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ABSTRACT. A regular semigroup S is called a pseudo-inverse semigroup if eSe is an
inverse semigroup for each e = e> € S. We show that every pseudo-inverse semi-
group divides a semidirect product of a completely simple semigroup and a semi-
lattice. We thereby give a structure theorem for pseudo-inverse semigroups in terms
of groups, semilattices and morphisms. The structure theorem which is presented
here generalizes several structure theorems which have been given for particular
classes of pseudo-inverse semigroups by several authors, and thus contributes to a
unification of the theory.

Completely (0-) simple semigroups and inverse semigroups form the first proto-
types for the study of pseudo-inverse semigroups. We therefore can say that the
theory of regular semigroups began with the study of pseudo-inverse semigroups [40,
45).

We may distinguish four successful trends in the papers which since then have
dealt with some wider classes of pseudo-inverse semigroups: 1. the subdirect
products of completely 0-simple and completely simple semigroups, 2. the gener-
alized inverse semigroups (orthodox pseudo-inverse semigroups, 3. the normal band
compositions of inverse semigroups, and 4. Rees matrix semigroups over inverse
semigroups (with zero).

Subdirect products of completely 0-simple semigroups and completely simple
semigroups were initiated in [13, Chapter 2] and studied in great detail in [18] (see
also §4 of [14]); this class contains several interesting subclasses: (a) the trees of
completely 0-simple semigroups [18] which include the primitive regular semigroups
[7, Vol. 11, 16, 39, 44, 46], (b) the regular locally testable semigroups [S0] which
include the normal bands [36] and the combinatorial completely 0-simple semi-
groups, (¢) the normal bands of groups [37] which include the semilattices of groups
[7, Vol. I}, (d) the subdirect products of Brandt semigroups which include the locally
testable semigroups which are inverse semigroups [S0] and the primitive inverse
semigroups [39]. The generalized inverse semigroups were introduced in [48] as a
special class of orthodox semigroups; they include (a) the inverse semigroups, (b) the
orthodox completely O-simple semigroups [9] and the rectangular groups, (c) the
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632 F. PASTIIN

various classes of £- [%R-] unipotent pseudo-inverse semigroups [35], (d) the various
classes of orthodox normal bands of inverse semigroups [33, 35, 42], in particular the
orthodox normal bands of groups. The normal band compositions of inverse
semigroups occur as special cases of more general considerations [33, 35, 38,
Chapters 3 and 4, 42]; rectangular bands of inverse semigroups have been investi-
gated in [35]; several authors consider semilattice compositions of particular inverse
semigroups [8, 10, 49] which of course yield special inverse semigroups. The idea of a
Rees matrix representation has been exploited and applied to produce numerous
classes of sophisticated semigroups; we refer the reader to [17, 35, §4], for the
peculiar pseudo-inverse semigroups which have a structure theorem of Rees type.

The above considered classes of pseudo-inverse semigroups may overlap. How-
ever, so far no attempt has been made to establish a comprehensive classification.

Independently from the above-mentioned cases several devices have been invented
to build pseudo-inverse semigroups [1, Chapter 4, 2, 19, 25, 47...]. Some recent
papers concentrate on idempotent-generated nonprimitive pseudo-inverse semi-
groups [2, 3, 4, 15, 24, 34}, and in [32] a countably infinite set of pairwise
nonisomorphic bisimple nonprimitive pseudo-inverse semigroups with 3 idempotent
generators has been constructed.

The class of pseudo-inverse semigroups was introduced in [29 and 30] as an
overall generalization of the specific classes listed above. The structure theorem for
pseudo-inverse semigroups, which is given in [29], presupposes the knowledge of the
biordered set, the structure mappings and the trace products. The structure theorem
which will be given in this paper follows a far different approach and is the result of
a detailed investigation of the pseudo-semilattices as presented in [24].

1. Introduction and preliminary results. We assume that the reader is familiar with
the standard notation and terminology of semigroup theory as established in [7 and
11]. We also assume that the reader is acquainted with the basic results by
Nambooripad concerning biordered sets, the fundamental representation of a regu-
lar semigroup, and the fundamental regular semigroup T which is associated with
the biordered set (E, ', ", 7) {5, 6, 26, 27, 28]. The notation and terminology which
is listed below is in accordance with [24] and slightly modifies Nambooripad’s
terminology of [29 and 30).

A regular semigroup S is called a pseudo-inverse semigroup if, for all e = e € S,
eSe is an inverse semigroup. The class of pseudo-inverse semigroups is closed for
taking regular subsemigroups, homomorphic images and direct products [30].

Let S be a regular semigroup. The set of idempotents of S will be denoted by
E(S). We introduce the relations «' and «” on E(S) in the following way: if
e, f € E(S), then we put ew'f [ewf] if and only if e =ef [e = fe] in S. The
relations «' and «" are quasi-orders, the relation w = &' N " is a partial order, and
the relations «' N (w')”!, @ N (") ! are equivalence relations. If S is a pseudo-in-
verse semigroup, then (E(S), ', w") will be called a pseudo-semilattice. Pseudo-semi-
lattices were introduced in [29 and 41]. Pseudo-semilattices have been characterized
axiomatically in [29], and they were constructed in terms of semilattices and
semilattice-morphisms in [24].
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PSEUDO-INVERSE SEMIGROUPS 633

The natural partial order < on a regular semigroup S was introduced and
investigated in [30]. If x and y are elements of the regular semigroup S, then we put
x < y if and only if

(1.1) R, < R, and for some (all) e = e? € R, there exists f = f> € R, such that
fwe and x = fy.

One can show that this definition is self-dual [30]. Remark that w is the restriction
of < to E(S). A subset A of S will be called an order-ideal of S if, for all y € §,
x € A,y < x implies that y € A.

Let S be a regular semigroup, and suppose that e, f, g € E(S), with ew'g, fu'g.
The mappings

¢ R~ R, x—ex,

(1-2) Yo Lg > Ly, v =),
are called structure mappings of S [26] (see also [23]). Remark that for all x € R, and
forally € L, we have x¢, , < x and yy,, ;< y.

We are now in the position to state Nambooripad’s alternative characterizations
of pseudo-inverse semigroups [28, 29).

RESULT 1. Let S be a regular semigroup. The following conditions are equivalent.

(i) For all e € E(S), eSe is an inverse semigroup (i.e. S is a pseudo-inverse
semigroup).

(il) For all e € E(S), w(e) is a semilatice.

(iii) For all e € E(S), w'(e) forms a left normal band and «'(e) forms a right normal
band.

(iv) The natural partial order < on S is compatible with the multiplication.

(v) For all e, f € E(S) there exists an element of e N\ f € E(S) such that &'(e) N
W(f)=wle Af).

(i) If e, f,g E E(S) and eR f, e, f E w(g), then e=F; if e, f, g € E(S) and
eCf. e, fE w(g), thene = f.

(vii) If e, f, g, h € E(S) and e fu'gRh, then ¢, .= ¢, ,; if e, f, g, h € E(S)
and eCfu'glh, then y, , = Y, ;.

Let S be a pseudo-inverse semigroup, and let us suppose that e, f € E(S), ew'f.
From Result 1 it follows that for every y € R/ there exists a unique x € R, such that
x < y: this element x is given by x = ey = y¢, .. Furthermore, the structure mapping
which maps R, into R, is unique, and independent of the choice of fin R, and e in
R,. A dual statement applies for structure mappings which map £-classes into
£-classes.

Let (E, o', w") be any pseudo-semilattice. For every e, f € E define e A f by
Result 1(v); E, N\ then becomes an idempotent binary algebra. We shall say that the
pseudo-semilattice (E’, ', w") is an order-ideal of the pseudo-semilattice (E, o', »")
if E’, A\ is a subalgebra of E, A\, and if for every f € E, ¢ € E’, fwe implies that
fEE.

If (E, &, ") is a pseudo-semilattice, then there exists a unique family 7 of partial
transformations of E such that (E, &', ", 7) is a biordered set [29].
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If S is a regular semigroup and x, y elements of S such that there exists an
idempotent e € E(S) in the £-class of x and in the R-class of y, then xy will be
called a trace product of x and y in S. It follows from [7, Theorem 2.17], that xy is a
trace product of x and y in S if and only if xy € R, N L,. Let us now suppose that
S is a pseudo-inverse semigroup, and e, f € E(S). If e A\ f € E(S) is the idempotent
which is defined by Result 1(v), then {e A f} = S(f, e) constitutes the so-called
sandwich set of f and e in S [26]. Let x, y € S, e, f € E(S), and suppose that fCx
and e?} y in S; then

(1.3)  xy=x(enf)y=(x(e AF)N(eNf)y) = (xdpens)(Pbeens)

where x(e N f)Ee A fR(e ANf)y and x(e A f)<x, (e A f)y < y[26]. This implies
that every product of elements of S can be reduced to a trace product, and that the
multiplication on S is completely determined if we know the natural partial order <
and the trace products (see also [23]).

