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THE STRUCTURE OF RADIAL SOLUTIONS FOR ELLIPTIC EQUATIONS
ARISING FROM THE SPHERICAL ONSAGER VORTEX
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Abstract. In this paper, we consider a nonlinear elliptic equation on the plane away
from the origin, which arises from the spherical Onsager vortex theory in physics or the prob-
lem of prescribing Gaussian curvature in geometry. Depending on various situations for the
prescribed function in the nonlinear term, the complete structure of radial solutions in terms of
initial data will be offered.

1. Introduction. This paper is concerned with the structure of radial solutions of the
nonlinear elliptic equation

(1.1) �u(x)+K(|x|)e2u(x) = 0 in R2 \ {0} ,
where � = ∑2

i=1 ∂
2/∂x2

i is the Laplacian operator of R2 and K(|x|) is a given nonnegative
function in R2 \ {0}. One interesting motivation in studying (1.1) arises from the spheri-
cal Onsager vortex theory, which bridges the gap between statistical mechanics of classi-
cal vortices and the random surface problem. We give a brief description as follows. Let
S2 = {y = (y1, y2, y3) : y2

1 + y2
2 + y2

3 = 1} be the unit sphere of R3 and consider the mean
field equation

(1.2) �S2φ(y)+ eβφ(y)−γ 〈n,y〉∫
S2 eβφ(y)−γ 〈n,y〉 dµ

− 1

4π
= 0 , y ∈ S2 ,

where�S2 is the Beltrami-Laplace operator with respect to the standard metric on S2, β ≥ 0,
γ is a constant in R, n is a unit vector on S2 and dµ is the uniform measure or the surface
element on S2. We note that equation (1.2) comes from the spherical Onsager vortex theory
which was studied in [2], [8] and [11]. To rewrite (1.2) in the coordinates of the plane R2, we
assume n = (0, 0, 1) and let

(1.3) y1 = 2x1

1 + r2 , y2 = 2x2

1 + r2 , y3 = r2 − 1

1 + r2 ,

where x1, x2 ∈ R and r2 = x2
1 +x2

2 . Then the above correspondence, denoted by π((x1, x2))=
(y1, y2, y3), is the inverse of the stereographic projection from n (the north pole of S2) onto
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R2. Moreover, it is easy to see that the standard metric ds2 on S2 is

ds2 = dy2
1 + dy2

2 + dy3
3

=
(

2

1 + r2

)2

(dx2
1 + dx2

2) ,

and hence, in R2, we obtain

(1.4) �S2 =
(

1 + r2

2

)2(
∂2

∂x2
1

+ ∂2

∂x2
2

)
=

(
1 + r2

2

)2

�

and

(1.5) dµ =
(

2

1 + r2

)2

dx1dx2 =
(

2

1 + r2

)2

dx .

Now, set v(x) = φ(π(x)) for x ∈ R2. Then, by combining the facts (1.2), (1.4) and
(1.5), we know v(x) satisfies

(1.6) �v(x)+ I 2(x)eβv(x)−γψ(x)∫
R2 I 2(x)eβv(x)−γψ(x) dx

− I 2(x)

4π
= 0 , x ∈ R2 ,

where

I (x) = 2

1 + |x|2 and ψ(x) = |x|2 − 1

1 + |x|2 .
Furthermore, if we define

u(x) =
(
β

2

)[
v(x)− 1

4π
ln(1 + |x|2)

]
+ J

with

J = 1

2

{
γ + ln

(
2

β

∫
R2
I 2(x)eβv−γψ dx

)}
,

then u(x) satisfies

(1.7) �u(x)+K(x)e2u(x) = 0 , x ∈ R2 ,

where

K(x) = (
1 + |x|2)(−8π+β)/(4π)

eγ I (x) ,

and (1.7) is exactly the form we are dealing with in (1.1).
Another reason for studying (1.1) comes from the problem of prescribing Gaussian cur-

vature. Let (M, g0) be a Riemannian manifold of two dimension. For a given function K on
M , one would like to ask whether there exists a metric g , which is conformal to g0, such that
K/2 is the Gaussian curvature of g . Let g = e2ug0 for some function u on M . Then the
problem above is equivalent to solving the equation

�g0u− k0 +Ke2u = 0 in M ,

where �g0 is the Beltrami-Laplace operator and k0 is the scalar curvature of g0. If (M, g0)

is the standard flat plane R2, then we have that k0 ≡ 0 and the above equation is reduced
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to (1.1). We note that any radial solution u = u(r), r = |x|, reduces (1.1) to the following
ordinary differential equation

u′′(r)+ 1

r
u′(r)+K(r)e2u(r) = 0 , r > 0 .

Before getting into the main theme of this paper, we first consider the specific case of
K(|x|) ≡ 1/2 in (1.1) which is known as the Liouville equation. By virtue of [3], it is well-
known that any solution u(x) of (1.1) which is defined in the whole space R2 is radially
symmetric if ∫

R2
e2u(x)dx < +∞ ,

and can be explicitly expressed as the form

u(x) = u(|x|) = 1

2
ln

32A2

(4 + A2|x|2)2 , A > 0 , x ∈ R2 .

Therefore, we see that

lim
r→∞

u(r)

2 ln r
= −1 .

Moreover, using the change of variables, we can derive that each radial solution u(r) of (1.1)
in such case is of the form

(1.8) u(r) = 1

2
ln

8B2

r2((Cr)B + (Cr)−B)2
, B,C > 0 , r > 0 .

