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CONGRUENCE EXTENSION AND AMALGAMATION
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Abstract. This paper continues the examination of the structure of pseudo-
complemented distributive lattices. First, the Congruence Extension Property is
proved. This is then applied to examine properties of the equational classes
¿Sn, — lá«So), which is a complete list of all the equational classes of pseudo-
complemented distributive lattices (see Part I). The standard semigroups (i.e., the
semigroup generated by the operators H, S, and P) are described. The Amalgamation
Property is shown to hold iff «¿2 or n = w. For 3gn<tu, <®„ does not satisfy the
Amalgamation Property; the deviation is measured by a class Amal (Mn) (c Mn).
The finite algebras in Amal (&„) are determined.

0. Introduction. This paper continues the examination of the structure of
pseudocomplemented distributive lattices begun in Part I, [8].

Using the description of congruences given in Part I, we verify the Congruence
Extension Property in §1. This, in effect, states that a ""-congruence on a subalgebra
can be extended to a ""-congruence on the algebra. This property is applied in §§2
and 3. In §2 we determine the "standard semigroups" of the equational classes of
pseudocomplemented distributive lattices, which is, roughly speaking, the semi-
group generated by the operators H, S, and P in the sense of [5]. In §3 it is shown
that the Amalgamation Property holds in 3Sn (notation of Part I) if and only if
n= — 1, 0, 1, 2, or w, and that the subalgebra theorem for free products of B.
Jónsson [7] holds for exactly the same equational classes. Since the Amalgamation
Property fails to hold for 3SZ, 3S^,..., we introduce a concept attempting to
measure the extent of this failure. This concept is the amalgamation class of Jf,
Amal (Jf). The Amalgamation Property holds in CÍC if and only if Amal (Jf) = Jf.
§4 contains results on Amal (3$n) for 2<n<a>; in particular, we determine the
finite algebras in Amal (3Sn).

1. The Congruence Extension Property. A class JT of algebras is said to satisfy
the Congruence Extension Property if, given any algebra B and subalgebra A, both
in Jf, and any congruence 0 on A, there is a congruence 0 on B such that the
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344 G. GRÁTZER AND H. LAKSER [May

restriction of 0 to A, &A, satisfies 0¿=0. In this section we establish the Con-
gruence Extension Property for the class 3Sa of all pseudocomplemented distribu-
tive lattices, where "Congruence" refers to ""-congruences, that is, those lattice
congruences that also preserve the pseudocomplementation *.

We first recall the characterization of *-congruences established in Part I, [8].
If L is a pseudocomplemented distributive lattice then the set of dense elements
D(L)={u e L \ u* = 0} is a lattice with 1 and, indeed, is a dual ideal of L, and the
skeleton S(L)={x* | x e L} is a Boolean algebra with join operation auA
= (a* A A*)*. A congruence pair of L is a pair <0j, 02>, where @x is a congruence
of S(L) and 02 is a congruence of D(L), satisfying

(1) a e S(L), u e D(L), u^a, a= 1 (&x) imply u= 1 (02).
Theorem 1 of Part I established a one-to-one correspondence between *-con-

gruences ofL and congruence pairs of L; if 0 is a *-congruence ofL then the
corresponding congruence pair is <0S(d, 0du.)>> and if <01; 02> is a congruence
pair then the corresponding ""-congruence 0 is determined by requiring that
x=y(&) if and only if

(i) x*=y*(Qx) and
(ii) xVu=.yVu(®2) for all ue D(L).
As usual, let (x] denote the principal ideal generated by the element x.

Lemma 1. Let K, L be distributive lattices with 1 and let K be a {\}-sublattice of
L. Let 0 be a lattice congruence on K and let J be a dual ideal in L satisfying

(2) ueJ, and (u] n K^ 0 imply that there is a v e (u] n K such that v= 1 (0).
FAen there is a lattice congruence 0 on L such that the following two conditions are
satisfied:

(i) 0K=0;
(ii) x=l(Q)forallxeJ.

Proof. Given elements a,beL, let 0(a, A) denote the smallest congruence on L
identifying a with A. Let &[J] be the congruence on L determined by J; that is,
x=y(Q[J]) if and only if xA u=y A u for some ueJ. We define the congruence 0
on L as

0 = 0[/] V V (©(a, b)\a,beK,a = b (0)).

Clearly condition (ii) holds, and also 0 ^ 0K. Thus we need only establish that
0Kè®.