Let (E, ', w") be a pseudo-semilattice. In [35, Theorem 4.25] it has been shown
that (E, ', @) is the pseudo-semilattice which is determined by some pseudo-in-
verse semigroup which has injective structure mappings if and only if E is the
disjoint union of its maximal subsemilattices (with respect to the partial order w).
Theorem 2.10 of [4] and Theorem 3.4 of [35] show how such pseudo-semilattices may
be constructed. In this paper we only need a construction for a pseudo-semilattice
which is the disjoint union of its maximal subsemilattices all of which are semi-
lattices with an identity. We proceed to give an outline of this construction.

Let I, A be index sets. Let (L,, A € A) and (R;, i € I) be indexed families of
semilattices. Let (M,,, (i,A) € 1 X A) be an indexed family of pairwise disjoint
semilattices such that for every (i, A) € I X A, M,, is a semilattice with identity 1,,.
Let ¢;: M, = Ly, ¥: M;, —» R, (i, A) € I X A, be monomorphisms such that

(V) M,¢,, is a principal ideal of L, and M,y,, is a
1 INVEN iIAYiA
(1.4) principal ideal of R, for all (i, A) € I X A,
' (V) Ly = Ujellexq’jx andR, = U, ., My, forallA €
A andalliel
Letusput E= U __,. M,,. On E we define the relations ' and " as follows.
ielbAeA A

Ife, € M,.,\,fj# EM,, i jEI, A, p € A, then we put

ew'f, if and only if i = j and ey, < f,¥,, in R,
e\w'f, if and only if A = p and e,y < fd;r in L,.

This structure (E, ', »") will henceforth be denoted by E = (L,, R;; M,;; éix, ¥in
I, A).

RESULT 2. E = (L,, R;; My; ¢ ¥is I, A) is a pseudo-semilattice which is the
disjoint union of its maximal subsemilattices all of which are semilattices with an
identity. Conversely, any such pseudo-semilattice can be so obtained.

It should not cause any confusion if we denote the meet operation in the
semilattices Ly, R;, M;,, (i, \) € I X A, by A.If we take e;, € M), f,, € M, then
we define e;, A f, in E by

(1-5) €ix /\fju = (ei)\ AN li,u‘l’m)‘l’i;] A (];,L#)j,, A lip,q)in)‘bi;l'
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It is easy to check that this operation N on E extends the meet operations which are
given for the M,,, (i, A\) € I X A, and that

W(ea) N (f,) = wlen Afy)-

This is in accordance with Result 1(v).

Let us now suppose that S is a pseudo-inverse semigroup and that £ = (L,, R;;
M,y; ¢ ¥ins 1, A) is the pseudo-semilattice which is determined by S. Let (i, A) € 1
X A, and suppose that S;, is the subset of S which consists of the elements x for
which there exist j € I, p € A, ¢, € M, f;\ € M, with f,£x%e,,. We then have
the following result.

RESULT 3. Let S be a pseudo-inverse semigroup and let E = (L,, R;; M;; &, ¥ins
I, A) be the pseudo-semilattice which is determined by S. Then S is a rectangular band
I X A of the semigroups S;,, (i, A\) €I X A. For every (i,A\) €1 X A, we have
E(S;,) = M,,, and 1,,51,, is the maximal inverse subsemigroup of S;, which has M,
as its semilattice of idempotents.

PROOF. Anyhow S = U, A S;) since S is a regular semigroup. Let us now
suppose that x,, € S;, and y,, € S, and x,Re,, ,Lf,, for some k €A, k € I,
e €M, f, EM,,. Letx,y, €S, and h, Bx,,\yj‘ﬁﬂ,gw for some o € A, s €1,
8o EM, o, by, € M, . FromR, , < R : and L, , <L, thenfollows thatg, w'e,
and h f,m Consequently i= n v= ;.z and S = Sm, and we conclude that
SiaS;, € S,,- Thus S is a rectangular band 7 X A of the semigroups S, (i, A\) € I X
A It is now clear that for every (i, A) € I X A, 1,51, is a subsemigroup of S, and
that E(S;,) = E(1,,S1,,) = M,,. From Result 1 we know that 1,,S1,, is an inverse
senugroup Let D be any inverse subsemigroup of S for which E(D) = . Since

1, is the identity of M,,, 1,, must be the identity for D and so D C I,AS 1,,. We
conclude that 1,,S1,, is the maximal inverse subsemigroup of S;, which has M,, as
its semilattice of idempotents.

If S is a pseudo-inverse semigroup and E = (L), R;; M,\; ¢, ¥;; 1, A) the
pseudo-semilattice which is determined by S, then J X A is the greatest rectangular
band homomorphic image of S, whereas the partitioning of S into the subsemi-
groups S;, (i, A) € I X A, determines the least rectangular band congruence on S.
If v is a congruence on S such that S /v is completely simple, then y will be called a
primitive congruence on S. The least primitive congruence p on S must be contained
in the least rectangular band congruence on S, and then S /p may be identified with
a Rees matrix semigroup 9N(G; P; I, A). For every (i, A\) € I X A, p induces a
group congruence on S;, and the quotient is precisely the maximal subgroup G, of
MA(G; P; I, A). In [30] Nambooripad gives a very convenient way to construct the
least primitive congruence on the pseudo-inverse semigroup S: if < is the natural
partial order on S, then the least primitive congruence p on S is given by < o (<)~
This is in accordance with the fact that, given any x, y € § with x <y, x and y
belong to the same subsemigroup S;, for some (i, A) € I X A. The semigroup S has
injective structure mappings if and only if every p-class intersects every ®R-~class and
every £-class of S in at most one element; one can easily show that in this case the
restriction of < to a p-class structurizes this p-class to a semilattice (when considered
as an ordered structure). For all (i, A) € I X A, the semilattice M, is contained in a
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p-class, and p* maps all elements of M;, onto the identity of the group G,,. It should
be remarked that M, may be properly contained in a p-class, even in the case when
S has injective structure mappings. The following result will be useful for our future
considerations.

RESULT 4. Let S be a pseudo-inverse semigroup, and let E = (L,, R;; M,; ¢\, ¥in;
1, A) be the pseudo-semilattice which is determined by S. Then S has injective structure
mappings if and only if S satisfies the following condition and its dual:

(1.6) if (i, A\) EIX A, x;5 € Sip, €ins fir € My, fir < €, fr < x5, and e,,£x,3,
then e;\ = x;,.

A semigroup S which is a rectangular band I X A of inverse semigroups S;;,
(i, \) € I X A, is a pseudo-inverse semigroup whose pseudo-semilattice of idempo-
tents is the disjoint union of its maximal subsemilattices [35, Theorem 3.1, Corollary
3.2). Such a semigroup will be called an elementary rectangular band of inverse
semigroups if for all (i, A), (j,p) € I X A we have S, S,, = S,,. A proper inverse
semigroup is an inverse semigroup which has injective structure mappings {21, 22,
31)]. §4 of [35] gives a structure theorem for elementary rectangular bands of proper
inverse semigroups. We summarize this structure theorem as follows.

RESULT 5. Let X be a partially ordered set, and let L be a subsemilattice and an ideal
of %X. Let G be a group which acts on X, (on the left) as a group of order
automorphisms. Let I and A be index sets, and for every (i, \) € I X A, let p,; be an
element of G such that the action of p,, on °X induces an order automorphism on L. Let
S be the set which consists of the elements (A,8),, AEL, gEG, i€, \EA,
where g~ 'A € L. Define a multiplication on S by

(1.7) (4, 8)in(B, h);u = (A4 N gpy;B, gpy,h),,.

S then becomes an elementary rectangular band of proper inverse semigroups. Con-
versely, every elementary rectangular band of proper inverse semigroups can be so
constructed.

The semigroup S which is constructed in Result 5 will be denoted by
IM(P(G,%X, L); P; I, A); in this notation P is the A X I-matrix which has the
element p,; in the (A, i)-position. In case |/|=|A|=1, Result 5 reduces to
McAlister’s P-theorem which states that every proper inverse semigroup is isomor-
phic to some P-semigroup P(G, %, L). We refer the reader to [21, 22, 31] for more
information concerning P-semigroups. In case L = % is trivial, Result 5 reduces to
the well-known structure theorem for completely simple semigroups. The semigroup
M(P(G,%X, L); P; I, A) is a pseudo-inverse semigroup which has injective struc-
ture mappings. The maximal inverse subsemigroups of IM(P(G, %X, L); P; I, A) are
all isomorphic to the P-semigroup P(G, X, L).

