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THE STRUCTURE OF REACHABLE SETS FOR AFFINE CONTROL SYSTEMS
INDUCED BY GENERALIZED MARTINET SUB-LORENTZIAN METRICS

Marek Grochowski1,2

Abstract. In this paper we investigate analytic affine control systems q̇ = X + uY , u ∈ [a, b], where
X, Y is an orthonormal frame for a generalized Martinet sub-Lorentzian structure of order k of Hamil-
tonian type. We construct normal forms for such systems and, among other things, we study the
connection between the presence of the singular trajectory starting at q0 on the boundary of the reach-
able set from q0 with the minimal number of analytic functions needed for describing the reachable set
from q0.
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1. Introduction

1.1. Preliminaries

In this paper we continue the study of non-contact sub-Lorentzian structures on R
3 initiated in [9]. Addition-

ally, we will apply the sub-Lorentzian geometry methods to the study of certain control affine systems, more
precisely to their reachable sets. The main purpose of the present work is to establish the connection between
the structure of the reachable set from q0 and the geometric optimality of the singular trajectory starting at q0
(a trajectory of a control system starting from a point q0 is called geometrically optimal if it is entirely contained
in the boundary of the reachable set from q0 – cf. [1]). We also aim at providing an ’algorithm’ for computing
reachable sets in cases under consideration.

To start with, let us recall some basic facts and notions from the sub-Lorentzian geometry and affine control
systems that will allow us to state main results of the paper. Let H be a smooth distribution of constant rank
on a smooth manifold M . For a point q ∈M and a positive integer k let us denote by Hk

q the span of all vectors
of the form

[X1, [X2, . . . , [Xi−1, Xi] . . .]](q),

where X1, . . . , Xi are smooth local sections of H defined near q, i ≤ k. We say that the distribution H is bracket
generating if for every q ∈M there exists a positive integer i = i(q) such that Hi

q = TqM . By a sub-Lorentzian
structure on a manifold M we mean a couple (H, g) where H is a smooth bracket generating distribution on M
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and g is a smooth Lorentzian metric on H (not every distribution admits Lorentzian metrics – see [7]). A triple
(M,H, g), where M is a manifold and (H, g) is a sub-Lorentzian structure on M , is called a sub-Lorentzian
manifold.

Fix a sub-Lorentzian manifold (M,H, g). A vector v ∈ Hq is called timelike if g(v, v) < 0, is called nonspacelike
if g(v, v) ≤ 0, and is called null if g(v, v) = 0 and v �= 0. Using the terminology from the Lorentzian geometry,
a continuous timelike vector field on M is called a time orientation of (H, g). If such a field is given then we
say that (M,H, g) is time-oriented. We will assume our (M,H, g) to be time-oriented by a vector field X . A
nonspacelike v ∈ Hq is said to be future directed if g(v,X(q)) < 0. To describe the geometry of (M,H, g) we
will consider the so-called horizontal curves: a curve γ : [α, β] −→ M is called horizontal if it is absolutely
continuous and γ̇(t) ∈ Hγ(t) a.e. on [α, β] (for technical reasons we also usually assume γ̇ to be square integrable
with respect to some Riemannian metric on M). A horizontal curve γ : [α, β] −→M is timelike (resp. timelike
future directed, nonspacelike, nonspacelike future directed, null, null future directed) if so its tangent γ̇(t) a.e.
on [α, β].

From now on, unless otherwise stated, all vectors, vector fields and curves are supposed to be horizontal,
i.e. tangent (resp. a.e. tangent) to H . We will also use the following abbreviations: t. for ’timelike’, nspc. for
‘nonspacelike’, and f.d. for ‘future directed’. Thus e.g. a t.f.d. curve is a horizontal curve which is timelike future
directed.

Fix a point q0 ∈M and a neighbourhood U ⊂M of q0. By J+(q0, U) (resp. I+(q0, U), N+(q0, U)) we denote
the (future) nonspacelike (resp. timelike, null) reachable set (in U) from q0 which is defined to be the set of
all points q ∈ U that can be reached from q0 by a nspc.f.d. (resp. t.f.d., null f.d.) curve contained in U . If
U is a normal neighbourhood of q0 (see the definition below) then it can be proved that J+(q0, U) is closed
with respect to U . Moreover, the three reachable sets have identical closures and interiors in U . In particular
∂̃J+(q0, U) = ∂̃I+(q0, U) = ∂̃N+(q0, U); here and below, in cases where we have a fixed open set U , we will use
∂̃ to denote the boundary with respect to U .

In this paper we will also cope with affine control systems in R
3 with a scalar input, i.e. with control systems

of the form
q̇ = X + uY , u ∈ [a, b], (1.1)

where X , Y are linearly independent vector fields defined on a neighbourhood U of a given point q0, and a, b ∈ R,
a < b. For such systems we also consider three types of reachable sets. More precisely, we define A[a,b](q0, U)
(resp. A(a,b)(q0, U), A{a,b}(q0, U)) to be the set of endpoints of all trajectories of (1.1) that start from q0, are
generated by measurable controls u : [0, T ] −→ [a, b] (resp. u : [0, T ] −→ (a, b), u : [0, T ] −→ {a, b}), and are
contained in U ; here the final time T is not fixed and depends on a control u.

It was mentioned e.g. in [8, 9] that studying reachable sets for the affine control system q̇ = X + uY ,
−1 ≤ u ≤ 1, is equivalent to studying reachable sets for the suitable time-oriented sub-Lorentzian structure,
namely the one determined by an orthonormal frame X , Y with a time orientation X . We recall this reasoning
since it is crucial for further considerations.

Lemma 1.1. Let (H, g) be a time-oriented sub-Lorentzian structure defined on an open set U . Suppose moreover
that X, Y is an orthonormal frame for (H, g) with a time orientation X. Then nspc.f.d. curves contained in U
are, up to a change of parameter, trajectories of the affine control system q̇ = X + uY , |u| ≤ 1.

Proof. Indeed, all trajectories of q̇ = X + uY , |u| ≤ 1, are evidently nspc.f.d. Let, on the other hand, γ :
[0, T ] −→ U be nspc.f.d. Then γ̇(t) = v0(t)X + v1(t)Y , where −v2

0(t) + v2
1(t) ≤ 0 and v0(t) > 0 a.e. on

[0, T ]. Let β(t) =
∫ t

0
v0(τ)dτ . Clearly, β : [0, T ] −→ [0, T1], T1 =

∫ T

0
v0(τ)dτ , is an increasing function. Denote

by α : [0, T1] −→ [0, T ] the inverse function, and let γ1 : [0, T1] −→ U be defined by γ1(t) = γ(α(t)). Now
γ̇1(t) = X + v1(α(t))

v0(α(t))Y , where
∣∣∣v1(α(t))
v0(α(t))

∣∣∣ ≤ 1 as required. �

Now we will extend this observation to general systems as in (1.1). More precisely, as we shall see in Lemma 1.2
below, the study of reachable sets for (1.1) is equivalent to the study of reachable sets for the sub-Lorentzian
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structure (H, ga,b) defined on U by declaring the fields

Za,b = X +
1
2
(b+ a)Y

W a,b =
1
2
(b− a)Y (1.2)

to be an orthonormal basis for (H, ga,b) with a time orientation Za,b. We will refer to the structure (H, ga,b) as
to the sub-Lorentzian structure induced by the system (1.1).