Let x,yeK,x £ y(&). We show that x&yfà). Since [x]@^[y]Q in the
quotient lattice K/Q ([x]0, [y]Q denote the corresponding equivalence classes
under 0), they can be separated by a prime ideal P' of K/Q. We may assume with-
out loss of generality that [x]9 eP' and [y]Q e K/&-P'. Let the prime ideal P of
K be {u e K \ [u]Q e P'} and let the prime dual ideal Q = K-P, that is,
Q={u e K | [«] 0 $ P '}. Thus x e P, y e Q. Let (P ] be the ideal of L generated by
P and let [Q) be the dual ideal ofL generated by Q. That is, (P] = {ueL\ u^z for
some zeP} and [Q)={ueL \ u^z for some ze Q).
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1971] PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES 345

We claim that (P] and the dual ideal [Q) yJ are disjoint. If u e (P] n ([Q) v/)
then u ̂ p for some peP. Since pe[Q)vJ there exist q e [Q) and veJ such that
p=qAv. Now pe(!)]ni implies that (v] n K^ 0 ; therefore, by (2), there is a
ws(v] n K such that w= 1 (0). Consequently w e Q, implying that p e [Q), since
p^qAw, and so p e Q. This contradicts the disjointness of P and Q and so estab-
lishes our claim.

Consequently, again applying Stone's theorem, there is a prime ideal Px of L
such that (P]^PX and Px n ([Q)vJ)= 0■ Now Px defines a congruence O on
L: t/=y(0) if and only if both u, vePx or both u, veL—Px. Since X6PX and
y eL—Px, we need only show that 0 ^ <J> to conclude that x£y(&).

Clearly/£[1](D and thus @[J] S $. Now let a, beK, a=b(Q). Since [a]0 = [e]0,
either both a,bsP<^Px, or both a, b s Q^L-PX; that is, a=b(^>). We conse-
quently conclude that

0 = V (©(a, b)\a,bsK,a = b (0)) V ©[./] ̂  <D.

Thus we have shown that x^y(Q) implies x?ey(0), completing the proof of
condition (ii) and concluding the proof of the lemma.

It should be noted that a corollary to Lemma 1 is the Congruence Extension
Property for distributive lattices (not necessarily with 1). If K, L is a pair of lattices,
K a sublattice of L, then we add a new greatest element 1 and let L'=L u {1},
K'=K<J{\}. Applying Lemma 1 with /={1} yields the Congruence Extension
Property.

Using our characterization of *-congruences we now establish the Congruence
Extension Property for 3Sa.

Theorem 1 (The Congruence Extension Property). Let A and B be pseudo-
complemented distributive lattices and let A be a *-sublattice of B. Let & be a
*-congruence on A. Then there is a *-congruence 0 on B such that QA= 0.

Proof. Let 0j = &sw, @2 = ®du)- Note that S(A) is a subalgebra of S(B) and
D(A) is a {l}-sublattice of D(B). Set A = [l]©i, and let I he the dual ideal in S(B)
generated by Ix. In view of the one-to-one correspondence for Boolean algebras
between dual ideals and congruences, (0i)S(a) = ©i> where 0X = ©[/].

Now let J={x s D(B) \ x^z y for some y s I}. We establish condition (2) for the
lattices D(A), D(B) and the pair /, 02. Let ueJ and let w s D(A), w^u. In view
of the definitions of / and I, there is an aeIx such that a^u. Since ae A and
w e D(A) it follows that avwsD(A). aelx implies that «^1(0^ and so
avwsl(02). Thus condition (2) is established with v=a\/w. Consequently
there is a congruence 02 on D(B) such that (®2)D(A)= ©2 and such that x= 1 (02)
whenever xej. In view of the definition of 0j, condition (1) thus applies to the
pair <01; 02>; that is, <0a, 02> is a congruence pair determining a *-congruence
0 on B. Since (©Osm) = ©i and (B2)D{A) = 02 it follows that 0A = ©, concluding the
proof of the theorem.
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346 G. GRÄTZER AND H. LAKSER [May