Indeed, by letting t = − ln r2 and w(t) = 2u(r) − t − ln 4, the original equation can be
transformed into the equation w′′ + ew = 0, which possesses the general solution which is
displayed as

w(t) = ln
B2

1 + cosh(Bt + b)
,

where B > 0 and b ∈ R. According to (1.8), we remark that the structure of solutions for
(1.1) in the case of K(|x|) ≡ 1/2 is exactly illustrated as in Theorem 1.4 and Figure 4 which
will be offered later.

On the other hand, Cheng-Lin [5] shows that ifK(|x|) is nonconstant and non-increasing
in |x|, then the solution of (1.1) defined on the whole plane is radially symmetric under certain
conditions on K(|x|).

In this article, we are interested in studying the following initial value problem

(1.9)



u′′(r)+ 1

r
u′(r)+K(r)e2u(r) = 0 , r > 0 ,

u(1) = θ , u′(1) = η ,

where θ, η ∈ R are given initial data,K(r) is a non-negativeC1 function on (0,∞) satisfying

(1.10)



K(r) = K0r

2p +O(r2p+k) near r = 0 ,

K(r) = K∞r2q +O(r2q−l) near r = ∞ ,

K ′(r) = 2qK∞r2q−1 +O(r2q−1−m) near r = ∞
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for some positive constantsK0 andK∞, where p > −1, q < 1 and k, l,m > 0. We note that
(1.9) possesses a unique solution on (0,∞) which will be denoted by u(r; θ, η). It will be
shown that solutions of (1.9) can be categorized into various types introduced in Definitions
1.1 and 1.2.

DEFINITION 1.1. Any solution u(r) of (1.9) is classified as follows according to its
behavior as r → 0.

Type R-∗: u(r) is regular at 0, i.e., u(r) converges to a constant as r → 0.
Type P-∗: u(r) is positively singular at 0, i.e., u(r) → +∞ as r → 0.
Type N-∗: u(r) is negatively singular at 0, i.e., u(r) → −∞ as r → 0.

REMARK 1.1. It will be shown, as in Lemma 2.1, that any solution of (1.9) behaves
like C ln r +O(1) at infinity for some C ∈ R.

DEFINITION 1.2. Any solution u(r) of (1.9) is classified as follows according to its
behavior as r → ∞.

Type ∗-R±: ±u(r)/(2 ln r) converges to 1 as r → ∞.
Type ∗-F±: ±u(r)/(2 ln r) converges to a positive constant which is greater than 1 as

r → ∞.
Type ∗-S±: ±u(r)/(2 ln r) converges to a positive constant which is less than 1 as r →

∞.
Type ∗-C: u(r) converges to a constant as r → ∞.

In this paper, we offer the structures of solutions for (1.9) under various conditions in-
volving (1.10). We will apply the shooting arguments (see, e.g., [1], [7], [12] and references
therein) to deal with our problem. To achieve our goal, we introduce the following initial
value problems:

(1.11)




{rU ′
R(r)}′ + rK(r)e2UR(r) = 0 , r > 0 ,

UR(0) = a ,

(1.12)




{rU ′
R−(r)}′ + rK(r)e2UR−(r) = 0 , r > 0 ,

lim
r→∞(UR−(r)+ 2 ln r) = b ,

where a, b ∈ R. By p > −1 and q < 1 (ref. [6], [10]), we denote the unique solutions
of (1.11) and (1.12) by UR(r; a) and UR−(r; b), respectively. We note that from (1.10) and
(1.11), rU ′

R(r) → 0 as r → 0 and

rU ′
R(r) = −

∫ r

0
sK(s)e2UR(s)ds , r > 0

since p > −1. Define

γ1(a) = (UR(1; a),U ′
R(1; a))
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and
γ−

2 (b) = (UR−(1; b),U ′
R−(1; b))

for a, b ∈ R, and let Γ1 and Γ −
2 be the ranges of γ1 and γ−

2 over R, respectively. We note that
both γ1 and γ−

2 are smooth by the assumptions p > −1 and q < 1 again. In fact, Γ1 and Γ −
2

are the collections of initial data corresponding to solutions of Type R-∗ and ∗-R− for (1.9),
respectively.

REMARK 1.2. In [9] and [12], the authors introduce the idea of the canonical forms
to convert results for one problem to that of others. Based on this idea, the structure of radial
solutions including solutions with singularity of several equations, such as the Matukuma’s
equation or equations with power nonlinearities, can be investigated more precisely. Briefly
speaking, suppose that an equation for radial solutions can be rewritten in the form

(g(r)u′)′ + h(r, u) = 0 in (r1, r2)

with a boundary condition, where g(r) is positive and −∞ ≤ r1 < r2 ≤ +∞. Then, by
changing both dependent and independent variables, the original equation can be reduced to
a canonical form

v′′(t)+ k(t, v) = 0 in (0, 1)

with a suitable boundary condition if g(r) satisfies certain assumptions. Nevertheless, in our
problem, it is not easy to find a way to transform (1.9) into a desirable canonical form. In
fact, we couldn’t obtain a canonical form based on the transformation process given in [9]
(Theorem D) because the corresponding function g(r) is r and 1/g(r) is not integrable near
the origin and infinity.

In this article, we provide another approach to studying the structure of radial solutions
in terms of initial data prescribed at r = 1 and clarify the types of solutions completely, as in
[9], but more complicated.

REMARK 1.3. According to [4], the asymptotic behaviors of γ1 and γ−
2 at ±∞ have

been determined. More precisely,

lim
a→−∞ γ1(a) = (−∞, 0) , lim

a→+∞ γ1(a) = (−∞,−2(1 + p))

and
lim

b→−∞ γ
−
2 (b) = (−∞,−2) , lim

b→+∞ γ
−
2 (b) = (−∞,−2q) .