Any P-semigroup P(G, L, L) is a semidirect product of a group and a semilattice,
whereas a semigroup OU(P(G, L, L); P; I, A) is a semidirect product of a com-
pletely simple semigroup and a semilattice. O’Carroll showed that every inverse
semigroup divides an inverse semigroup of the form P(G, L, L) [31]. One of our
main results (see §4) shows that every pseudo-inverse semigroup divides a pseudo-in-
verse semigroup of the form MN(P(G, L, L); P; I, A).
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A congruence relation y on a regular semigroup S will be called a strictly
compatible congruence on S if the y-classes which contain idempotents form com-
pletely simple semigroups. Remark that every idempotent-separating congruence is a
rather special strictly compatible congruence [12]. McAlister shows that every inverse
semigroup is an idempotent-separating homomorphic image of an inverse semigroup
which has injective structure mappings [22]. In our structure theorem for pseudo-in-
verse semigroups we shall show that, given any pseudo-inverse semigroup S, there
exists a pseudo-inverse semigroup & which has injective structure mappings, and a
strictly compatible congruence y on &, such that § /y = S; we shall construct such a
pseudo-inverse semigroup S in terms of groups, semilattices and morphisms. §§2 and
3 prepare the way for this structure theorem.

2. The coextension. Let S be any pseudo-inverse semigroup. In this section we
shall show that there exist a pseudo-inverse semigroup & which has injective
structure mappings and a homomorphism ¢ of & onto S such that the ¢¢ ™ '-classes
which contain idempotents are completely simple subsemigroups of §. We shall
factorize ¢ as a composition ¢,¢, of epimorphisms ¢,: & — S and ¢,: S - S such
that (i) ¢,¢; ' is an idempotent-separating congruence on &, and (ii) the ¢,¢; '-classes
which contain idempotents are rectangular bands.

We need the following result from [24].

THEOREM 2.1. Let S be any pseudo-inverse semigroup, and let (E, «', w") be the
pseudo-semilattice which is determined by S. Let S = {(e, x, fYEEX S X E|x €
eS N Sf}, and define a multiplication on S by

(e, x, /)8, y, h) = (e, xp, h).
Then S is a pseudo-inverse semigroup, and the mapping ¢, S - S, (e, x, f) > x is a
homomorphism of S onto S, such that the ¢,¢; ' classes which contain idempotents are
rectangular bands. Furthermore E = E(S) = {(e, g, f)E EXEX E|gE w'(e) N
W'(f)}. In the pseudo-semilattice (E, «', ") which is determined by S we have

(ea m, f)w’(g’ n, h)
ifand only ife = g and mw'n in S, and

(e.m, f)w'(g, n, h)
ifand only if f=h and mw'n in S. For any e, f € E, E.,={(e.;8 f)|gE€EW(e)N
W'(f)} is a maximal subsemilattice of (E, &', '), and E, ; has an identity element
(e,e Nf, f). The pseudo-semilattice (E, o', w") is the disjoint union of its maximal
subsemilattices E, ;, e, f € E.

COROLLARY 2.2. The pseudo-semilattice (E, o', w") which is determined by S is of the
formE = (L,, R;; My,; &5, ¥in; I, A), where

@ I=A,
()R, =L,=M,forallicI=A,

(2.1) (i) ¢;; =y, is the identity transformation on M, for alli € I = A,
(v) for every (i, j) € I X I, M, is a semilattice with an identity.
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PROOF. Let us put I = A = E, and for all (e, f) € EXE, weput M, .= E
R,=L,=E,, and

‘Pe,:Eef_)E e’ (e’g’f)_’(e’g/\e9e)»
¢e,f:E _)Ef/’ (e’gaf)_’(f’f/\g,f)-

Then E = (L,, R;; M;; ¢, ¥;»; 1, A) is the pseudo-semilattice which is determined
by S, and the conditions (2.1) are satisfied.

Let us now suppose that D is a pseudo-inverse semigroup such that the pseudo-
semilattice (E(D), ', w") which is determined by D is of the form

E(D) = (Ly, Ri; My dp, ¥in; I, A)
where the conditions (2.1) are satisfied. For any i, j € I let D;; be the set of elements

of D which are R-related to some element of M;; and £-related to some element of
M.

i

e, f?

LEMMA 2.3. D is a rectangular band I X I of the semigroups D, J,
every (i, j) €EIX 1, M;; is the semilattice of idempotents of D,
order-ideal of D, < . For every i € I, D;, is an inverse semigroup.

(i, j)EI X I. For

;;» and D;; is an

PROOF. Immediate from Result 3.

If x;; € D,; is any element of D, then there exist idempotents e, € M,; and
[ € M such that e, R x, L f,. The inverse of x,; which belongs to R, ﬂ L, w1ll be
denoted by x;;". Observe that x;;! € D;;, and, due to the fact that M and M are
semilattices, x,.;' is the unique inverse of x;; in D,,.

LeMMA 2.4. For any (i, j) € I X I the mapping D,; - D;;, x;; - x; is an order-
preserving one-to-one mapping of D;; onto D;;.

LEMMA 2.5. Let x;; € D;; be an element of D, and (x,;) = {y;; € D|y;; < x;;}. The
mappings

<‘xlj> < lj Ijl>’ yij _)yijyijl,
kg (x;;) <xij xij>’ Yij = Yii Yij»

are order-preserving one-to-one mappings onto the principal ideals (x;x;; - and
(x3;'x;;) of M;; and M, respectively.

Let X be the set of order-ideals Y;; of D, b JEI where every Y, is maximal for
the property that the mappings Y M, y,; - y,y;' and Y, M”, Vi = Vi Vi
are injective order-preserving mappmgs onto ideals of M, and M, respectively. If
x;; € D,; is any element of D, then it follows from Lemma 25 that there exists a
Y eXsuchthatx €Y, Thus X+ [J,and Uy ¥, = D.

For any ¥;; € X, let us denote

(2'2) Y {yullyu 'j}
From Lemmas 2.4 and 2.5 we have Y;;' C D;;, and Y,; € X if and only if YJ‘ € X

It should be clear that, for all i € I M M;'e X since in this case we have,
from Lemma 2.3, that D,; is an inverse semigroup.
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Let us consider a set Z = {I,;|i, j €I}, where M;; =1, for all i €1 and
XNZ={,|li€l}={M,|i€I). Let 9 be the semigroup which is freely gener-
ated by the elements of X U Z, subject to the defining relations

(l) Ilelk I
(ll) ij lj’
(2.3) Gii) I, Y, = Yy,

(iv) Yijij =7

ijs

WYY =1, foralli j, k€l

LEMMA 2.6. O is a completely simple semigroup and Z = E(9) is the set of
idempotents of .

Foranyd € XUZ letA=Aif A€ Xand 4 = M, if A=1I;€ Z. For any
X,,..., X, EXU Z, let X,o --- o X, denote the set of elements x1 - x,, where
x, € Xk for all k. Thus o is a complex multiplication [20, Chapter III] of subsets of
D.

LEMMA 2.7. Let X,,..., X, be any elements of X U Z. Then no two different elements
of X0 X, 0 --- o X are R-related in D.

PROOF. Let us suppose that x; ; ---x, ; and y,; -y ’J. are different R-related
elements of X, o X2 o X where forallk, x, ;, 5., €Y, X =Y, 6 €X
andx, ;,y,;, €M, if X, = Iikjk € Z. Let us put

h= (xiziz e xi,_j,,)(xi;_jz T xin/n) N x’—Llllx’lJI
and

8= (Vs 20 ity 0is) AN 2igie
Theng,he M, ;,y,;,8 € D,;,x;;h €D,;,and

Xiih Ry xRy v Ry 8

Since hw'x;'x, ;, we must have x, ;h <x, ;, and since gw'y 'y, ;, we must have
Yij,8 <Y Thus, x;;h, y, . g € Y if X, =Y, €X, and x,.u.lh,y,-l,-lgEM,ul if

X, = I, ;, € Z. Since no two dlfferent elements of ., or 1, ; can be R-related in D,
we must have x; ; h =y, ; g. From this we have gy, . ¢ = x, ; h€h. Since g and &

belong to the semilattice M, ;, we conclude g = 4 and so

h(xiy, 2y, )b = gRg( 1y, - Vig)-
The inner left translation with x; ;# =y, ; g maps the ®-~class of h = g bijectively

onto the R-class of x; st = 5,8 by Green’s lemma (Lemma 2.2 of [7]). Since

(x h)(hxizjz"'x,'"j") =X..X, . X

ivh N2 infn

Vi Yisia " Vi, = ()’iu',g)(g)’izjz ce 'yinj,,)
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we have that hx, , ---x;; and gy ; ---y ; must be two different R-related
elements of D. Smce ho'x, ; x; 2} and gu'y, . v ! we have hx;,;, < x;,; and gy, ; <
Vi, Therefore hx, ;. gy, . €Y ; if X, =Y, . € Xand hx,m, gy,zl.2 eEM  ifX,=

i22

I,,;, € Z. Hence (hx, ;) ---x, ., and (g, ;) -y, ; are different R-related ele-

ments of X, © -+ o X By induction we can then show that Y, ; or M, ; contains
two different %—related elements. This is clearly impossible, and our supposition is
false. Therefore the lemma holds.

