(x~jXxij) of M a and M^ respectively.

Let yY be the set of order-ideals Yt¡ of D¡¡, i, j E I, where every Ytj is maximal for
the property that the mappings YtJ -» A/„, ytJ -* y^y/^, and Ytj -* MJp ytj '-* y~- xyu,
are injective order-preserving mappings onto ideals of M¡¡ and M^ respectively. If
x¡¡ E D¡j is any element of D, then it follows from Lemma 2.5 that there exists a
YtJ E A'such that xi} E YtJ. Thus X ¥^ D, and Uy eX YtJ = D.

For any Y¡¡ G X, let us denote

(2-2) Y-Jx^{y-Jx\ylJEYIJ).

From Lemmas 2.4 and 2.5 we have Yf¡ ' Ç Dj„ and Yjj G X if and only if Y¡] ' G X.
It should be clear that, for all / G /, M¡¡ = M¡¡ ' G yY, since in this case we have,
from Lemma 2.3, that Dn is an inverse semigroup.
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Let us consider a set Z = {¡t¡ \ i, j E I), where Mn = Iu for ah i E I and
X (1 Z = {/, 11: E 1} = {M„ I /' G /}. Let 'DILbe the semigroup which is freely gener-
ated by the elements of X U Z, subject to the defining relations

(Í)     Iijlik = lik>
(h) IuIki = /,.,,

(2.3) (hi) IuYik = Yik,
(iv) Y,jlk. = Ytj,
(v) Y0Y,.-'=/,, for all/, ;,te/.

Lemma 2.6. 911 is a completely simple semigroup and Z = F(91l) is /Tie set of
idempotents 0/911.

For any A E X U Z, let J= /I if_y4 G X and yi~ = M0 if A = ltJ E Z. For any
Xx,...,Xn E X U Z, let Xx° ■ ■ ■ o Xn denote the set of elements x, • ■ • xn, where
xk E Xk for all k. Thus ° is a complex multiplication [20, Chapter III] of subsets of
D.

Lemma 2.7. Let Xx,... ,Xn be any elements ofXU Z. Then no two different elements
of Xx° X2° • • • »I, are %-related in D.

Proof. Let us suppose that xt, ■ ■ ■ xt, and 'ft, ■ ■ -y,- are different <3Welated
elements of Xx ° X2 ° • • • ° Xn, where for all k, x,J'¿ ytJ 6 YtJk if Xk = Y/Jt E X,
and x.kJk' yiuk G M.kJkif x* = JV, G Z Let us Put

* = ( x^2 • • ' X'J. ) ( *Ù ■ ' ■ XU. )   ' A x^x^

and

« = ( ¿to, • ■ ■ Xj. ) ( Ä* ' • • >U )   ' A Ä •
Then g, /î G ^^1 G £>w xfúh G Z>,Vl, and

******** • • • «ú*^, ■ • -y.j^y^s-
Since htí,xT}x,,, we must have x, , h < x, ,, and since g «'y,-;'y,- ,■ > we must have<iVi   'i7i' 'l/i 'l/i' °     Jl\l\-'l\Jv

>*,■. £ * Ä i ■ Thus, x, , h, y. . g E Y,, if Xx = F , G A", and x, , A, y, , g G M, , if
A", = F , G Z. Since no two different elements of Y¡, or F , can be ^related in D,
we must have x, , A = y, , g. From this we have gty^, g = x, ¡hth. Since e and //
belong to the semilattice Mt ,, we conclude g = h and so

h{x^---xiJ^h = sMy^---y,J-

The inner left translation with xt, h — y¡j g maps the 'üRz-class of h — g bijectively
onto the Sl-class of xtJh = y;jlg by Green's lemma (Lemma 2.2 of [7]). Since

(**,/,*)( **** ' • ' X'J.) = *#**** ■ ■ ■ xiJ„

yííi^idí ' ' 'y*j„ ~ \y¡d\&)\%yiij2 ' ■ 'y¡j„)
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we have that hx¡ , • • • x, ,   and gy, , ■••y, ,   must be two different ^related
'272 'nJn OJ'lll J ' n)'n

elements of D. Since hu>rxi , x~) and go3ry, , y/x, we have hx¡ , < x, , and gy, , *£
'272     '272 °       ^'2/2^'272' '272 '272 °-7'272

y, ,. Therefore Ax, ,, gy, ,  G Y . if X, = Y. ,.  G yY and /ix¿ ,, gy, ,  G M, , if X2 =^'272 '272'  °^'272 '272 ¿ '272 '272'   °^'272 '272 z

F . G Z. Hence (Ax, , ) • • • x, ,   and (gy¡ , ) ■ • -y, ,   are different ^related ele-'272 _ V l2¿l' 'nln vo-''272/ ■''run

ments of X-, ° ■ • • » Y. By induction we can then show that Y , or M¡ , contains
two different ^related elements. This is clearly impossible, and our supposition is
false. Therefore the lemma holds.

Let fiuz be the free semigroup on the set X U Z, and let p0 be the relation on
$xuz_which consists of the pairs (/,/,*, Iik), (IuIkJ, Iu), (ItJYik, Yik), (YuIkj, Yu),
(YjjY~jX, Iu), i, j, k E I. If p is the congruence relation on t3xuz which is generated
by p0, then we can identify <$xuz/p witn ine completely simple semigroup 911. A
word W of ^xuz will be called reduced if W cannot be made shorter by an
application of an elementary p0-transition. An elementary p0-transition will be called
decreasing if it decreases the length of the word on which it acts.

Lemma 2.8. Every p-class on <3XUZ contains a unique reduced word. If Xx • • - X„ is
any word of3xuz, and if Vx ■ ■ ■ Vk is the reduced word in the p-class of Xx ■ ■ ■ Xn, then
Ï, » f2 o • ■ • °XnQVx° ■■■ °vk.

Sketch of the proof. Every word of ?FXUZ can be transformed into a reduced
word by subsequent applications of elementary p0-transitions, and so every p-class
contains at least one reduced word.