Lemma 1.2. The reachable set A[a,b](q0, U) (resp. A(a,b)(q0, U), A{a,b}(q0, U)) coincides with the future non-
spacelike (resp. timelike, null) reachable set from q0 for the sub-Lorentzian structure (H, ga,b) defined above.

Proof. Suppose that γ : [0, T ] −→ U is nspc.f.d. with respect to (H, ga,b). According to Lemma 1.1, after a
change of parameterization γ̇ = Za,b + u(t)W a,b = X + 1

2 (b+ a+ (b− a)u(t))Y , where t ∈ [0, T1] for suitable T1

and −1 ≤ u(t) ≤ 1 a.e. It is seen that a ≤ 1
2 (b + a+ (b − a)u(t)) ≤ b a.e. on [0, T1], therefore γ is a trajectory

of (1.1). Now suppose that γ : [0, T ] −→ U is a trajectory of (1.1), that is to say γ̇ = X + u(t)Y , a ≤ u(t) ≤ b
a.e. To show that γ is nspc.f.d. with respect to (H, ga,b), it is enough to find ũ(t), −1 ≤ ũ(t) ≤ 1 for t ∈ [0, T ],
such that X + u(t)Y = Za,b + ũ(t)W a,b. Such a ũ(t) is given by ũ(t) = 2u(t)−a−b

b−a . �

To simplify the computation of A[a,b](q0, U) (resp. A(a,b)(q0, U), A{a,b}(q0, U)), we will need a special type
of neighbourhoods of a point q0 which is a generalization of a concept of normal neighbourhoods in the sub-
Lorentzian geometry (cf. [9]). So suppose that the system (1.1) is given on a bounded neighbourhood G of a
point q0. Let f : G −→ R be such a smooth function that f(q0) = 0, X(f)(q0) = 1, Y (f)(q0) = 0. Setting
c = max {|a| , |b|} we can suppose that, after shrinking G

inf {X(f)(q) : q ∈ G} > c sup {|Y (f)(q))| : q ∈ G} . (1.3)

(1.3) of course implies that f increases along trajectories of (1.1). Indeed, if γ̇ = X(γ(t)) + u(t)Y (γ(t)), then
d
dtf(γ(t)) = X(f)(γ(t)) + u(t)Y (f)(γ(t)) ≥ X(f)(γ(t)) − c |Y (f)(γ(t))| > 0. Now fix a sufficiently small δ > 0
and set U = G ∩ {f < δ}. U has the following property: if γ : [0, T ] −→ G is a trajectory of (1.1) starting
from γ(0) ∈ U and there exists a t ∈ (0, T ) such that γ(t) ∈ ∂U then one can find an ε > 0 for which
γ((t, t+ε)) ⊂ G\U . The set U just constructed will be called a normal neighbourhood of q0 for the system (1.1).

Now, by a normal neighbourhood of q0 with respect to (H, g) we mean a normal neighbourhood of q0 for
a corresponding affine control system inducing (H, g) (note that such neighbourhoods can be used to prove
theorems on reachable sets instead of normal neighbourhoods in the sub-Lorentzian sense, as defined in the
previous papers by the author – cf. appendix in [9]).

One of the consequences of Lemma 1.2 is that the set A[a,b](q0, U) is closed with respect to U , pro-
vided that U is a normal neighbourhood of q0 (see [7]; note that this fact does not follow from stan-
dard theorems on closures of reachable sets that can be found e.g. in [5]). We also have A[a,b](q0, U) =
clU (intA(a,b)(q0, U)) = clU (intA{a,b}(q0, U)), where clU stands for the closure with respect to U , and
intA[a,b](q0, U)) = intA(a,b)(q0, U)) = intA{a,b}(q0, U).

1.2. Statement of the results

In the paper [9] Martinet sub-Lorentzian structures of Hamiltonian type on R
3 were studied. Let us recall

that a rank 2 distribution H defined on an open set U ⊂ R
3 is called a Martinet distribution if there exists

a smooth hypersurface S in U (the so-called Martinet surface for H) with the following properties: (i) H is a
contact structure on U\S, (ii) dim (TqS ∩Hq) = 1 for every q ∈ S, (iii) H2

q ⊂ Hq and H3
q = TqR

3 whenever
q ∈ S. Let us also recall that the surface S is foliated by horizontal curves – trajectories of the nonsingular line
field on S: S 	 q −→ TqS ∩Hq, and that these curves are abnormal (see [12] for definition). Note that Martinet
distributions are the simplest ones among all bracket generating non-contact distributions on R

3; it can also
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be proved [14] that germs of Martinet distributions are stable. A sub-Lorentzian structure (H, g) is called a
Martinet sub-Lorentzian structure if the mentioned line field on S is timelike.

In this moment, in order to be able to proceed further, we must state a definition of so-called Hamiltonian
geodesics. To this end, let (M,H, g) be a sub-Lorentzian manifold, and let X0, . . . , Xk be an orthonormal
frame for (H, g) defined on an open set U , where X0 is a time orientation. Let H : T ∗U −→ R be given
as H(q, p) = − 1

2 〈p,X0(q)〉2 + 1
2 〈p,X1(q)〉2 + . . . + 1

2 〈p,Xk(q)〉2; H is called the geodesic Hamiltonian (note
that H admits also a global definition – cf. [7]). Denote by Φt the (local) flow of

−→H, the Hamiltonian vector
field corresponding to H. A curve γ : [a, b] −→ U is said to be a Hamiltonian geodesic if it is of the form
γ(t) = π ◦ Φt(q0, p0), where π : T ∗U −→ R is the canonical projection. It can be proved that Hamiltonian
geodesics preserve their causal character (i.e. if a Hamiltonian geodesic is t.f.d. (resp. null f.d.) at a moment
t = t0, then it is t.f.d. (resp. null f.d.) for every t) and are locally length maximizing. Null f.d. Hamiltonian
geodesics are also locally geometrically optimal (cf. [7]).

Now, a Martinet sub-Lorentzian structure is called of Hamiltonian type if, in addition, the abnormal curves
are, up to a change of parameter, t.f.d. Hamiltonian geodesics.

We will generalize the notion of Martinet sub-Lorentzian structures of Hamiltonian type in the following way.
Let k be a positive integer and let H be a bracket generating distribution defined on an open set U ⊂ R

3. We
will say that H satisfies the condition (Mk) if there exists a smooth hypersurface S in U such that

(Mk)
(i) H defines a contact structure on U\S;
(ii) dim (TqS ∩Hq) = 1 for every q ∈ S;
(iii) H l

q ⊂ Hq, 1 ≤ l ≤ k, and Hk+1
q = TqR

3 whenever q ∈ S.
It is clear that the condition (M2) is simply a definition of Martinet distributions. It is also clear that a

(germ of a) distribution satisfying (Mk), k ≥ 3, is not stable. It is seen e.g. by considering the following family
of distributions: Hε = ker

(
dz − (y2 − ε

)
(ydx− xdy)

)
for real ε: H0 obeys the condition (M3), while Hε does

not for ε �= 0. Although not stable, such structures seem to be interesting due to the results concerning the
structure of reachable sets proved below. The surface S appearing in the condition (Mk) will be called the
Martinet surface for H .

Now, by a (generalized) Martinet sub-Lorentzian structure of order k we mean a sub-Lorentzian structure
(H, g) defined on an open set U ⊂ R

3 such that H satisfies the condition (Mk), k ≥ 2, and g is such that the
trajectories of the line field S 	 q −→ TqS∩Hq, i.e. the abnormal curves foliating S, are timelike. If, in addition,
the abnormal curves are, up to a change of parameterization, t.f.d. Hamiltonian geodesics, then we say that
(H, g) is of Hamiltonian type. By an analytic structure we mean a structure where all the data appearing in its
definition, including the Martinet surface, are analytic.