A brief description will be presented in Section 3. We note that each of Γ1 and Γ −
2 divides

the (θ, η)-plane into two regions, one is bounded and the other is unbounded in the direction
of the η-axis.

In addition, if K ′(r) satisfies

(1.13) K ′(r) = 2pK0r
2p−1 +O(r2p−1+λ) near r = 0

for some λ > 0, we set

(1.14) G(r) =
∫ r

0
s2K ′(s)ds , r > 0 .
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Note that G(r) is well-defined by (1.13) and p > −1.
Now, we present our main results. To clarify the whole structures of solutions for readers,

the figure is illustrated following the description of each main theorem.

THEOREM 1.1. Suppose p ≥ 0 and either q = 0 with 0 < l < 2 or 0 < q < 1.
If K ′(r) satisfies (1.13) and G(r), defined in (1.14), is nonnegative and is not equal to zero
identically, then the following assertions concerning the solution u(r; θ, η) of (1.9) in (θ, η)-
plane are true.

(a) The curves Γ1 and Γ −
2 do not intersect.

(b) If (θ, η) belongs to Γ1, then u(r; θ, η) is of Type R-F−; if (θ, η) belongs to Γ −
2 ,

then u(r; θ, η) is of Type P-R−.
(c) If (θ, η) lies on the region bounded by Γ1 which is bounded (resp., unbounded) in

the direction of the η-axis, then u(r; θ, η) is of Type P-∗ (resp., N-∗).
(d) If (θ, η) lies on the region bounded by Γ −

2 which is bounded (resp., unbounded) in
the direction of the η-axis, then u(r; θ, η) is of Type ∗-S− (resp., ∗-F−).

FIGURE 1.

THEOREM 1.2. Suppose either −1 < p < 0 with −1 ≤ q ≤ 0 or p = 0 with
0 < k < 2 and −1 ≤ q < 0. If K ′(r) satisfies (1.13) and G(r), defined in (1.14), is
non-positive and not equal to zero identically, then the following assertions concerning the
solution u(r; θ, η) of (1.9) in (θ, η)-plane are true.

(a) Γ1 does not intersect Γ −
2 .

(b) If (θ, η) belongs to Γ1, then u(r; θ, η) is of Type R-S−; if (θ, η) belongs to Γ −
2 , then

u(r; θ, η) is of Type N-R−.
(c) Both assertions of (c) and (d) in Theorem 1.1 hold.



THE STRUCTURE OF RADIAL SOLUTIONS FOR ELLIPTIC EQUATIONS 293

FIGURE 2.

THEOREM 1.3. Suppose either p > 0 with −1 ≤ q < 0 or −1 < p < 0 < q < 1+p.
Then the following assertions concerning the solution u(r; θ, η) of (1.9) in (θ, η)-plane are
true.

(a) Γ1 and Γ −
2 intersect.

(b) Both assertions of (c) and (d) in Theorem 1.1 hold.

Based on Theorem 1.3 above, the following figure illustrates the structure of solutions in
the case that Γ1 and Γ −

2 intersect exactly once.

FIGURE 3.

THEOREM 1.4. If K(r) is a constant function, then the following assertions concern-
ing the solution u(r; θ, η) of (1.9) in (θ, η)-plane are true.

(a) Γ1 and Γ −
2 are identical.

(b) If (θ, η) lies on the region bounded by Γ1 which is bounded (resp., unbounded) in
the direction of the η-axis, then u(r; θ, η) is of Type P-S− (resp., N-F−).

(c) u(r; γ1(a)) is of Type R-R− for all a ∈ R.
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FIGURE 4.

To describe the final two consequences, we need to introduce additional two initial value
problems:

(1.15)




{rU ′
R+(r)}′ + rK(r)e2UR+(r) = 0 , r > 0 ,

lim
r→∞(UR+(r)− 2 ln r) = c ,

(1.16)




{rU ′
C(r)}′ + rK(r)e2UC(r) = 0 , r > 0 ,

lim
r→∞UC(r) = d ,

where c, d ∈ R. As usual, we denote the unique solutions of (1.15) and (1.16) by UR+(r; c)
and UC(r; d), respectively. Define

γ+
2 (c) = (UR+(1; c), U ′

R+(1; c))
and

γ3(d) = (UC(1; d),U ′
C(1; d))

for c, d ∈ R, and let Γ +
2 and Γ3 be the ranges of γ+

2 and γ3 over R, respectively. It is easy
to see that both curves γ+

2 and γ3 are also smooth by p > −1 and q < 1 again. Also, Γ +
2

and Γ3 are the collections of initial data corresponding to solutions of Type ∗-R+ and ∗-C for
(1.9), respectively.

REMARK 1.4. We also have the following asymptotic behaviors of γ+
2 and γ3 at ±∞:

lim
c→−∞ γ+

2 (c) = (−∞, 2) , lim
c→+∞ γ+

2 (c) = (−∞,−2(q + 2))

and
lim

d→−∞ γ3(d) = (−∞, 0) , lim
d→+∞ γ3(d) = (−∞,−2(q + 1))

by [4].

Moreover, in Theorems 1.5 and 1.6 below, the following extra hypothesis is assumed:

(1.17) lim
r→∞

rK ′(r)
K(r)

< −2 .
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THEOREM 1.5. Suppose either −1 < p < 0 or p = 0 with 0 < k < 2. If K(r)
satisfies (1.13), (1.17) and G(r), defined in (1.14), is non-positive and not equal to zero
identically, then the following assertions concerning the solution u(r; θ, η) of (1.9) in (θ, η)-
plane are true.

Case 1: q < −3. Then Γ +
2 exists (nonempty).

(a) Any two curves of Γ1, Γ ±
2 and Γ3 do not intersect.