Let W be any word of (3rxuz. Let us suppose that we can transform W into the
reduced word Wx by an application of the decreasing elementary p0-transitions
a,,...,as, and into the reduced word W2 by an application of the decreasing
elementary p0-transitions /?,,...,/?.. We show by induction on the length of W that
Wx = W2. It is easy to see that this statement is true if IF is a word of length 1 or 2.
Let the statement be true for any word which has a length which is smaller than the
length of W, and let W he a word of length n, with n > 3. If a,: W-* W', ßx:
W -» W", then W and W" are both words of length n — 1. One can show that
either W = W" or that W' and W" can both be transformed into the same shorter
word by an application of decreasing elementary p0-transitions. This allows us to
apply the induction hypothesis, and to conclude that Wx = W2.

Let us now suppose that Tx and F2 are p-related reduced words. Then F, can be
transformed into F2 by subsequent applications of elementary p0-transitions,

Tx = Wx^W2---Wk^Wk+x---Wu^ Wu+X = F2.
For any k E ( 1,..., u + 1}, let W'k be a reduced word which is obtained from Wk by
subsequent applications of decreasing elementary p0-transitions. Using the observa-
tion mentioned above, we have W[= W2'= ■ • • = Wu+V Obviously F, = W[ and
F2 = W'u+,, and so F, = F2 is the unique reduced word of its p-class.

Let Xx ■ ■ ■ Xn be any word of <3XUZ, and let Vx ■ ■ ■ Vk be the reduced word in the
p-class of yY, • • • X„. In order to show that Xx ° • • - ° XnE Vx° ■ ■ ■ ° Vk it suffices
to show that (i) MH ° Mik C Mik, (ii) Mtj ° Mkj C Mip (hi) Mi} o Yik E Yik, (iv)
Y,j ° MkJ C Yip (v) Y,j ° Y~jx E Mu, for all /', j, k E I. Case (i) is similar to case (iii),
case (ii) is similar to case (iv), cases (iii) and (iv) can be treated in a dual way.
Therefore we shall concentrate on cases (iü) and (v).
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Let etj E Mu and yik E Yik. Then eiJyik = e{j(yikyikx A eu)yik. Since yikyikx A
e,7«'e,7, andyiky~kx A exj G M:j, we havey,^' A e,7«e,7, and so

Since (jK/jky¿' A eyXjifcJkV^*^*'» we have eljytk<y(k, and so e,7y^ G Y^. We
conclude that M,7 ° YjA. ç Yik.

Lety,- • G 3^ and t>,7' G Y.~', where u,7 G Y, . Then

Wehavey,7(^'ü,7 A y~ %)£(%% A y¿ %)&(>:} "t,,,- A^^.)0-',

y. (ty~'ü    A v~'v   ) < y   . íly~V A y.T'y   )u"' < V~X,

and soy,7(ü¡7'ü,7 Ay^y..) <= Yy, („-^ Ay-%)^1 G Y.;', and

Thus

We conclude that F ° Y.71 C M,.'7 '7      —        "
This completes the proof of the lemma.
Let us now consider the set ^ consisting of the elements (eu, Xx ■ ■ ■ Xn) E

( Ui(5/Mtj) X 911 for which the following condition is satisfied:
if Vx ■ ■ ■ Vk is the unique reduced word in the p-class of the word Xx ■ ■ ■ Xn of

^uz, then iR^n Vxo ... =F^D.
Let (e„, Xx • ■ • yY„) be any element of 6D, and let Vx ■ ■ ■ Vk be the reduced word in

the p-class of yY, • • • yYn. By Lemmas 2.7 and 2.8 there exists a unique element x G D
such that Re D F, ° • • • °Vk= {x), and so the mapping \p: fy -* D, (eu, Xx
■ ■ ■ Xn) -> x is well defined.

On ^ we define a multiplication in the following way. If P = (e¡¡, Xx ■ ■ ■ Xn) and
Q — (fjj, Y, ■ • ■ Ym) are any elements of <>D, then

(2.4) PQ = ((P^)(Ô^)((^)(Ô^))"1, *í"•"• • XJi'■•• • Ym).

Lemma 2.9. 'î) « a semigroup and \p is a homomorphism of ty onto D.

Proof. Let P = (e„, Xx • ■ ■ Xn) and g = (jF, F, • • ■ Fm) be any elements of fy.
Let Pip = x, ô'i' = y» and let t/, • • ■ U¡ he the unique reduced word in the p-class of
the word Xx ■ • • X„YX • • • Ym of <3XUZ. By Lemma 2.8

(P*)(ß*) = xy E Ux ° ... off,,

and so xy = Ä((/,^xewX(^xßV,)rl n ¿7, ° ■ • • o í//; therefore

((^)(Ô^)((^)(Ô^))"', Xx--XnYx-- Ym) E 6D,
and the multiplication given by (2.4) is well defined. Moreover (PQ)ip = xy =
(yPipXßtp); hence i// is a homomorphism. If x, G Z),7 is any element of D, then it
follows from Lemma 2.5 that there exists a Y(- ■ g yY such that xt, E Y¡¡. Then
(x,7x,7', Yu) G öD and (x,- -x"-1, Y,j)i¡> = xtJ. Thus ^ is surjective.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



642 F. PASTIJN

If F = (ghh, Z, • • • Zk) is any other element of 6¡), then it follows from ((PQ)T)^p
= (P>P)m)(TiP) = (P(QT))xi that

(PQ)T= (((Pi)(Q>p)(Tip))((Pt)(Q4:)(Tt))-\ XX--X„YX-- YmZx ■ ■ ■ Zk)
= P(QT).

Thus the multiplication given by (2.4) is associative.

Lemma 2.10. "D is a regular semigroup and

(2.5) £(<SD) = {(e„., Iu) | i, j G /, e„ G M,,, *,„ n M,. # D }.

Proof. Since £(91t) = Z by Lemma 2.6, we immediately have that £(6D) is given
by (2.5).

Let P = (e„, yY, • • ■ yY„) be any element of 6D. We can always suppose that
yY, • • • Xn is a reduced word of SA-UZ. Then P\p = x, > • • • x¡ ¡ E Xx° • ■ ■ » I, for
some x, ,  G yY,!., k = 1,... ,n, where for all &, Xk = F , or F ,. Let'*7* *' '        * 'klk 'klk

fjJ = (PrP)-\P4,) = lxitii-rxljy\xii,i---XiJn).