The aim of this paper is to study the structure of reachable sets for affine control systems of the form

q̇ = X + uY , u ∈ [a, b],

where (Span{X,Y }, g) is an analytic Martinet sub-Lorentzian structure of order k of Hamiltonian type, g is
such that X , Y is an orthonormal basis for g, and X is a time orientation such that X(q) ∈ TqS for every q ∈ S,
S being the Martinet surface for Span{X,Y }. In order to be able to compute reachable sets for the mentioned
systems we must transform the fields X , Y into a more convenient form. This is done in the following theorem.

Theorem 1.3. Let (H, g) be an analytic time-oriented generalized Martinet sub-Lorentzian structure of order
k of Hamiltonian type, defined on a neighbourhood U of the origin in R

3. Then, supposing that U is sufficiently
small, there exist analytic coordinates x, y, z on U such that (H, g) admits an orthonormal frame in the following
normal form

X =
∂

∂x
+ yϕ

(
y
∂

∂x
+ x

∂

∂y

)
+

1
2
yk(1 + ψ)

∂

∂z

Y =
∂

∂y
− xϕ

(
y
∂

∂x
+ x

∂

∂y

)
− 1

2
xyk−1(1 + ψ)

∂

∂z
, (1.4)
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where S = {y = 0} is the Martinet surface for H, X is a time orientation such that X|S is tangent to S, and
ϕ, ψ are analytic functions on U satisfying ψ(0, 0, z) = 0.

Note that Theorem 1.3 contains normal forms for contact sub-Lorentzian structures from [6] (the case k = 1)
as well as normal forms for Martinet sub-Lorentzian structures of Hamiltonian type (this is for k = 2) from [9]
(compare it with normal forms for sub-Riemannian structures – see [2]).

Using normal forms (1.4) we then investigate the structure of reachable sets for the system (1.1), depending
on the parity of k, and the signs of a and b. More precisely, we have two theorems.

Theorem 1.4. Consider the system (1.1) defined on a normal neighbourhood U of the origin, where X and Y
are given by the formula (1.4). Fix two numbers a, b ∈ R, a < b. If (i) k is odd and a, b are arbitrary or (ii) k
is even and a, b are either both nonpositive or both nonnegative then, provided that U is sufficiently small, there
exist analytic functions ηa,b

1 , ηa,b
2 on U such that

A[a,b](0, U) = A{a,b}(0, U) = A1 ∪A2,
A(a,b)(0, U) = int (A1 ∪A2) ,

where
A1 =

{
(x, y, z) ∈ U : ηa,b

1 (x, y, z) ≤ 0
}
∩ {x ≥ 0, z ≥ 0},

A2 =
{
(x, y, z) ∈ U : ηa,b

2 (x, y, z) ≤ 0
}
∩ {x ≥ 0, z ≤ 0}.

In particular the three reachable sets are semi-analytic.

Theorem 1.5. Consider the system (1.1) defined on a normal neighbourhood U of the origin, where X and Y
are given by the formula (1.4) and the number k appearing there is even. Fix two numbers a, b ∈ R, a < 0 < b, and
suppose that U is sufficiently small. Then there exist analytic functions ηa,b

1 , . . . , ηa,b
4 on U , and a 2-dimensional

semi-analytic set Σ with the property that U ∩ {x ≥ 0} \Σ has two connected components which we will denote
by Σ+, Σ−, such that

A[a,b](0, U) = A1 ∪ . . . ∪A4,
A(a,b)(0, U) = int (A1 ∪ . . . ∪A4) ∪A5,

A{a,b}(0, U) = int (A1 ∪ . . . ∪A4) ∪ ∂̃ (A1 ∪A2) \A5

where
A1 =

{
(x, y, z) ∈ U : ηa,b

1 (x, y, z) ≤ 0
}
∩Σ+ ∩ {z ≥ 0},

A2 =
{
(x, y, z) ∈ U : ηa,b

2 (x, y, z) ≤ 0
}
∩Σ− ∩ {z ≥ 0},

A3 =
{
(x, y, z) ∈ U : ηa,b

3 (x, y, z) ≤ 0
}
∩ {x ≥ 0, y ≥ 0} ∩ {z ≤ 0},

A4 =
{
(x, y, z) ∈ U : ηa,b

4 (x, y, z) ≤ 0
}
∩ {x ≥ 0, y ≤ 0} ∩ {z ≤ 0},

A5 = {(x, 0, 0) ∈ U : x ≥ 0}.
In particular, the three reachable sets are semi-analytic.

Obviously, the set A5 is the set of points of the abnormal curve (with respect to the distribution H) starting
from 0.

The presented results explain the connection between the presence on ∂̃A[a,b](q0, U) of the abnormal curve
starting from q0 and generated by a control u(t) ∈ (a, b), with the minimal number of analytic functions
necessary for describing reachable sets from q0. The formulation of Theorems 1.4, 1.5 (but not proofs) would
simplify if we introduced the notion of singular trajectories (see [4]) for the system (1.1). In our situation, i.e.
X,Y are given by (1.4), the singular trajectory is just the abnormal curve, provided that 0 ∈ (a, b). If 0 /∈ (a, b)
then the system (1.1) has no singular trajectories. Using this notion we can conclude that
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Corollary 1.6. Whenever the singular trajectory starting at q0 lies on the boundary ∂̃A[a,b](q0, U) then the
minimal number of analytic functions needed to describe A[a,b](q0, U) is four. On the other hand, if the singular
trajectory starting at q0 lies in the interior of A[a,b](q0, U) or there are no singular trajectories, then two analytic
functions suffice to describe A[a,b](q0, U).

Corollary 1.6 can be also reformulated in a more geometric language as follows.

Corollary 1.7. Whenever the singular trajectory starting at q0 lies on the boundary ∂̃A[a,b](q0, U) then the
minimal number of 2-dimensional strata in any analytic stratification of ∂̃A[a,b](q0, U) is equal to four. On the
other hand, if the singular trajectory starting at q0 lies in the interior of A[a,b](q0, U) or there are no singular
trajectories, then there exists an analytic stratification of ∂̃A[a,b](q0, U) containing two 2-dimensional strata.

1.3. Organization of the paper

In Section 2 we compute reachable sets in the flat case. The proof of Theorem 1.3 is given in Section 3. In
Section 4 we prove Theorems 1.4 and 1.5. In Section 5 we prove some facts concerning sub-Lorentzian structures
(H, ga,b), which are corollaries of Theorems 1.3–1.5. So we study the continuity of the sub-Lorentzian distance
for the structures (H, ga,b). We also compute the set reachable by Hamiltonian geodesics and give some results on
conjugate and cut loci. Section 6 presents two more possible applications of normal forms (1.4). In Appendix A
we construct other normal forms for generalized Martinet sub-Lorentzian structures of Hamiltonian type. In
Appendix B we make some comments concerning sub-Lorentzian structures where the distribution is tangent
to its Martinet surface in a single point.