Let ¥, be the free semigroup on the set X U Z, and let pO be the relation on
Fyuz Which consists of the pairs (I I, i), (I;; 1, 1)), (I; Yy, V), (Y1, X)),
(Y, Y7 L), i, j, k € L If p is the congruence relation on %, which is generated
by py, then we can identify %,,,,/p with the completely simple semigroup 9. A
word W of %, ,, will be called reduced if W cannot be made shorter by an
application of an elementary p,-transition. An elementary p,-transition will be called

decreasing if it decreases the length of the word on which it acts.

LEmMA 2.8. Every p-class on %y, contains a unique reduced word. If X, - - - X,, is
any word of Sy, and if V, - - - V, is the reduced word in the p-class of X, - - - X,,, then
XioX,0 -0 X, CVjo - oV,

SKETCH OF THE PROOF. Every word of %,,, can be transformed into a reduced
word by subsequent applications of elementary p,-transitions, and so every p-class
contains at least one reduced word.

Let W be any word of ¥,,,,. Let us suppose that we can transform W into the
reduced word W, by an application of the decreasing elementary p,-transitions
a,,...,a, and into the reduced word W, by an application of the decreasing
elementary p,-transitions 8,,...,8,. We show by induction on the length of W that
W, = W,. It is easy to see that this statement is true if W is a word of length 1 or 2.
Let the statement be true for any word which has a length which is smaller than the
length of W, and let W be a word of length n, with n=3. If a): W - W, 8;:
W — W”, then W’ and W” are both words of length n — 1. One can show that
either W’ = W” or that W’ and W” can both be transformed into the same shorter
word by an application of decreasing elementary p,-transitions. This allows us to
apply the induction hypothesis, and to conclude that W, = W,,.

Let us now suppose that T, and T, are p-related reduced words. Then T, can be
transformed into T, by subsequent appligations of elementary py-transitions,

L=W->W, W We W, >W, =T,
Forany k € {1,...,u + 1}, let W, be a reduced word which is obtained from W, by
subsequent applications of decreasing elementary py-transitions. Using the observa-
tion mentioned above, we have W[ = W; = --- = W/, ,. Obviously T, = W] and
T, = W,, |, and so T, = T, is the unique reduced word of its p-class.

Let X, - - - X, be any word of ¥, and let ¥, - - - ¥ be the reduced word in the
p-class of X, - -- X,. In order to show that X, 0 --- o X, C ¥, o --- oV, it suffices
to show that (i) M,;; > M, (_:M,k, (i) M ;o M, C M, (ii)) M;;°Y, CY,, (iv)
Y, oM, ,CY,(WY,;oY;'CM,,for allz J, k € I. Case (i) is smnlar to case (iii),
case (ii) is similar to case (iv), cases (iii) and (iv) can be treated in a dual way.
Therefore we shall concentrate on cases (iii) and (V).
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Let e € M and Yik € ),lk Then el_[ylk el](ylkylk A elj)ylk Since ylkylk

e;jw'e,, andy,ky,k‘/\e € M,;, we have y, y;.' N\ e, we,;, and so

Ij’ lj’

€Yk = (yikyik A eij)yik = (yikyik eij)()’ik)’i?))’ik-
Since (yy i N eij)(yikyizl)wyikyizl’ we have e,y < y;, and so ey, € Y. We
conclude that M, ; o Y;k CY,.

Lety, € Y; andv tey;!

i, » wherev;; € Y. Then

YijUij =yij(vij 0;; N Vij yz'j)”x;l-
We haveyij(vi; lvij A yi; lyij)B(vi; l”ij A Yi; lyij)qﬂ/(vi; luij A Yii lyij)vi—j_' !
yilo5'oy Ay v) <y (050 Ay ty) 05t < 05t
and so y; (v;; 1Oi_,' Ny lyij) €Y, (v; loij /\yi;lyij)vi;l € Yq , and
(00 Az W) ot = (0350, A 25 yij))_l
Thus

Yoy = (300 A Yi)) (20505 Ay yy)) € M
We conclude that ¥, o Y;;' C M.

This completes the proof of the lemma.

Let us now consider the set ) consisting of the elements (e;
(U, e, M;;) X O for which the following condition is satisfied:

if ¥, ---V, is the unique reduced word in the p-class of the word X, --- X, of
"fxuz,thenR NVyo - oV, #0.

Let (e;, X, - -+ X,) be any element of %), and let V; - - - ¥, be the reduced word in
the p-class of X -+ X,. By Lemmas 2.7 and 2.8 there exists a unique element x € D
such that R, N Vio .-+ oV, ={x}, and so the mapping ¢: D — D, (e;, X,

X,) - x is well defined.

On 9 we define a multiplication in the following way. If P = (e;;, X; - - - X,,) and

Q=(f;Y, - Y,) are any elements of D, then

(2.4) PO = ((PY)(Q¥)(PY)(Q¥)) ™\, X, -+ X, Y, -+ Y,,).

X)) E

i n

LEMMA 2.9. 9 is a semigroup and { is a homomorphism of % onto D.

PrOOF. Let P = (¢;;, X, --+ X,) and Q = (f;, Y, --- ¥,,) be any elements of .
Let Py = x, Q¢ = y, and let U - - - U, be the unique reduced word in the p-class of
the word X, --- XY, --- Y, of ¥, ,. By Lemma 2.8

(PY)(Q¥) =xy €U0 --- o,

and s0 xy = R pyyoupprexoey-t N Ui © -+ © U, therefore

((PYQYI(PYIQY)) ™ X, -+ X, Y, -+ Y,,) €D,

and the multiplication given by (2.4) is well defined. Moreover (PQ)y = xy =
(PY)QY); hence ¢ is a homomorphism. If x;; € D,; is any element of D, then it
follows from Lemma 2.5 that there exists a Y € X such that x;; € Y;;. Then

(x;,;x5', Y,) € Dand (x;;x7;", Y, ))¥ = x,; ThuS\,b is surjective.
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If T= (g Z, - -+ Z,) is any other element of 9, then it follows from ((PQ)T )y
= (PYNQ¥XNTY) = (P(QT )Y that

(PO)T = ((PYQU)TY))(PYNQINTY)) ', X, - XY, -+ Y, Z, -~ Z,)
= P(QT).

Thus the multiplication given by (2.4) is associative.

LEMMA 2.10. 9 is a regular semigroup and
(2.5) E(D)={(es. I;)|i,jET e, €M, R, N M,;# D}

PrOOF. Since E(91L) = Z by Lemma 2.6, we immediately have that E(D) is given
by (2.5).

Let P =(e;, X, ---X,) be any element of 9. We can always suppose that
X, X, 1sareducedwordof Fyuz- Then Py =x, ---x,, € X0 -+- o X, for

'I.]I l’lj’l

some x, ; € X,, k =1,...,n, where for all k, X, = Y, orl . Let

fi= (Py)"'(Py) = ("iu’. "'xinin)ﬂ(xi‘u', ”'xi,J,.)'

Clearly i=1i, and j —j,, by Lemma 2.3. Let us put X, ' = Y,:, if X, =Y, and
X! =115, X, =1,; X; ! is the inverse in 9 of X, which belongs to the
maximal subgroup which has identity ; ;, . We shall show that

(2.6) 0= {fyw X0y Xy X0, X7

i1

belongs to D and is an inverse of P where PQ = (e;,, I;,) and QP = (f, ;. I, ;).
We show this by induction on n.