Clearly /' = /', and j — jn by Lemma 2.3. Let us put Xkx = YT) if Xk = F, and
Xkx = Ijrfli t if A,, = I¡ . ; yYF1 is the inverse in 911 of yY,. which belongs to the
maximal subgroup which has identity L ¡ . We shall show that

(2-6) Q^(fJ^,X-xIl^_X-xx---X2xIliJ.Xx-x)

belongs to ty and is an inverse of P where PQ = (eti, Iif) and QP — (f¡-, /,, ).
We show this by induction on n.

Let us first consider the case n — 1 and P = (e„, F,;). Then Pip = g,7 = e,7i//,7' is
the unique idempotent in M,-• which is ^related to e„ in F>. Let jF = g¡jXg¡j = g,79,7
be the unique idempotent in My7 which is £-related to g,. •. Then 'fjttu is the unique
inverse of g, which is £-related to e„ and ^related to/7, or g/x ='//«¿ G F» o /WJ
where /,,/,, = /J1. Thus C} = (j*,, /"') G ¿D, ß* = g,7',

PÔ = {(Pt)m)((P4>)(Q^)r\ W) = Cftyi«1. 7") = (*«, /„),
öi» = ((ß*)(p*)((ß*)(^))"I,-f7;7yj = {gTj%,ijj) = (îjj'ijj),

PQP = P,      QPQ = Q.
Let us next consider the case n = 1 and P = (e„, Y,7). Then P\p = y;y is the unique

element in the ÇRy-class of e„ which belongs to Y,7. LetjF = y¡]xy¡j. Clearlyyj' G Yj.,
ß = (/y, Yux) E öD, and Qrp=yr¡1. It is again easy to see that PQ = (e,„ /,,),
QP = (fjj> Ijj\ PQP = P and QPQ = Q. We conclude that our assumption holds if
« = 1.

Let us now suppose that n > 1, and that our assumption holds for all /, / < n. Let
us again consider P = (e¡ ¡, Xx ■ ■ ■ Xn) where Xx ■ ■ ■ Xn is reduced, and let P\p —
x, , '••Xt i G yY, o ••• o Y ,  where x¿ , E Xk,  k = 1,...,«.   Let   F = (g, , , yY2'L/l ',J„ ' "' '47* *' VO/2/2' ¿

• ■ • X„) where g,Va = (x^ ■ ■ ■ xiJn)(x¡di ■ ■ ■ xiJn)~' and let

U={hi ,,X~ 'F ,    XTl, • • • XT 'F ,. AT ' )
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where A^ = (x,^ • • • xiJ/)~x(xi:ji ■ ■ ■ x¡j/). By the induction hypothesis we have
that F and" U are mutually inverse in <$ and that FÍ7 = ( g, , , F ¡ ), UT = (h, ,, F , ).•* vo'2l2'      '2'2/' V     7n7n'      7»/n/

Clearly

(TI/)* = g,2h,       (UT)* = /jyWn,

/ i-.i
Fii/ = x, , • ■ ■ x,. ,.,        {/>// =   x, ,  • • • x, ,

Let

*i ,  = ( x.■ : ■ ■ ■ Xi , ) ( x, ,  • • ■ x, , )      A x~,'x, ,.'27l \      '272 <nlnl\      'ill lnlnl 'l/l     'l/|

and let us consider (x, ,  • • • x, , )~ xr . xTL We know that (x, , • • • x, , y xr , x,-,1
v     '272 'nJn' ¡ll\     'l/| v     '272 >nln' lll\     * L/l

is   an   inverse   of  xtu{xllf2 • • • x(jj   from   [26],   and   since,   by   Lemma   2.3,
(x, . • ■ • x, , )"'/•, , XT; E D:,, it follows thatv     '272 'nJn' '27l     'l/| 7n'l'

( x, ,  • • • x, ,■ )    r s x~x = I x, ,  ■■■ x, , )
V      '272 'nJnl 'll\      'l7l V      'L/l '«/„/

Obviouslya^x-JX^x-')-', /,ViZr') G ¿Dand

'*a/i*'i/i^/'i/i**i/i

ß* = (i/^^x^) = (*»*/, • ~*lj,)   Wv! = (*M ■ • ■ x
we    have    fß + )*(jc^ • • ■ xtJj- '(x,V| •••*,■„;,) = fJM    Thus    ß  =
(/7„7V Xn%j..xXn-i •••XVli2jxXTl)   belongs   to   <$.   Moreover,   (PQM =
(**i/. ' • 'x'V„X*'l/, • • • *u,>~' = e'i', and (Ôp)* = (*** ■ ' • xíjXXx>* ■ ■ ■ xfJ»}
= fJM whereas from Ft/ = (g,vv /,2,2) and I/T = (h]Jn, ljJk) it follows that

Let us put Q = U((ri,xrj\Xrl,x7J\)-\ IldlX7l). From

J"'

( y2 • • ■ x„)(x;xi,^x;-i ■ ■ ■ x2l) = iw

(A'„-1/,w„_1Xn-J1---A2-')(A2---yY„)=/^,

and thus

(xx---xn)(x-nxiIJn_x-\---^xil2Jxx-')

- KJttiJi-jfä* ~ X\I>u\X\      = X\Xl      = 7',/,'

(xr%Jx_ixr2i---X7%2iixri)(xl---xn)

= (x^n-xñ^---x2x)illJíiJlJl(x2..-xn)

= (¿^.jçî, ■ ■ ■ x2x)(x2■■■x„) = iu.

We conclude that PQ = (ew /„,,), QP = (fjJn, /u), and PQP = P, QPQ = Q.
This completes the proof of this lemma.

Lemma 2.11. -pip~x is an idempotent-separating congruence on UT).
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Proof. Let (e„, I¡¡) and (fmm, Im„) be any idempotents ty, and let us suppose
that (e,,, IijW = (fmm, Imn)*p. Since (eu, 1,0 E Dtj and (fmm, Imn)xp E Dmn we

must have i = m,j = n, (fmm, Imn) = (/„ ItJ) and

(e,,,/,7)^ = g,7= (fn,Iu)i>.
Furthermore e„ = g^-i/^ = /,, g,7 is the unique element in Re  n 7J7 = Rf n Jy. We
conclude that (e„, 7,7) = (fmm, 7m„). Hence $ip~x is idempotent-separating.

Lemma 2.12. ^D has injective structure mappings.

Proof. The proof immediately follows from Result 4.

Lemma 2.13. The mapping ^ -> 9TL, (e„, Xx ■ ■ ■ Xn) -> Xx ■ ■ • Xn induces the least
primitive congruence on fy and 91L is the greatest completely simple homomorphic image
of ̂ D.