2. Reachable sets in the flat case

In this section, by (Ĥ, ĝ) we will denote the flat generalized Martinet sub-Lorentzian structure of order k
which, by definition, is given by an orthonormal frame in the form

X̂ =
∂

∂x
+

1
2
yk ∂

∂z

Ŷ =
∂

∂y
− 1

2
xyk−1 ∂

∂z
(2.1)

with a time orientation X̂ and k > 2. We see that (2.1) is obtained from (1.4) by setting ϕ and ψ to zero. It
is also easy to see that the flat structure is of Hamiltonian type. As it was said in the introduction, we will
compute reachable sets for the affine control system

q̇ = X̂ + uŶ , u ∈ [a, b], (2.2)

for arbitrarily fixed a, b ∈ R, a < b. The corresponding reachable sets for (2.2) we will denote by Â[a,b](0) =
Â[a,b](0,R3), Â(a,b)(0) = Â(a,b)(0,R3), Â{a,b}(0) = Â{a,b}(0,R3). As we know from Lemma 1.2, the investigation
of (2.2) and its reachable sets is equivalent to the study of the following time-oriented sub-Lorentzian structure
(Ĥ, ĝa,b) defined on R

3 by declaring the fields

Ẑa,b = X̂ +
1
2
(b + a)Ŷ

Ŵ a,b =
1
2
(b − a)Ŷ

to be an orthonormal basis for (Ĥ, ĝa,b) with a time orientation Ẑa,b.
To proceed further, let us define two hypersurfaces

Γ a,b
1 = {(x, bx, z) : x, z ∈ R}
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and
Γ a,b

2 = {(x, ax, z) : x, z ∈ R} .

Looking at the system (2.2) it is seen that

Â[a,b](0) ⊂ {(x, y, z) : ax ≤ y ≤ bx} (2.3)

and
Â(a,b)(0) ⊂ {(x, y, z) : ax < y < bx} . (2.4)

Below we will consider two cases, depending on the parity of k, but before we do it we will state one
more definition. Let (M,H, g) be a sub-Lorentzian manifold. Let U be an open subset of M and suppose that
f : U −→ R is a smooth function. By the horizontal gradient of f we mean a vector field denoted by ∇Hf and
defined with the formula v(f) = g(v,∇Hf(q)) for every q ∈ U , v ∈ Hq. If X0, . . . , Xk is an orthonormal basis for
(H, g) defined on U with X0 timelike, then it can be shown that ∇Hf = −X0(f)X0 +X1(f)X1 + . . .+Xk(f)Xk.
It is clear that if ∇Hf is null f.d. and γ : [a, b] −→ U is nspc.f.d. then the function t −→ f(γ(t)) is nonincreasing
(see the previous papers by the author for more properties of ∇Hf and its possible applications).

2.1. The case k = 2l + 1

We start with the simpler case, i.e. for k being an odd positive integer.

Proposition 2.1. Consider the affine control system (2.2) defined on R
3. Suppose that a < b and a, b �= 0.

Then
Â[a,b](0) = Â{a,b}(0) = Â1 ∪ Â2 (2.5)

and
Â(a,b)(0) = int(Â1 ∪ Â2), (2.6)

where

Â1 =
{

(x, y, z) ∈ R
3 : z − 1

2ka
(y − ax)

(
yk − bk

(b− a)k
(y − ax)k

)
≤ 0
}
∩ {x ≥ 0, z ≥ 0},

Â2 =
{

(x, y, z) ∈ R
3 : − z − 1

2kb
(bx− y)

(
yk − ak

(b− a)k
(bx− y)k

)
≤ 0
}
∩ {x ≥ 0, z ≤ 0}.

To motivate the construction below, let us notice that the z-coordinate of

Ẑa,b − Ŵ a,b = X̂ + aŶ =
∂

∂x
+ a

∂

∂y
+

1
2
yk−1(y − ax)

∂

∂z
(2.7)

is positive, while the the z-coordinate of

Ẑa,b + Ŵ a,b = X̂ + bŶ =
∂

∂x
+ b

∂

∂y
+

1
2
yk−1(y − bx)

∂

∂z
(2.8)

is negative, everything in the sector {ax < y < bx}. It means that the trajectories of Ẑa,b − Ŵ a,b (resp. Ẑa,b +
Ŵ a,b) starting from {y = bx, z = 0} (resp. from {y = ax, z = 0}) enter the half-space {z > 0} (resp. {z < 0}).
Having this in mind, and following [8], we consider two Cauchy problems:

(X̂ + aŶ )(η) = 0, η|Γ a,b
1

(x, bx, z) = z, (2.9)

and
(X̂ + bŶ )(η) = 0, η|Γ a,b

2
(x, ax, z) = −z. (2.10)
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After simple computations we find that

η̂a,b
1 (x, y, z) = z − 1

2ka
(y − ax)

(
yk − bk

(b− a)k
(y − ax)k

)
(2.11)

is the solution to (2.9), and

η̂a,b
2 (x, y, z) = −z − 1

2kb
(bx− y)

(
yk − ak

(b− a)k
(bx− y)k

)
(2.12)

is the solution to (2.10). We will compute the horizontal gradient ∇Ĥa,b η̂
a,b
i of the function η̂a,b

i , i = 1, 2, with
respect to the structure (Ĥ, ĝa,b) . Making use of (2.9) and (2.10) we have

∇Ĥa,b η̂
a,b
1 = −Ẑa,b(η̂a,b

1 )(Ẑa,b − Ŵ a,b) (2.13)

and
∇Ĥa,b η̂

a,b
2 = −Ẑa,b(η̂a,b

1 )(Ẑa,b + Ŵ a,b). (2.14)

Now

Ẑa,b(η̂a,b
1 ) =

k + 1
4k

(y − bx)

(
yk−1 + yk−2 b (ax− y)

a− b
+ . . .+ y

(
b (ax− y)
a− b

)k−2

+
(
b (ax− y)
a− b

)k−1
)

,

where the first and the third term is positive (recall that k = 2l + 1) and the second term is negative in the
sector {ax < y < bx}. Therefore Ẑa,b(η̂a,b

1 ) < 0, and ∇Ĥa,b η̂
a,b
1 is future directed in the mentioned sector. In the

similar way we obtain

Ẑa,b(η̂a,b
2 ) = −k + 1

4k
(y − ax)

(
yk−1 + yk−2 a (bx− y)

b− a
+ . . .+ y

(
a (bx− y)
b− a

)k−2

+
(
a (bx− y)
b− a

)k−1
)

proving that ∇Ĥa,b η̂
a,b
2 is future directed in the sector {ax < y < bx}.

Now, by (2.3), (2.4), the reasoning is the same as in e.g. [9]. Since for every curve γ : [0, T ] −→ R
3 which is

nspc.f.d. (resp. t.f.d.) with respect the structure (Ĥ, ĝa,b), the function t −→ η̂a,b
i (γ(t)) is nonincreasing (resp.

decreasing), i = 1, 2, it follows that A[a,b](0) ⊂ Â1 ∪ Â2 and A(a,b)(0) ⊂ int(Â1 ∪ Â2). To prove the reverse
inclusion, take a point q ∈ Â1∪Â2 and send the trajectory of the field −Ẑa,b from q. Sooner or later we will reach
the boundary ∂(Â1 ∪ Â2) which, by our construction, is made up of null f.d. curves starting from the origin. To
be more precise ∂(Â1 ∪ Â2)∩ {z > 0} is made up of trajectories of Ẑa,b − Ŵ a,b that start from {y = bx, z = 0},
and ∂(Â1 ∪ Â2) ∩ {z < 0} is made up of trajectories of Ẑa,b + Ŵ a,b that start from {y = ax, z = 0}. Thus
A[a,b](0) = Â1 ∪ Â2 and the other claims in (2.5), (2.6) follow now from properties of reachable sets – see [7].