2. The standard semigroup. We apply Theorem 1 to calculate the standard
semigroup of operators in the various equational classes of pseudocomplemented
distributive lattices. Let Jf be an equational class of algebras. If Jf'çjT let
H(X~'), S(3T'), and P(yf') denote the class of all homomorphic images, isomorphs
of subalgebras, and isomorphs of direct products respectively of algebras in Jf"'.
With the set of symbols {H, S, P} we associate a partially ordered monoid ©(yf ).
Let S be the free monoid on {H, S, P} with the identity 0. If Jf's J¡f and U is a
word in S we define the class £/pf') by requiring that 0(Jf') = Jf' and UV(JT)
= U(VLyf')). Since ¿f is an equational class U(Jf')^JT for all Jf's Jf, Ue S. FAe
standard semigroup of operators of Jf, ©PO, is the quotient monoid of 2 where
U,VeI, are identified if U(Jf')= V(Jf') for every subclass CUT' of X The partial
order is determined by setting US F if t/(Jf')S F(Jf') for all ¿f's of. Don Pigozzi
[10] announced that, for each equational class ¿f, <B(Jf) is a quotient of the 18-
element partially order monoid © depicted in Figure 1, and showed the existence
of a class Jf of groupoids for which ©pf) = ©.

Qhsp

0
Figure 1
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Let B be a Boolean algebra and let B be the pseudocomplemented distributive
lattice obtained by adjoining a new greatest element to B. Then the B are exactly
the subdirectly irreducible pseudocomplemented distributive lattices (Theorem 2
of Part I). Let Bn denote the «-atom Boolean algebra and let 33n denote the equa-
tional class of pseudocomplemented distributive lattices determined by Bn. Let
3Sa denote the class of all pseudocomplemented distributive lattices. It was shown
by K. B. Lee [9] that the 3Sn, n finite, and 3Sa are all distinct and are all the non-
trivial equational classes of pseudocomplemented distributive lattices (see also
Part I). Observe that 380 is the class of all Boolean algebras.

Theorem 2. (i) IfQ-¿n-¿2 then ®(á?n) has 11 elements and is the quotient of<B
under the relations HS=SH, SP=HSP.

(ii) If2<n<ui then <3(^„) has 12 elements and is the quotient of & under the
relations HS=SH, SPH=HSP.

(iii) <3(á?ra) has 13 elements and is the quotient of<3 under the relation HS=SH.

Proof. The Congruence Extension Property implies that HS=SH. The quotient
of <S under this identification is the semigroup shown in Figure 2. Thus the standard
semigroup of operators of any equational class of pseudocomplemented distributive

0
Figure 2
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348 G. GRÄTZER AND H. LAKSER [May

lattices is a quotient of the semigroup of Figure 2. Now 3S0 is a subclass of all
nontrivial equational classes of pseudocomplemented distributive lattices. Con-
sequently, ©(á?0) is a quotient of each of the other semigroups. S. D. Comer and
J. S. Johnson [3] state that <B(3S0) is the quotient of © under the identifications
HS=SH and SP=HSP, as given by Figure 3. A comparison of Figures 2 and 3

OHSP = SHP = SHPS
Y =SPH=SPHS = SP

Figure 3

shows that for any nontrivial equational class of pseudocomplemented distributive
lattices the set

{0, H, S, P, SH, PH, PS, HP, PSH, HPS}
consists of distinct elements and is disjoint with the set {SP, SPH, HSP}. Observe
further that SP^SPH^ HSP. It follows that the standard semigroup of operations
of any nontrivial equational class of pseudocomplemented distributive lattices is a
quotient of © under one of the following four systems of defining relations:

(a) HS=SH;
(b) HS=SH and SP=SPH;
(c) HS=SH and SPH=HSP;
(d) HS =SH and SP=HSP.
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We first show that SP=HSP in <B(38n), 0^«^2. If A is a nontrivial pseudo-
complemented distributive lattice then Bo = {0, 1} is a subalgebra of A. Since
HSP($f') is the equational class generated by the class JT', we find that whenever
Jf's J'o is nontrivial then

HSP(Jf') = 3§0 = SP(B0) £ SP(Jf') s HSP(Jf');

thus HSP=SP in ^0- If &'=^i, Jf$@o, then there exist ^ e ¿f ' and a dense
«6^,K5¿1. Since the subalgebra {0, u, 1} of A is isomorphic to 2?i we conclude
that

HSP(JT') Ç30x = SP(BX) £ SPpO s HSPUyf'),

establishing HSP=SP for 3SX. If As 3S2-3äx, then, by the Subdirect Representa-
tion Theorem, there is a *-homomorphism of A onto B2. Let x e A map onto one
of the atoms of B2; then so does x**, and x* maps to the other atom. Thus the
elements 0, x*, x**, x* V x**, 1 of A are all distinct and the set

Figure 4
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350 G. GRÄTZER AND H. LAKSER [May

is a subalgebra of A isomorphic to B2. Thus, as above, SP(3f') = HSP(Jf'). We
have thus established statement (i).

