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Abstract In this paper, we investigate the structure of reachable sets from a given point

q0 for a class of analytic control affine systems characterized, among other things, by pos-

sessing two singular trajectories initiating at q0. The aim of the paper is to establish the

connection between the minimal number of analytic functions needed for describing reach-

able sets and the number of geometrically optimal singular trajectories. The paper is written

in a language of the sub-Lorentzian geometry. Also, the sub-Lorentzian geometry methods

are used to prove theorems.
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1 Introduction

1.1 Preliminaries

This paper is a continuation of the research started in [8, 9] and devoted to the study on

reachable sets for noncontact sub-Lorentzian structures on R
3, as well as for affine control

systems induced by them. Similarly as in [8, 9] our objective is to investigate the interre-

lation of the structure of reachable sets from a given point q0 for the mentioned systems

and geometric optimality of singular trajectories starting at q0 or—speaking in the sub-

Lorentzian language—geometric optimality of timelike abnormal curves starting at q0 (a
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trajectory of a control system starting from a point q0 is said to be geometrically optimal if

it is contained in the boundary of the reachable set from q0; cf. [1]). The paper is arranged

in such a way that, in the first four sections, we develop the theory in the sub-Lorentzian

setting, and Section 5 contains applications of the obtained results to control affine systems.

For all facts and notions from the sub-Lorentzian geometry, the reader is referred to

the previous papers by the author (see [6] and its reference section; see also [10]). Here,

we recall only those basic facts that are needed for stating the results. Let M be a smooth

manifold, and let H be a smooth distribution on M of constant rank. For a point q ∈ M and

an integer k ∈ N, we define H k
q to be the linear subspace in Hq generated by all vectors

of the form [X1, [X2, ..., [Xi−1, Xi]...]](q), where X1, ..., Xi are smooth (local) sections

of H defined in a neighborhood of q , and i ≤ k. We say that H is a bracket generating

distribution if for every q ∈ M , there exists an i = i(q) such that H i
q = TqM . Now, by

a sub-Lorentzian structure (or a sub-Lorentzian metric) on a manifold M , we mean a pair

(H, g), where H is a bracket generating distribution on M , and g is a smooth Lorentzian

metric on H . The triple (M,H, g) is called a sub-Lorentzian manifold. Take a point q ∈ M;

a vector v ∈ Hq is said to be timelike if g(v, v) < 0, nonspacelike if g(v, v) ≤ 0, and null

if g(v, v) = 0 but v �= 0. A time orientation of (M,H, g) is, by definition, a continuous

timelike vector field on M . Suppose (M,H,g) to be time-oriented by X and let v ∈ Hq

be a nonspacelike vector. We say that v is future directed if g(v,X(q)) < 0. A curve

γ : [a, b] −→ M is called horizontal if it is absolutely continuous, γ̇ (t) ∈ Hγ (t) a.e. on

[a, b], and γ̇ is square integrable with respect to some Riemannian metric on M . From now

on, all curves are supposed to be horizontal. We will also use the following abbreviations: t.

for “timelike,” nspc. for “nonspacelike,” and f.d. for “future directed.” We say that a curve

γ : [a, b] −→ M is t.f.d. (resp. nspc.f.d., null f.d.) if so is γ̇ (t) a.e. on [a, b]. Fix a point

q0 ∈ M and its neighborhood U . The (future) timelike (resp. nonspacelike, null) reachable

set from q0 relative to U is defined to be the set of all points in U that can be reached from

q0 by a t.f.d. (resp. nspc. f.d., null f.d.) curve entirely contained in U . They are denoted

respectively by I+(q0, U), J+(q0, U), and N+(q0, U). In the general case, all we can say

about reachable sets is that intI+(q0, U) �= ∅, and that the three reachable sets have the

same interiors and closures with respect to U . In order to be able to say something more,

we need to make certain assumptions on U . To this end, let us notice that if U is sufficiently

small, then our sub-Lorentzian metric can be extended to a Lorentzian metric, say g̃, on

U . So U is said to be a normal neighborhood of q0 if it is a convex normal neighborhood

of q0 with respect to g̃, and U is contained in some other convex normal neighborhood

of q0 with respect to g̃ (see [8] for a constructive definition of normal neighborhoods).

Now, if U is a normal neighborhood of q0, we know that J+(q0, U) is closed with respect

to U and moreover clU
(

intI+(q0, U)
)

= clU
(

intN+(q0, U)
)

= J+(q0, U), where clU
stands for the closure with respect to U . Note that unlike the Lorentzian case, the boundary

∂̃J+(q0, U) (here and below, ∂̃ means the boundary with respect to U ) may contain timelike

curves starting from q0. It can be proved [6] that such curves are abnormal curves for the

underlaying distribution H (see [11] for a definition); they are also Goh curves (cf. [1]),

but we do not need this latter fact in this paper. Let X0, ..., Xk be an orthonormal frame

for (H, g) defined on an open set U . We define the so-called geodesic (sub-Lorentzian)

Hamiltonian H : T ∗U −→ R, by formula H(q,p) = − 1
2

〈p, X0(q)〉+ 1
2

∑k
i=1 〈p, Xi(q)〉

(it is possible to defineH in a global and invariant way; see [6]). Now, a curve γ : [a, b] −→
U is said to be a Hamiltonian geodesic if it can be represented as γ (t) = π ◦ Ŵ(t) where

π : T ∗M −→ M is the canonical projection and Ŵ̇ = −→
H ,

−→
H being the Hamiltonian

vector field corresponding to the function H. Hamiltonian geodesics do not change their
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causal character; moreover, null f.d. Hamiltonian geodesics are [6] locally geometrically

optimal. Finally, let U be an open subset in (M,H, g), and suppose that ϕ : U −→ R is a

smooth function. The horizontal gradient of the function ϕ is defined to be the vector field

∇H ϕ such that dqϕ(v) = g(∇H ϕ(q), v) for every v ∈ Hq , q ∈ U . One easily makes sure

that if ∇H ϕ is null f.d. on U and γ : [a, b] −→ U is t.f.d. (nspc.f.d.), then the function

[a, b] ∋ t −→ ϕ(γ (t)) is decreasing (nonincreasing).

1.2 Statement of the Results

In papers [5, 7], we studied on the contact sub-Lorentzian structures on R
3. On the other

hand, in [8, 9] (generalized) Martinet sub-Lorentzian structures of Hamiltonian type of order

k were studied, i.e., structures that, among other conditions imposed on them, are not contact

on a hypersurface or, speaking in another way, structures whose Martinet surface is smooth.

As a next step, it is reasonable to consider structures with the simplest non-smooth Martinet

surface S, i.e., where S is a union of transversely intersecting smooth hypersurfaces. In

order to formulate necessary assumptions, let us introduce a notion of the hyperbolic angle

on a sub-Lorentzian manifold (M,H, g). Let v1, v2 ∈ Hq , q ∈ M , be t.f.d. vectors. The

hyperbolic angle between v1 and v2 is the number ∢(v1, v2) ≥ 0 defined by

cosh∢(v1, v2) = − g(v1, v2)

‖v1‖ ‖v2‖
,

where ‖v‖ = |g(v, v)|1/2; by the reverse Schwarz inequality − g(v1 ,v2)
‖v1‖‖v2‖ ≥ 1, so the defi-

nition makes sense. If L1 = Span {v1}, L2 = Span {v2} are 1-dimensional timelike linear

subspaces in Hq with v1, v2 being chosen to be t.f.d., then we put

∢(L1, L2) = ∢(v1, v2).

Now, we come to the precise definition of the type of sub-Lorentzian structures that we

are going to consider in this paper. So let H be a bracket generating distribution of constant

rank equal to 2, defined in a neighborhood U of 0 ∈ R
3. We say that H satisfies the

condition (M2,2) if the following conditions are satisfied:

(i) There exist smooth hypersurfaces S1 and S2 such that the intersection Ŵ = S1 ∩ S2

is smooth of dimension 1, contains the origin, and is transverse to H ; moreover, for

each q ∈ Ŵ, dim
(

TqSi ∩ Hq

)

= 1, i = 1, 2;

(ii) H defines a contact structure on U\ (S1 ∪ S2);

(iii) H 2
q = Hq and H 3

q = TqR3 whenever q ∈ (S1 ∪ S2) \Ŵ;

(iv) H 4
q = TqR3 whenever q ∈ Ŵ.

The set S = S1 ∪ S2 will be called the Martinet surface for H . Note that S is foliated by

abnormal curves for the distribution H . Next, we chose a Lorentzian metric g on H in the

way similar as in [8, 9]:

(v) The field of directions Si ∋ q −→ TqSi ∩ Hq is timelike, i = 1, 2;

(vi) The function S1 ∩ S2 ∋ q −→ ∢

(

TqS1 ∩ Hq , TqS2 ∩ Hq

)

is constant;

(vii) The abnormal curves foliating S are, up to a change of parameter, t.f.d. Hamiltonian

geodesics.

As we shall see, the two latter assumptions are used only in the process of constructing our

normal form.
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We will say that a sub-Lorentzian structure (H, g) is of type M2,2 if it satisfies conditions

(i)–(vii). The sub-Lorentzian structure (H, g) is analytic if all objects entering its definition

(e.g., the Martinet surface) are analytic.

Theorem 1.1 Let (H, g) be a time-oriented analytic sub-Lorentzian structure of type M2,2

defined on a neighborhood U of the origin in R
3. Then, provided that U is sufficiently small,

there exist analytic coordinates x, y, z on U in which (H, g) has an orthonormal frame in

the normal form

X = ∂

∂x
+ yϕ

(

y
∂

∂x
+ x

∂

∂y

)

+ 1

2
y (y − c1x) (y − c2x) (1 + ψ)

∂

∂z

Y = ∂

∂y
− xϕ

(

y
∂

∂x
+ x

∂

∂y

)

− 1

2
x (y − c1x) (y − c2x) (1 + ψ)

∂

∂z

, (1.1)

where X is a time orientation; c1 and c2 are constants such that −1 < c2 < c1 < 1,

S = {y = c1x} ∪ {y = c2x} is the Martinet surface for H ; and ϕ and ψ are analytic

functions on U , ψ(0, 0, z) = 0.

Using Theorem 1.1, we then investigate the structure of reachable sets. Let

W = W(c1, c2) = c1c2 + 2c1 − 2c2 − 1. (1.2)

It is not difficult to see what the geometric interpretation of Eq. 1.2 is. Let α =
∢

(

TqS1 ∩ Hq , TqS2 ∩ Hq

)

for a q ∈ Ŵ; Eq. 1.1 implies that cosh α = 1−c1c2
√

1−c2
1

√

1−c2
2

and at

the same time sinh α = c1−c2
√

1−c2
1

√

1−c2
2

. Thus,

W
√

1 − c2
1

√

1 − c2
2

= − cosh α + 2 sinh α

is an invariant for metrics of type M2,2. In particular, the sign of W has an invariant meaning

and does not depend on the choice of coordinates. Note by the way that W > 0 (W < 0,

W = 0) if and only if tanh α > 1
2

(tanh α < 1
2

, tanh α = 1
2

). As we are about to see, the

sign of W is determinative for the structure of reachable sets. More precisely, we will prove

two theorems.