It remains to consider two cases: a = 0 < b and a < b = 0.

Proposition 2.2. Under the same assumptions as in Proposition 2.1, except that a = 0 < b, the formulas

Â[0,b](0) = Â{0,b}(0) = Â1 ∪ Â2

Â(0,b)(0) = int(Â1 ∪ Â2)

hold true, where

Â1 =
{

(x, y, z) ∈ R
3 : z − 1

2b
yk(bx− y) ≤ 0

}
∩ {x ≥ 0, z ≥ 0},

Â2 =
{

(x, y, z) ∈ R
3 : − z − 1

2kb
yk(bx− y) ≤ 0

}
∩ {x ≥ 0, z ≤ 0}.
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Proposition 2.3. Under the same assumptions as in Proposition 2.1, except that a < b = 0, the formulas

Â[a,0](0) = Â{a,0}(0) = Â1 ∪ Â2

Â(a,0)(0) = int(Â1 ∪ Â2)

hold true, where

Â1 =
{

(x, y, z) ∈ R
3 : z +

1
2ka

yk(ax− y) ≤ 0
}
∩ {x ≥ 0, z ≥ 0},

Â2 =
{

(x, y, z) ∈ R
3 : − z +

1
2a
yk(ax− y) ≤ 0

}
∩ {x ≥ 0, z ≤ 0}.

To prove Propositions 2.2, 2.3 we obviously use the same method as in the proof of Proposition 2.1. Take for
instance Proposition 2.2. Noting that Ẑ0,b − Ŵ 0,b = X̂ , Ẑ0,b + Ŵ 0,b = X̂ + bŶ , we see that the z-coordinate of
Ẑ0,b−Ŵ 0,b is positive, while the z-coordinate of Ẑ0,b+Ŵ 0,b is negative, both facts taking place in {0 < y < bx}.
Hence we consider two Cauchy problems:

X̂(η) = 0, η|Γ 0,b
1

(x, bx, z) = z (2.15)

and
(X̂ + bŶ )(η) = 0, η|Γ 0,b

2
(x, 0, z) = −z. (2.16)

The solution to (2.15) is

η̂0,b
1 (x, y, z) = z − 1

2b
yk(bx− y),

and the solution to (2.16) is

η̂0,b
2 (x, y, z) = −z − 1

2kb
yk(bx− y).

Evidently
∇Ĥ0,b η̂1 = −Ẑ0,b(η̂0,b

1 )(Ẑ0,b − Ŵ 0,b),

and in the sector {0 < y < bx}

Ẑ0,b(η̂0,b
1 ) = −1

4
(k + 1) yk−1 (bx− y) < 0

meaning that ∇Ĥ0,b η̂
0,b
1 is null f.d. in this sector. Similarly

∇Ĥ0,b η̂
0,b
2 = −Ẑ0,b(η̂0,b

1 )(Ẑ0,b + Ŵ 0,b)

with
Ẑ0,b(η̂0,b

2 ) = −k + 1
4k

yk

again meaning that ∇Ĥ0,b η̂
0,b
2 is null f.d. in the sector {0 < y < bx}. Having in mind (2.3), (2.4), we continue

exactly as in the proof of the previous proposition.
Applying once more the above procedure, this time to the case a < b = 0, we construct the functions

η̂a,0
1 (x, y, z) = z +

1
2ka

yk(ax− y),

η̂a,0
2 (x, y, z) = −z +

1
2a
yk(ax− y).

appearing in the hypothesis of Proposition 2.3.
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Corollary 2.4. The reachable sets for the structure (Ĥ, ĝ) with k being an odd positive integer are as follows:

J+(0) = N+(0) = {η1 ≤ 0, x ≥ 0, z ≥ 0} ∪ {η2 ≤ 0, x ≥ 0, z ≤ 0}
I+(0) = intJ+(0) = {η1 < 0, x ≥ 0, z ≥ 0} ∪ {η2 < 0, x ≥ 0, z ≤ 0} ,

where

η̂1(x, y, z) = z +
1
2k

(x + y)
(
yk − (x + y)k

2k

)
,

η̂2(x, y, z) = −z − 1
2k

(x− y)
(
yk +

(x− y)k

2k

)
.

2.2. The case k = 2l

This case is a little more complicated, since the structure of reachable sets will essentially depend on whether
0 belongs to (a, b) or does not.

First of all let us consider the case 0 < a < b.

Proposition 2.5. Let 0 < a < b. Then the reachable sets for (2.2) have the form

Â[a,b](0) = Â{a,b}(0) = Â1 ∪ Â2 (2.17)

and
Â(a,b)(0) = int(Â1 ∪ Â2), (2.18)

where

Â1 =
{

(x, y, z) ∈ R
3 : z − 1

2ka
(y − ax)

(
yk − bk

(b− a)k
(y − ax)k

)
≤ 0
}
∩ {x ≥ 0, z ≥ 0},

Â2 =
{

(x, y, z) ∈ R
3 : − z − 1

2kb
(bx− y)

(
yk − ak

(b− a)k
(bx− y)k

)
≤ 0
}
∩ {x ≥ 0, z ≤ 0}.

Proof. By (2.7), (2.8) we see that as in the case of Proposition 2.1 the z-coordinate of the field Ẑa,b − Ŵ a,b =
X̂+aŶ is positive, while the z-coordinate of the field Ẑa,b +Ŵ a,b = X̂+bŶ is negative, everything in the sector
{ax < y < bx}. It terminates the proof since evidently the same formulas as in Proposition 2.1 hold true. �

Now consider the case a < b < 0.

Proposition 2.6. Let a < b < 0. Then the reachable sets for (2.2) have the form

Â[a,b](0) = Â{a,b}(0) = Â1 ∪ Â2 (2.19)

and
Â(a,b)(0) = int(Â1 ∪ Â2), (2.20)

where

Â1 =
{

(x, y, z) ∈ R
3 : − z +

1
2ka

(y − ax)
(
yk − bk

(b− a)k
(y − ax)k

)
≤ 0
}
∩ {x ≥ 0, z ≤ 0},

Â2 =
{

(x, y, z) ∈ R
3 : z +

1
2kb

(bx− y)
(
yk − ak

(b− a)k
(bx− y)k

)
≤ 0
}
∩ {x ≥ 0, z ≥ 0}.

This time, by (2.7) and (2.8), we conclude that the z -coordinate of Ẑa,b − Ŵ a,b = X̂ + aŶ is negative,
while the z-coordinate of Ẑa,b + Ŵ a,b = X̂ + bŶ is positive, everything in the sector {ax < y < bx}. It suggests
considering the following Cauchy problems:

(X̂ + aŶ )(η) = 0, η|Γ a,b
1

(x, bx, z) = −z (2.21)
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and
(X̂ + bŶ )(η) = 0, η|Γ a,b

2
(x, ax, z) = z. (2.22)

An easy computation shows that

η̂a,b
1 (x, y, z) = −z +

1
2ka

(y − ax)
(
yk − bk

(b − a)k
(y − ax)k

)

is the solution to (2.21), and

η̂a,b
2 (x, y, z) = z +

1
2kb

(bx− y)
(
yk − ak

(b− a)k
(bx− y)k

)

is the solution to (2.22). Next we find that

Ẑa,b(η̂a,b
1 ) = − k + 1

4k (a− b)
(y − bx) ((a− b)y + b(ax− y))G1,

with

G1 = yk−2 + yk−4

(
b (ax− y)
a− b

)2

+ . . .+ y2

(
b (ax− y)
a− b

)k−4

+
(
b (ax− y)
a− b

)k−2

· (2.23)

Similarly

Ẑa,b(η̂a,b
2 ) = − k + 1

4k (a− b)
(ax− y) ((a− b) y − a (bx− y))G2

with

G2 = yk−2 + yk−4

(
(bx− y) a
a− b

)2

+ . . .+ y2

(
(bx− y)a
a− b

)k−4

+
(

(bx− y)a
a− b

)k−2

· (2.24)

By (2.13), (2.14) and (2.3), (2.4) we see that ∇Ĥa,b η̂
a,b
1 and ∇Ĥa,b η̂

a,b
2 are null f.d. in {ax < y < bx}, so the

procedure used in the previous subsection ends the proof of Proposition 2.6.
Similar results, i.e. two functions describing reachable sets but with different formulas, hold in two further

cases, namely 0 = a < b and a < b = 0.