We now show that SPH=HSP in <S(@n) for n<a>. Let A e 3Sn-3§n_x; then Bn
is a homomorphic image of A. Thus Cf'^38n, Jt"'£â&n_x imply BneH(Jf').
Consequently

HSP(Jf') S SP(Bn) s SPH(Jf') s HSPÇX"),

establishing the identity HSP=SPH for <B(3ên).
Now let 2 < n á to. Then L e 3$n, where Lisa subdirect product of B2 and B3,

and is depicted in Figure 4. Since 53 is a homomorphic image ofL, HSP(L)=3&3.
We show that 53 £ SP(L). Assume, to the contrary, that A is a direct power of L
and that B3 is isomorphic to a subalgebra of A. Since 53 is subdirectly irreducible,
it would follow that B3 is isomorphic to a subalgebra of L itself. That L cannot
contain an isomorph of B3 as a subalgebra is clear, since the three dual atoms in
S(L) do not all have the same pairwise join in L. Thus SP^SPH in ©(^„), n>2,
concluding the proof of statement (ii).

To establish statement (iii) we need only show that SPHj= HSP in ©(^J. Let
B be an infinite Boolean algebra. If A e H(B) then A is either Boolean or isomorphic

HSP = SHP = SHPS = SPH = SPHS

HP

SH=HS
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to B. On the other hand, HSP(B)=3$m. Consequently, if Bx is a Boolean algebra of
cardinality greater than that of B, then Bxe HSP(B)-SPH(B) since Bx is sub-
directly irreducible. Thus statement (iii) is established, concluding the proof of the
theorem.

<3(3$n), 0^«^2, is given in Figure 3, &(3$n), 2<n<w, is depicted in Figure 5,
and @(^m) is shown in Figure 2.

3. The Amalgamation Property. Let Jf be a class of algebras. An amalgam
in ¿f is a triple {A ; B, C> of algebras in JT such that A is a common subalgebra of
B and C. The amalgam (A ; B, C> can be amalgamated in Jf if there is an algebra
D sJf containing (up to isomorphism) B and C as subalgebras such that
A^B n C. An equivalent definition is depicted in Figure 6.

S

A     P  >B
Figure 6

Given one-to-one homomorphisms ß: A^ B, y. A-+C there are an algebra
D s 3ÍT and one-to-one homomorphisms h: B-> D, X: C-> D such that the dia-
gram commutes, that is, such that ß8=yX. It is occasionally preferable to adopt
this latter point of view, especially when B=C and ß, y are different embeddings of
A. If this point of view is adopted we shall also denote the amalgam by
(A ; ß, B, y, C>. A class ff of algebras is said to satisfy the Amalgamation Property
if each amalgam in Jf can be amalgamated in $f. The development and import-
ance of the Amalgamation Property in various branches of algebra are described
in B. Jónsson [6].

In this section we determine which equational classes of pseudocomplemented
distributive lattices satisfy the Amalgamation Property. We first present a simple
condition equivalent to amalgamation in equational classes.

Lemma 2. Let X be an equational class of algebras. The amalgam {A ; Bx, 52> in
$f can be amalgamated in Jf if and only if the following condition holds:

(*) Given ie{\,2},ax,bxe Bi with ax^bx, there exist an algebra DteJT and
homomorphisms <p(: i?;-> £>(, <pt: B,-+ D¡ such that <Pi\A = <(>i\A and ax<Pi^bx<pi,
where i^j andj e {1, 2}.

Proof. If the amalgam {A ; Bx, B2} can be amalgamated the conditions clearly
hold. To prove the converse we need only let D be the direct product of the various
algebras Dx and D2 determined by all distinct pairs of elements from Bx and from
B2. Then the family of the various homomorphisms 95^ 02 provides the embedding
of Bx in D, and the various homomorphisms </jx, <p2 provide the embedding of B2
in D, proving the lemma.
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To proceed further we need a universal algebraic lemma. Let B be an algebra
and let A be a subalgebra of B. We say that B is an essential extension of A if any
congruence on B whose restriction to A is trivial is itself trivial.

Lemma 3. (a) An essential extension of a subdirectly irreducible algebra is itself
subdirectly irreducible.