Proof. Since 911 is a completely simple semigroup, the above considered homo-
morphism induces a primitive congruence y on 6Ù, and < o(=s)> q y.

If P and ß are any elements of ty such that ß < P in ty, then it follows from
QiP < Pip in D that P = (e,„ yY, ■ • • *„), ß = (/,., Y, • • • Ym) where/, < e„ in M„,
and ß = (/„ 7„)P. We then conclude that Y, ••■Ym = IUXX ■ ■ ■ Xn = Xx ■ ■ ■ Xn.
Thus < o (<)-' =y.

Remark 2.14. Every element in the greatest completely simple homomorphic
image of ^ which is a product of idempotents can be written in a unique way as a
product I¡ • • ■ • F., where for each 1 <&,< « — 1, ik ^ /',.+, and/,. ¥^jk+x. If P is
any element of tf) such that Pv* = 7, , ■ ■ ■ I, ,, where for each 1 «s k < n — 1,

^ ' 'l7l 'nJn

>k * «jt-H and/* ^A+i> then P is of the form (e,Vi, 7,V| • • • 7,^). Since 7,7i ■ ■ ■ IiJn is
a reduced word of Wr¡ l7, P*P is of the form e, , • • • e, , , e, ,  G M ,, where-*uz' T 'l7l '«V '/t7* '*7*'
e, , • • • e, , Cue,, in 6D. Putting e, , i//, , = f¡ , for every 1 < k < w, we then have

'L/l '«/» 'l'l °     >kJk"kJk -"k'k J

P={fl,l,I,J---     {f,„„I,J
where (/,,, I, , )y = F ,.w'*'*'   'klk''       'kik

We summarize Lemmas 2.9-2.12 in the following theorem.

Theorem 2.15. Le* D be a pseudo-inverse semigroup, and suppose that the pseudo-
semilattice (E(D), «', «r) which is determined by D satisfies the conditions (2.1). Then
there exist a pseudo-inverse semigroup ^ which has injective structure mappings and a
homomorphism ipofty onto D such that ipip~x is an idempotent-separating congruence
on ty.

Remark that if E(D) reduces to a semilattice (| 7| = | A | = 1) this theorem states
that every inverse semigroup is an idempotent-separating homomorphic image of a
proper inverse semigroup. The proof in [21] for this theorem uses completely
different techniques. In this case 911 is a free group, and the proofs for our lemmas
simplify considerably.

The semigroup ^ is a %-coextension of D, and so fy and D determine the same
pseudo-semilattice. Therefore Lemma 2.3 can be applied: ^ is a rectangular band
7 X 7 of the semigroups ^ , (/',/) G 7 X 7. One can check that every ^L contains a
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maximal inverse subsemigroup. Since ^ has injective structure mappings these
inverse subsemigroups must be proper inverse semigroups. In particular, the semi-
groups tya, i E I, are proper inverse semigroups.

We summarize Theorem 2.1, Corollary 2.2, Remark 2.14 and Theorem 2.15 as
follows.

Theorem 2.16. Let S be any pseudo-inverse semigroup. There exist pseudo-inverse
semigroups S and S, a homomorphism 9, of S onto S, and a homomorphism <p2 of S
onto S such that:

(i) S is a pseudo-inverse semigroup which has injective structure mappings and 9,97 '
is an idempotent-separating congruence on S.

(ii) The pseudo-semilattice (&,03l, 03r) — (E, «', o3r) which is determined by S and S
is of the form

g = E=(Fx,7v,;M,.x;9,x,^x;AA)
where the conditions (2.1) are satisfied.

(iii) The <¡>2<¡>2 ' -classes which contain idempotents are rectangular bands.
(iv) If y is the least primitive congruence on S, then S/y may be identified with a

Rees matrix semigroup 91t(G; P; 7, A) such that
(a) every element o/9îL(G; P; 7, A) which is a product of idempotents can be written

in a unique way as a product (Px,!,),,*, ' ' " (Px„!„).„x„ wftere h ^ >k+\ andXk ¥= Xk+X
for all 1 «£ k « n - 1;

(b) z/x zs örzy element of S such that

xv^i»:1)     ••• (pr1 )
11

w/zere z'^ ̂  ik+x and Xk ¥= Xk+X for all 1 < k < « — 1 íTzen i/zere exz'i* idempotents
eikXk G (PvAx/?*)-1 "^ í/la/ * = e',A, ' ' ' e',^„-

From this theorem it follows that the (9,92)(9,92)~'-classes of S which contain
idempotents form completely simple semigroups. In the terminology of [30] the
congruence (9,92)(9,92)~' is strictly compatible with respect to the natural partial
order on the pseudo-inverse semigroup S. In the terminology of [25], S is a
coextension of S1 by completely simple semigroups. Thus, Theorem 2.16 states that,
given any pseudo-inverse semigroup 5, there exists a coextension of S by completely
simple semigroups which has injective structure mappings. Therefore Theorem 2.16
can be regarded as a generalization of McAlister's Theorem 2.4, Corollary 2.5 of
[21], which states that, given any inverse semigroup S, there exists a Oi^coextension
of S which has injective structure mappings. McAlister's Theorem 2.6 of [22] (the
"P-theorem") provides a firm motivation for such construction: every inverse
semigroup which has injective structure mappings is isomorphic to a P-semigroup
P(G, 96, L), where the semilattice L is an ideal of the partially ordered set 96 (see
also [43]). The combination of McAlister's two results enables us to construct all
inverse semigroups in terms of groups, semilattices and morphisms. We clearly need
a P-theorem for pseudo-inverse semigroups. The next section will be devoted to this
problem.
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3. The embedding. If D is a pseudo-inverse semigroup which has injective structure
mappings, then we know from [35, Proposition 3.3] that the pseudo-semilattice
(E(D), «', «') which is determined by D is the disjoint union of its maximal
subsemilattices. If the maximal subsemilattices are semilattices which have an
identity, then the pseudo-semilattice which is determined by D is of the form
E(D) = (Lx, R¡; MiX; <¡>¡x, \piX, I, A) by Result 2. Let p be the least primitive
congruence on D. D/p can be identified with the Rees matrix semigroup
91t(*J; P; 7, A). For any (z, X) G 7 X A, DiX will be the set of elements of D which
are "Si-related to some element of UKeA MiK and £-related to some element of
Uk¡-fMkX. We already remarked in the introduction that D is a rectangular band
7 X A of the semigroups DjX, (i, X) E I X A, and that p induces a group congruence
on each of the subsemigroups DlX, (i, X) E I X A of D. If e,x G MiX, (i, X) E I X A
is any idempotent of D then e^p^ = ( pxx)iX is the identity of the maximal subgroup
G,x of 91t(G; P; 7, A).