Proposition 2.7. Let 0 = a < b. Then the reachable sets for (2.2) have the form

Â[0,b](0) = Â{0,b}(0) = Â1 ∪ Â2 (2.25)

and
Â(0,b)(0) = int(Â1 ∪ Â2), (2.26)

where

Â1 =
{

(x, y, z) ∈ R
3 : z − 1

2b
yk(bx− y) ≤ 0

}
∩ {x ≥ 0, z ≥ 0},

Â2 =
{

(x, y, z) ∈ R
3 : − z − 1

2kb
yk(bx− y) ≤ 0

}
∩ {x ≥ 0, z ≤ 0}.

Proof. The z-coordinates of the fields Ẑ0,b − Ŵ 0,b = X̂, Ẑ0,b + Ŵ 0,b = X̂ + bŶ are exactly the same as in the
case of Proposition 2.2. �

Proposition 2.8. Let a < b = 0. Then the reachable sets for (2.2) have the form

Â[a,0](0) = Â{a,0}(0) = Â1∪
Â(a,0)(0) = int(Â1 ∪ Â2),
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where

Â1 =
{

(x, y, z) ∈ R
3 : − z − 1

2ka
yk(ax− y) ≤ 0

}
∩ {x ≥ 0, z ≤ 0},

Â2 =
{

(x, y, z) ∈ R
3 : z − 1

2a
yk(ax− y) ≤ 0

}
∩ {x ≥ 0, z ≥ 0}.

Proof. Looking at the signs of z-coordinates of the fields Ẑa,0 − Ŵ a,0 = X̂ + aŶ , Ẑa,0 + Ŵ a,0 = X̂ in the sector
{ax < y < 0}, we deduce that the appropriate Cauchy problems to consider are

(X̂ + aŶ )(η) = 0, η|Γ a,0
1

(x, 0, z) = −z

with the solution equal to

η̂a,0
1 (x, y, z) = −z − 1

2ka
yk(ax− y),

and
X̂(η) = 0, η|Γ a,0

1
(x, ax, z) = z

with the solution equal to

η̂a,0
2 (x, y, z) = z − 1

2a
yk(ax− y).

It remains to check whether ∇Ĥa,0 η̂
a,0
i ’s are suitably directed. By (2.13), (2.14) it suffices to ensure that

Ẑa,0(η̂a,0
1 ) = −1 + k

4k
yk < 0,

and

Ẑa,0(η̂a,0
2 ) = −k + 1

4
yk−1 (ax− y) < 0,

both holding in {ax < y < 0}. �

The last case to consider is the case a < 0 < b. This time, as we are about to see, we need four functions to
describe the reachable sets.

Proposition 2.9. Let a < 0 < b. Then the reachable sets for (2.2) have the form

Â[a,b](0) = Â1 ∪ . . . ∪ Â4

Â(a,b)(0) = int(Â1 ∪ . . . ∪ Â4) ∪A5

Â{a,b}(0) = int(Â1 ∪ . . . ∪ Â4) ∪ ∂(Â1 ∪ Â2)\A5,

where

Â1 =
{

(x, y, z) ∈ R
3 : z − 1

2ka
(y − ax)

(
yk − bk

(b− a)k
(y − ax)k

)
≤ 0
}
∩ {y ≥ 0} ∩ {x ≥ 0, z ≥ 0},

Â2 =
{

(x, y, z) ∈ R
3 : z +

1
2kb

(bx− y)
(
yk − ak

(b− a)k
(bx− y)k

)
≤ 0
}
∩ {y ≤ 0} ∩ {x ≥ 0, z ≥ 0},

Â3 =
{

(x, y, z) ∈ R
3 : − z − 1

2kb
yk(bx− y) ≤ 0

}
∩ {y ≥ 0} ∩ {x ≥ 0, z ≤ 0},

Â4 =
{

(x, y, z) ∈ R
3 : − z − 1

2ka
yk(ax− y) ≤ 0

}
∩ {y ≤ 0} ∩ {x ≥ 0, z ≤ 0},

where A5 is the abnormal curve starting from 0.
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At the beginning let us notice that γ(t) = (t, 0, 0), i.e. the abnormal curve for the distribution Ĥ starting
from zero and at the same time the trajectory of (2.2) corresponding to the control u(t) = 0, lies on the
boundary ∂Â[a,b](0). Indeed, every trajectory of (2.2) is a horizontal curve with respect to Ĥ . Suppose that
η = (η1, η2, η3) : [α, β] −→ R

3 is a trajectory of (2.2) such that η(α) = γ(t1), η(β) = γ(t2). The equation for
horizontal curves is ż = 1

2y
k−1(yẋ− xẏ). In particular

0 = η3(α) +
∫ β

α

1
2
ηk−1
2 (η2η̇1 − η1η̇2)dt =

∫
(η1,η2)

1
2
yk−1(ydx− xdy)

(note that η̇1 > 0 since η is f.d. for (Ĥ, ĝa,b)). Since d
(

1
2y

k−1(ydx− xdy)
)

= − 1
2 (k+1)yk−1dx∧dy and k− 1 is

odd, it follows by Stokes’ theorem that η2(t) vanishes on [α, β]. But then η3(t) = 0 on [α, β] and, consequently,
η is a reparameterization of γ. Using the facts recalled in Section 1.1, γ is contained in ∂A[a,b](0).

Next let us notice that in the sector {ax < y < bx} there hold the following relations. The z-coordinate
of the field Ẑa,b − Ŵ a,b = X̂ + aŶ in a neighbourhood of {y = bx, z = 0, x ≥ 0}, and the z-coordinate of
Ẑa,b + Ŵ a,b = X̂ + bŶ in a neighbourhood of {y = ax, z = 0, x ≥ 0} are both positive. At the same time they
are both negative in a neighbourhood of {y = 0, z = 0, x ≥ 0}.

Summing all these facts up we conclude that this case is similar to the Martinet case considered in [9]. As
indicated there, we construct four functions η̂a,b

1 , . . . , η̂a,b
4 .

η̂a,b
1 is the solution to the Cauchy problem

(X̂ + aŶ )(η) = 0, η|Γ a,b
1

(x, bx, z) = z,

η̂a,b
2 is the solution to the Cauchy problem

(X̂ + bŶ )(η) = 0, η|Γ a,b
2

(x, ax, z) = z,

η̂a,b
3 is the solution to

(X̂ + bŶ )(η) = 0, η|S(x, 0, z) = −z,

and finally η̂a,b
4 is the solution to

(X̂ + aŶ )(η) = 0, η|S(x, 0, z) = −z,

where as above S is the Martinet surface. After calculations we have

η̂a,b
1 (x, y, z) = z − 1

2ka
(y − ax)

(
yk − bk

(b− a)k
(y − ax)k

)

η̂a,b
2 (x, y, z) = z +

1
2kb

(bx− y)
(
yk − ak

(b − a)k
(bx− y)k

)

η̂a,b
3 (x, y, z) = −z − 1

2kb
yk(bx− y)

η̂a,b
4 (x, y, z) = −z − 1

2ka
yk(ax− y).