(b) Let A be a subalgebra of an algebra B, and let 0 be a congruence on B. Then
there is a congruence O on B such that 0^0, 0A = &A, and the extension 5/0 of
A/@A is essential.

Proof. To prove (a), let A be subdirectly irreducible with smallest nontrivial
congruence 0O. Then there are a,beA,a¥=b, such that asA(0o); thus 0O
= @A(a, b), the smallest congruence of A identifying a and A. Let 5 be an essential
extension of A and let 0 be a nontrivial congruence on 5. Then 0¿ is nontrivial
implying that a=A(0); consequently 0B(a, b) is the smallest nontrivial congruence
on 5, proving that 5 is subdirectly irreducible.

To prove part (b), we note that, by Zorn's lemma, there is a congruence O on 5
maximal with respect to the property that 0 ;£ O and 0A = &A. Since nontrivial
congruences on 5/0 correspond to those congruences on 5 that properly contain
O, it follows that the extension 5/0 of A/Q is essential, concluding the proof of the
lemma.

We obtain the following corollary to part (b).

Corollary. Let JT be a class of algebras satisfying the Congruence Extension
Property. Let A, B e Ctf, let A be a subalgebra of B, and let & be a congruence on A.
Then there is a congruence 0 on 5 such that 0„ = 0 and such that the extension
5/0 of A/Q is essential.

Part (a) of Lemma 3 can be found in R. A. Day [4]. Part (b) is essentially Proposi-
tion 2.5, p. 258, of [2].

Theorem 3. Let X~ be an equational class of algebras satisfying the Congruence
Extension Property, and let every subalgebra of each subdirectly irreducible algebra
in JT be subdirectly irreducible. Then JT satisfies the Amalgamation Property if and
only if whenever A, B,C are subdirectly irreducible algebras in C%~ with A a common
subalgebra of B and C, the amalgam (A ; B, C> can be amalgamated in $f.

Proof. The condition is clearly necessary for the Amalgamation Property to
hold in c#~. To prove the sufficiency, let {A; B, C) be an amalgam in Jf and let
a, b e B,a^b. Since 5 is a subdirect product of subdirectly irreducible algebras in
Jf, there is a subdirectly irreducible algebra SxeJf and a homomorphism y of
5 onto Sx such that ay / by. By the hypotheses of the theorem, the algebra Ay is
subdirectly irreducible. Applying Lemma 3(a) and the corollary to Lemma 3, we
find a subdirectly irreducible extension S2 of Ay and a homomorphism <¡> from 5
onto S2 such that <fs\A=y\A. Let the algebra D in X amalgamate the amalgam
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(Ay; Sx, S2}, and let y. 5-> D, </>: C -> D respectively be the compositions of y
and *f> with the respective embeddings of Sx and S2 in D. Then, by symmetry,
condition (*) of Lemma 2 holds, showing that (A; B, C} can be amalgamated and
concluding the proof of the theorem.

An interesting application of the Amalgamation Property is presented in
B. Jónsson [7]. A pair of algebras A, B can have a free product only if the constant
subalgebra of A is isomorphic to the constant subalgebra of 5 or if neither A nor
5 have any constants(2). For the sake of convenience we shall describe either of
these situations by saying that A and 5 have isomorphic constant subalgebras. An
equational class JT of algebras is said to admit free products if any two algebras in
cf with isomorphic constant subalgebras have a free product in of. We denote the
free product of A and 5 by A * 5. An equational class JT that admits free products
is said to satisfy Property (P) if the following condition holds :

(P) Given algebras A,Be$f with isomorphic constant subalgebras, and given
subalgebras Ax, Bx of A, B respectively, then the subalgebra of A * 5 generated
by Ax and Bx is (isomorphic to) Ax * Bx.

Lemma 4. Let Jf be an equational class admitting free products. Then Jf satisfies
Property (P) if and only if each amalgam (A ; ß, B, a, A * C> can be amalgamated
in 3f, where A and C are algebras in ff with isomorphic constant subalgebras,
ß: A -> Bisan embedding with Be$f, and a: A ->- A * C is the canonical embedding.

Proof. Since A is isomorphic to a subalgebra of 5 it follows that B* C exists.
If Property (P) holds in X then 5 * C is the amalgamation of the amalgam
(A; ß, 5, a, A * C>.