In this section we shall suppose that D is a pseudo-inverse semigroup which has
injective structure mappings, that E(D) = (Lx, R¡; MiX; <PiX,ypiX, I, A), p and
91L(G; P; 7, A) are as described above, and that the following conditions are
satisfied:

(3.1)(i) every element of the subsemigroup of 911(0; P; 7, A) which is generated
by the idempotents of 91t(G; P; 7, A) can be written in a unique way as a product

(pxALJ/'aALu'" (pa„U,
where im * im+x, Xm # Xm+, for all 1 < m < n - 1,

(3.2)(ii) if x is any element of D such that

V = (/\!,),|Xi---(^Ü
i-i' Am ̂  Am+i f°r aU I < m ^ n — I, then there exist idempotents

eim\m G M,mxm- 1 < m < «, such that x = «^^ • • • e,Xn.
The semigroup S which is obtained in §2 satisfies these conditions. Therefore all

the results which will be obtained in this section may be applied to S. Remark that
the conditions (3.1) and (3.2) imply that the preimage for p* of an idempotent
(Pai')iA °f 91t(*J; P; 7, A) must be the maximal subsemilattice MiX of D.

In [24, Theorem 2.5] it has been shown that F(7J>) = (Lx, R¡; MiX; <piX, \piX; I, A)
can be embedded as an order-ideal (with respect to the partial order «) into a
pseudo-semilattice which is determined by an elementary rectangular band of proper
inverse semigroups. The main result of this section indicates that D itself can be
embedded as a subsemigroup and as an order-ideal into an elementary rectangular
band of proper inverse semigroups. Result 5 describes how such an elementary
rectangular band of proper inverse semigroups can be constructed.

In the following lemma 8: D -» TE(D), x -> 8X denotes the fundamental regular
representation of D.

Lemma 3.1. The mapping 6 X p*: D -> TE(D) X (D/p), x -* (6X, xp^) is an isomor-
phism of D onto a subsemigroup of TE(D) X (D/p).
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Proof. Since 66"' C % and p n <5L = iD, we must have 68~x n p = iD. The
lemma now follows.

We now recall part of a construction of §2 in [24]. For any X G A, let Lx be the
semilattice Lx with an extra identity element lx adjoined. Let (MiX, (i, X) G 7 X A)
be an indexed family of pairwise disjoint semilattices such that, for every (/', X) G 7
X A, MiX is a semilattice which contains MiX as an ideal, and such that 9,x:
MiX -> Lx is an isomorphism of MiX onto Lx which extends 9,x. We can always
suppose that T^n (Ux^A(MiX\MiX)) = D for all z G 7. For every i El, let A, =
7?,. U ( UXeA(Â/~x \MlX)), and for every (z, X) G 7 X A, let ^,x: MiX ̂  7?, be defined
by

e,Ä\ = elX   ifëiXEMiX\MiX,

= ëi\4>i\   iîëiXEMiX.
Define a partial order =£ on 7?, by the following: ë, </ in R¡ if and only if there
exist X G A, e",x, flX E MiX such that ëiX m%x in MiX and ê, = e",xi£x, / = flX¡piX.R,
then becomes a semilattice, and for every X G A, \pjX is an order-isomorphism of MiX
onto a principal ideal of R¡; \piX extends \pjX for every (i, X) E I X A. The pseudo-
semilattice É = (Fx, Ä,; MiX; ¡/>,x, v^x; 7, A) contains E(D) = (Lx, Ä,; MlX; <¡>¡x, v/-,x;
7, A) as an order-ideal.

Since E(D) is an order-ideal of E, the semigroup TE contains the semigroup TE(D)
as a subsemigroup. One can easily show that TE{D) is also an order-ideal of F^with
respect to the natural partial order on TE. Therefore TEX (D/p) contains TE(D) X
(D/p) as a subsemigroup and as an order ideal, whereas the mapping 9Xp*
embeds D isomorphically into TEX (D/p) by Lemma 3.1. Remark that TE(D), TE
and (D/p) are pseudo-inverse semigroups. Since the class of pseudo-inverse semi-
groups is closed for taking direct products [29], it follows that TE(D) X (D/p) and
TE X (D/p) are pseudo-inverse semigroups.

It is well known that the mapping E(D) -» F(F£(£))), e,x -* 6e is an isomorphism
of the pseudo-semilattice which is determined by D onto the pseudo-semilattice
which is determined by TE{D). This isomorphism can be extended to an isomorphism
E -> E(TE), ejX -* 6- of the pseudo-semilattice E onto the pseudo-semilattice which
is determined by TE.

For any (i, X) E I X A, let l,x be the identity element of MjX. Let D be the subset
of TE X (D/p) which consists of the elements of the following two kinds:

(3.3)(i) the elements (6^, (px,'),x), (z, X) G 7 X A,
(3.4)(ii) the elements of the form (a, aiX), where a E TE, a E G, (i, X) E I X A,

such that for some / G I, p G A, ë(> G Miß, ejtí G MJfl, xjX G 7J>,X, with
a^6-t6e¡^6XjX in TE,  xjXp* = ( P;x Pli,a)jX, we have 8-6x¡x = a.   '

Lemma 3.2. The set E(D) of idempotents of D consists of the elements of the form
(@e » (P\¡l)i\)' (*> X) G 7 X A, ëjX E MiX. The set E(D) forms an order-ideal of the
pseudo-semilattice of idempotents of TEX D/p, and the mapping E -» E(D), e~/X -»
(6- , (px,'),x) is an isomorphism of pseudo-semilattices.'x _

Lemma 3.3. The set D is an order-ideal of TEX (D/p) with respect to the natural
partial order on TE X (D/p).
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Lemma 3.4. If P and Q are any elements of D such that PQ is a trace product in
TEX (D/p), then PQ E D.