Of course, for k = 2 and a = −1, b = 1 we obtain the same formulas as in [9]. In order to be able to apply the
reasoning used in [9] we must compute ∇Ĥa,b η̂

a,b
i , i.e. again by (2.13), (2.14) to compute Ẑa,b(η̂a,b

i ), i = 1, 2, 3, 4.
They are as follows:

Ẑa,b(η̂a,b
1 ) =

k + 1
4k (a− b)

(y − bx) ((a− b) y + b (ax− y))G1 (2.27)
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with G1 defined in (2.23),

Ẑa,b(η̂a,b
2 ) = − k + 1

4k (a− b)
(ax− y) ((a− b) y − a (bx− y))G2 (2.28)

with G2 defined as in (2.24),

Ẑa,b(η̂a,b
3 ) =

k + 1
4kb

(a− b) yk, (2.29)

and finally

Ẑa,b(η̂a,b
4 ) = −k + 1

4ka
(a− b) yk. (2.30)

Lemma 2.10. Ẑa,b(η̂a,b
1 ) < 0 on

{
ab

2b−ax < y < bx
}
, Ẑa,b(η̂a,b

2 ) < 0 on
{
ax < y < |a|b

b−2ax
}
, Ẑa,b(η̂a,b

3 ) < 0 and

Ẑa,b(η̂a,b
4 ) < 0 on {y �= 0}.

Proof. It is easily seen using the expressions presented above. �

Note that 0 < |a|b
2b−a <

|a|b
2b = 1

2 |a|, and |a|b
b−2a <

|a|b
2|a| = 1

2b.

It follows that ∇Ĥa,b η̂
a,b
1 is null f.d. on {0 ≤ 0 < bx}, ∇Ĥa,b η̂

a,b
2 is null f.d. on {ax < y ≤ 0}, ∇Ĥa,b η̂

a,b
3 and

∇Ĥa,b η̂
a,b
4 are null f.d. on {y �= 0}. Let us also notice, and this will be important later in Section 4, that η̂a,b

1 ≤ η̂a,b
2

on {0 ≤ y ≤ bx}, i.e. {
η̂a,b
2 ≤ 0

}
∩ {0 ≤ y ≤ bx} ⊂

{
η̂a,b
1 ≤ 0

}
∩ {0 ≤ y ≤ bx} , (2.31)

and η̂a,b
2 ≤ η̂a,b

1 on {ax ≤ y ≤ 0}, i.e.{
η̂a,b
1 ≤ 0

}
∩ {ax ≤ y ≤ 0} ⊂

{
η̂a,b
2 ≤ 0

}
∩ {ax ≤ y ≤ 0} . (2.32)

Indeed, take (2.31) for instance. Notice that by Lemma 2.10 (Ẑa,b−Ŵ a,b)(η̂a,b
2 − η̂a,b

1 ) = (Ẑa,b−Ŵ a,b)(η̂a,b
2 ) > 0

on
{

|a|b
b−2ax < y < bx

}
and (Ẑa,b−Ŵ a,b)(η̂a,b

2 − η̂a,b
1 ) < 0 on

{
0 < y < |a|b

b−2ax
}

. It means that η̂a,b
2 increases along

the trajectories of Ẑa,b − Ŵ a,b on
{

|a|b
b−2ax < y < bx

}
, while η̂a,b

1 remains constant, that is to say η̂a,b
2 − η̂a,b

1 > 0

on
{

|a|b
b−2ax < y < bx

}
. Then η̂a,b

2 − η̂a,b
1 starts to decrease and attains zero on {y = 0}.

Now the reasoning similar to that used in [9] ends the proof of Proposition 2.9.

Corollary 2.11. The reachable sets for the structure (Ĥ, ĝ) with k being an even positive integer are as follows:

J+(0) = Â1 ∪ . . . ∪ Â4

I+(0) = int(Â1 ∪ . . . ∪ Â4) ∪A5

N+(0) = int(Â1 ∪ . . . ∪ Â4) ∪ ∂(Â1 ∪ Â2)\A5,

where

Â1 =
{

(x, y, z) ∈ R
3 : z +

1
2k

(y + x)
(
yk − 1

2k
(x+ y)k

)
≤ 0
}
∩ {y ≥ 0} ∩ {x ≥ 0, z ≥ 0},

Â2 =
{

(x, y, z) ∈ R
3 : z +

1
2k

(x− y)
(
yk − 1

2k
(x− y)k

)
≤ 0
}
∩ {y ≤ 0} ∩ {x ≥ 0, z ≥ 0},

Â3 =
{

(x, y, z) ∈ R
3 : − z − 1

2k
yk(x− y) ≤ 0

}
∩ {y ≥ 0} ∩ {x ≥ 0, z ≤ 0},

Â4 =
{

(x, y, z) ∈ R
3 : − z − 1

2k
yk(x+ y) ≤ 0

}
∩ {y ≤ 0} ∩ {x ≥ 0, z ≤ 0},

and A5 is the same as in the hypothesis of Proposition 2.8.
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Remark 2.12. Being motivated by the sub-Lorentzian geometry we considered only reachable sets Â[a,b](0),
Â(a,b)(0), Â{a,b}(0), but of course one can also consider e.g. sets Â[a,b)(0), Â(a,b](0). Clearly, in the cases
considered in Propositions 2.1–2.8 we have

Â[a,b)(0) = Â(a,b)(0) ∪ {y = ax, z = 0, x ≥ 0}
Â(a,b](0) = Â(a,b)(0) ∪ {y = bx, z = 0, x ≥ 0} ,

while in the case of Proposition 2.9 the formulas are

Â[a,b)(0) = Â(a,b)(0) ∪
{
η̂a,b
4 = 0, z ≤ 0, − x ≤ y ≤ 0, x ≥ 0

}
Â(a,b](0) = Â(a,b)(0) ∪

{
η̂a,b
3 = 0, z ≤ 0, 0 ≤ y ≤ x, x ≥ 0

}
.

3. Normal forms

In this section we prove Theorem 1.1. We begin with a simple lemma. Let Y, Z be vector fields on a manifold.
We will use the standard notation adkY · Z which is defined as follows: ad0Y · Z = Z, and adn+1Y · Z =
[Y, adnY · Z] for n = 1, 2, . . . Next, if Y is a vector field regarded as an operator acting on smooth functions
then we will write Y l = Y ◦ . . . ◦ Y (l terms); by Y 0 we will mean the identity operator.

Lemma 3.1. For any vector fields Y, Z we have

adnY · Z =
n∑

l=0

(−1)l

(
n

l

)
Y n−l ◦ Z ◦ Y l (3.1)

as an operator acting on smooth functions. In particular

adnY · [X,Y ] =
n∑

l=0

(−1)l

(
n

l

)
Y n−l ◦X ◦ Y l+1 −

n∑
l=0

(−1)l

(
n

l

)
Y n−l+1 ◦X ◦ Y l. (3.2)

Proof. (3.1) is proved by induction with respect to n. (3.2) is then an easy consequence of (3.1). �

Now we will prove a proposition which gives a key argument in proving theorem 1.1.