On the other hand, in order to prove Property (P) it suffices to show that if
5, C are algebras in Jf" with isomorphic constant subalgebras and A is a sub-
algebra of 5 then the subalgebra E of B * C generated by A and C is A * C. Let
ß: A -> 5 be the embedding. Let the algebra DeJf amalgamate^ ; ß, B, a, A * C>,
that is, there are embeddings 8:B^-D, e: A * C-> D such that ß8 = ae. Let
y:C^rA*C be the canonical embedding. Then the embeddings S:5->/),
ye: C->- D yield a homomorphism y. B * C->• D. If x e A^B * C then xy=xß8
= xae, and if x e Cç B * C then xy = xye. Since E is generated by A and C there is a
homomorphism 93: F-^^ * C such that 9s = 9>|F. Since s is one-to-one, y|^l = a
and y\C=y. Thus 93 yields the required isomorphism between E and A * C, con-
cluding the proof.

An immediate corollary of Lemma 4 is that the Amalgamation Property implies
Property (P), a result proved by B. Jónsson [7]. Our proof of Lemma 4 essentially
follows Jónsson's approach, but is somewhat simpler.

There are examples of equational classes that satisfy Property (P) but do not
satisfy the Amalgamation Property. For example, it is quite easy to show that the

(2) G. Grätzer [5] can be considered to be a general reference for the concepts from
universal algebra used in this paper.
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class of all semigroups satisfies Property (P), but an example of N. Kimura (see
[1, p. 139]) shows that the class of all semigroups does not satisfy the Amalgama-
tion Property. However, if Jf has the Congruence Extension Property then the
two properties are equivalent.

Theorem 4. Let JT be an equational class of algebras that admits free products
and satisfies the Congruence Extension Property. Then Jf satisfies Property (P) if and
only if it satisfies the Amalgamation Property.

Proof. That the Amalgamation Property implies Property (P) follows from
Lemma 4, as observed above. Now let Jf" satisfy Property (P) and let (A ; ß, B, y, C>
be an amalgam in JC Since A is a subalgebra of C, A and C have isomorphic
constant subalgebras and A * C consequently exists. Consider the amalgam
{A ; ß, B, a, A * C>, a the canonical embedding of A in A * C. By Lemma 4 there is
an algebra D in Jf and there are embeddings o:B^-D, X:A*C^>D. Let
<p: A * C->- C be determined by y. A -* C and the identity on C. Then <p is onto
and, by the Congruence Extension Property, there is an algebra E e Jf, an embed-
ding p: C^-E, and a homomorphism <p: D^-E such that Xy=<pp. (The situation
is depicted in Figure 7.) Now acp=y. Thus we have an algebra E s X, an embedding

S -   D 9   >E

ß

->A* C
Figure 7

p: C->E, and a homomorphism 8<p: B-+ E such that yp=ß8y. By Lemma 2, and
in view of the symmetry in the roles of B and C, we conclude that {A ; ß, B, y, C>
can be amalgamated in JC Thus Jf satisfies the Amalgamation Property, and the
proof is concluded.

We apply the above general results to pseudocomplemented distributive lattices.

Theorem 5. Let 3§ be a nontrivial equational class of pseudocomplemented dis-
tributive lattices. The following three conditions are equivalent:

(i) 36 satisfies the Amalgamation Property;
(ii) 3i satisfies Property (P);

(iii) 36 is one of3S0, 36x, 3S2, or 3Sa.

Proof. The constant subalgebra of any nontrivial pseudocomplemented dis-
tributive lattice is isomorphic to B0. We observe later on in this proof that any
amalgam of the form <50; A, B} can be amalgamated; thus any equational class
of pseudocomplemented distributive lattices admits free products (see [5]). Since
any equational class of pseudocomplemented distributive lattices satisfies the
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Congruence Extension Property, conditions (i) and (ii) are equivalent. We prove
that conditions (i) and (iii) are equivalent.

Since each subdirectly irreducible pseudocomplemented distributive lattice is of
the form B for some Boolean algebra B, it is immediately evident that a *-sublattice
of a subdirectly irreducible pseudocomplemented distributive lattice is subdirectly
irreducible. Consequently, by Theorem 3, we need only investigate amalgams of
the form (S0; Sx, S2} where S0, Sx, and S2 are subdirectly irreducible.