Proof. We shall only consider the case where P and Q are both of type (ii). The
other cases are easier. Suppose that P — (a, aiX), where for some / G 7, p G A,
êifL E Mifi, ejti E Mjti, xJX G DjX the conditions in (3.4) are satisfied, and ß = (ß, bnv),
where for some h G 7, r, G A,/„, G M„„,/,„ G Mhvyhv G Dhv with ß<&6j£6h^6yht
in TÊiyhvPk = (PnhPvnbX,, we have 6¡Jy^ = /F The idempotent of TE X (D/p)
which is £-related to P and <3î/-related to ß must be of the form (6- , (pxx)nX), where
6xtat6-k%ß6k6fn . Since xjXtelx in D for some / G 7, e/x G M,x, the foregoing
implies e^ekßl£v. Thus ~ekK = e„x, and so Pt(6-e^, (pll)nXy% QinTEX (D/p),
where PQ = (aß, (apXnb)iv). From 6^6^ it follows that ê„xiîl/^ in E. The
following two cases can occur: e„x = /„„, or, ênX #/„„ and ê„x G M„x,/„^ G M„r

Case 1. enX = /„„ (X = t/). In this case xjXtfh„ = /AXiüy^ in 7), and xyXyA„ is an
element of Djv which is ^related to eJfit, such that

= {p^P^a)jX{pVhPxnb)hv = {p;jXP^,apxnb)j

Moreover, a*3€lfl- £f?  Çîlfl   „   in TE, and

öi ^ »   = h 6X 6V   = 6-e 6X 6j 6V   = aß.

We conclude that (aß, (apXnb)iv) = PQ G D.
^ Case 2. e„x^/ni) and ênX E MnX, fnr) E M„r In this case f„nyhv E Dn„ and
^nx^în^hvin D- A1so xjXtenX in D, and so xjXf„vyh„ E DJV and xjkfnityh,%ejVk in 7).
Thusa/MfF £f?  <&*?   r      in F.F,

(X;X4^,)P* = (P^P^jxiP^nniPvhPvn^Hr

= ( Pt/jlPß,aPXnPvnPr,hPvhlPVnb)jP

= {p»J%"Pxnb)JV

and

0¿ 0X /■" v   = h ex Of 6y   = aß,

and we conclude that (a/3, (apXnb)iv) = Pß G Z).

Lemma 3.5. D is a subsemigroup of TEX (D/p), and the mapping 6 X p^ is an
isomorphism of D onto a subsemigroup of D.

Proof. Let P and ß be any elements of D. Then PQ = P'Q' for some P', Q', with
P' < P, Q' =£ ß, where P'ß' is a trace product. By Lemmas 3.3 and 3.4 we conclude
that P', Q' and P'Q' belong to tJ.

Let x,x G DiX be any element of D. It should be clear that (6Xx, x^p*) E D. The
proof now follows from Lemma 3.1.

_
Lemma 3.6. D is a pseudo-inverse semigroup.
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Proof. All elements of type (i) of D are regular elements of D since they are
idempotents. Let P = (a, aiX) he any element of type (ii) of D, such that for some
/ G 7, p G A, e¡ E M¡ , ej E Mjfl, xjX E DjX, the conditions in (3.4) are satisfied.
Let / G 7 and ylft E Dlfl be an inverse of xjX in D such that xyXy/(1 = ejfi and
y¡tíXjX = e/x for some e/x G MIX. In TE  we have a9t0- t6y¡ 6¡H9e£a, and

a6    =6-8x6   =6-6e   = 6- ,ytp cip -*j\ yip. cip cjti c/f»

6va = 6v 6- 6X   =6V6X   = 6e .y¡r. yif. eip. xj\       yif. x¡\       e¡\

Thus a and 9 are mutually inverse elements of TE. Obviously y^p** is the inverse in
Gi„. of XjxP* = (Pp/p^jx- It is easy to compute that y,^ = ( pxixa" xp~ ' )¥, and so

a/xt^p") = uftító1«*"'^1),, = («Px/Px/'^V).,. = (*£%>

(>VPNKa = (Px/a'X",1)/^'^ = (PÂ/a'V^'/ViOJ/x = (Pxi)ix-
One can readily check that (a, a¡x) and (6, y^p*) = (y/,,)0 X p* are mutually
inverse elements of D. We conclude that D is a regular semigroup. By virtue of
Lemma 3.2, D must be a pseudo-inverse semigroup.

_
Lemma 3.7. D has injective structure mappings. The congruence a on D which is

induced by the homomorphism

a^:7J-9H(G;P;7,A),    fa, (Pxx)iX) -px,\    (a, alX) - alX

is the least primitive congruence on D, and 91t(G; P; 7, A) is the greatest completely
simple homomorphic image of D. The pseudo-inverse semigroup D satisfies conditions
(3.1) and (3.2).

Proof. Since D is a subsemigroup of TE X (D/p), the above considered mapping
a11 is a homomorphism, and a is a primitive congruence on D. Thus a D« ° (<)"',
where < ° (=£)" ' is known to be the least primitive congruence on D [30].

Let P and F be any elements of D such that F< P in D. If P = (9\x, (px,'),x),
then of course F= (0- (pxx)iX) for some êiX G MiX. Let us now suppose that
P = (a, aiX) is of type (ii), where for some y G 7, p G A, i¡ G M¡ , ej{L E M¡ ,
xJX E DjX the conditions in (3.4) are satisfied. Clearly P '31(0- , (p.,7'),,.) and from
F *£ P it follows that rftflk (i0,M) for some4 G M^, with/,,«^, and

r=(^. (*%)(«. «a) ='(%,«. «a).

Thus Pa11 = Fa11 in both cases, and we conclude that a=<°(<)_1.
We shall now make use of Result 4 to show that D has injective structure

mappings. It is therefore sufficient to show that the preimage of any idempotent
(PxhiX °f 9ît(G; P; 7, A) for a1" is the a-class consisting of the elements of MiX. This
will follow from the following considerations.

We know that the semigroup D/p — D/a satisfies conditions (3.1) and (3.2). Let
us now consider any element of type (ii) of D which is of the form (a, a¡ x ), where
«.,x„ = (Px.U.x, ' ' • (P\„\Xk' ^^ *m * *'«+i. Xm * Xm+X for all 1 < m < n - 1.
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There   exist   z G 7,   X G A,   e,iX   G tVÍ/iA,   e,x G MiX,   y,Xn  G DiX^   such   that
a&,6i tee.¡&,9y¡y <?íl9y¡x in Tg,

y,x/ = (Px'Px,tPxXPxli2 ■ ■ 'PÏjm)a<A.