(b) The assertion of (b) in Theorem 1.2 holds.
(c) The assertion of (c) in Theorem 1.1 holds.
(d) If (θ, η) lies on the region bounded by Γ3 and Γ ±

2 , the u(r; θ, η) is of Type ∗-S±.
In addition, u(r; θ, η) is of Type ∗-F+ (resp., ∗-F−) if (θ, η) lies on the region bounded by
Γ +

2 (resp., Γ −
2 ) which is bounded (resp., unbounded) in the direction of the η-axis.

Case 2: −3 ≤ q < −1. Then Γ +
2 does not exist (empty).

All conclusions of (a) to (d) in Case 1 are true if the statements related to Γ +
2 are re-

moved.

FIGURE 5.

THEOREM 1.6. Suppose (1.17) holds and p > 0. Then the following assertions con-
cerning the solution u(r; θ, η) of (1.9) in (θ, η)-plane are true.

(a) Among Γ1, Γ ±
2 and Γ3, only Γ1 and Γ −

2 intersect each other.
(b) All assertions in Theorem 1.5 hold except (a) and (b) in Case 1.
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FIGURE 6.

This article is organized as follows. First, we make preparations for demonstrating our
main results in Section 2. Finally, Section 3 is devoted to presenting complete verifications of
Theorems 1.1 to 1.6.

2. Preliminaries. In this section, we are going to derive some preparatory works
which are essential elements for us to study the structure of solutions for (1.9).

LEMMA 2.1. Suppose u(r) ≡ u(r; θ, η) is a solution of (1.9), then the following are
true.

(a) ∫ ∞

0
rK(r)e2u(r)dr < ∞ .

(b) u(r) = c0 ln r + O(1) at r = 0 and u(r) = c∞ ln r + O(1) at r = ∞ for some
c0, c∞ ∈ R satisfying 1 + p + c0 > 0 and 1 + q + c∞ < 0.

PROOF. (a) We divide the proof into two steps.
Step 1. First, we prove

∫ ∞
1 rK(r)e2udr < ∞. Suppose

∫ ∞
1 rK(r)e2udr = ∞. Then

from (1.9), we see that

ru′(r) = η −
∫ r

1
sK(s)e2uds

for r ≥ 1. Hence,

(2.1) lim
r→∞ ru

′(r) = −∞ .
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We choose c < 0 with 1 + c + q < 0. Then (2.1) implies u(r) ≤ c ln r for r ≥ R for a real
number R ≥ 1. Therefore, we obtain that

∞ =
∫ ∞

1
sK(s)e2uds

≤
∫ R

1
sK(s)e2uds +

∫ ∞

R

s1+2cK(s)ds

< ∞ ,

which leads to a contradiction. This step is established.
Step 2. Now, we prove

∫ 1
0 rK(r)e

2udr < ∞. Similarly as in Step 1, suppose∫ 1
0 rK(r)e

2udr = ∞. Then by (1.9) again, we have

ru′(r) = η +
∫ 1

r

sK(s)e2uds

for 0 < r ≤ 1. Hence,

(2.2) lim
r→0

ru′(r) = ∞ ,

which implies limr→0 u(r) = −∞. Indeed, for any M > 0, there exists 0 < δ < 1 such
that ru′(r) ≥ M for all r ∈ (0, δ] and hence u(r) ≤ C(δ) + M ln r for all r ∈ (0, δ] for
some C(δ) ∈ R. Therefore, u(r) is bounded from above on (0, 1]. Since p > −1, we obtain
inequalities

∞ =
∫ 1

0
sK(s)e2uds

≤ C

∫ 1

0
sK(s)ds

< ∞
for some C > 0. This is a contradiction.

Hence (a) is proved.
(b) Note that (1.9) and (a) imply

lim
r→0

ru′(r) = c0 and lim
r→∞ ru

′(r) = c∞

for some c0, c∞ ∈ R, and

c∞ ≤ ru′(r) ≤ c0

for r > 0. Hence by combining (a), (1.10) and the above fact, we obtain 1 + p + c0 > 0 and
1 + q + c∞ < 0. To show the remaining assertions, we split the proof into two steps.

Step 1. First, we prove u(r) = c∞ ln r +O(1) at r = ∞. Let v(r) = u(r)− c∞ ln r ,
then v(r) satisfies

(2.3) v′′(r)+ 1

r
v′(r) = −K(r)e2u , r > 0 .
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Let ε1 > 0 with 1 + q + c∞ + ε1 < 0. Then there exists R > 0 such that

u(r) ≤ c1 + (c∞ + ε1) ln r and K(r) ≤ 2K∞r2q

for r ≥ R for some c1 ∈ R. Hence, we have

rK(r)e2u ≤ c2r
1+2q+2c∞+2ε1 for r ≥ R

for some c2 > 0. Now, choose ε > 0 such that 2(1 + q + c∞ + ε1)+ ε < 0. Then

rK(r)e2u

εr−ε−1
≤

(
c2

ε

)
r2(1+q+c∞+ε1)+ε for r ≥ R ,

which implies

lim
r→∞

rK(r)e2u

εr−ε−1
= 0 .

By means of (2.3), the above result and the fact limr→∞ rv′(r) = 0, we get v′(r) > 0 for
r > 0 and

lim
r→∞

rv′(r)
r−ε

= lim
r→∞

rK(r)e2u

εr−ε−1

= 0 .

Therefore, there exist c > 0 and r0 > 0 such that

v′(r) < cr−1−ε , r ≥ r0 ,

which implies

v(r) < v(r0)+
(
c

ε

)
(r−ε0 − r−ε)

< C

for r ≥ r0 for some C > 0. This step is finished.
Step 2. Now, we prove u(r) = c0 ln r + O(1) at r = 0. By following the similar

arguments as in Step 1, let w(r) = u(r)− c0 ln r . Then w(r) satisfies

w′′(r)+ 1

r
w′(r) = −K(r)e2u , r > 0 .