Theorem 1.2 Suppose that (H, g) is a sub-Lorentzian structure defined on a suitably small

normal neighborhood U of the origin by an orthonormal frame X, Y in the normal form

(1.1) with X being a time orientation. Then, if W(c1, c2) > 0, there exist two analytic

functions η1, η2 : U −→ R such that the reachable sets from the origin for (H, g) are of

the following form:

J+(0, U) = N+(0, U) = A1 ∪ A2,

I+(0,U) = int (A1 ∪ A2) ,

where

A1 = {(x, y, z) ∈ U : η1(x, y, z) ≤ 0} ∩ {x ≥ 0, z ≥ 0} ,

A2 = {(x, y, z) ∈ U : η2(x, y, z) ≤ 0} ∩ {x ≥ 0, z ≤ 0} .

In particular, the three reachable sets are semi-analytic.
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Note that in cases covered by Theorem 1.2, there are no timelike curves in the boundary

∂̃J+(0,U), and the structure of reachable sets is the same as in the contact case.

Theorem 1.3 Suppose that (H, g) is a sub-Lorentzian structure defined on a suitably small

normal neighborhood U of the origin by an orthonormal frame X, Y in the normal form

(1.1) with X being a time orientation. Then, if W(c1, c2) < 0, there exist six analytic func-

tions η1, η2, ξij : U −→ R, i, j = 1, 2, and two 2-dimensional semi-analytic sets �1, �2

with the property that U ∩ {x ≥ 0} ∩ {z ≥ 0} ∩ {c2x ≤ y ≤ x} \�1 has two connected com-

ponents �+
1 , �−

1 , and U ∩ {x ≥ 0} ∩ {z ≤ 0} ∩ {−x ≤ y ≤ c1x} \�2 has two connected

components �+
2 , �−

2 , such that

J+(0, U) = A1 ∪ ... ∪ A6,

I+(0,U) = int (A1 ∪ ... ∪ A6) ∪ A7 ∪ A8,

N+(0, U) = int (A1 ∪ ... ∪ A6) ∪
(

{η1 = 0} ∩ �+
1

)

∪
(

{η2 = 0} ∩ �−
2

)

where

A1 = {(x, y, z) ∈ U : η1(x, y, z) ≤ 0} ∩ �+
1 ,

A2 = {(x, y, z) ∈ U : ξ11(x, y, z) ≤ 0} ∩ �−
1 ,

A3 = {(x, y, z) ∈ U : ξ12(x, y, z) ≤ 0} ∩ {−x ≤ y ≤ c2x} ∩ {z ≥ 0} ,

A4 = {(x, y, z) ∈ U : η2(x, y, z) ≤ 0} ∩ �−
2 ,

A5 = {(x, y, z) ∈ U : ξ21(x, y, z) ≤ 0} ∩ �+
2 ,

A6 = {(x, y, z) ∈ U : ξ22(x, y, z) ≤ 0} ∩ {c1x ≤ y ≤ x} ∩ {z ≤ 0} ,

A7 = {(x, y, z) ∈ U : y = c1x, x ≥ 0, z = 0} ,

A8 = {(x, y, z) ∈ U : y = c2x, x ≥ 0, z = 0} .

In particular, the three reachable sets are semi-analytic.

Note that in cases covered by Theorem 1.3, there are two timelike curves on the boundary

∂̃J+(0,U). It is also seen that in such cases, neither I+(0, U) is open nor N+(0, U) is

closed.

The structure of all geometrically optimal curves in cases treated in Theorems 1.2 and

1.3 is described in Section 2. Let us notice that proofs of Theorems 1.2 and 1.3 give a

sort of “algorithm” for computing the reachable sets. Moreover, the presented results bear a

geometric character, so having proved Theorems 1.2 and 1.3 and applying a remark similar

to Remark 4.4 in [9], we no longer have to transform our structure to the normal form in

order to compute reachable sets.

Similarly as it was done in some previous papers by the author, all the above results

can be applied to the study on reachable sets for control affine systems induced by sub-

Lorentzian metrics of type M2,2. Let

q̇ = X + uY , u ∈ [a, b], (1.3)

be a control affine system defined on M , where M is an open subset of R3 (or a 3-manifold).

We suppose the fields X,Y to be linearly independent. Fix a point q0 ∈ M and its neigh-

borhood U ⊂ M . We will consider the reachable set A[a,b](q0, U) from q0 for the system
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(1.3) which is defined to be the set of endpoints of all trajectories of Eq. 1.3 that are con-

tained in U , initiate at q0, and are generated by measurable controls u : [0, T ] −→ [a, b];
here, T = T (u) depends on a control. It was proved in [9], Lemma 1.2, that the reach-

able set A[a,b](q0, U) is equal to the future nonspacelike reachable set for the time-oriented

sub-Lorentzian structure (H, ga,b) defined on M by declaring the frame

Za,b = X + 1
2
(b + a)Y

W a,b = 1
2
(b − a)Y

to be orthonormal with a time orientation Za,b (in [9], we studied also on reachable sets

A(a,b)(q0, U) and A{a,b}(q0, U)). Let us recall a notion of singular trajectories (cf. [4]) for

affine control systems. So, a trajectory γ : [0, T ] −→ U of Eq. 1.3 is called a singular

trajectory if it is generated by a control u(t) with values in the open interval (a, b) and is

an abnormal curve for the distribution H . It is worth noting that singular trajectories satisfy

necessary conditions for geometric optimality of Pontriagin maximum principle. In terms

of the sub-Lorentzian metric (H, ga,b), singular trajectories are exactly timelike abnormal

curves.

Now, suppose that X,Y is an orthonormal frame for a metric (H, g) of type M2,2. We say

that the system q̇ = X+uY , u ∈ [a, b], is typical in class M2,2 if W
(

2c1−b−a
b−a

, 2c2−b−a
b−a

)

�=
0 (cf. 5.9), where c1 and c2 are constants obtained by transforming (H, g) to normal form

(1.1). Then, we can prove the following:

Theorem 1.4 Suppose that the system (1.3) is typical in class M2,2. If it has k geometrically

optimal singular trajectories initiating at q0 (in our case, k = 0, 1, 2), then the minimal

number of analytic functions that one needs to describe the reachable set A[a,b](q0, U) is

2 + 2k.

The above theorem also holds for all cases treated in [9]. Thus, the presence on the

boundary ∂̃A[a,b](q0, U) of a singular trajectory initiating at q0 increases (at least in the

described cases) by two the minimal number of analytic functions needed for describing the

reachable set A[a,b](q0, U). It would be interesting to know whether this observation can

be extended to a more general class of (not necessarily affine) control systems.

1.3 Organizations of the Paper

Section 2 is devoted to computing reachable sets for the so-called flat structures—they

correspond to normal form (1.1) with ϕ and ψ set to be equal to zero. In Section 3, we

compute normal forms. More precisely, we prove Theorem 3.1 which gives normal forms

in a more general situation than that treated in the present paper and which can be a starting

point for further studies. Theorem 1.1 is then a corollary of Theorem 3.1. In Section 4, we

generalize global results from Section 2 to local results in a general (i.e., nonflat) situation

of type M2,2 in cases where W(c1, c2) �= 0. In Section 5, we apply the results obtained for

sub-Lorentzian structures to control affine systems. Proofs of the lemmas from Section 2.2

are contained in Section 6. Section 7 contains 3-dimensional visualizations of examples of

reachable sets studied in Section 2. In the Appendix, we state some corollaries concerning

the image under exponential mapping and also conjugate and cut loci.

Some proofs of the results presented in the paper are omitted since they are similar to

those from [9].
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2 Reachable Sets in the Flat Case

In this section, we study on reachable sets from the origin for the sub-Lorentzian structure

(Ĥ , ĝ) defined by an orthonormal basis

X̂ = ∂

∂x
+ 1

2
y(y − c1x)(y − c2x)

∂

∂z

Ŷ = ∂

∂y
− 1

2
x(y − c1x)(y − c2x)

∂

∂z

(2.1)

with a time orientation X̂ where we assume that −1 < c2 < c1 < 1. Let Si = {(x, y, z) :
y =cix}. We see that the Martinet surface S in our case is equal to S1 ∪ S2. The structure

(or a metric) (Ĥ , ĝ) will be called flat. This is because Eq. 2.1 is a particular case of Eq. 1.1

where ϕ and ψ has been set to zero. Hence, any structure as in Eq. 1.1 can be regarded as a

perturbation of the flat structure; see Section 4 for some applications of this observation.

Reachable sets from the origin for Eq. 2.1 will be denoted respectively by Ĵ+(0) =
J+(0,R3), Î+(0) = I+(0,R3), and N̂+(0) = N+(0,R3). First of all, it is obvious that

Î+(0) ⊂ {−x < y < x, x > 0}
and

Ĵ+(0) ⊂ {−x ≤ y ≤ x, x ≥ 0} .

As in the previous papers by the author, the key role in the process of constructing functions

describing reachable sets is played by the signs of the z-coordinates of the fields

X̂ − Ŷ = ∂

∂x
− ∂

∂y
+ 1

2
(y + x)(y − c1x)(y − c2x)

∂

∂z
, (2.2)

X̂ + Ŷ = ∂

∂x
+ ∂

∂y
+ 1

2
(y − x)(y − c1x)(y − c2x)

∂

∂z
. (2.3)

Let

Ŵ1 = {(x, x, z) : x, z ∈ R}
and

Ŵ2 = {(x,−x, z) : x, z ∈ R} .

Since
(

X̂ − Ŷ
)

(z) > 0 on Ŵ1 and
(

X̂ + Ŷ
)

(z) < 0 on Ŵ2, similarly as in [7–9], we

construct two functions η̂1 and η̂2. η̂1 is the solution to the Cauchy problem

(X̂ − Ŷ )(η) = 0, η|Ŵ1
(x, x, z) = z,

and η̂2 is the solution to the Cauchy problem
(

X̂ + Ŷ
)

(η) = 0, η|Ŵ2
(x,−x, z) = −z.