Let us first consider the case n = 1 and P = (e,;, I, j) Then Py =g,. = 2 ,;‘ is
the unique idempotent in M;; which is ®-related to e, in D. Let £, = g % ‘g, = 8,9,
be the unique idempotent i 1n ; Which is £-related to gi;- Then j; ;€ 1s the unique
inverse of g,; which is Efrelated to e;; and R-related to fprorg;'=fe, €101,
where I, 1,, = I.;'. Thus Q = (f;, ,I')EGD oy =g,

((P¢)(Q¢)((P¢)(Q¢))‘, A7) = (8,855 1) = (e 1),

= ((Q¥)(PY)((Q¥)(P¥) ", I; .,):(gi;‘g,,,l,-j) (£ L),
POP=P, QPQ=0.

Let us next consider the casen = 1 and P = (e”, Y,;). Then P\p ijis the umque
element in the R-~class of e;, which belongs to Y. Letf, =y Y ;- Clearly y;; ley, j,
Q=(f;Y;" €D, and Q\p y; ' Itis agam easy to see that PQ = (e;;, I,;)
QP = (f;, I;;), POQP = P and QPQ = Q. We conclude that our assumption holds 1f
n=1.

Let us now suppose that n > 1, and that our assumption holds for all /, / < n. Let
us again consider P = (e;;, X, - - - X,) where X, --- X, is reduced, and let Py =

xiul---ane)?,o --» o X, where xikjkefk, k=1,....,n. Let T=(g;,,X,
- X,)whereg, , = (x,; ---x,; WX, --"x; ;)" " and let
— —1 —1
U= (k. X0, Xt XL, XY
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where b ; = (x;;, " X; ’J")“'(x,. L, ©* " %ij.)- By the induction hypothesis we have
that 7 and U are mutually inverse in 9D and that TU = (g;,;, [,,,.)), UT = (h; ; , I, ;).
Clearly

(TU) = 8iriy (UT)y = h;;,

TW=x; - x,, Uy = (xiziz”'xinin)_l'

Let

= - -1
Ty = (‘xiziz i )(xiu'z xinin) N X%,
x—l

and let us consider (x; ; --- x,.n,.")‘l n ,m We know that (x, ;. xinjn)_lrizjl i)

is an inverse of x;(x;; ---x;;) from [26], and smce, by Lemma 2.3,

(X, " %) 'n X €D, it follows that
—1 —1
(% o Xe) i = (g%,
—13—-1 1
Obviously ((r,; x; ! )r,; xi;) ™" I; X7 ') € D and

((rlzhx'm)(r'zllx'm) ’ Il;.ll)(l )‘P = r'zllxll.h

Let us put Q = U((r, ; x; 2 )r,; xi}) " I,;, X7 '). From

0y = (UY)(ryx xit) = (%, '“xini..)_lrizinxi—u': = (%, %)

we have (Qxlz)@u(x,uI ---x,l’l)_'(x,”l coex;,,)=1f - Thus Q =

(fw X 'Ly Xty o 'I, , Xi'') belongs to ©. Moreover, (PQ)Y =

(x5, " 'xi,lj,,)(xiljl e 'xi,d,,)_l = €, and (QP)Y = (x rm : x:,,,,,) l(xxu. : xi,‘j,,)

= [, Whereas from TU = (g, ; , .2,2) and UT = (h, ;, I; ; ) it follows that
(X X)X Ly, Xt X ) = Ly
(x'r,,, |X,,__‘,---X2")(X2---Xn)=lw
and thus
(X, - X)(X“I'J XN X, XY
X QX0 = X0, X = X =1,
(Xn_lI,‘j 1 n_l leI. Xl )(Xl"'Xn)

= (X;]Iinjn_ Xn_—ll e XZ_ ) iz ]u,(XZ Xn)

=(X—‘I X—ll...Xz—l)(Xz...Xn):IM

n L tn—
We conclude that PQ = (e, ;, I,;), QP = (£, I, ; ), and PQP = P, QPQ = Q.
This completes the proof of this lemma.

LEMMA 2.11. Yy~ ! is an idempotent-separating congruence on ).
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PrOOF. Let (e, 1;;) and (f,,,,, I,,,) be any idempotents 9, and let us suppose

that (eu’ 1])4’ (fmm’ mn)ll/ Slnce (eu’ 1])'4/ ED and (f m?* mn)tp e D
must have i = m,j = n, (fns Lna) = (fii» 1;;) and

(eii’ ij)‘l’_gij—(fm u)

Furthermore e;; = g, ¥;; = fi» & j is the unique element inR, NI, =R, N I, ;- We
conclude that (e”, i) = (S ). Hence Yy~ ! is 1dempotent separating.

m> mn

LEMMA 2.12. 9D has injective structure mappings.
PROOF. The proof immediately follows from Result 4.

LEMMA 2.13. The mapping D - I, (e;;, X, -+ X,) = X, - -+ X, induces the least
primitive congruence on 5D and O is the greatest completely simple homomorphic image

of 9D.

PrOOF. Since 9N is a completely simple semigroup, the above considered homo-
morphism induces a primitive congruence y on %, and < o (<) ! C v.

If P and Q are any elements of %) such that Q < P in 9, then it follows from
Qy<PyinDthat P=(e;, X;--- X)), Q= (f“, Y,---Y,) where f, <e, in M,
and Q = (f;, ”)P We then conclude that Y, ---Y, =I.,X,--- X, = X1 - X,
Thus < o (<) ' =

REMARK 2.14. Every element in the greatest completely simple homomorphic
image of %) which is a product of idempotents can be written in a unique way as a
product I, ; ---1I, ;, where for each 1 <k <n — 1, i, # i, and ji #ji,,. If Pis
any element of %D such that Py* = I - e where for each 1s<sk<n-—1,
i, # iy, andj, # ji,,, then P is of the form (ejip Lij, < 1; ;) Sinee ;- 1, . is
a reduced word of %,,,,, Py is of the form e, . -- -e; € M, ., where

iy inJn’ e’ldk e
e, e, Re, inD. Puttinge f..i, for every 1 < k < n, we then have

'ldkd/'/dk
P = (‘f}lil’ IiLil) T (ffnin’ Iirnin)
where ( f;

[y ’k./k).Y ’k./k

We summarize Lemmas 2.9-2.12 in the following theorem.

THEOREM 2.15. Let D be a pseudo-inverse semigroup, and suppose that the pseudo-
semilattice (E(D), &', w") which is determined by D satisfies the conditions (2.1). Then
there exist a pseudo-inverse semigroup D which has injective structure mappings and a
homomorphism  of 9D onto D such that Y~ is an idempotent-separating congruence

on ).

Remark that if E(D) reduces to a semilattice (| /|=| A |= 1) this theorem states
that every inverse semigroup is an idempotent-separating homomorphic image of a
proper inverse semigroup. The proof in [21] for this theorem uses completely
different techniques. In this case 91 is a free group, and the proofs for our lemmas
simplify considerably.

The semigroup D is a J(-coextension of D, and so % and D determine the same
pseudo-semilattice. Therefore Lemma 2.3 can be applied: ) is a rectangular band

I X I of the semigroups D, 5 (i, j) € I X 1. One can check that every D, , contains a
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maximal inverse subsemigroup. Since %) has injective structure mappings these
inverse subsemigroups must be proper inverse semigroups. In particular, the semi-
groups %,,, i € I, are proper inverse semigroups.

We summarize Theorem 2.1, Corollary 2.2, Remark 2.14 and Theorem 2.15 as
follows.

THEOREM 2.16. Let S be any pseudo-inverse semigroup. There exist pseudo-inverse
semigroups S and S, a homomorphism ¢, of S onto S, and a homomorphism ¢, of S
onto S such that:

(i) S is a pseudo-inverse semigroup which has injective structure mappings and ¢ ¢ !
is an wdempoteni-separating congruence on S.

(ii) The pseudo-semilattice (&, ', ") = (E, o', w") which is determined by S and S
is of the form

E=E= (an R My ¢, s 1, A)

where the conditions (2.1) are satisfied.

(iii) The ¢,¢; '-classes which contain idempotents are rectangular bands.