Let δ1 > 0 with 1 + p + c0 − δ1 > 0. Then there exists r0 > 0 such that

u(r) ≤ k1 + (c0 − δ1) ln r and K(r) ≤ 2K0r
2p

for 0 < r ≤ r0 for some k1 ∈ R. Hence, we get

rK(r)e2u ≤ k2r
1+2p+2(c0−δ1) for 0 < r ≤ r0

for some k2 > 0. Now, take δ > 0 such that 2(1 + p + c0 − δ1)− δ > 0. Then

rK(r)e2u

δrδ−1
≤

(
k2

δ

)
r2(1+p+c0−δ1)−δ for 0 < r ≤ r0 ,

which implies

lim
r→0

rK(r)e2u

δrδ−1 = 0 .
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Since limr→0 rw
′(r) = 0, we conclude that w′(r) is negative for r > 0 and

lim
r→0

rw′(r)
rδ

= − lim
r→0

rK(r)e2u

δrδ−1

= 0 .

Therefore, there exist c > 0 and r1 > 0 such that

w′(r) > −cr−1+δ , 0 < r ≤ r1 ,

and Step 2 is completed.
Hence (b) is also proved. �

REMARK 2.1. (i) We note that both Γ1 and Γ −
2 are nonempty by 2p > −2, −2q >

−2, (1.10) and using the Kelvin transformation. In addition, Γ +
2 is empty if −3 ≤ q < 1 and

nonempty if q < −3. Furthermore, if q ≥ −1, then (1.9) does not possess solutions of Type
∗-S+ and Type ∗-F+.

(ii) By Lemma 2.1(b), the existence of solutions of (1.9) of Type ∗-F+ and Type ∗-S+
implies q < −3 and q < −1, respectively.

To realize the structure of solutions, we introduce an auxiliary function associated with
solutions. Let u(r) be a solution of (1.9). We define

(2.4) P(r; u;L,M) = (ru′ + L)(ru′ + 2 −M)+ r2K(r)e2u

for r > 0, where L,M ≥ 0. By straightforward computations, we obtain

(2.5)
d

dr
P (r; u;L,M) = {(M − L)K(r)+ rK ′(r)}re2u

for r > 0. To simplify the notations, we denote P(r; u; 0, 0) by P(r; u) and P(r; u(r; θ, η);
L,M) by P(r; θ, η;L,M).

We now present some facts, stated in Lemma 2.2 below, which are involving the charac-
terization of solutions of various types in terms of P(r; u).

LEMMA 2.2. Suppose u(r) is a solution of (1.9), then the following assertions are
true.

(a) If u(r) is of Type ∗-R−, then P(r; u) → 0 as r → ∞.
(b) If u(r) is of Type ∗-F−, then P(r; u) → C for some C > 0 as r → ∞.
(c) If u(r) is of Type ∗-S−, then P(r; u) → C for some C < 0 as r → ∞. Further-

more, C > (q − 1)(q + 3) if q ≥ −1.
(d) If q < −3 and u(r) is of Type ∗-F+, then P(r; u) → C for some 8 < C < q2 − 1

as r → ∞.
(e) If q < −1 and u(r) is of Type ∗-S+, then P(r; u) → C for some 0 < C <

min{8, q2 − 1} as r → ∞.
(f) If limr→∞ ru′(r) > 0 and limr→∞ P(r; u) = α, then u(r) is of Type ∗-F+ if

α > 8; Type ∗-S+ if 0 < α < 8.
(g) If limr→∞ ru′(r) < 0 and limr→∞ P(r; u) > 0, then u(r) is of Type ∗-F−.
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PROOF. First, by Lemma 2.1(b), we get

lim
r→∞ r

2K(r)e2u(r) = 0

for any solution u(r) of (1.9).
(a) If u(r) is of Type ∗-R−, then ru′(r) → −2 as r → ∞ and hence P(r; u) → 0 as

r → ∞.
(b) If u(r) is of Type ∗-F−, then ru′(r) → c1 for some c1 < −2 as r → ∞. Hence

P(r; u) → c1(c1 + 2) ≡ C > 0 as r → ∞.
(c) If u(r) is of Type ∗-S−, then ru′(r) → c2 for some −2 < c2 < 0 as r → ∞. Hence

P(r; u) → c2(c2 + 2) ≡ C < 0 as r → ∞. Moreover, if q ≥ −1, then −c2 > 1 + q ≥ 0 by
Lemma 2.1(b) which implies

C = c2
2 + 2c2 > (1 + q)2 − 4 = (q − 1)(q + 3) .

(d) If u(r) is of Type ∗-F+, then ru′(r) → c3 for some c3 > 2 as r → ∞ which
implies P(r; u) → c3(c3 + 2) ≡ C > 8 as r → ∞. In addition, we also have c3 < −1 − q

by Lemma 2.1(b) and hence

C < (−1 − q)(1 − q) = q2 − 1 .

(e) If u(r) is of Type ∗-S+, then ru′(r) → c4 for some 0 < c4 < 2 as r → ∞. Hence
P(r; u) → c4(c4 + 2) ≡ C < 8 as r → ∞. Also, c4 < −1 − q implies C < q2 − 1.

(f) Let limr→∞ ru′(r) = c > 0. Then limr→∞ P(r; u) = c(c+ 2) = α. Hence

c = −1 + √
1 + α

and the assertions in (f) are easily obtained.
(g) By the similar arguments in the proof of (f), we conclude limr→∞ ru′(r)

< −2. �

In order to clarify the regions of initial data corresponding to certain types of solutions,
the properties of openness for such regions play significant roles. The following propositions
provide us with this substantial concept.