First consider the case where Sx, S2 are both finite, say Sx = Bm, S2=Bn where
m^n. If S0 is B0 or Bx there is only one embedding of S0 into any B, B Boolean;
map 0 to 0, 1 to 1, and, if S0 = BX, map the smaller of the two dense elements of Bx
to the smaller of the two dense elements of B. Consequently, if S0 is B0 or Bx,
(S0; Bm, Bn) can be amalgamated by Bn since Bm is a *-sublattice of Bn. We thus
conclude that both 360 and 3SX satisfy the Amalgamation Property.

We now consider 36 2. Let (S0; Sx, S2} he an amalgam of subdirectly irreducible
algebras in 3f2. If S0=B0 or Bx then the above considerations show that (S0 ; Sx, S2}
can be amalgamated in 362. If S0=^B2 then S0 = SX = S2 since B2 is the greatest
subdirectly irreducible algebra in 362. The amalgamation is thus trivial. Conse-
quently, 3ä2 satisfies the Amalgamation Property.

Since 360 is the equational class of Boolean algebras we obtain the well-known
corollary that Boolean algebras satisfy the Amalgamation Property. We apply this
result to prove the Amalgamation Property for 36 a. Let A, B, C be Boolean algebras
and let (Ä; B, C> be an amalgam of subdirectly irreducibles in 36 m. Then (A ; B, C>
is an amalgam of Boolean algebras. If (A; B, C> is amalgamated by the Boolean
algebra E then the pseudocomplemented distributive lattice E amalgamates
<Z; B, C>. Thus 3Sa satisfies the Amalgamation Property.

Now consider 3Sn for 2 < n < a>. Denote one of the atoms of B2 by a and choose
*-embeddings ß:B2^-Bn, y. 52 ->- Jn such that aß is an atom of Bn and ay is a
dual atom of Bn. We show that the amalgam <2?2 ; ß, Bn, y, B„) cannot be amal-
gamated in 36n. Assume, to the contrary, that there is an algebra C e 36m and that
there are *-embeddings 8: B„ -*■ C, X: Bn -*■ C such that yX=ß8. By Lemma 3(b)
there is an essential extension D of Bn and a ""-homomorphism p of C onto D such
that Xp is the identity map on Bn. However, an essential extension of Bn is sub-
directly irreducible by Lemma 3(a) and, since all subdirectly irreducible algebras
in 3Sn are isomorphic to subalgebras of Bn, it follows that D = Bn; thus p: C-»• Bn;
and p maps Bn identically(3). Thus ßSp=y. Since y is one-to-one it does not collapse
the two dense elements of B2. Consequently 8p does not collapse the two dense
elements of Bn. Since the smallest nontrivial congruence on Bn collapses the two
dense elements of Bn we conclude that 8p : Bn -> Bn is one-to-one. Then 8p is an
isomorphism, by the finiteness of Bn. Thus aßhp is an atom of Bn and, since ay is a

(3) What we have shown can be described as the fact that B„ is an absolute subretract in
<#„, a result we shall make use of in Part III of this series.
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dual atom of Bn and n>2, we have found a contradiction to the requirement that
y=ß8p. Thus <52; ß, Bn, y, 5n> cannot be amalgamated in 3Sn, showing that 38n
does not satisfy the Amalgamation Property if 2 < n < o>. Thus we have established
the equivalence of conditions (i) and (iii), concluding the proof of the theorem.

4. The amalgamation class. Let ff be a class of algebras. We define the
amalgamation class of ff, denoted Amal (JT) : an algebra A e Jf" belongs to
Amal (Jf) if and only if each amalgam (A; B, C>, where B,CeX, can be amal-
gamated in ff. Thus Amal (Jf)=Jf if and only if ¿f satisfies the Amalgamation
Property. In this section we present some results on Amal (38n) for 2<n<o>. We
first present a rather weak characterization of Amal (3Sn).

Lemma 5. Let n<w and let A e 38n. Then A e Amal (¿$n) if and only if for any
extension C of A in 38 n and any *-homomorphism ß: A —>■ Bn there is a *-homo-
morphism y: C—>Bn extending ß.

Proof. Let A e Amal (38n) and let ß:A^Bn. Define the *-embedding
y. A -+ A x5n by the formula ay = (a, aß}. Let Ce 38n and let a: A -»• C be a
*-embedding. Since A e Amal (38n) there are D e 3Sn and *-embeddings
8: ,4 x5n —s* D, X: C —> D such that aX = y8. Let r¡: Ax.Bn^- Bn be the projection
onto the second factor. By the corollary to Lemma 3 there is a *-homomorphism
p: D^Bn such that 8p = r¡. Then Xp is the required extension y of yq=ß.