(iv) If v is the least primitive congruence on S, then S/y may be identified with a
Rees matrix semigroup (G, P; I, N) such that

(a) every element of IU(G; P; I, A) which is a product of idempotents can be written
in a unique way as a product (py 1)y, -+ (Pxi )i, where iy # i, and A, # X,
foralll<sk<n-—1;

(b) if x is any element of S such that

X'Yh = (P;,},),-l)\l T (p;‘ynli")inxn

where i, i, and A, F X, for all 1 <k <n — 1 then there exist idempotents
e, € (P )in D" such that x = e, ---e; \

From this theorem it follows that the (¢,6,)(¢,¢,) '-classes of & which contain
idempotents form completely simple semigroups. In the terminology of [30] the
congruence (¢,¢,)(¢,9,) " is strictly compatible with respect to the natural partial
order on the pseudo-inverse semigroup &. In the terminology of [25], S is a
coextension of S by completely simple semigroups. Thus, Theorem 2.16 states that,
given any pseudo-inverse semigroup S, there exists a coextension of S by completely
simple semigroups which has injective structure mappings. Therefore Theorem 2.16
can be regarded as a generalization of McAlister’s Theorem 2.4, Corollary 2.5 of
[21}, which states that, given any inverse semigroup S, there exists a J(-coextension
of § which has injective structure mappings. McAlister’s Theorem 2.6 of [22] (the
“P-theorem”) provides a firm motivation for such construction: every -inverse
semigroup which has injective structure mappings is isomorphic to a P-semigroup
P(G,%, L), where the semilattice L is an ideal of the partially ordered set % (see
also [43]). The combination of McAlister’s two results enables us to construct all
inverse semigroups in terms of groups, semilattices and morphisms. We clearly need
a P-theorem for pseudo-inverse semigroups. The next section will be devoted to this
problem.
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3. The embedding. If D is a pseudo-inverse semigroup which has injective structure
mappings, then we know from [35, Proposition 3.3] that the pseudo-semilattice
(E(D), «, ") which is determined by D is the disjoint union of its maximal
subsemilattices. If the maximal subsemilattices are semilattices which have an
identity, then the pseudo-semilattice which is determined by D is of the form
E(D)=(L,, R; M;,; ¢, ¥in; 1, A) by Result 2. Let p be the least primitive
congruence on D. D/p can be identified with the Rees matrix semigroup
MA(G; P; I, A). For any (i, A) € I X A, D;, will be the set of elements of D which
are Rr-related to some element of U _, M, and L-related to some element of
U, c; M, We already remarked in the introduction that D is a rectangular band
I X A of the semigroups D;,, (i, A) € I X A, and that p induces a group congruence
on each of the subsemigroups D,,, (i, \) EI X Aof D. Ife;; € M, (i,A) EI X A
is any idempotent of D then e, p* = (py,'), is the identity of the maximal subgroup
G of M(G; P; I, A).

In this section we shall suppose that D is a pseudo-inverse semigroup which has
injective structure mappings, that E(D) = (L), R; M,,; ¢n, Vs I, A), p and
M(G; P; I, A) are as described above, and that the following conditions are
satisfied:

(3.1)(i) every element of the subsemigroup of ON(G; P; I, A) which is generated
by the idempotents of 9N(G; P; I, A) can be written in a unique way as a product

(px_l'l.l)iﬂ\‘( pleiz)iz)\z T (p;nlin)i,,k,,

wherei, # i, 1, A, A, foralll<sm=<n—1,
(3.2)(i1) if x is any element of D such that

xPh = (p;l}l)il)\l o (p;nlin)inkn

where i, # i,,4 1, A, A4 for all 1 <m <n— 1, then there exist idempotents
e, EM, \ ,1<m<n,suchthatx =e;,¢;,,,- "€ ,.

The semigroup S which is obtained in §2 satisfies these conditions. Therefore all
the results which will be obtained in this section may be applied to S. Remark that
the conditions (3.1) and (3.2) imply that the preimage for p* of an idempotent
(Px)in of M(G; P; I, A) must be the maximal subsemilattice M;, of D.

In [24, Theorem 2.5] it has been shown that E(D) = (L,, R;; M;,; 5, ¥ixs I, A)
can be embedded as an order-ideal (with respect to the partial order w) into a
pseudo-semilattice which is determined by an elementary rectangular band of proper
inverse semigroups. The main result of this section indicates that D itself can be
embedded as a subsemigroup and as an order-ideal into an elementary rectangular
band of proper inverse semigroups. Result 5 describes how such an elementary
rectangular band of proper inverse semigroups can be constructed.

In the following lemma 6: D - Ty, x — 0, denotes the fundamental regular
representation of D.

LemMa 3.1. The mapping X p*: D — Ty p, X (D/p), x = (b,, xp*) is an isomor-
phism of D onto a subsemigroup of Ty, 1, X (D /p).
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PROOF. Since 0! C I and p N R = ¢j,, we must have 807" N p =, The
lemma now follows.

We now recall part of a construction of §2 in [24]. For any A € A, let l_‘,\ be the
semilattice L, with an extra identity element 1, adjoined. Let ( M, (i,\) EIX A)
be an indexed family of pairwise disjoint semilattices such that, for every (i, A) € I
X A, M, is a semilattice which contains M;, as an ideal, and such that din
M, — L, is an isomorphism of M, onto L, which extends ¢,,. We can always
suppose that R, N (U, (My\M,,)) =0 for all i € I. For every i €1, let R, =
R, U (U, (M \ M,,)), and for every (i, \) € I X A, let §5: M, > R, be defined
by

Eatin = & & € My \ M,
=epyn ife, € M,.

Define a partial order < on R, by the following: e, < f in R, if and only if there
exist A € A, &, f, €E M, such that &,, <f, in MA and &, = &Y, f, = fx¥ir. R
then becomes a semilattice, and for every A € A, ¢, is an order-lsomorphlsm of M A
onto a principal ideal of R,; ¥,, extends y,, for every (i, A) € I X A. The pseudo-
semilattice E = (l_,x, Eﬁ 1\7,,‘; $,,‘, \17,,‘; I, A) contains E(D) = (L,, R;; M;y; &5, ¥ixs
I, A) as an order-ideal. )

Since E(D) is an order-ideal of E, the semigroup T contains the semigroup Ty p)
as a subsemigroup. One can easily show that T, is also an order-ideal of T with
respect to the natural partial order on Tj. Therefore Tz X (D/p) contains Ty, X
(D/p) as a subsemigroup and as an order ideal, whereas the mapping 8 X p"
embeds D isomorphically into 7z X (D/p) by Lemma 3.1. Remark that Ty, T5
and (D/p) are pseudo-inverse semigroups. Since the class of pseudo-inverse semi-
groups is closed for taking direct products [29], it follows that Ty ,, X (D/p) and
Tz X (D/p) are pseudo-inverse semigroups.

It is well known that the mapping E(D) — E(Tgp,), €;, — 0, is an isomorphism
of the pseudo-semilattice which is determined by D onto the pseudo-semilattice
which is determined by Ty 5. This isomorphism can be extended to an isomorphism
E — E(Tf), e;, — 6:, of the pseudo-semilattice E onto the pseudo-semilattice which
is determined by TF.

For any (i, \) € I X A, let 1,, be the identity element of M,,. Let D be the subset
of T; X (D /p) which consists of the elements of the following two kinds:

(3.3)(i) the elements (8 , (px,')in): (i, A) € I X A,

(3.4)(ii) the elements of the form (a, a ,\) wherea € T;, a € G, (i, A\ ) EI X A,
such that for some j €I, pu € A, . € Mm, . € Mm, X\ € D, with
aR6; L0, RO, in T x;p" = (pp_jlp“,a 5 We have 0 G = @

LEMMA 3.2. The set E(D) of idempotents of D consists of the elements of the form
(9, (PxDa) (LA ETX A, &, € M,,. The set E(D) forms an order-ideal of the
pseudo-semtlatttce of idempotents of Tz X D/p, and the mapping E - E(D), €
(6;,, (P N,\) is an isomorphism of pseudo-semilattices.

LEMMA 3.3. The set D is an order-ideal of Tz X (D /p) with respect to the natural
partial order on Tz X (D /p).
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LEMMA 34. If P and Q are any elements of D such that PQ is a trace product in
Tz X (D/p), then PQ & D.

PROOF. We shall only consider the case where P and Q are both of type (ii). The
other cases are easier. Suppose that P = (a, a;,), where for some j €I, p € A,
e, € Mm, e, EM,, x, €D, the conditions in (3.4) are satisfied, and Q = (8, b,,),
where for someh €Ly EA,f, ,,,,,f,,,, € My, Vi € Dy, with BRG; £6, RO,
in Tz ,93,0% = (Poh' Pyub iy We have b7 6,, = B.The idempotent of TE X (D/p)
which is £-related to P and R-related to Q must be of the form (6;, , (px, N,»), Where
8, Laff; RBRY; . Since xj,‘Ee,,\ in D for some / €1, ¢, € M,,\, the foregoing
implies e\£&,, R f,,. Thus &,, = &, and so PL(6; ,, (px,))R Q in Tz X (D/p),
where PQ = (aB, (ap,,b);,). From 6; R6; it follows that & ,‘Gﬁ,fn in E. The
following two cases can occur: e, = f,,, or e,,x #f,,,, ande,, € M, )\,j;m EM,,.