PROPOSITION 2.1. The following assertions on the solution u(r; θ, η) of (1.9) are
true.

(i) If u(r; θ0, η0) is of Type ∗-F−, then there exists δ > 0 such that u(r; θ, η) is of Type
∗-F− for (θ, η) ∈ Bδ((θ0, η0)).

(ii) If u(r; θ0, η0) is of Type ∗-S−, then there exists δ > 0 such that u(r; θ, η) is of Type
∗-S− for (θ, η) ∈ Bδ((θ0, η0)).

PROOF. (i) Suppose there existed a sequence {(θj , ηj )}∞j=1 with (θj , ηj ) → (θ0, η0)

as j → ∞ and u(r; θj , ηj ) is of Type ∗-S± or ∗-F+ for all j . Then ru′(r; θj , ηj ) > −2
for r > 0 by the fact that ru′(r; θj , ηj ) is decreasing on (0,∞) for all j . Moreover, since
u(r; θ0, η0) is of Type ∗-F−, there exists r1 > 0 such that r1u′(r1; θ0, η0) < −2. Hence, we
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obtain

−2 ≤ lim
j→∞ r1u

′(r1; θj , ηj )
= r1u

′(r1; θ0, η0)

<−2 ,

which is a contradiction. The proof of (i) is completed.
(ii) We divide this proof into two steps.
Step 1. First, by using the same arguments described in the proof of (i), we have the

following assertion: If u(r; θ, η) is of Type ∗-S− or Type ∗-F−, then there doesn’t exist a
sequence {(θj , ηj )} such that {(θj , ηj )} → (θ, η) as j → ∞ and u(r; θj , ηj ) is of Type ∗-S+
or Type ∗-F+ for all j .

Step 2. Next, we show that if u(r; θ, η) is of Type ∗-F+ or Type ∗-S±, then there
doesn’t exist a sequence {(θj , ηj )} such that {(θj , ηj )} → (θ, η) as j → ∞ and u(r; θj , ηj ) is
of Type ∗-F− for all j . To prove this, we first note that by (1.10) and q < 1, limr→∞ rK ′(r)/
K(r) < 2. Then from (2.5), there exist 0 < L < 2 and R0 > 1 such that

(2.6)
d

dr
P (r; v;L, 0) ≤ 0 , r ≥ R0

for any solution v(r) of (1.9). Let u(r; θ, η) be of Type ∗-S−. Suppose that there exists a
sequence {(θj , ηj )} with (θj , ηj ) → (θ, η) as j → ∞ such that u(r; θj , ηj ) is of Type ∗-F−
for all j . To continue this proof, we need the following assertion.

Claim. For any 0 < ε < min{2 − L, 2 + c∞}, where c∞ is selected in Lemma 2.1 (b)
with respect to u(r; θ, η), there exists Rε > R0 such that

ru′(r; θj , ηj ) < −2 + ε

2
, r ≥ Rε

for all j .
Proof of Claim. Suppose there existed 0 < ε0 < min{2 − L, 2 + c∞} and a sequence

{rj = rj (ε0)} such that limj→∞ rj = ∞ and

rju
′(rj ; θj , ηj ) = −2 + ε0

2
for all j .

Since

lim
r→∞ ru

′(r; θ, η) = ξ > −2 and lim
r→∞ ru

′(r; θj , ηj ) = ξj < −2 for all j ,

we have
ξj < −2 < ξ < −(1 + q) for all j

by Lemma 2.1(b). Then there exist constants R1 > R0, δ > 0 and N > 0 such that
R1u

′(R1; θj , ηj ) < −(1 + q + δ) for j ≥ N , and hence ru′(r; θj , ηj ) < −(1 + q + δ) for
r ≥ R1 and j ≥ N . Therefore, by (1.10) and the above result, we get that r2K(r)e2u(r;θj,ηj )
is bounded by a constant times r−2δ from above for r ≥ R1 and j ≥ N , which implies

(2.7) r2K(r)e2u(r;θj,ηj ) < −
(

− 2 + ε0

2
+ L

)(
ε0

2

)
, r ≥ R2 , j ≥ N
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for someR2 ≥ R1 since the right-hand side of (2.7) is positive. In addition, by (2.6) and (2.7),
we have

P(r; θj , ηj ;L, 0)≤ P(rj ; θj , ηj ;L, 0)

=
(

− 2 + ε0

2
+ L

)(
ε0

2

)
+ r2K(r)e2u(r;θj,ηj )

< 0

for r ≥ rj and j ≥ J , where J is chosen such that rJ ≥ R2. However, this contradicts the fact
P(r; θj , ηj ;L, 0) ≥ 0 for r ≥ R0 by limr→∞ P(r; θj , ηj ;L, 0) ≥ 0 and (2.6). We complete
the proof of this claim.

Finally, by Claim, we obtain

−2 + ε

2
≥ lim
j→∞Rεu

′(Rε; θj , ηj )
=Rεu

′(Rε; θ, η)
≥ c∞
≥ −2 + ε

for any 0 < ε < min{2 − L, 2 + c∞}. This yields a contradiction.
For the cases of u(r; θ, η) being of Type ∗-S+ or Type ∗-F+, we also have ru′(r; θj , ηj )

< −(1 + q + δ1) for r ≥ R3 and j ≥ N1 for some constants R3 > R0, δ1 > 0 and N1 > 0.
The rest of proofs of the two cases are the same as above and we omit them. This step is
finished.