Now let A satisfy the condition of the lemma. Let (A; B, C> be an amalgam in
38 n, and let a,b e B,a^b. Since 38 n is generated by 5„ there is a *-homomorphism
ß: B -> Bn such that aß^bß. By our condition there is an extension y: C->- 5n of
/5|y4. Applying Lemma 2, we conclude that A e Amal (J'n), completing the proof.

We note that any *-homomorphism ß: A —> 5n is the composition of a "'-homo-
morphism of A onto 5¡ for some i^n and a *-embedding of 5¡ into Bn. Observing
further that there is only one *-embedding of 5¡ into 5n if i = 0, 1, and applying the
Congruence Extension Property, we get the following corollary.

Corollary. If n < eu, A e 3Sn, and A has no *-homomorphism onto Bi for any
i, l<i<n, then A e Amal (á?n).

If A is finite we can determine whether or not A e Amal (3Sn) in terms of the
structure of A alone.

Theorem 6. Let n<a> and let A be a finite pseudocomplemented distributive
lattice in 38 n. Then A e Amal (38^) if and only if A has no *-homomorphism onto 5¡
for any i, 1 < i < n.

Proof. If A has no *-homomorphism onto 5¡ for any i, 1 < i < n, then
A e Amal (38^) by the above corollary.

Now let 1 <i<n and let y be a *-homomorphism of A onto 5¡. We show that
A $ Amal (38n). Let the ""-congruence 0 be the kernel of y. By the Subdirect
Decomposition Theorem and the finiteness of A there are *-congruences 0O,..., ©m
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on A such that A/®, is subdirectly irreducible for all j, Oújúm, such that
©o A ■ • • A @m = w, the trivial congruence, and such that no proper subset of
{©o,..., 0m} meets in w. Since the lattice of *-congruences is distributive it follows
that

0 = (0 V  ©o) A • • • A (0 V  0m).

Since A/® is subdirectly irreducible there is ay such that 0 = 0 V 0y, that is, such
that ®¡^ 0. It follows thus that A/® is a homomorphic image of the subdirectly
irreducible /I/©,. However the only proper homomorphic image of A/®j is a
Boolean algebra; consequently 0 = ©,-. Set 0= 0O A • • • A ®f-x A 0; + 1 A • • ■ A 0m.
Then Q^w and 0aO = üj. Let p:A-+A/<b be the canonical homomorphism.
Since 1 <i<n there is an atom a e Bt and there are *-embeddings a, ß: Bt -*■ Bn
such that act is an atom of Bn but aß is not an atom of Bn. Map A to A/<¡> x Bn by
mapping x to (xp, x<pa} ; since O A 0 = co this mapping embeds A in A/<b x Bn.
Define y: A^- Bn by the formula xy=x<pß. We show that y has no extension to
A/<$> x Bn and thus, by Lemma 5, that A $ Amal (3$n).

Since the lattice of *-congruences of any pseudocomplemented distributive
lattice is distributive, the lattice of ""-congruences of A/<b x Bn is isomorphic to the
direct product of the lattices of ""-congruences of A/<!> and Bn. Thus if
8: A/<5> x 2?n -> Bn is an extension of y: A —> Bn we can represent the kernel of S as
<0O, ©i> where 0O is a ""-congruence on A/<& and ®x is a ""-congruence on Bn.
Since (A/Q> x Bn)8 is a subalgebra of Bn it is subdirectly irreducible; thus <@0, ©!>
is meet irreducible. Thus either @0 = i, the congruence collapsing all elements of the
algebra, or ®x = i. If 0o = t then (y, z>S=z. Consequently x<pa=x<pß for all x s A,
contradicting the definition of a and ß. On the other hand, ®x = i implies that
í> ̂  0 since 8 is an extension ofy=q>ß and ß is one-to-one. This conclusion contra-
dicts the requirements that <b^w and i> A 0 = cu. We thus conclude that y can have
no extension to A/<S> x Bn, and so that A $ Amal (36,) by Lemma 5. The proof of
the theorem is thus concluded.

In the proof of Theorem 6 the finiteness of A is essential. It seems reasonable,
though, that Theorem 6 holds for infinite algebras as well. We thus conclude this
paper with the following problem.

Does Theorem 6 hold for infinite pseudocomplemented distributive lattices?
If not, what is an intrinsic characterization of the algebras in Amal (36n) for
2<«<cu?
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