Case 1. &,), = f,, (A =1). In this case x;,\Lf,, = fix® y, in D, and x;, y,, is an

element of D;, which is R-related to e; o such that

(xjAth)P = (pp_j pp,ia)j)\( p"l_hlpnnb)hv
= (25'Pu@) A(P2r PAnb) 1y = (2 PuiaPARD) -
Moreover, af#R 0; £6, R, , in Ty, and
0. 6 =6.06 =20.0 6

€in Xj\Vhy € XjN Vhy €in Xjx fnrp Yhe aﬁ'

We conclude that (a8, (ap,,b);,) = PQ € D.
Case 2. e, #:f,, and e, € M,,, f,m € M,,. In this case f,ly,,,, € D,, and

e\ R foyVny in D. Also x,£&,, in D, and so x;, m,y,,,, € D;, and x), f,, v, R e, in D.
Thus apR 6; £6, R, ; , inTg,

(xj)\f;myhv)p = (pu_j]p/.tia)j}\(pT;ll)mp(pﬂ—hlpﬂ"b)hv
= ( 22} Pui®Prn Py Pop P’ Punb ),
= (psj'Puaprnb)

and

0. 6

€in X,Afm,)’h.

=40:6.6:0, =aB,

€in XjN Son Yy
and we conclude that (a8, (ap,,b),,) = PQ € D.

LEMMA 3.5. D is a subsemigroup of T; X (D/p), and the mapping 6 X p% is an
isomorphism of D onto a subsemigroup of D.

PROOF. Let P and Q be any elements of D. Then PQ = P’Q’ for some P’, Q’, with
P’ < P, Q' < Q, where P’Q’ is a trace product. By Lemmas 3.3 and 3.4 we conclude
that P’, Q’ and P'Q’ belong to D.

Let x;, € D, be any element of D. It should be clear that (4, , x,,0") € D. The
proof now follows from Lemma 3.1.

LEMMA 3.6. D is a pseudo-inverse semigroup.
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PROOF. All elements of type (i) of D are regular elements of D since they are
idempotents. Let P = = (a, a;)) be any element of type (ii) of D, such that for some
JEIL pEA, €, € Mm, e, EM,, x; €D, the conditions in (3.4) are satisfied.
Let /€1 and y,“ € D,, be an inverse of x; in D such that x;,y, = e, and

€ju
VX = e forsomee, € M), In Tz we have aRf; £, RO, La, and

af, =6;0. 06, =06;0, =6;

Xix Vig €y € (7

6,0=6,0.6 =60 =6,

Thus a and ﬂy are mutually inverse elements of 7. Obviously y,np is the inverse in
G, of x;, Pt = (pM P.ia);\ It is easy to compute thaty,up =(pxla” p“, l)l;v and so

an(7e") = an(prta™'p3"), = (apnrnta 'pi'), = (P5')
(yup®)an = (prla7'pa") an = (Prta i 'pua) = (P

One can readily check that (a, @;,) and ( W Vil ) =( V)8 X p? are mutually
inverse elements of D. We conclude that D 1s a regular semigroup. By virtue of
Lemma 3.2, D must be a pseudo-inverse semigroup.

LEMMA 3.7. D has injective structure mappings. The congruence o on D which is
induced by the homomorphism

o":D - M(G; P; I, A), (0TA’ (P;il)n\) _)p;il’ (a,a,) - a;
is the least primitive congruence on D, and OU(G; P; I, A) is the e greatest completely

simple homomorphic image of D. The pseudo-inverse semigroup D satisfies conditions

(3.1) and (3.2).

PROOE. Since D is a subsemigroup of Tz X (D/p), the above considered mapping
0" is a homomorphism, and ¢ is a primitive congruence on D. Thus ¢ D < o (<),
where < o (<)7! is known to be the least primitive congruence on D [30].

Let P and T be any elements of D such that T< P in D. If P = (6; 1o (P
then of course T = (4; o (P ",x) for some e E M, 2 Let us now V_suppose that
P = (a, a;) is of type (ii), where for some j €I, u € A, €, € Mm, e, €M,

» € D;, the conditions in (3.4) are satisfied. Clearly P @’(0',-,.’_( Pai l),‘u) and from

T < P it follows that T?R(Hf , (p,“ )i) for somefm € M,,, with f, we,,, and

T= (of:,.’ (p‘;l)m)(a, aix) = (af:“a, an\)-

Thus Po"® = To" in both cases, and we conclude that 0 = < o (<)~ L

We shall now make use of Result 4 to show that D has injective structure
mappmgs It is therefore suffnclent to show that the preimage of any idempotent
(Px)in of IM(G; P; I, A) for 6" is the o-class consisting of the elements of M,,. This
will follow from the following considerations.

We know that the semigroup D /p = D /o satisfies conditions (3.1) and (3.2). Let
us now consider any element of type (ii) of D which is of the form («, a; ), where
ain, = (Paddin, = (Pt Din, With i i, A, #X, forall l<m<n— 1.
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There exist i €I, A € A, €& € 17,-‘)\, ean € My, ya, € Dy, such that
aR; £6, A6, R6, inTg,
i ix Vi Yir,

i = (PRPA PR Prs  PAR )

= (P}Til)ix(l’xl}u).’,xl (P;,.]i,.),-,,x,,’
and
a=24§

€N Yin,

There are three cases to consider: (1)i =i, (2)A =X, and (3)i # i, and A # A,.

Case 1. i=iy. In this case @ =0, —and (a4, )= ()0 X pt. Since D
satisfies conditions (3.1) and (3.2), there exist e, EM \,m=1...n, such that
Yir, = €, * €, in D. Consequently

(a,a;5,) = (02,-1)‘1’ (p;:'l'n)i,x.) (aer,»,.’ (p’:-l"n)i,.kn)

where, foreverym = 1,...,n, (8, , (Px.)i.)i, ) is an idempotent of D such that

(s (220 ) )™ = (230)

Case 2. A=A, In this case y, p" = (PxDin(Prs)inn, = (PR} )ia. Clearly
A = A, # X,. We consider two subcases: (a) i = i, and (b) i # i,.

Case 2(a). A = A, i = i,. In this case y,, p" = (py} )i, - (Px} )ia, and so
thereexiste, , €M, , ,m=2,...,n,suchthaty,, =e, , e ,.Consequently

(@ ain,) = (8,00 (230)n ) (60 (Pd)in) - (8 (Peh), )

Case 2(b). A=A, i # i,. In this case yi)\,,Pki = (P}Til)iA(P;;iz)iz)\z T (P)T,,li,,)i,,)\,,’
and so there exist e; , €M, , , m=2,...,n, such that Yin, = €neipn, "€
Then

a=6:6,6 ---6 =48

€\ €ix €ijhy €in €in) €ighy €in,’

thus again

(a,a;, )= (st’ (P;.'!n)i.)\.)(aeim’ (p;zl"z)izxz) T (‘0"'»,.’ (p{nl,»n)i",‘")-

Case 3. i # iy, X # A, In this case yp o* = (Px)a(Pxi )i, (PX 1 )i0,, and
so thereexiste, , €M, 5 ,m=1,...,n,suchthaty, =eye;, *** €; - Then
a=6:60,0 ---6 =06 ---6 =20

€ €in € €iAn € €, €, enNein i, €in,’

wheree; , Ne;, € M,, ,and so

(a, ai,)\,,) = (06,-1,‘/\2,-1;"’ ( p;ﬂl'u )il)\n ) ( 0eiz)\2’ ( p;zliz)iz)\z) Tt (081',)\,,’ ( p;nlin)i,,)\" ) :

We conclude that D has injective structure mappings and that D satisfies condi-
tions (3.1) and (3.2).
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LEMMA 3.8. The semigroup DO X p® consists of the elements (a, a,,) of type (ii) of D
for which there exist some idempotents e, f, in E(D) such that

(3.5) (6., (pi")u) B ( e an)E(8,,. (£54) i)
in D. The subsemigroup D8 X p" of D is an order-ideal of D.

THEOREM 3.9. The pseudo-inverse semigroup D which has injective structure map-
pings and which satisfies conditions (3.1) and (3.2) can be embedded as a subsemigroup
and as an order-ideal in an elementary rectangular band of proper inverse semigroups
D’ in such a way that D consists of the elements x of D’ for which there exist some
idempotents e,,, f,\ in E(D) such that e, R xL f, in D'.