- \Pxi FxlPvJ/.x,       U^'J,„x„'

a = 6- 6    .

There are three cases to consider: (1) i = z',, (2) X = X, and (3) i ¥= z, and X ¥= X,.
Case 1. i — ix. In this case a = 6y x and (a, aj¡xJ = (yi¡Xn)9 X p*. Since D

satisfies conditions (3.1) and (3.2), there exist e, * G Af,mXm, w = 1,...,«, such that
F,,x„ = *¡.x< • ' • e>„x„ in ö- Consequently

(«.^) = (^v(px„,|)„xl)---(^.(Px-,J1„xJ

where, for every m = 1,..., n, ( 9e     ,(P\X¡ ), x ) is an idempotent of D such that<„/

KAp-cj,„xmy=(p;u,„
Case 2. X = X,. In this case y^p* = (Px,!),x,(Px2,2);2x2 ■" (Px...)/„x.- Clearly

X = X, t^ X2. We consider two subcases: (a) z = z2 and (b) i ¥= i2.
Case 2(a). X = X,, i = i2. In this case yhxy = (Px2.2),2x2 ' ■ ■ (Px„'„),„x„, a"d so

there exist e, x   E Mt x ,m — 2,...,n, such thaty, x  = e, x  • • ■ etx . Consequently

(«. -*,».)=K, (/ííjU)! v {'&)Ji ■ ■ ■ (0<»Apüx.k)-
Case 2(b). X = X,, i * i2. In this case ylX^ = (Px/XxÍPx^X.x, ■ ■ ' (ixj.X.X,-

and so there exist e,mXm G M¡ k , m — 2,...,n, such that yiX = e(Xe, x • • - e, x .
Then

thus again

Case 3. i ¥= z„ X ¥= X,. In this case yiX/ = (Pu)lk(plx\\h ' ' ' (Px"i)/^.' and
so there exist e, x   E M¡ x ,m= I,. ..,n, such thaty,x  = e,xe, x • • • e, x . Then

« = ^AA.X,  ■ • • e^„ = A.A.,*,  ■ • • ̂ . = eê,^e,Jel2S2 ■ ■ ■ ̂

where ê,|X A ehh E M,]X|, and so

(«- <W = (^.,,v (Pxl)„X|)(^ (Px-'J,^) • ■ ■ KApk,XJ-
We conclude that D has injective structure mappings and that D satisfies condi-

tions (3.1) and (3.2).
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Lemma 3.8. The semigroup D6 X p* consists of the elements (a, aiX) of type (ii) of D
for which there exist some idempotents eiK,fkX in E(D) such that

(3-5) fa, (p-'),J^(«, *.x)Ê(<L> (Pxk)kx)— — —
in D. The subsemigroup D6 X p* of D is an order-ideal of D.

Theorem 3.9. The pseudo-inverse semigroup D which has injective structure map-
pings and which satisfies conditions (3.1) and (3.2) can be embedded as a subsemigroup
and as an order-ideal in an elementary rectangular band of proper inverse semigroups
D' in such a way that D consists of the elements x of D' for which there exist some
idempotents eifl,fjX in E(D) such that eitß,xtfjX in D'.

Proof. Let us consider a sequence of pseudo-semilattices

E(D) - E0, Ex,...,Ek, Ek+X,...,

Ek = (Lxk\ Ä<*>; Mtf\ 4$tJ$P\ I, A), where £, = F, where Ek+X is constructed
from Ek in the same way as E is constructed from E(D) if k is even, and where Ek+X
is constructed from Ek in a dual way as E is constructed from E(D) if k is odd.
Using induction, we can show by Lemmas 3.2-3.8 that there exists a sequence of
pseudo-inverse semigroups D = D0, Dx,... ,Dk, Dk+X,... such that, for every k E N,

(i) Ek is the pseudo-semilattice (E(Dk), «', «r) which is determined by Dk;
(ii) Dk is a pseudo-inverse semigroup which has injective structure mappings, and

the greatest completely simple homomorphic image of Dk may be identified with
D/p = 9IL(G; P; 7, A), such that conditions (3.1) and (3.2) are satisfied;

(hi) Dk is a subsemigroup and an order-ideal of Dk+, ;
(iv) Dk consists of the elements x(*' of Dk+X for which there exist some idempo-

tents e\k\fjXk) in Ek such that e^<&xwtfJkk) in Dk+X.
Let D' = U"=0Dk, and define a multiplication on D' in the obvious way: if

x, y G D', then x, y E Dn for some natural number n, and the product xy of x and y
in D' coincides with the product of x and y in Dn. By this D' becomes a
pseudo-inverse semigroup. Let E' be the pseudo-semilattice which is determined by
D'. The pseudo-semilattice E' is the direct limit (in the sense of [24, Theorem 2.5]) of
the pseudo-semilattices E0,...,Ek, Ek+X,_D' contains D as a subsemigroup and
as an order-ideal. D' has injective structure mappings. Furthermore, D consists of
the elements x of D' for which there exist some idempotents ei{L, fjX in E(D) such
that eitßoxtfjX in D'.

From the proof of Theorem 2.5 of [24] it follows that E' is the pseudo-semilattice
which is determined by an elementary rectangular band of inverse semigroups. From
§§3.1 and 3.2 of [35] it follows that every pseudo-inverse semigroup which de-
termines the pseudo-semilattice E' must be an elementary rectangular band of
inverse semigroups. In particular, D' is a pseudo-inverse semigroup which has
injective structure mappings, and which is an elementary rectangular band 7 X A of
inverse semigroups D'iX, (i, X) E I X A. Clearly the maximal inverse subsemigroups
£)/x, (/', X) G 7 X A, of D', must have injective structure mappings too, and therefore
they are proper inverse semigroups. This completes the proof of the theorem.
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From Theorem 2.16 and the foregoing theorem it follows that every pseudo-
inverse semigroup divides some pseudo-inverse semigroup which is an elementary
rectangular band of proper inverse semigroups. This fact will be exploited in §4.