After calculations, we obtain

η̂1(x, y, z) = z − x2 − y2

48

(

(7c1c2 − 2c1 − 2c2 + 1) x2 + 4 (c1c2 − 2c1 − 2c2 + 1) xy

+ (c1c2 − 2c2 − 2c1 + 7) y2
)

and

η̂2(x, y, z) = −z − x2 − y2

48

(

(7c1c2 + 2c1 + 2c2 + 1) x2 − 4 (c1c2 + 2c1 + 2c2 + 1) xy

+ (c1c2 + 2c2 + 2c1 + 7) y2
)

.
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As in the previous papers, we need to know the horizontal gradient ∇
Ĥ

η̂i of the function η̂i

with respect to
(

Ĥ , ĝ
)

, i = 1, 2. Clearly, ∇
Ĥ

η̂1 = −X̂
(

η̂1

)

(

X̂ − Ŷ
)

where

X̂(η̂1) = − 1

12
(x − y)

(

(7c1c2 − 2c1 − 2c2 + 1) x2 + 4 (c1c2 − 2c1 − 2c2 + 1) xy

+ (c1c2 − 2c1 − 2c2 + 7) y2
)

, (2.4)

and ∇
Ĥ

η̂2 = −X̂
(

η̂2

)

(

X̂ + Ŷ
)

where

X̂(η̂2) = − 1

12
(x + y)

(

(7c1c2 + 2c1 + 2c2 + 1) x2 − 4 (c1c2 + 2c1 + 2c2 + 1) xy

+ (c1c2 + 2c1 + 2c2 + 7) y2
)

. (2.5)

Recall that in (1.2) in Section 1, we defined the polynomial W = c1c2 + 2c1 − 2c2 − 1. As

it was announced, the sign of W determines the structure of the reachable set for Eq. 2.1.

Indeed, it is easy to check that

X̂(η̂1) = − 1

12
(x − y) (c1c2 − 2c1 − 2c2 + 7) (y − E1x) (y − E2x) (2.6)

with

E1 = 1
c1c2−2c1−2c2+7

(

−2c1c2 + 4c1 + 4c2 − 2 +
√

−3 (c1c2 − 2c1 + 2c2 − 1)W
)

E2 = 1
c1c2−2c1−2c2+7

(

−2c1c2 + 4c1 + 4c2 − 2 −
√

−3 (c1c2 − 2c1 + 2c2 − 1)W
)

(2.7)

and

X̂(η̂2) = − 1

12
(x + y) (c1c2 + 2c1 + 2c2 + 7) (y − E3x) (y − E4x) (2.8)

with

E3 = 1
c1c2+2c1+2c2+7

(

2c1c2 + 4c1 + 4c2 + 2 +
√

−3 (c1c2 − 2c1 + 2c2 − 1) W
)

E4 = 1
c1c2+2c1+2c2+7

(

2c1c2 + 4c1 + 4c2 + 2 −
√

−3 (c1c2 − 2c1 + 2c2 − 1) W
) .

(2.9)

Let us notice here that c1c2 − 2c1 + 2c2 − 1 = (c1c2 − 1) − 2 (c1 − c2) < 0 for all c1 and

c2 such that −1 < c2 < c1 < 1.

2.1 The Case W < 0

This case is the simplest because, as it can be seen from Eqs. 2.6 and 2.8, ∇
Ĥ

η̂i , i = 1, 2 is

null f.d. in the whole sector {−x < y < x}. Thus, using similar arguments as, e.g., in [7] or

[8], we have

Proposition 2.1 If W < 0 then

Ĵ+(0) = N̂+(0) = Â1 ∪ Â2

and

Î+(0) = int(Â1 ∪ Â2),

where

Â1 =
{

(x, y, z) ∈ R
3 : η̂1(x, y, z) ≤ 0

}

∩ {x ≥ 0, z ≥ 0} ,

Â2 =
{

(x, y, z) ∈ R
3 : η̂2(x, y, z) ≤ 0

}

∩ {x ≥ 0, z ≤ 0} .
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Let us remark that

η̂1(x, c1x, 0) = 1

48
x4 (c1 − 1)2 (c1 + 1)2 (c1c2 − 2c1 + 2c2 − 1) < 0,

η̂1(x, c2x, 0) = 1

48
x4 (c2 − 1)2 (c2 + 1)2 W < 0,

η̂2(x, c1x, 0) = 1

48
x4 (c1 − 1)2 (c1 + 1)2 W < 0, and

η̂2(x, c2x, 0) = 1

48
x4 (c2 − 1)2 (c2 + 1)2 (c1c2 − 2c1 + 2c2 − 1) < 0.

This means that there are no geometrically optimal timelike (and hence abnormal) curves

starting from 0, and in what follows, only two functions suffice to describe the reachable

sets.

To visualize better how the reachable set looks like, let us list all geometrically optimal

curves. To this end, introduce the following notation. If Z1, Z2 are two vector fields on

R
3, then by Z1Z2, we will mean the curve which is a concatenation of a segment of the

trajectory of Z1 starting from 0, and a segment of a trajectory of Z2. Using such a notation,

every geometrically optimal curve is either
(

X̂ + Ŷ
)(

X̂ − Ŷ
)

or
(

X̂ − Ŷ
)(

X̂ + Ŷ
)

. The

intersection of ∂Ĵ+(0) with the plane {x = const > 0} is schematically presented in Fig. 1.

Points A and B lie on the plane {z = 0}. A (resp. B) corresponds to half-line

{y = −x, z = 0} (resp. {y = −x, z = 0}). The curve BA located above the straight line

joining A and B represents ∂Ĵ+(0) ∩ {z ≥ 0} and is formed by the trajectories
(

X̂ + Ŷ
)

(

X̂ − Ŷ
)

; the curve AB located below this straight line represents ∂Ĵ+(0) ∩ {z ≤ 0} and is

formed by the trajectories
(

X̂ − Ŷ
)(

X̂ + Ŷ
)

.

2.2 The Case W > 0

In order to simplify reading of this subsection, proofs of all lemmas are moved to Section 6.

Fig. 1 The set ∂Ĵ+(0) ∩ {x = const > 0} in the case W < 0
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This case is more complicated since now Ei , i = 1, ..., 4 are real. First of all, we must

examine constants E1,..., E4. Obviously, E2 < E1 and E4 < E3. Moreover, we have two

lemmas.

Lemma 2.1 The following inequalities hold true: −1 < E2 < E1 < 1, Ei < ci , i = 1, 2.

Lemma 2.2 The following inequalities hold true: −1 < E4 < E3 < 1, c2 < E4, c1 < E3.

Using Eqs. 2.6 and 2.8, we conclude that ∇
Ĥ

η̂1 is null f.d. on {E1x < y < x} , while

∇
Ĥ

η̂2 is null f.d. on {−x < y < E4x}. Hence, we need more functions to describe the

reachable sets from the origin.

First, we will compute Ĵ+(0) ∩ {z ≥ 0}. Since
(

X̂ + Ŷ
)

(z) > 0 for y > c2x, and
(

X̂ − Ŷ
)

(z) > 0 for y < c2x, everything in a neighborhood of the plane {y = c2x}, it is

natural to consider the following Cauchy problems:

(X̂ + Ŷ )(η) = 0, η(x, c2x, z) = z

with the solution equal to

ξ̂11(x, y, z) = z − 1

12

(x − y) (y − c2x)2

(1 − c2)
2

((−2c1c2 + 3c1 − c2) x + (−c1 + 3c2 − 2) y) ,

and

(X̂ − Ŷ )(η) = 0, η(x, c2x, z) = z

with the solution equal to

ξ̂12(x, y, z) = z − 1

12

(x + y) (c2x − y)2

(c2 + 1)2
((2c1c2 + 3c1 − c2) x + (c1 − 3c2 − 2) y) .

Now, we examine horizontal gradients ∇
Ĥ

ξ̂1i , i = 1, 2. So ∇
Ĥ

ξ̂11 = −X̂(ξ̂11)(X̂+ Ŷ ) with

X̂(ξ̂11) = (y − c2x)2

3 (c2 − 1)2
((2c1c2 − 3c1 + c2) x + (c1 − 3c2 + 2) y) (2.10)

and ∇
Ĥ

ξ̂12 = −X̂(ξ̂12)(X̂ − Ŷ ) with

X̂(ξ̂12) = − (y − c2x)2

3 (c2 + 1)2
((2c1c2 + 3c1 − c2) x + (c1 − 3c2 − 2) y) . (2.11)

Using Eq. 2.11, it is easy to see that ∇
Ĥ

ξ̂12 is null f.d. in {−x < y < c2x}. Indeed,

if c1 − 3c2 − 2 ≥ 0, then we have (2c1c2 + 3c1 − c2) x + (c1 − 3c2 − 2) y ≥
2 (c2 + 1) (c1 + 1) x > 0. If, on the other hand, c1 − 3c2 − 2 < 0, then

(2c1c2 + 3c1 − c2) x + (c1 − 3c2 − 2) y > (2c1c2 + 3c1 − c2) x + c2 (c1 − 3c2 − 2) x =
3 (c2 + 1) (c1 − c2) x > 0. Also, since c1 − 3c2 + 2 = c1 − c2 + 2 (1 − c2) > 0, we see

that ∇
Ĥ

ξ̂11 is null f.d. for y < − 2c1c2−3c1+c2

c1−3c2+2
x.

Lemma 2.3 c1 < − 2c1c2−3c1+c2
c1−3c2+2

< 1.

Now, by Lemmas 2.1 and 2.3, it is clear that E1 < − 2c1c2+c2−3c1

c1+2−3c2
. We will compute the

intersection
{

η̂1 = 0
}

∩
{

ξ̂11 = 0
}

∩
{

E1x < y < − 2c1c2+c2−3c1
c1+2−3c2

x
}

. Evidently,

ξ̂11 (x, c2x, z) − η̂1 (x, c2x, z) = − 1

48
x4 (c2 − 1)2 (c2 + 1)2 W < 0. (2.12)
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On the other hand,

ξ̂11 (x, c1x, z) − η̂1 (x, c1x, z) = − 1

48

(c1 − 1)2

(c2 − 1)2
x4

(

4 (c1 − c2)
3 + (c2 − 1)2 (c1 + 1)2 (c1c2 − 2c1 + 2c2 − 1)

)

. (2.13)

We need the following:

Lemma 2.4 Let f (x, y) = 4 (x − y)3 + (y − 1)2 (x + 1)2 (xy − 2x + 2y − 1) be a

function considered on the set D = {(x, y) : −1 < y < x < 1}. Then f < 0 on D.

Lemma 2.4 and Eq. 2.13 give

ξ̂11 (x, c1x, z) − η̂1 (x, c1x, z) > 0. (2.14)

Moreover, (X +Y)(ξ̂11 − η̂1) = −(X +Y)(η̂1) < 0 on {c2x < y < E1x}, and (X + Y)

(ξ̂11 − η̂1) > 0 on {E1x < y < x}. Now, let us sum up what we already know. By Eq. 2.12,

the expression ξ̂1 − η̂1 (which is a homogeneous polynomial in x, y) is negative on y = c2x

and decreases along the trajectories of X + Y in {c2x < y < E1x}. Then, ξ̂11 − η̂1 starts to

increase and for y = c1x, it attains a positive value by Eq. 2.14. It follows that
{

η̂1 = 0
}

∩
{

ξ̂11 = 0
}

∩
{

E1x < y < − 2c1c2+c2−3c1
c1+2−3c2

x
}

is of the form {y = S1x} with E1 < S1 < c1.