By Steps 1 and 2, (ii) is obtained. �

REMARK 2.2. We note that the existence of the solution of (1.9) which goes to infinity
as r → ∞ implies q < −1, and hence (1.17) holds

PROPOSITION 2.2. The following assertions on the solution u(r; θ, η) of (1.9) are
true.

(i) If u(r; θ0, η0) is of Type ∗-S+, then there exists δ > 0 such that u(r; θ, η) is of Type
∗-S+ for (θ, η) ∈ Bδ((θ0, η0)).

(ii) If u(r; θ0, η0) is of Type ∗-F+, then there exists δ > 0 such that u(r; θ, η) is of Type
∗-F+ for (θ, η) ∈ Bδ((θ0, η0)).

PROOF. Due to Remark 2.2, we only consider q < −1. The proof of this proposition is
split into the following two steps.

Step 1. First, by following the similar arguments as in the proof of Proposition 2.1(i),
we conclude that

(a) if u(r; θ, η) is of Type ∗-S+, then there doesn’t exist a sequence {(θj , ηj )} such that
{(θj , ηj )} → (θ, η) as j → ∞ and u(r; θj , ηj ) is of Type ∗-F+ for all j ;

(b) if u(r; θ, η) is of Type ∗-F±, then there doesn’t exist a sequence {(θj , ηj )} such that
{(θj , ηj )} → (θ, η) as j → ∞ and u(r; θj , ηj ) is of Type ∗-S+ or Type ∗-S− for all j .
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Step 2. In the following, we prove that if u(r; θ, η) is of Type ∗-S+ or Type ∗-F+, then
there doesn’t exist a sequence {(θj , ηj )} such that {(θj , ηj )} → (θ, η) as j → ∞ and
u(r, θj , ηj ) is of Type ∗-S− or Type ∗-F− for all j . To see this, note that limr→∞ rK ′(r)/
K(r) < −2 since q < −1. Then by (2.5), there exist M > 2 and R0 > 1 such that

(2.8)
d

dr
P (r;w; 0,M) ≤ 0 , r ≥ R0

for any solution w(r) of (1.9). Let u(r; θ, η) be of Type ∗-S+. Suppose that there exists a
sequence {(θj , ηj )} with (θj , ηj ) → (θ, η) as j → ∞ such that u(r; θj , ηj ) is of Type ∗-F−
or Type ∗-S− for all j . We first give the following assertion.

Claim. For any 0 < ε < min{M − 2, c∞}, where c∞ is selected in Lemma 2.1 (b) with
respect to u(r; θ, η), there exists Rε > R0 such that

ru′(r; θj , ηj ) < ε

2
, r ≥ Rε

for all j .
Proof of Claim. If there exist 0 < ε0 < min{M − 2, c∞} and a sequence {rj = rj (ε0)}

such that limj→∞ rj = ∞ and

rj u
′(rj ; θj , ηj )= ε0

2
for all j.

Let
lim
r→∞ ru

′(r; θ, η) = ξ and lim
r→∞ ru

′(r; θj , ηj ) = ξj for all j .

From (b) of Lemma 2.1, we have

either ξj < −2 < ξ < −(1 + q) or − 2 < ξj < 0 < ξ < −(1 + q)

for each j . Therefore, there exist constantsR1 > R0, δ > 0 andN > 0 such that ru′(r; θj , ηj )
< −(1 + q + δ) for r ≥ R1 and j ≥ N . Similarly as in the proof of (a), we obtain

(2.9) r2K(r)e2u(r;θj,ηj ) < −
(
ε0

2

)(
ε0

2
+ 2 −M

)
, r ≥ R2 , j ≥ N

for some R2 ≥ R1, and hence by (2.8) and (2.9),

P(r; θj , ηj ; 0,M) < 0 for r ≥ rj .

On the other hand, since limr→∞ P(r; θj , ηj ; 0,M) ≥ 0, we have

P(r; θj , ηj ; 0,M) ≥ 0 for r ≥ R0

by (2.8). This is impossible and the proof of this claim is completed.
For 0 < ε < min{M − 2, c∞}, the above claim implies

ε

2
≥ lim
j→∞Rεu

′(Rε; θj , ηj )
=Rεu

′(Rε; θ, η)
≥ c∞
> ε ,
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which is a contradiction.
By the similar arguments as above, we omit the detailed proof of the other case of

u(r; θ, η), and Step 2 is established.
Now, by combining the above steps, the assertions of (i) and (ii) are obtained. We com-

plete the proof of Proposition 2.2. �

Moreover, to determine the existences for certain types of solutions, we need the fol-
lowing transformation. Let u(r) = u(r; θ, η) be a solution of (1.9). For any c ∈ R, we set
z(s; c) = u(r)+ 2c ln r , where r = 1/s. Then z(s; c) satisfies

(2.10)



z′′(s; c)+ 1

s
z′(s; c)+ K̃(s)e2z = 0 , s ∈ (0,∞) ,

z(1; c) = θ , z′(1; c) = −(η + 2c) ,

where K̃(s) = s−4−4cK(1/s).

REMARK 2.3. From (2.10) and Lemma 2.1(b), the solution for (1.9) with behavior
being like −2c ln r at the origin or infinity exists if p > −3 − 2c and q < −1 − 2c for any
c ∈ R. Therefore, the existences of solutions of Type ∗-S− and P-∗ are derived if p > −1
and q < 1. Moreover, it is easy to see that the solution u(r; θ; η) of (1.9) is of Type ∗-F− if
η < −2; Type N-∗ if η > 0.

PROPOSITION 2.3. The following assertions on the solution u(r; θ, η) of (1.9) are
true.