4. Main results.

Theorem 4.1. Tie* 96 be a partially ordered set which contains the semilattice L as a
subsemilattice and as an order-ideal. Let G be a group which acts on%(on the left) as
a group of order automorphisms. Let I be an index set, let (A¡, i G 7) be a family of
elements of L, and let (/),., (i, j) G 7 X 7) be a family of elements of G which have
actions on 96 that induce automorphisms on L. Let S be the set which consists of the
elements (A, g),7, A E L, g E G, (i, j) E I X I, where A *£ Ai and pJJxg~xA < Ap
Define a multiplication on S by

(A, g)u(B, h)mn =(AA gPjmB, gPjmh).n.

Then S becomes a pseudo-inverse semigroup.
Let p be a strictly compatible congruence on S. Then S/p is a pseudo-inverse

semigroup, and conversely, any pseudo-inverse semigroup can be so constructed.

Proof. Let us consider the elementary rectangular band of proper inverse
semigroups 91t(P(G, 96, L); P; 7, 7) (see Result 5). We show that S is a regular
subsemigroup of 91L(P(G, 96, L); P; 7, 7). For every (A, g),7 of 91L(P(G, 96, L); P;
7, 7) we have

{p]-xg-xA,pJ]x)Jjt(A,g)lMA,PÜi)„

where (PjjXg XA, pj]x)jj and (A, pj¡x)u are idempotents which belong to the maxi-
mal subsemilattices {(X, p-jx)JJ\X E L) and {(X, p¡¡x)¡j\X E L) respectively.
Therefore, an element (A, g),7 of 91t(P(G, 96, L); P; I, I) belongs to S if and only
if (A, g)jj is in the intersection of the principal left ideal which is generated by
(Aj, p~jX)jj and the principal right ideal which is generated by (A¡, p,/1),,- This
shows that S is a subsemigroup of 91L(P(G, 96, L); P; 7, 7). If (A, g),7 belongs to S,
then the inverse (pJ¡xg~xA, pjjxg~xpüx)ji of (A, g)(.. also belongs to S, and so S is a
regular semigroup. S is a pseudo-inverse semigroup since 5 is a regular subsemi-
group of a pseudo-inverse semigroup. The direct part of the proof follows, since the
class of pseudo-inverse semigroups is closed for taking homomorphic images.

Let us now suppose that S is any pseudo-inverse semigroup. Let S be as in
Theorem 2.16. There exists a strictly compatible congruence p on S such that S is
isomorphic to S/p. We know that S can be embedded as a subsemigroup and as an
order-ideal in an elementary rectangular band of proper inverse semigroups, in the
way prescribed by Theorem 3.9. Since the pseudo-semilattice $ — (/_,., 7?,; Mip
9,7, \pip I, I) which is determined by S satisfies the conditions (2.1), this elementary
rectangular band of proper inverse semigroups is of the form 91L(P(G, 96, L); P;
I, I), and the identity elements of the maximal subsemilattices Mu, i E I, are of the
form (At, p~ix)ii, i E I. Theorem 3.9 states that S consists of the elements (A, g), of
91L(P(G, 96, L); P; I, I) for which there exist m, n E I, and idempotents (X, p~x)in
E Min, (Y, pjx)mj E Mmj such that

(X,p-x)in^(A,g)tJt{Y,p^) mj
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in 91L(P(G, 96, L); P; 7, 7). Since the pseudo-semilattice which is determined by S
satisfies conditions (2.1), S consists of the elements (A, g),7 of 9H(P(G, 96, L); P;
7,7) where (A, g\ß,(A, pn%< (At, p¡¡% and (A, gljUp/jY'A, p'% <
(Ap pj}\. Thus, an element (A, g)u of 91t(P(G,96, L); P; 7, 7) belongs to S if
and only if A < A¡ and pj'jxg~xA ^ Aj in L. Therefore the converse part of the
theorem holds.

Theorem 4.2. Every pseudo-inverse semigroup divides a pseudo-inverse semigroup
9H(P(G, L, L); P; 7, 7) which is a semidirect product of the completely simple
semigroup 91L(G; P; 7, 7) and the semilattice L.

Proof. From the foregoing theorem it follows that every pseudo-inverse semi-
group divides an elementary rectangular band of proper inverse semigroups
91t(P(G,96, L); P; 7, 7). From Theorem 1.3 of [31] we know that there exist a
semilattice L which contains L as a subsemilattice, and a P-semigroup P(G, L, L)
which is a semidirect product of the group G and the semilattice L, such that the
inclusion mapping P(G, 96, L) -> P(G, L, L), (A, g) -» (A, g) embeds P(G, 96, L)
isomorphically into P(G, L, L). Clearly the inclusion mapping

91L(P(G, 96, L); P; 7, 7) -» 91t(P(G, L, L); P; 7, 7),    (A, g),7 - (A, g)u
embeds 91L(P(G, 96, L); P; I, I) isomorphically into the semigroup 91t(P(G, L, L);
P; I, I), which is a semidirect product of the completely simple semigroup 91t(G; P;
7, 7) and the semilattice L.

Remarks 4.3. We showed that every pseudo-inverse semigroup S divides an
elementary rectangular band of proper inverse semigroups of the form
9IL(P(G, 96, L); P; I, I). If we take a pseudo-inverse semigroup S of some particu-
lar kind, then it can occur that we can handle the case in a more economical way,
and that we can vary the division procedure and thereby obtain sharper results. In
[24] we already made the remark that every normal band divides a band which is the
direct product of a semilattice and a rectangular band; moreover, every orthodox
pseudo-inverse semigroup S (i.e. generahzed inverse semigroup [48]) divides a
pseudo-inverse semigroup which is the direct product of an inverse semigroup and a
rectangular band [24, Theorem 4.8]. Every fundamental pseudo-inverse semigroup 5
divides a fundamental pseudo-inverse semigroup which is an elementary rectangular
band of fundamental inverse semigroups [24, Theorem 4.2]. The results of §4 of [24]
indicate that several simplifications will be possible if the pseudo-inverse semigroup
from which we start is combinatorial, or completely semisimple.

Remark that a matrix representation for primitive regular semigroups can im-
mediately be obtained from Theorem 4.1 : in this case L must be an atomic lattice,
and the elements A¡, i G 7, atoms of L. The completely 0-simple semigroups arise
from the case where G acts transitively on the atoms A¡, i G 7.
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