In this way, we arrive at the following:

Ĵ+(0) ∩ {z ≥ 0} = Â1 ∪ Â2 ∪ Â3

where

Â1 =
{

η̂1 ≤ 0
}

∩ {S1x ≤ y ≤ x} ∩ {z ≥ 0} , (2.15)

Â2 =
{

ξ̂11 ≤ 0
}

∩ {c2x ≤ y ≤ S1x} ∩ {z ≥ 0} , (2.16)

Â3 =
{

ξ̂12 ≤ 0
}

∩ {−x ≤ y ≤ c2x} ∩ {z ≥ 0} . (2.17)

The signs of z-coordinates of the fields X̂ + Ŷ , X̂ − Ŷ needed in the computation of

∂Ĵ+(0) ∩ {z > 0} are schematically illustrated in Fig. 2. Arrows pointing up correspond to

the field X̂ + Ŷ , while those pointing down correspond to X̂ − Ŷ .

Now, we examine Ĵ+(0) ∩ {z ≤ 0}. Let us consider two Cauchy problems:

(X̂ − Ŷ )(η) = 0, η(x, c1x, z) = −z

with the solution equal to

ξ̂21(x, y, z) = −z − 1

12

(x + y) (c1x − y)2

(1 + c1)
2

((c1 − 2c1c2 − 3c2) x + (3c1 − c2 + 2) y) ,

and

(X̂ + Ŷ )(η) = 0, η(x, c1x, z) = −z

with the solution equal to

ξ̂22(x, y, z) = −z + 1

12

(x − y) (y − c1x)2

(1 − c1)
2

((−2c1c2 − c1 + 3c2) x + (3c1 − c2 − 2) y) .
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Fig. 2 The case W > 0. Lines on the plane {z = 0} along which the fields X̂ + Ŷ , X̂ − Ŷ point toward the

positive direction of the z-axis

As above, we need to know the regions where horizontal gradients ∇
Ĥ

ξ̂2i , i = 1, 2 are

suitably directed. After calculations,

X̂(ξ̂21) = (c1x − y)2

3 (c1 + 1)2
((2c1c2 − c1 + 3c2) x + (−3c1 + c2 − 2) y) (2.18)

and

X̂(ξ̂22) = (y − c1x)2

3 (1 − c1)
2

((−2c1c2 − c1 + 3c2) x + (3c1 − c2 − 2) y) . (2.19)

Equation 2.19 immediately yields that ∇
Ĥ

ξ̂22 is null f.d. in {c1x < y < x}. Indeed,

(−2c1c2 − c1 + 3c2) x + (3c1 − c2 − 2) y < −2 (c2 − 1) (c1 − 1) x < 0 in this sector

whenever 3c1 − c2 − 2 ≥ 0. On the other hand, if 3c1 − c2 − 2 < 0, then

(−2c1c2−c1+3c2) x + (3c1−c2− 2) y < (−2c1c2−c1+3c2) x + c1 (3c1−c2−2) x =
3 (c1−1) (c1 − c2) x < 0. Also by Eq. 2.18, we know that ∇H ξ̂21 is null f.d. for y >

− 2c1c2−c1+3c2

−3c1+c2−2
x. Indeed, it is enough to notice that −3c1 + c2 − 2 = − (c1 − c2) −

2 (c1 + 1) < 0.

Lemma 2.5 −1 < − 2c1c2−c1+3c2

−3c1+c2−2
< c2.

Now, it follows that − 2c1c2−c1+3c2
−3c1+c2−2

< E4, and we will compute the intersection
{

η̂2 = 0
}

∩
{

ξ̂21 = 0
}

∩
{

− 2c1c2−c1+3c2

−3c1+c2−2
x < y < E4x

}

. We proceed similarly as above. So,

first of all,

ξ̂21(x, c1x, z) − η̂2(x, c1x, z) = − 1

48
x4 (c1 − 1)2 (c1 + 1)2 W < 0. (2.20)
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Next,

ξ̂21(x, c2x, z) − η̂2(x, c2x, z) = (c2 + 1)2

48 (c1 + 1)2
x4

(

4 (−c1 + c2)
3 − (c1 + 1)2 (c2 − 1)2 (c1c2 + 2c2 − 2c1 − 1)

)

. (2.21)

Lemma 2.6 The function f (x, y) = 4 (−x + y)3 − (x + 1)2 (y − 1)2 (xy − 2x + 2y − 1)

is positive on D = {(x, y) : −1 < y < x < 1}.

Lemma 2.6 and Eq. 2.21 give

ξ̂21(x, c2x, z) − η̂2(x, c2x, z) > 0. (2.22)

Now, Eqs. 2.20 and 2.22 imply that similarly as above, the set
{

η̂2 = 0
}

∩
{

ξ̂21 = 0
}

∩
{

− 2c1c2−c1+3c2

−3c1+c2−2
x < y < E4x

}

is of the form {y = S2x} with c2 < S2 < E4. We deduce

that

Ĵ+(0) ∩ {z ≤ 0} = Â4 ∪ Â5 ∪ Â6

where

Â4 =
{

η̂2 ≤ 0
}

∩ {−x ≤ y ≤ S2x} ∩ {z ≤ 0} , (2.23)

Â5 =
{

ξ̂21 ≤ 0
}

∩ {S2x ≤ y ≤ c1x} ∩ {z ≤ 0} , (2.24)

Â6 =
{

ξ̂22 ≤ 0
}

∩ {c1x ≤ y ≤ x} ∩ {z ≤ 0} . (2.25)

We conclude this section with the following:

Proposition 2.2 If W > 0, then

Ĵ+(0) = Â1 ∪ ... ∪ Â6,

Î+(0) = int
(

Â1 ∪ ... ∪ Â6

)

∪ A7 ∪ A8

and

N+(0) = int
(

Â1 ∪ ... ∪ Â6

)

∪
({

η̂1 = 0
}

∩ {S1x ≤ y ≤ x}
)

∪
({

η̂2 = 0
}

∩ {−x ≤ y ≤ S2x}
)

where Â1,..., Â6 are given by Eqs. 2.15–2.17, 2.23, 2.24, and 2.25, respectively, and A7 =
{y = c1x, z = 0, x ≥ 0}, A8 = {y = c2x, z = 0, x ≥ 0}.

In this way, we see that there are two geometrically optimal timelike (abnormal) curves,

and we need six analytic functions to describe reachable sets.

The signs of z-coordinates of the fields X̂ + Ŷ , X̂ − Ŷ , needed in the computation of

∂Ĵ+(0) ∩ {z < 0}, are illustrated in Fig. 3. As above, arrows pointing up (resp. down)

correspond to the field X̂ + Ŷ
(

resp.X̂ − Ŷ
)

.

Now, using the notation from the end of Section 2.1, we list all geometrically optimal

curves in the case W > 0. They can be divided into two groups:

(i) Those forming ∂Ĵ+(0) ∩ {z ≥ 0}, i.e.
(

X̂ + Ŷ
)(

X̂ − Ŷ
)

,
(

X̂ + c2Ŷ
)(

X̂ + Ŷ
)

,
(

X̂ + c2Ŷ
) (

X̂ − Ŷ
)

; note that
(

X̂ + Ŷ
)(

X̂ − Ŷ
)

and
(

X̂ + c2Ŷ
)(

X̂ + Ŷ
)

cease
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Fig. 3 The case W > 0. Lines on the plane {z = 0} along which the fields X̂ + Ŷ , X̂ − Ŷ point toward the

negative direction of the z-axis

to be geometrically optimal when they reach the plane {y = S1x} (then they enter the

interior int Ĵ+(0));

(ii) Those forming ∂Ĵ+(0) ∩ {z ≤ 0}, i.e.
(

X̂ − Ŷ
) (

X̂ + Ŷ
)

,
(

X̂ + c1Ŷ
) (

X̂ − Ŷ
)

,
(

X̂ + c1Ŷ
) (

X̂ + Ŷ
)

; note that
(

X̂ + c1Ŷ
)(

X̂ − Ŷ
)

and
(

X̂ − Ŷ
)(

X̂ + Ŷ
)

cease

to be optimal when they intersect the plane {y = S2x}. The intersection of the set

∂Ĵ+(0) with the plane {x = const > 0} is represented in Fig. 4.

The points A, B,C,D lie on the plane {z = 0}; A and B correspond to half-

lines {y = −x, z = 0} and {y = x, z = 0}, while B and C to singular trajecto-

ries {y = c2x, z = 0} and {y = c1x, z = 0}, respectively. DE represents the sur-

face formed by the trajectories
(

X̂ + Ŷ
)(

X̂ − Ŷ
)

, BE is the surface made up

Fig. 4 The set ∂Ĵ+(0) ∩ {x = const > 0} in the case W > 0
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of the trajectories
(

X̂ + c2Ŷ
)(

X̂ + Ŷ
)

, and the point E corresponds to the set

∂Ĵ+(0) ∩ {y = S1x}, i.e., the place where the trajectories
(

X̂ + Ŷ
) (

X̂ − Ŷ
)

and
(

X̂ + c2Ŷ
)(

X̂ + Ŷ
)

meet. Finally, part BA of ∂Ĵ+(0) ∩ {z ≥ 0} is filled with tra-

jectories
(

X̂ + c2Ŷ
) (

X̂ − Ŷ
)

. Similarly, AF (resp. CF ) is the surface formed by the

trajectories
(

X̂ − Ŷ
)(

X̂ + Ŷ
) (

resp.
(

X̂ + c1Ŷ
)(

X̂ − Ŷ
))

, and CD corresponds to part

of ∂Ĵ+(0) ∩ {z ≤ 0} which is made up of the trajectories
(

X̂ + c1Ŷ
)(

X̂ + Ŷ
)

. The

point F represents the set ∂Ĵ+(0) ∩ {y = S2x}, i.e., the place where the trajectories
(

X̂ − Ŷ
)(

X̂ + Ŷ
)

and
(

X̂ + c1Ŷ
)(

X̂ − Ŷ
)

meet.

2.3 The Case W = 0

Using Eqs. 2.6–2.9 and the condition W = 0, we see that in the case under consideration

E1 = E2 = −2c1 − 1

c1 − 2
= c2,

E3 = E4 = 2c2 + 1

c2 + 2
= c1,

η̂1(x, y, z) = z + x2 − y2

12
(c1 − 2) (y − c2x)2 ,

η̂2(x, y, z) = −z − x2 − y2

12
(c2 + 2) (y − c1x)2

and in what follows

X̂(η̂1) = 1

3
(x − y) (c1 − 2)

(

y + 2c1 − 1

c1 − 2
x

)2

= 1

3
(x − y) (c1 − 2) (y − c2x)2 ,

X̂(η̂2) = −1

3
(x + y) (c2 + 2)

(

y − 2c2 + 1

c2 + 2
x

)2

= −1

3
(x + y) (c2 + 2) (y − c1x)2 .