PROOE. Let us consider a sequence of pseudo-semilattices

E(D)=EyE,,...,E ,E_,,...,

E, = (L, RYW; MS; o0, y§0; I, A), where E, = E, where E, | is constructed
from E, in the same way as E is constructed from E(D)if k is even, and where E,
is constructed from E, in a dual way as E is constructed from E(D) if k is odd.
Using induction, we can show by Lemmas 3.2-3.8 that there exists a sequence of
pseudo-inverse semigroups D = D,, D,,...,D,, D, . ,... such that, for every k € N,

(i) E, is the pseudo-semilattice ( E( D, ), o', w") which is determined by D,;

(ii) D, is a pseudo-inverse semigroup which has injective structure mappings, and
the greatest completely simple homomorphic image of D, may be identified with
D/p = 9N(G; P; I, A), such that conditions (3.1) and (3.2) are satisfied;

(iii) D, is a subsemigroup and an order-ideal of D, _ ,;

(iv) D, consists of the elements x‘*) of D, , for which there exist some idempo-
tents e{,?, £ in E, such that e{R xR f{ in D, , .

Let D’ = U7_,D,, and define a multiplication on D’ in the obvious way: if
x, y € D’, then x, y € D, for some natural number n, and the product xy of x and y
in D’ coincides with the product of x and y in D,. By this D’ becomes a
pseudo-inverse semigroup. Let E’ be the pseudo-semilattice which is determined by
D’. The pseudo-semilattice E’ is the direct limit (in the sense of [24, Theorem 2.5]) of
the pseudo-semilattices E,,...,E,, E,,,,.... D’ contains D as a subsemigroup and
as an order-ideal. D’ has injective structure mappings. Furthermore, D consists of
the elements x of D’ for which there exist some idempotents e,,, f, in E(D) such
that e, R xLf;, in D’.

From the proof of Theorem 2.5 of [24] it follows that E” is the pseudo-semilattice
which is determined by an elementary rectangular band of inverse semigroups. From
§83.1 and 3.2 of [35] it follows that every pseudo-inverse semigroup which de-
termines the pseudo-semilattice £’ must be an elementary rectangular band of
inverse semigroups. In particular, D’ is a pseudo-inverse semigroup which has
injective structure mappings, and which is an elementary rectangular band 7 X A of
inverse semigroups D), (i, A) € I X A. Clearly the maximal inverse subsemigroups
D\, (i, \) € I X A, of D’, must have injective structure mappings too, and therefore
they are proper inverse semigroups. This completes the proof of the theorem.

in®
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From Theorem 2.16 and the foregoing theorem it follows that every pseudo-
inverse semigroup divides some pseudo-inverse semigroup which is an elementary
rectangular band of proper inverse semigroups. This fact will be exploited in §4.

4. Main results.

THEOREM 4.1. Let X be a partially ordered set which contains the semilattice L as a
subsemilattice and as an order-ideal. Let G be a group which acts on %X (on the left) as
a group of order automorphisms. Let I be an index set, let (A;,i € 1) be a family of
elements of L, and let (p;;, (i, j) € I X I) be a family of elements of G which have
actions on X, that induce automorphisms on L. Let S be the set which consists of the
elements (A4, 8),;, AEL, g€ G, (i, j) EI X I, where A < A, and pj;Ig_‘A <A,
Define a multiplication on S by

(A4, 8)ij(B,h)p,= (AN gp,,B, gp;uh),, -
Then S becomes a pseudo-inverse semigroup.

Let p be a strictly compatible congruence on S. Then S/p is a pseudo-inverse
semigroup, and conversely, any pseudo-inverse semigroup can be so constructed.

PrROOF. Let us consider the elementary rectangular band of proper inverse
semigroups YN(P(G, %X, L); P; I, I) (see Result 5). We show that S is a regular
subsemigroup of M (P(G, X, L); P; I, I). For every (4, g),; of M(P(G, X, L); P;
I, I) we have

(Pj;lg‘lA’ Pj;l)jjg(A’ g)ij§H’<A’ pEI)ii

where (p;;'g™'4, p;');, and (4, p;;'),; are idempotents which belong to the maxi-
mal subsemilattices {(X, p;'),;|X €L} and {(X, p;'),;| X € L} respectively.
Therefore, an element (4, g),; of IM(P(G,%X, L); P; I, I) belongs to S if and only
if (4, g),; is in the intersection of the principal left ideal which is generated by
(A;, p;'),; and the principal right ideal which is generated by (4,, p;;'),;. This
shows that S is a subsemigroup of M (P(G, X, L); P; I, I). If (4, g),, belongs to S,
then the inverse (p;'g™'4, p;;'g™'p;; "), of (4, g),; also belongs to S, and so S is a
regular semigroup. S is a pseudo-inverse semigroup since S is a regular subsemi-
group of a pseudo-inverse semigroup. The direct part of the proof follows, since the
class of pseudo-inverse semigroups is closed for taking homomorphic images.

Let us now suppose that S is any pseudo-inverse semigroup. Let & be as in
Theorem 2.16. There exists a strictly compatible congruence p on & such that S is
isomorphic to & /p. We know that $ can be embedded as a subsemigroup and as an
order-ideal in an elementary rectangular band of proper inverse semigroups, in the
way prescribed by Theorem 3.9. Since the pseudo-semilattice & = (L;, R;; M, 5
;> ¥i;; 1, I) which is determined by S satisfies the conditions (2.1), this elementary
rectangular band of proper inverse semigroups is of the form M (P(G, X, L); P;
I, I'), and the identity elements of the maximal subsemilattices M,;, i € I, are of the
form (4;, p;;');;» i € I. Theorem 3.9 states that S consists of the elements (4, g), ;of
M(P(G, %X, LY; P; I, I) for which there exist m, n € I, and idempotents (X, p,;');,
€ M, (Y, p;,)).; € M,,; such that

(X’ p’;l)i"%(A, g)ijB(Y’ pj;l])mj
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in M(P(G,%, L); P; I, I). Since the pseudo-semilattice which is determined by &
satisfies conditions (2.1), & consists of the elements (4, g), ; of M(P(G,%X, L), P;
LIy where (4,8),R(4, p;")u<(4, p; ") and (4, 8),L(p;'s "4, p; "), <
(4;, pj;‘)j.j.. Thus, an element (4, g),; of M(P(G, X, L); P; I, I) belongs to S if
and only if 4 <4, and p;; eTl4<4 ; in L. Therefore the converse part of the
theorem holds.

THEOREM 4.2. Every pseudo-inverse semigroup divides a pseudo-inverse semigroup
M(P(G, L,L); P, I,I) which is a semidirect product of the completely simple
semigroup ON(G; P; I, I) and the semilattice L.

PrROOF. From the foregoing theorem it follows that every pseudo-inverse semi-
group divides an elementary rectangular band of proper inverse semigroups
M(P(G,%X, L); P; I, I). From Theorem 1.3 of [31] we know that there exist a
semilattice L which contains L as a subsemilattice, and a P-semigroup P(G, L, L)
which is a semidirect product of the group G and the semilattice L, such that the
inclusion mapping P(G, %X, L) — P(G, L, L), (4, g) — (4, g) embeds P(G, X, L)
isomorphically into P(G, L, L). Clearly the inclusion mapping

M(P(G, X, L); P;1,1) > OM(P(G,L,L); P;1,I), (A,g)i,~(A4,8);

embeds I P(G, X, L); P; I, I') isomorphically into the semigroup 9U(P(G, L, L);
P; I, I), which is a semidirect product of the completely simple semigroup IN(G; P;
I, I) and the semilattice L.

REMARKS 4.3. We showed that every pseudo-inverse semigroup S divides an
elementary rectangular band of proper inverse semigroups of the form
M(P(G,X, L); P; I, I'). If we take a pseudo-inverse semigroup S of some particu-
lar kind, then it can occur that we can handle the case in a more economical way,
and that we can vary the division procedure and thereby obtain sharper results. In
(24] we already made the remark that every normal band divides a band which is the
direct product of a semilattice and a rectangular band; moreover, every orthodox
pseudo-inverse semigroup S (i.e. generalized inverse semigroup [48]) divides a
pseudo-inverse semigroup which is the direct product of an inverse semigroup and a
rectangular band [24, Theorem 4.8]. Every fundamental pseudo-inverse semigroup S
divides a fundamental pseudo-inverse semigroup which is an elementary rectangular
band of fundamental inverse semigroups [24, Theorem 4.2]. The results of §4 of [24]
indicate that several simplifications will be possible if the pseudo-inverse semigroup
from which we start is combinatorial, or completely semisimple.

Remark that a matrix representation for primitive regular semigroups can im-
mediately be obtained from Theorem 4.1: in this case L must be an atomic lattice,
and the elements 4;, i € I, atoms of L. The completely 0-simple semigroups arise
from the case where G acts transitively on the atoms 4,, i € I.
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