(i) If u(r; θ0, η0) is of Type P-∗, then there exists δ > 0 such that u(r; θ, η) is of Type
P-∗ for (θ, η) ∈ Bδ((θ0, η0)).

(ii) If u(r; θ0, η0) is of Type N-∗, then there exists δ > 0 such that u(r; θ, η) is of Type
N-∗ for (θ, η) ∈ Bδ((θ0, η0)).

PROOF. (i) Let z(s; 1) be defined in (2.10) with u(r) = u(r; θ0, η0). Then we have

d

ds
P̃ (s; z(s; 1);L, 0) ≤ 0

for s > 0 since p > −1, where P̃ is defined as in (2.4) with respect to solutions of (2.10).
Hence, the proof is completed by Step 2 in the proof of Proposition 2.1(ii).

(ii) Since u(r; θ0, η0) is of Type N-∗, there exists r0 > 0 such that u′(r0; θ0, η0) > 0.
Then, (ii) is proved by the fact (ru′)′ ≤ 0 on (0,∞) and the continuity of solutions with
respect to initial data. �

3. Proofs of Main Results. In this section, we present complete verifications for our
main results mentioned in Section 1. First, we derive the asymptotic behaviors of the curves
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γ1, γ±
2 and γ3. To attain this end, we introduce the following two initial value problems:

v
′′(r)+ 1

r
v′(r)+K(r)e2v(r) = 0 , r ∈ (0, 1] ,

v(r) = A ln r + a + o(1) as r → 0 ,


w

′′(r)+ 1

r
w′(r)+K(r)e2w(r) = 0 , r ∈ [1,∞) ,

w(r) = −(2 + B) ln r + b + o(1) as r → ∞ ,

where A > −(1 + p), B > q − 1 and a, b are real numbers.
Since p > −1 and q < 1, and by virtue of Lemma 2.2 in [4], the above equations possess

unique solutions v(r; a,A) and w(r; b,B), respectively. Furthermore, we also have{
v(1; a,A) = a +O(e2a) ,

v′(1; a,A) = A+O(e2a)

for a ≤ −M and {
v(1; a,A) = −a + C1 +O(e−µa) ,
v′(1; a,A) = −(A+ 2 + 2p)+O(e−µa)

for a ≥ M , where M is large, C1 is a constant independent of a and 0 < µ ≤ 2;

{
w(1; b,B) = b +O(e2b) ,

w′(1; b,B) = −(2 + B)+O(e2b)

for b ≤ −N and {
w(1; b,B) = −b + C2 +O(e−νb) ,
w′(1; b,B) = B − 2q +O(e−νb)

for b ≥ N , where N is large, C2 is a constant independent of b and 0 < ν ≤ 2. Therefore, we
obtain the asymptotic behaviors of curves as follows:

(3.1)




lim
a→−∞ γ1(a) = (−∞, 0) , lim

a→+∞ γ1(a) = (−∞,−2(1 + p)) ,

lim
b→−∞ γ−

2 (b) = (−∞,−2) , lim
b→+∞ γ

−
2 (b) = (−∞,−2q) ,

lim
c→−∞ γ+

2 (c) = (−∞, 2) , lim
c→+∞ γ+

2 (c) = (−∞,−2(q + 2)) ,

lim
d→−∞ γ3(d) = (−∞, 0) , lim

d→+∞ γ3(d) = (−∞,−2(q + 1)) .

REMARK 3.1. (3.1) shows that γ1, γ
±
2 and γ3 do not possess limit points in (θ, η)-

plane as parameters tending to plus and minus infinity.

Now, by combining the facts confirmed in Section 2, we are in a position to demonstrate
our main consequences.
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PROOF OF THEOREM 1.1. By integrating (2.5) over [0, r], we see that for any solution
u(r) of (1.11), i.e., u(r) being of Type R-∗,

P(r; u) = G(r)e2u − 2
∫ r

0
G(s)e2uu′(s)ds , r > 0 ,

where P(r; u) = P(r; u; 0, 0) andG(r) are defined as in (2.4) and (1.14), respectively. Since
G(r) is nonnegative for r > 0, we have

P(r; u) > −2
∫ r

0
G(s)e2uu′(s)ds > 0 , r > 0 ,

which implies

c∞(c∞ + 2) = lim
r→∞P(r; u)

≥ −2
∫ ∞

0
G(s)e2uu′(s)ds

> 0 ,

where c∞ is set as in Lemma 2.1(b) with respect to u(r), i.e., c∞ = limr→∞ ru′(r). Then u(r)
is not of Type ∗-R− since otherwise c∞ must equal −2, and hence (a) is proved. Moreover,
since 0 ≤ q < 1 and by Remark 2.1, we assure that any solution of (1.9) goes to minus infinity
as r → ∞. Finally, from Remark 2.3 and combining Propositions 2.1 and 2.3, we obtain (b),
(c) and (d). �

PROOF OF THEOREM 1.2. Using the similar arguments as in the proof of Theorem 1.1,
we obtain, for any solution u(r) of (1.11),

c∞(c∞ + 2) < 0 ,

where c∞ is selected as in Lemma 2.1(b) with respect to u(r). Then u(r) can not be of Type
∗-R− because c∞ �= −2. Hence (a) is proved. The proofs for the remaining assertions follow
by the same way as those of Theorem 1.1. �

PROOFS OF THEOREMS 1.3 THROUGH 1.6. First, by combining (3.1) with functions
G(r) and P(r; u), we can determine whether Γ1 intersects the other three curves or not. In
particular, Γ1 and Γ −

2 are identical ifK(r) is a constant function. Finally, by virtue of Propo-
sitions 2.1 through 2.3 and Remark 2.3, the structure of solutions for (1.9) can be clarified
completely case by case. �
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