Thus, ∇
Ĥ

η̂1 is null f.d. on {−x < y < x} ∩ {y �= c2x}, and ∇
Ĥ

η̂2 is null f.d. on

{−x < y < x} ∩ {y �= c1x}. We can also see that η̂1(x, c2x, 0) = η̂2(x, c1x, 0) = 0. More-

over, ∇
Ĥ

ξ̂11 is null f.d. for y < − 2c1c2−3c1+c2
c1−3c2+2

x, and as above, we make sure that Eq. 2.14

holds together with the following:

ξ̂11 (x, c2x, z) − η̂1 (x, c2x, z) = 0. (2.26)

Similar reasoning as in Section 2.2 shows that ξ̂11 − η̂1 is nondecreasing along trajectories

of X + Y starting at {y = c2x}. It follows that ξ̂11 ≥ η̂1, and in turn,
{

ξ̂11 ≤ 0
}

∩ {c2x < y < x} ⊂
{

η̂1 ≤ 0
}

∩ {c2x < y < x} .

Moreover,

ξ̂12(x, y, z) − η̂1(x, y, z) = − 1

48
(x + y)4 (c2 − 1)2 W

(c2 + 1)2
= 0

which is in fact clear without calculations, since both functions satisfy the same linear differ-

ential equation with the same boundary conditions on the hypersurface {y = c2x}. Similar

reasoning shows that
{

ξ̂21 ≤ 0
}

∩ {−x < y < c1x} ⊂
{

η̂2 ≤ 0
}

∩ {−x < y < c1x}



74 Marek Grochowski

and

ξ̂22(x, y, z) − η̂2(x, y, z) = − 1

48
(x − y)4 (c1 + 1)2 W

(c1 − 1)2
= 0.

We sum up this subsection with the following:

Proposition 2.3 If W = 0 then

Ĵ+(0) = N̂+(0) = Â1 ∪ Â2

and

Î+(0) = int(Â1 ∪ Â2) ∪ {y = c1x, x > 0} ∪ {y = c2x, x > 0} ,

where

Â1 =
{

(x, y, z) ∈ R
3 : η̂1(x, y, z) ≤ 0

}

∩ {x ≥ 0, z ≥ 0} ,

Â2 =
{

(x, y, z) ∈ R
3 : η̂2(x, y, z) ≤ 0

}

∩ {x ≥ 0, z ≤ 0} .

As we see, this case is very exceptional as compared to the previous cases with W �= 0.

Namely, in spite of the fact that there are two geometrically optimal timelike curves, only

two analytic functions suffice for describing reachable sets.

We list all geometrically optimal curves in this case: the curves forming ∂Ĵ+(0) ∩
{z ≥ 0}, i.e., the curves

(

X̂ + Ŷ
)(

X̂ − Ŷ
)

,
(

X̂ + c2Ŷ
)(

X̂ − Ŷ
)

, and the curves form-

ing ∂Ĵ+(0) ∩ {z ≤ 0}, i.e.,
(

X̂ − Ŷ
) (

X̂ + Ŷ
)

,
(

X̂ + c1Ŷ
)(

X̂ + Ŷ
)

. The set ∂Ĵ+(0) ∩
{x = const > 0} can be depicted similarly as in Fig. 4, but this time, the curves DB and BA

correspond to trajectories of X̂ − Ŷ , and the curves AC and CD correspond to trajectories

of X̂ + Ŷ .

Three-dimensional visualizations of reachable sets studied in this section are presented

in Section 7.

3 Normal Forms

In this section, we consider more general sub-Lorentzian structures (H, g) than those dealt

with in Theorem 1.1. At first, we describe the underlaying distribution H . So let H be a

rank 2 distribution defined on a neighborhood U of the origin in R
3, and let l1, ..., lk ≥ 2

be positive integers. H will be said to satisfy the condition (Ml1,...,lk ) if it possesses the

following properties:

(i) There exist smooth hypersurfaces S1, ..., Sk in U , such that the intersection Ŵ =
⋂k

i=1 Si contains the origin, is smooth 1-dimensional, and transverse to H ; more-

over, for each q ∈ Ŵ and every i, j = 1, ..., k, i �= j , dim
(

TqSi ∩ TqSj

)

=
1, dim

(

TqSi ∩ Hq

)

= 1;

(ii) H defines a contact structure on U\
⋃k

i=1 Si ;

(iii) For any fixed i = 1, ..., k, H l
q ⊂ Hq , l ≤ li , H

li+1
q = TqR

3 on the set Si\Ŵ.

(iv) H l
q ⊂ Hq , l ≤ l1 + ... + lk − k + 1, H

l1+...+lk−k+2
q = TqR

3 for every q ∈ Ŵ.

Now, we choose a Lorentzian metric g. We make three assumptions:

(v) For each i = 1, ..., k, the field of directions Si ∋ q −→ TqSi ∩ Hq is timelike;
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(vi) For every i, j = 1, ..., k, i �= j , the function Si ∩ Sj ∋ q −→
∢

(

TqSi ∩ Hq , TqSj ∩ Hq

)

is constant; and

(vii) The abnormal curves foliating the surfaces S1, ..., Sk are, up to a change of

parameter, t.f.d. Hamiltonian geodesics.

We will say that a sub-Lorentzian structure (or metric) (H, g) is of type Ml1,...,lk on U

if (i)–(vii) hold on U . The set S =
⋃k

i=1 Si is again called the Martinet surface for H . Note

that structures of type Ml are exactly generalized Martinet sub-Lorentzian structures studied

in [9].

Our aim is to prove the following:

Theorem 3.1 Let (H, g) be a time-oriented analytic sub-Lorentzian structure of type

Ml1,...,lk defined on a neighborhood U of the origin in R
3. Then, provided that U is

sufficiently small, there exist analytic coordinates x, y, z on U in which (H, g) has an

orthonormal frame in the normal form

X = ∂

∂x
+ yϕ

(

y
∂

∂x
+ x

∂

∂y

)

+ 1

2
y (y − c1x)l1−1 ... (y − ckx)lk−1 (1 + ψ)

∂

∂z

Y = ∂

∂y
− xϕ

(

y
∂

∂x
+ x

∂

∂y

)

− 1

2
x (y − c1x)l1−1 ... (y − ckx)lk−1 (1 + ψ)

∂

∂z

,

where X is a time orientation, c1, ..., ck are constants such that −1 < ck < ... < c1 < 1,

Si = {y = cix}, i = 1, ..., k, and finally ϕ, ψ are analytic functions on U with ψ(0, 0, z) =
0.

We start with the following result.

Lemma 3.1 Suppose that (H, g) is analytic and satisfies the condition M2,...,2 on a neigh-

borhood U of the origin in R
3. Then, provided that U is sufficiently small, there are analytic

coordinates x, y, z defined on U in which (H, g) admits an orthonormal frame in the

following form

X = ∂

∂x
− yB

(

y
∂

∂x
+ x

∂

∂y

)

− y (y − c1x) ... (y − ckx)A
∂

∂z

Y = ∂

∂y
+ xB

(

y
∂

∂x
+ x

∂

∂y

)

+ x (y − c1x) ... (y − ckx) A
∂

∂z

(3.1)

with X being a time orientation. Here, A, B are analytic functions, and Si = {y = cix},
i = 1, ..., k.

Proof Fix an i, i = 1, ..., k. Choose analytic coordinates x̂, ŷ, ẑ defined in a neighborhood

of the origin such that Si =
{

ŷ = 0
}

, Ŵ =
{

(0, 0, ẑ)
}

, H|Si
= ker dẑ, and ∂

∂x̂ |Si
, ∂

∂ŷ |Si

is an

orthonormal basis for H|Si
with a time orientation ∂

∂x̂
. Clearly, abnormal curves (which by

(vii) are Hamiltonian geodesics) contained in Si satisfy transversality condition with respect

to Ŵ; cf. [8], Lemma 3.1; see also [2]. Since the satisfaction of the transversality condition

does not depend on a choice of coordinates, and, moreover, i was arbitrary, we see that

every abnormal curve starting from Ŵ satisfies the transversality condition with respect to

Ŵ. Now, by use of the exponential mapping and assumption (vii), similarly as it was done
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in [5, 8], we are led to the existence of analytic coordinates x, y, z in which (H, g) has an

orthonormal frame in the following form:

X = ∂

∂x
− yB

(

y
∂

∂x
+ x

∂

∂y

)

− yA
∂

∂z

Y = ∂

∂y
+ xB

(

y
∂

∂x
+ x

∂

∂y

)

+ xA
∂

∂z

,

where Sj ∩{z = 0} =
{

y = cjx, z = 0
}

,
∣

∣cj

∣

∣ < 1, j = 1, ..., k, Si = {y = 0} (i.e., ci = 0),

and one can suppose that ck < ... < c1. Using assumption (vi), we see that Sj , j = 1, ..., k,

are all of the form Sj =
{

y = cjx
}

.

Now, the z-coordinate of [X, Y ] is equal to

[X,Y ] (z) =
(

1 − y2B
)

(

A + x
∂A

∂x

)

−x2y
∂A

∂y
B+xy2 ∂A

∂x
B+

(

1 + x2B
)

(

A + y
∂A

∂y

)

.

By our assumptions [X,Y ]|y=cix is horizontal, i = 1, ..., k. Take i = 1. Then, there

exist analytic functions f (x, z), g(x, z) such that [X,Y ]|y=c1x = f (x, z)X|y=c1x +
g(x, z)Y|y=c1x . This leads us to the equality of the z-coordinates

2A +
(

∂A

∂x
+ c1

∂A

∂y

)

x +
(

1 − c2
)

ABx2 = (g(x, z) − c1f (x, z)) xA (3.2)

where A and its derivatives should be evaluated at (x, c1x, z). Suppose that A(x, c1x, z)

does not vanish identically. Then, we can find z such that A(x, c1x, z) = am(z)xm +
o(xm) as x −→ 0 with am(z) �= 0 and m > 0. Since x

(

∂A
∂x

+ c1
∂A
∂y

)

|y=c1x
=

x (X + c1Y) (A)|y=c1x = mam(z)xm + o(xm), Eq. 3.2 gives

(2 + m) am(z) = o(1),

so we arrive at am(z) = 0 which is a contradiction. In this way, A may be replaced by the

expression (y − c1x)A for some other analytic function A.

Repeating the argument for i = 2, ..., k, we are lead to Eq. 3.1.

Now, suppose that our structure (H, g), which is given by Eq. 3.1 on a neighborhood U

of the origin, satisfies the condition Ml1,...,lk , li ≥ 2, i = 1, ..., k.

Fix an index i. If we set A1 to be the function defined by y (y − cix)A1 =
y (y − c1x) ... (y − ckx)A, the frame (3.1) takes the following form:

X = ∂

∂x
− yB

(

y
∂

∂x
+ x

∂

∂y

)

− y (y − cix)A1
∂

∂z

Y = ∂

∂y
+ xB

(

y
∂

∂x
+ x

∂

∂y

)

+ x (y − cix)A1
∂

∂z

. (3.3)

Applying the following change of coordinates
⎧

⎨

⎩

x̃ = x cosh ϕ − y sinh ϕ

ỹ = −x sinh ϕ + y cosh ϕ

z̃ = z

,

with tanh ϕ = ci (i.e., y − cix = ỹ/ cosh ϕ) and rewriting (3.3), we are led to

X = (cosh ϕ) X̃ − (sinh ϕ) Ỹ

Y = − (sinh ϕ) X̃ + (cosh ϕ) Ỹ
, (3.4)
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where

X̃ = ∂

∂x̃
− ỹB

(

ỹ
∂

∂x̃
+ x̃

∂

∂ỹ

)

− ỹ2Ã
∂

∂z̃

Ỹ = ∂

∂ỹ
+ x̃B

(

ỹ
∂

∂x̃
+ x̃

∂

∂ỹ

)

+ x̃ỹÃ
∂

∂z̃

, (3.5)

and Ã = A1

cosh ϕ
. Obviously (cf. [13]) X̃, Ỹ is again an orthonormal frame for (H, g) with a

time orientation X̃, and we can apply to it the same method as in [9], Proposition 3.2. As a

result, Eq. 3.5 can be written as follows:

X̃ = ∂

∂x̃
− ỹB

(

ỹ
∂

∂x̃
+ x̃

∂

∂ỹ

)

− ỹ li Â
∂

∂z̃

Ỹ = ∂

∂ỹ
+ x̃B

(

ỹ
∂

∂x̃
+ x̃

∂

∂ỹ

)

+ x̃ỹ li−1Â
∂

∂z̃

,

with Ã = ỹ li−2Â. Passing again to Eq. 3.4, we obtain the following:

X = ∂

∂x
− yB

(

y
∂

∂x
+ x

∂

∂y

)

− y (y − cix)li−1 (cosh ϕ)li−1 Â
∂

∂z

Y = ∂

∂y
+ xB

(

y
∂

∂x
+ x

∂

∂y

)

+ x (y − cix)li−1 (cosh ϕ)li−1 Â
∂

∂z

,

i.e., to say

X = ∂

∂x
− yB

(

y
∂

∂x
+ x

∂

∂y

)

− y (y − c1x) ... (y − cix)li−1 ... (y − ckx)A
∂

∂z

Y = ∂

∂y
+ xB

(

y
∂

∂x
+ x

∂

∂y

)

+ x (y − c1x) ... (y − cix)li−1 ... (y − ckx)A
∂

∂z

for some new analytic function A. Repeating the same argument for every i = 1, ...., k, we

are led to

X = ∂

∂x
− yB

(

y
∂

∂x
+ x

∂

∂y

)

+ y (y − c1x)l1−1 ... (y − ckx)lk−1 A
∂

∂z

Y = ∂

∂y
+ xB

(

y
∂

∂x
+ x

∂

∂y

)

− x (y − c1x)l1−1 ... (y − ckx)lk−1 A
∂

∂z

(3.6)

for yet another analytic A about which we know that does not contain terms of the form

(y − cix)l . Equation 3.6 is, in fact, all we can get without assuming (iv).

Now, we take (iv) into account. To obtain a condition for A, we need l1 + ... + lk − k + 1

differentiations of X(z) or Y(z), i.e., we have to consider sections of H l1+...+lk−k+2. So let

W be a (local) section of H l1+...+lk−k+2 defined near zero. Then, looking at Eq. 3.6, we see

that W(z) = CA + O(r), r =
√

x2 + y2 + z2, where by (iv) C �= 0 for suitable chosen W .

Setting x = y = 0, we arrive at A(0, 0, z) �= 0. Last stage is to renormalize the z-axis, so

as to have A(0, 0, z) = 1
2

. This can be done similarly as, e.g., in [9]. To end the proof, we

write ϕ = −B , ψ = 2A − 1.

4 Reachable Sets in the General Case

In this section, by (H, g) we denote a fixed time-oriented sub-Lorentzian metric of type

M2,2, defined on a normal neighborhood U of the origin in R
3. Throughout this section, we
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assume that U is as small as we need. We may suppose that (H, g) is already transformed

to the normal form. So let X,Y be an orthonormal frame for (H, g) given on U by Eq. 1.1.

In cases W > 0, W < 0, we will use the same method to compute local reachable sets

as in [7–9]. The mentioned method, however, does not work when W = 0, and it seems

impossible to arbitrate in advance what the structure of the reachable set will be in this case.

Let X = X̂ + X1, Y = Ŷ + Y2, and X̂, Ŷ be as in Eq. 2.1, and

Y1 = yϕ

(

y
∂

∂x
+ x

∂

∂y

)

+ 1

2
y (y − c1x) (y − c2x)ψ

∂

∂z

Y2 = −xϕ

(

y
∂

∂x
+ x

∂

∂y

)

− 1

2
x (y − c1x) (y − c2x)ψ

∂

∂z

. (4.1)

4.1 The Case W < 0

Similarly as in Section 2, consider two Cauchy problems:

(X − Y)(η) = 0, η(x, x, z) = z

with the solution denoted by η1, and

(X + Y)(η) = 0, η(x,−x, z) = −z

with the solution denoted by η2. We write η1 = η̂1 + R1, η2 = η̂2 + R2. It is seen that R1

and R2 satisfy, respectively,

(X − Y)(R1) = −(X1 − Y1)(η̂1), R1(x, x, z) = 0

and

(X + Y)(R2) = −(X1 + Y1)(η̂2), R2(x,−x, z) = 0.

Clearly, (X1 − Y1)(η̂1) = O
(

r4
)

, r =
√

x2 + y2 + z2. Since η1 − z is divisible by x2 − y2

(y = −x is the trajectory of X − Y starting at (0, 0, 0)), we deduce that R1 = O
(

r5
)

.

Similarly, R2 = O
(

r5
)

which, in view of η̂i = ±z+O
(

r4
)

, means that ηi may be regarded

as a perturbation of η̂i , i = 1, 2. Exactly, e.g., as in subsection 4.1 of [9], we prove that

X(η1) is divisible by x − y. It follows that ∇H η1 = −X(η1)(X − Y) where, by using

Eq. 2.4, we have

X(η1) = − 1

12
(x − y)

(

(7c1c2 − 2c1 − 2c2 + 1) x2 + 4 (c1c2 − 2c1 − 2c2 + 1) xy

+ (c1c2 − 2c1 − 2c2 + 7) y2 + O(r3)
)

. (4.2)

It follows that X(η1) < 0 on U∩{−x < y < x}, and ∇H η1 is null f.d. on U∩{−x < y < x}.
Similarly,

X(η2) = − 1

12
(x + y)

(

(7c1c2 + 2c1 + 2c2 + 1) x2 − 4 (c1c2 + 2c1 + 2c2 + 1) xy

+ (c1c2 + 2c1 + 2c2 + 7) y2 + O(r3)
)

(4.3)

from which X(η2) < 0 on U ∩ {−x < y < x} , and hence, ∇H η2 is null f.d. on U ∩
{−x < y < x} . We finish the proof of Theorem 1.2 as in the Section 2.1.

Geometrically, optimal trajectories in this case are the same as in the corresponding flat

case, with X̂ (resp. Ŷ ) replaced by X (resp. Y ). Also, reachable sets look similarly; cf.

Fig. 1.
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4.2 The Case W > 0

Here, X(η1) and X(η2) are again given by Eqs. 4.2 and 4.3, respectively. This time, however,

X(η1) < 0 on {(E1 + ε)x < y < x} ∩ U and X(η2) < 0 on {−x < y < (E2 − ε)x} ∩ U ,

where ε > 0 will be supposed to be sufficiently small. Next, we define functions ξ11, ξ12 as

solutions to the following Cauchy problems:

(X + Y) (η) = 0, η(x, c2x, z) = z

and

(X − Y) (η) = 0, η(x, c2x, z) = z,

respectively. As above, we write ξ11 = ξ̂11 +R11, ξ12 = ξ̂12 +R12, where, e.g., R11 satisfies

(X + Y)(R11) = −(X1 + Y1)
(

ξ̂11

)

, R11(x, c2x, z) = 0. It follows that R11 = O
(

r5
)

, and

similarly R12 = O(r5). So again, we may think of ξ1i as being perturbations of ξ̂1i , i = 1, 2.

Now, since X + c2Y|y=c2x = ∂
∂x

+ c2
∂
∂y

, (X + c2Y)(ξ11)|y=c2x = 0 by definition of ξ11.

But also (X +Y)(ξ11) = 0, from which X(ξ11)|y=c2x = 0, and therefore X(ξ11) is divisible

by y − c2x. We prove analogously that also X(ξ12) is divisible by y − c2x. However, this is

not enough for our purposes, and we need the following:

Lemma 4.1 X(ξ11) and X(ξ12) are divisible by (y − c2x)2.

Proof We prove the first statement. We already know that X(ξ11) = (y − c2x)g for an

analytic function g. Since [X,X + Y ] = 0 on {y = c2x}, it follows that (X+Y)(X(ξ11)) =
X(X + Y)(ξ11) = 0 on {y = c2x}, where

(X + Y)(X(ξ11)) = (1 − c2 − (y − x)(c2y + x)ϕ) g + O ((y − c2x)) .

By setting y = c2x, we arrive at (1 − c2)
[

1 + (c2 + 1)x2ϕ
]

g|y=c2x = 0, and the proof is

over since g must be divisible by y − c2x (recall that U is as small as we need).

The proof of the second statement is analogous. We notice that [X,X − Y ] = 0 on

{y = c2x}, so (X − Y)(X(ξ11)) = X(X − Y)(ξ11) = 0 on {y = c2x} and continue in the

same manner.

Making use of Eqs. 2.10, 2.11, and the above lemma, ∇H ξ11 = −X(ξ11)(X + Y) with

X(ξ11) = (y − c2x)2

3 (c2 − 1)2

(

(2c1c2 − 3c1 + c2) x + (c1 − 3c2 + 2) y + O(r2)
)

and ∇H ξ12 = −X(ξ12)(X − Y) with

X(ξ12) = − (y − c2x)2

3 (c2 + 1)2

(

(2c1c2 + 3c1 − c2) x + (c1 − 3c2 − 2) y + O(r2)
)

.

This, of course, implies that ∇H ξ11 is null f.d. on
{

c2x < y <
(

− 2c1c2−3c1+c2

c1−3c2+2
− ε

)

x
}

∩U ,

and ∇H ξ12 is null f.d. on {−x < y < c2x} ∩ U .

Using just the presented considerations and remembering Section 2.2, we may suppose

that ξ11 < η1 on {c2x < y < (E1 + ε)x} ∩ U , while ξ11 > η1 on {(c1 − ε)x < y < x} ∩ U

or, which is more convenient to us, that ξ11 < η1 on {c2x < y < (S1 − ε)x} ∩ U , while

ξ11 > η1 on {(S1 + ε)x < y < x} ∩ U .

Let us define a set Z1 by

Z1 = {η1 = 0} ∩ {ξ11 = 0} ∩ {(S1 − ε)x < y < (S1 + ε) x} ∩ U ;
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clearly Z1 is a semi-analytic set (cf. [12]). As in [8] and [9], we make sure that dim Z1 = 1

and that Z1 is made up of a single analytic curve entering the origin. Further, let us define

a semi-analytic set by �1 = ρ−1(ρ(Z1)) ∩ U where ρ : R
3 −→ R

2 is the projection

(x, y, z) −→ (x, y), and let �+
1 , �−

1 be the two connected components of U ∩ {x ≥ 0} ∩
{z ≥ 0} ∩ {c2x ≤ y ≤ x} \�1, containing half-lines y = x, x ≥ 0 and y = c2x, x ≥ 0,

respectively. All what we have just said leads us to

J+(0,U) ∩ {z ≥ 0} = A1 ∪ A2 ∪ A3

where

A1 = {η1 ≤ 0} ∩ �+
1 ,

A2 = {ξ11 ≤ 0} ∩ �−
1 ,

A3 = {ξ12 ≤ 0} ∩ {−x ≤ y ≤ c2x} ∩ {z ≥ 0} ∩ U

as it was announced in Theorem 1.3.

Quite similar considerations can be carried out to describe the set J+(0, U) ∩ {z ≤ 0}.
We only note that this time, we define a 1-dimensional semi-analytic set

Z2 = {η2 = 0} ∩ {ξ21 = 0} ∩ {(S2 − ε)x < y < (S2 + ε) x} ∩ U .

Then, we set �2 = ρ−1(ρ(Z2))∩U and define �+
2 , �−

2 to be the two connected components

of U ∩{x ≥ 0}∩ {z ≤ 0}∩ {−x ≤ y ≤ c1x} \�2, containing half-lines y = c1x, x ≥ 0, and

y = −x, x ≥ 0, respectively. Finally, we obtain

J+(0,U) ∩ {z ≤ 0} = A4 ∪ A5 ∪ A6

where

A4 = {η2 ≤ 0} ∩ �−
2 ,

A5 = {ξ21 ≤ 0} ∩ �+
2 ,

A6 = {ξ22 ≤ 0} ∩ {c1x ≤ y ≤ x} ∩ {z ≤ 0} ∩ U .

This terminates the proof of Theorem 1.3.

All geometrically optimal curves are listed in Section 2.2 (again with X̂, Ŷ replaced by

X, Y ), and ∂̃J+(0,U) ∩ {x = const > 0} can be depicted as in Fig. 4.

4.3 The Case W = 0

Here, as it was mentioned earlier, we are not able to say what the structure of reachable sets

is. This is, for instance, because the relation η̂1(x, c2x, 0) = 0 may no longer be true after

perturbation. Therefore, we cannot predict the sign of the expression η1(x, c2x, 0) even in

a small neighborhood of the origin without computing higher-order terms in the expression

for ηi . We will not do it in this paper.

4.4 Nilpotent Approximations

Note that all the functions describing reachable sets in the flat case, i.e., η̂i , ξ̂ij , and i, j =
1, 2, are homogeneous with respect to the family of dilatations δt (x, y, z) = (tx, ty, t4z).

In other words, the mentioned functions are homogeneous when we prescribe the following



Reachable Sets 81

weights to variables: weight(x) = weight(y) = 1, weight(z) = 4. It also means that the

flat structure is the nilpotent approximation for structures given by Eq. 1.1; cf. [3].

5 Applications to Control Affine Systems

Let us consider a control affine system

q̇ = X + uY , u ∈ [a, b], (5.1)

defined on a neighborhood U of the origin in R
3, where X and Y are supposed to be an

orthonormal frame for the sub-Lorentzian metric of type M2,2. We can assume that X and

Y are given by Eq. 1.1. As it was mentioned in Section 1, the reachable set A[a,b](0, U) for

Eq. 5.1 coincides with the future nonspacelike reachable set J+(0, U) for the time-oriented

sub-Lorentzian structure (H, ga,b) defined by declaring the frame

Za,b = X + 1
2
(b + a)Y

W a,b = 1
2
(b − a)Y

to be orthonormal with a time orientation Za,b. Thus, A[a,b](0, U) = J+(0, U) is just the

reachable set for the system

q̇ = Za,b + uW a,b, u ∈ [−1, 1], (5.2)

(cf. Lemmas 1.1 and 1.2 in [9]).

The aim of this section is to prove Theorem 1.4. To save space, we will not give exact

formulas for functions describing reachable sets. We will restrict ourselves only in examin-

ing the structure of reachable sets and its dependence on geometric optimality of singular

trajectories.

The first evident observation is that

A[a,b](q0, U) ⊂ {ax ≤ y ≤ bx} ∩ U . (5.3)

5.1 The Case c1, c2 /∈ (a, b)

In this case, there are no singular trajectories starting from the origin for Eq. 5.2 (and hence

for Eq. 5.1 since both systems are equivalent). As in [7, 9] or as above, we investigate

z-coordinates of Za,b ± W a,b. So,
(

Za,b + W a,b
)

(z) = 1

2
(y − c1x) (y − c2x) (y − bx) (1 + ψ) (5.4)

and
(

Za,b − W a,b
)

(z) = 1

2
(y − c1x) (y − c2x) (y − ax) (1 + ψ) (5.5)

have opposite signs on {ax < y < bx} ∩ U . In this way, again as in [7, 9], A[a,b](q0, U) is

described by two analytic functions.

5.2 The Case c2 ≤ a < c1 < b or a < c2 < b ≤ c1

In this case, the system (5.2) has one singular trajectory initiating at the origin. Again, we

examine the signs of z-coordinates of Za,b ±W a,b. Thus, in the first case, (5.4) on {y = ax}
and Eq. 5.5 on {y = bx} are both positive, while in the second case, they are both negative.

Also, Eqs. 5.4 and 5.5 are negative near {y = c1x} in the first case, while Eqs. 5.4 and 5.5
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are positive near {y = c2x} in the second case. Therefore, we arrive at the similar situation

as in [9], and a similar reasoning as in [9] leads to the conclusion that the minimal number

of analytic functions needed for describing A[a,b](q0, U) is four.

5.3 The Case a < c2 < c1 < b

In this case, the system (5.2) has two singular trajectories initiating at the origin. In order to

simplify the situation, we make the following change of coordinates in Eq. 5.2:

⎧

⎨

⎩

x̃ = x

ỹ = − b+a
b−a

x + 2
b−a

y

z̃ = z

. (5.6)

The resulting system is as follows:

q̇ = Z̃a,b + uW̃ a,b, u ∈ [−1, 1] , (5.7)

where

Z̃a,b = ∂
∂x̃

+ ϕAa,b + 1
2

(

b−a
2

)3
ỹ (ỹ − c̃1x̃) (ỹ − c̃2x̃) (1 + ψ) ∂

∂z̃

W̃ a,b = ∂
∂ỹ

− ϕBa,b − 1
2

(

b−a
2

)3
x̃ (ỹ − c̃1x̃) (ỹ − c̃2x̃) (1 + ψ) ∂

∂z̃

(5.8)

with

Aa,b = 1
2
ỹ

(

1
2

(

b2 − a2
)

x̃ + 1
2

(b − a)2 ỹ
)

∂
∂x̃

+ 1
2
ỹ

(

1
2

(

4 − (a + b)2
)

x̃ − 1
2

(

b2 − a2
)

ỹ
)

∂
∂ỹ

Ba,b = 1
2
x̃

(

1
2

(

b2 − a2
)

x̃ + 1
2

(b − a)2 ỹ
)

∂
∂x̃

+ 1
2
x̃

(

1
2

(

4 − (a + b)2
)

x̃ − 1
2

(

b2 − a2
)

ỹ
)

∂
∂ỹ

,

and

c̃1 = 2c1 − b − a

b − a
, c̃2 = 2c2 − b − a

b − a
. (5.9)

Note that by rescaling the z̃-axis, we can always get rid of the factor
(

b−a
2

)3
, so we no longer

take care of it. Since the change of coordinates (5.6) is bi-analytic, transforms straight lines

onto straight lines, and preserves geometric optimality of trajectories, the reachable set for

Eq. 5.7 is described by the same number of analytic functions as A[a,b](q0, U) and has

the same number of geometrically optimal singular trajectories. Now, we repeat the above

arguments. Reachable sets for Eq. 5.7 with ϕ = ψ = 0 in Eq. 5.8 are computed according

to Section 2. Reachable sets for Eq. 5.7 with arbitrary ϕ and ψ in Eq. 5.8 are computed

according to Section 4 (here, we should remark that although Eq. 5.8 does not coincide with

Eq. 1.1, the argument still works since, as one easily checks, functions describing reachable

sets for arbitrary ϕ and ψ are again perturbations of functions describing reachable sets for

ϕ = ψ = 0). To sum up, A[a,b](q0, U) is described by six analytic function whenever

W(c̃1, c̃2) > 0 and by two analytic functions whenever W(c̃1, c̃2) < 0. We also know that

in case W(c̃1, c̃2) = 0 and ϕ = ψ = 0, two analytic functions suffice.

In this way the proof of Theorem 1.4 is over.

Remark 5.1 At the end, let us note that the presented method of analysis of reachable sets

works for affine control systems induced by any sub-Lorentzian structure described by

Theorem 3.1, but because of a large number of constants, it is difficult to state a general

theorem.
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5.4 Two Examples

To illustrate how the presented methods work in practice, let us consider two examples.

Example 5.1 Suppose that we are interested in the structure of the reachable set from the

origin for the following affine control system:

q̇ = X + uY , u ∈ [−1, 4], (5.10)

where

X = ∂
∂x

+ 1
2
y(y − 2x)(y − 3x) ∂

∂z

Y = ∂
∂y

− 1
2
x(y − 2x)(y − 3x) ∂

∂z

.

This system is equivalent to the sub-Lorentzian structure (H, g−1,4) defined by an orthonor-

mal basis Z−1,4, W−1,4 with Z−1,4 being a time orientation, where

Z−1,4 = ∂
∂x

+ 3
2

∂
∂y

+ 1
2

(

y − 3
2
x
)

(y − 2x) (y − 3x) ∂
∂z

W−1,4 = 5
2

∂
∂y

− 5
4
x(y − 2x)(y − 3x) ∂

∂z

.

According to Eq. 5.6, we change coordinates as follows: x̃ = x, ỹ = − 3
5
x̃ + 2

5
ỹ, z̃ = z, and

as a result, we have

Z−1,4 = ∂
∂x̃

+ 1
2

(

5
2

)3
ỹ

(

ỹ − 3
5
x̃
)(

ỹ − 1
5
x̃
)

∂
∂z̃

W−1,4 = ∂
∂ỹ

− 1
2

(

5
2

)3
x̃

(

ỹ − 3
5
x̃
)(

ỹ − 1
5
x̃
)

∂
∂z̃

. (5.11)

We end up with c̃1 = 3
5

, c̃2 = 1
5

. Since W
(

3
5
, 1

5

)

< 0, we know that there are no geo-

metrically optimal singular trajectories; hence, the reachable set from the origin for the

system that we started with can be described by two analytic functions. ∂A[−1,4](0,R) ∩
{x = const > 0} can be depicted as in Fig. 1, where this time A (resp. B) corresponds to

half-line {y = −x, z = 0} (resp. {y = 4x, z = 0}). An approximate shape of A[−1,4](0,R)

can be seen in Fig. 5.

Example 5.2 Consider again the system (5.10) where this time

X = ∂
∂x

+ 1
2
y(y − x)(y − 3x) ∂

∂z

Y = ∂
∂y

− 1
2
x(y − x)(y − 3x) ∂

∂z

.

According to the above procedure, we pass to the sub-Lorentzian structure induced by an

orthonormal frame:

Z−1,4 = ∂
∂x

+ 3
2

∂
∂y

+ 1
2 (y − x) (y − 3x)

(

y − 3
2
x
)

∂
∂z

W−1,4 = 5
2

∂
∂y

− 5
4
x(y − x)(y − 3x) ∂

∂z

.

Making again the same change of coordinates, we are led to

Z−1,4 = ∂
∂x̃

+ 1
2

(

5
2

)3
ỹ

(

ỹ − 3
5
x̃
)(

ỹ + 1
5
x̃
)

∂
∂z̃

W−1,4 = ∂
∂ỹ

− 1
2

(

5
2

)3
x̃

(

ỹ − 3
5
x̃
)(

ỹ + 1
5
x̃
)

∂
∂z̃

,
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Fig. 5 The surfaces bounding the reachable set in the case W < 0

so c̃1 = 3
5

, c̃2 = − 1
5

. But this time, W
(

3
5
,− 1

5

)

> 0; therefore, we conclude that there

are two geometrically optimal singular trajectories, and that we need six analytic functions

to describe the reachable set A[−1,4](0,R) for the system we started with. The intersec-

tion ∂A[−1,4](0,R) ∩ {x = const > 0} can be represented, with obvious changes in the

interpretation, as in Fig. 4. A[−1,4](0,R) looks approximately as in Fig. 7.

Remark 5.2 Let us notice in this place that the structure of reachable sets in the case a <

c2 < c1 < b essentially depends on a and b. For instance, if in the last example with c1 = 3,

c2 = 1, a = −1, we let b vary then (cf. 5.9), the expression W
(

2c1−b−a
b−a

, 2c2−b−a
b−a

)

=

W
(

6−b+1
b+1

, 2−b+1
b+1

)

= −4 b−7

(b+1)2 changes sign when b exceeds 7.

6 Proofs of Lemmas from Section 2.2

In this section, we present the proofs of lemmas from Section 2.

Proof of Lemma 2.1 The proof relies on straightforward computations. For instance, E1 < 1

is equivalent to
√

−3 (c1c2 − 2c1 + 2c2 − 1) (c1c2 + 2c1 − 2c2 − 1) < 3c1c2 − 6c1 − 6c2 + 9, (6.1)

where 3c1c2 −6c1 −6c2 +9 = 3 (W + 4 − 4c1) is positive. Squaring both sides of Eq. 6.1,

we see that Eq. 6.1 is equivalent to

12 (c2 − 1) (c1 − 1) (c1c2 − 2c1 − 2c2 + 7) > 0

which is, of course, true. The remaining inequalities are proved analogously.

Proof of Lemma 2.2 We prove, for instance, that c2 < E4. By Eq. 2.9, this is equivalent to

− (c2 + 2) (2c2 + c1c2 − 1 − 2c1) >
√

−3 (c1c2 − 2c1 + 2c2 − 1) (c1c2 + 2c1 − 2c2 − 1)
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which, in turn, is equivalent to

(c2 + 2)2 (2c2 + c1c2 − 1 − 2c1)
2 + 3 (c1c2 − 2c1 + 2c2 − 1) (c1c2 + 2c1 − 2c2 − 1)

= (c2 − 1) (c2 + 1) (c1c2 + 2c1 + 2c2 + 7) (2c2 + c1c2 − 1 − 2c1) > 0.

Proof of Lemma 2.3 We will prove the first inequality. Since c1−3c2+2 > 0, the hypothesis

is equivalent to − (2c1c2 − 3c1 + c2) − c1 (c1 − 3c2 + 2) = (1 − c1) (c1 − c2) > 0 which

is, of course, true.

Proof of Lemma 2.4 We look for stationary points of f . Any such point (x, y) must satisfy

the equality

∂f

∂x
(x, y) + ∂f

∂y
(x, y) = (x + 1) (y − 1) (x + y) (3xy + 5y − 5x − 3) = 0.

Clearly, 3xy + 5y − 5x − 3 = 3(xy − 1) − 5(x − y) < 0 in D, thus, either x = −1

or y = 1, or y = −x. If y = −x in D, we must have x > 0, but then
∂f
∂x

(x,−x) =
−3x5 −20x4 −46x3 −23x −4 < 0, while

∂f
∂y

(x,−x) = 3x5 +20x4 +46x3 +23x +4 > 0.

It follows that all stationary points of f are contained in ∂D. By direct calculation, we make

sure that f|∂D ≤ 0 which implies f < 0 in D.

Proof of Lemma 2.5 We prove the second inequality. Since −3c1 +c2 −2 < 0, the hypo-

thesis is equivalent to − (2c1c2−c1+3c2)−c2 (−3c1+c2−2)=(c2+1) (c1−c2)>0.

Proof of Lemma 2.6 This is proved analogously as Lemma 2.4.

Fig. 6 The surfaces bounding the reachable set in the case W = 0
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7 Pictures

In this section, we present 3-dimensional visualizations of exemplary reachable sets studied

in Section 2.

At first, consider the case c1 = 3
4

, c2 = 1
2

. Clearly, W
(

3
4
, 1

2

)

= − 1
8

, and in this case,

η̂1(x, y, z) = − 1

128
(x − y) (x + y)

(

−12xy + 3x2 + 13y2
)

+ z,

η̂2(x, y, z) = − 1

384
(x − y) (x + y)

(

−124xy + 49x2 + 79y2
)

− z.

On all the following three figures, the plane {z = 0} is marked with white color. The corre-

sponding reachable set is bounded by two hypersurfaces: by
{

η̂1 = 0
}

from above (darker

color) and by
{

η̂2 = 0
}

from below (lighter color) as it is presented in Fig. 5.

Next, consider the case c1 = 1
2

, c2 = 0. Now, W
(

1
2
, 0

)

= 0, and

η̂1(x, y, z) = −1

8
y2 (x − y) (x + y) + z,

η̂2(x, y, z) = − 1

24
(x − y) (x + y) (x − 2y)2 − z.

The reachable set in this case is presented in Fig. 6. As in the previous case, it is the set

bounded by two hypersurfaces
{

η̂i = 0
}

, i = 1, 2, with similarly chosen colors.

Fig. 7 The surfaces bounding the reachable set in the case W > 0
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Finally, consider the case c1 = 1
2

, c2 = − 1
2
. This time W

(

1
2
, − 1

2

)

= 3
4

, and

η̂1(x, y, z) = 1

64
(x − y) (x + y)

(

−4xy + x2 − 9y2
)

+ z,

η̂2(x, y, z) = 1

64
(x − y) (x + y)

(

4xy + x2 − 9y2
)

− z,

ξ̂11(x, y, z) = − 1

216
(5x − 8y) (x − y) (x + 2y)2 + z,

ξ̂12(x, y, z) = −1

8
x (x + y) (x + 2y)2 + z,

η̂2(x, y, z) = 1

64
(x − y) (x + y)

(

4xy + x2 − 9y2
)

− z,

ξ̂21(x, y, z) = − 1

216
(x + y) (5x + 8y) (x − 2y)2 − z,

ξ̂22(x, y, z) = −1

8
x (x − y) (x − 2y)2 − z.

The corresponding reachable set is presented in Fig. 7. It is the set which is bounded by six

hypersurfaces
{

η̂i = 0
}

, {ξ̂ij = 0}, i, j = 1, 2.
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Appendix

In this section, we state some corollaries concerning sub-Lorentzian metrics of type M2,2.

We start from definitions; cf. [8, 9].

Let (M,H, g) be a sub-Lorentzian manifold. Fix a point q0. Denote by Dq0
, the set of all

covectors λ ∈ T ∗
q0

M such that the curve t −→ �t (λ) is defined on the whole interval [0, 1].
Here, �t stands for the (local) flow of the Hamiltonian vector field

−→
H . The exponential

mapping expq0
: Dq0

−→ M is defined to be expq0
(λ) = π ◦ �1(λ), where π : T ∗M −→

M is the canonical projection. It is seen that if γ (t) is the Hamiltonian geodesic with initial

condition λ ∈ T ∗
q0

M , then γ (t) = expq0
(tλ). Now, we say that a point q is conjugate to q0 if

there exists a covector λ ∈ T ∗
q0

M such that expq0
(λ) = q and dλ expq0

is singular; in such a

case, we say that q is conjugate to q0 along the geodesic t −→ expq0
(tλ). The future timelike

(nonspacelike, null) conjugate locus of a point q0 is defined to be the set of all points q

that are conjugate to q0 along the timelike (nonspacelike, null) f.d. Hamiltonian geodesics;

it is denoted by Conjtq0

(

Conj
nspc

0 , Conjnull
0

)

. Finally, by the future null cut locus of q0,

Cutnull
q0

(M), we mean the set of points q ∈ M such that there exists a null f.d. (not necessarily

Hamiltonian) geodesic γ : [0, T ] −→ M having the following properties: γ (0) = q0,

γ (t1) = q with 0 < t1 < T , γ|[0,t1] is a length maximizer and γ|[0,t1+ε] is not a length

maximizer for an ε > 0, t1 + ε ≤ T .

Now, let (H, g) be a sub-Lorentzian structure of type M2,2 defined on a normal

neighborhood U of 0 ∈ R
3. Suppose that (H, g) is given by Eq. 1.1.
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Below, we list some properties of exp0, Conjt0, Conjnull
0 , and Cutnull

0 (U). Proofs are

omitted since they are similar to those found in [8, 9].

A.1 Image Under the Exponential Mapping

Proposition 8.1

exp0 ({λ ∈ D0 : H(λ) < 0, 〈λ, X(0)〉 < 0}) = I+(0, U),

exp0 ({λ ∈ D0 : H(λ) ≤ 0, 〈λ,X(0)〉 < 0}) = I+(0,U) ∪ {y = ±x, z = 0} ∩ U .

A.2 Conjugate Locus

Proposition 8.2 Conjnull
0 is equal to the union of the two null f.d. Hamiltonian geodesics

starting at 0, i.e., Conjnull
0 = {y = ±x, z = 0} ∩ U .

Note that in case W ≤ 0, the future timelike conjugate locus Conjt0 contains the two

abnormal curves starting from 0 (because they are timelike and lie on ∂̃J+(0,U)). These

curves are unique maximizers.

A.3 Future Null Cut Locus

Proposition 8.3 Suppose that W > 0. Then, Cutnull
0 (U) = {0}.

Proposition 8.4 Suppose that W < 0. Then, Cutnull
0 (U) = ∂̃J (0,U) ∩ (�1 ∪ �2).

Proposition 8.5 Suppose that W = 0. Then, Cutnull
0 (U) = ({y = c1x, z = 0} ∪

{y = c2x, z = 0}) ∩ U .

Note that Cutnull
0 (U) ∩ Conjt0 �= ∅ in the case W = 0.
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