Proposition 3.2. Let k be a positive integer, k ≥ 2, and let (H, g) be an analytic time-oriented generalized
Martinet sub-Lorentzian structure of order k of Hamiltonian type, defined on a neighbourhood U of the origin
in R

3. Then, provided that U is sufficiently small, there are coordinates x, y, z on U in which (H, g) admits an
orthonormal frame in the form

X =
∂

∂x
− yB

(
y
∂

∂x
+ x

∂

∂y

)
− ykA

∂

∂z

Y =
∂

∂y
+ xB

(
y
∂

∂x
+ x

∂

∂y

)
+ xyk−1A

∂

∂z
, (3.3)

where A, B are analytic functions on U , X is a time orientation, S = {y = 0} is the Martinet surface for H,
and X|S is tangent to S.

Proof. The proposition clearly holds for k = 2 – see [9]. As the induction hypothesis let us assume that a
structure of order k can be transformed to the form (3.3). Now let (H, g) be a Martinet structure of order k+ 1
of Hamiltonian type defined on a neighbourhood U of the origin. By induction hypothesis there are coordinates
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x, y, z on U (U sufficiently small) such that (H, g) admits an orthonormal frame X,Y in the form (3.3) with
the time orientation X .

We will make use of the satisfaction of condition (Mk+1). In order to do it, since H|S = ker dz, we must
examine the z-coordinate of successive Lie brackets of X and Y . The z-coordinate of [X,Y ] = adX · Y is

(adX · Y ) (z) = X(xyk−1A) + Y (ykA) = O(yk−1).

Next
(adX · [X,Y ]) (z) = X ◦X(xyk−1A) + 2X ◦ Y (ykA) − Y ◦X(ykA) = O(yk−1)

and
(adY · [X,Y ]) (z) = 2Y ◦X(xyk−1A) + Y ◦ Y (ykA) −X ◦ Y (xyk−1A) = O(yk−2).

Thus we see that the action of adX does not reduce the order with respect to y (unless it produces zero), while
adY reduces this order by one. It follows that only

(
adk−1Y · [X,Y ]

)
(z)|S = 0 can give a non-trivial condition.

Rewriting (3.2) we are led to a sequence of equations

adk−1Y · [X,Y ] =
k−1∑
l=0

(−1)l

(
k − 1
l

)
Y k−1−l ◦X ◦ Y l+1 −

k−1∑
l=0

(−1)l

(
k − 1
l

)
Y k−l ◦X ◦ Y l

= (−1)k−1X ◦ Y k − Y k ◦X +
k−2∑
l=0

(−1)l

[(
k − 1
l

)
+
(
k − 1
l + 1

)]
Y k−1−l ◦X ◦ Y l+1

= (−1)k−1X ◦ Y k − Y k ◦X +
k−2∑
l=0

(−1)l

(
k

l + 1

)
Y k−1−l ◦X ◦ Y l+1.

We will compute all summands appearing in
(
adk−1Y · [X,Y ]

)
(z). Let us start with Y (z) = xyk−1A which

leads to the general formula

Y r(z) = (k − 1) . . . (k − r + 1)x(1 + x2B)r−1yk−rA+O(yk−r+1).

Further

X ◦ Y r(z) = (k − 1) . . . (k − r + 1)yk−r

[
∂

∂x

(
x(1 + x2B)r−1

)
A+ x(1 + x2B)r−1 ∂A

∂x

− (k − r)x2(1 + x2B)r−1AB

]
+O(yk−r+1). (3.4)

Setting

Fr = (k − 1) . . . (k − r + 1)
[
∂

∂x

(
x(1 + x2B)r−1

)
A+ x(1 + x2B)r−1 ∂A

∂x
− (k − r)x2(1 + x2B)r−1AB

]
,

for r > 1, and

F1 = A+ x
∂A

∂x
− (k − 1)x2AB,

(3.4) reduces to X ◦ Y r(z) = yk−rFr +O(yk−r+1) which for r = k gives

X ◦ Y k(z) = Fk +O(y). (3.5)

Next we get

Y s ◦X ◦ Y r(z) = (k − r) . . . (k − r − s+ 1)(1 + x2B)syk−r−sFr +O(yk−r−s+1)
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which finally gives

Y k−1−l ◦X ◦ Y l+1(z) = (k − l− 1)!(1 + x2B)k−1−lFl+1 +O(y). (3.6)

At the end we need to know Y k ◦X(z) = −Y k(ykA). After computations we obtain

Y k(ykA) = −k!(1 + x2B)kA+O(y). (3.7)

Suppose that A does not vanish identically on S. Then there exists a z such that A(x, 0, z) = am(z)xm +
O(xm+1) as x −→ 0, where am(z) �= 0. Now on S = {y = 0}

F1 = A+ x
∂A

∂x
+O(xm+2) (3.8)

and

Fl = (k − 1) . . . (k − l + 1)
(
A+ x

∂A

∂x

)
+O(xm+2), (3.9)

where A and ∂A
∂x should be evaluated at (x, 0, z). Using (3.6), (3.9) we get

k−2∑
l=0

(−1)l

(
k

l + 1

)
Y k−1−l ◦X ◦ Y l+1(z)|{y=0} = (k − 1)!(1 + (−1)k)

(
A+ x

∂A

∂x

)
+O(xm+2)

(again A and ∂A
∂x are to be taken at (x, 0, z)). Next (3.7) gives Y k ◦X(z)|S = −k!A+ O(xm+2) and (3.5) gives

X ◦ Y k(z)|S = (k − 1)!(A+ x∂A
∂x ) +O(xm+2). Taking all what we have said together we finally obtain that

(
adk−1Y · [X,Y ]

)
(z)|S = (−1)k−1(k − 1)!

(
A+ x

∂A

∂x

)
+ k!A+ (k − 1)!(1 + (−1)k)

(
A+ x

∂A

∂x

)
+O(xm+2).

(3.10)
Thus

(
adk−1Y · [X,Y ]

)
(z)|S = 0 is equivalent to

(
(−1)k−1 + k + 1 + (−1)k

)
A+

(
(−1)k−1 + 1 + (−1)k

)
x
∂A

∂x
+O(xm+2) = 0

which in turn gives
(k +m+ 1) am(z) = 0

contradicting the assumption that am(z) �= 0. It follows that A|S = 0 identically, therefore A may be replaced
in (3.3) by yA, for some other analytic function A, leading to normal forms

X =
∂

∂x
− yB

(
y
∂

∂x
+ x

∂

∂y

)
− yk+1A

∂

∂z

Y =
∂

∂y
+ xB

(
y
∂

∂x
+ x

∂

∂y

)
+ xykA

∂

∂z
·

The proof of the proposition is over. �

Suppose that (H, g) is a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type. By
Proposition 3.2 we can assume that it is already transformed to the form (3.3). To obtain (1.4) we notice that,
using considerations from the proof of the previous proposition, we must have

Span
{
X(q), Y (q),

(
adk−1Y · [X,Y ]

)
(q)
}

= TqR
3

for every q ∈ S. By (3.10) it is enough to have

(k − 1)!
(
(−1)k−1 + k + 1 + (−1)k

)
A(0, 0, z) = (k − 1)! (k + 1)A(0, 0, z) �= 0.
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To finish the proof of Theorem 1.3 we normalize the z-axis as in [9], i.e. we consider the change of coordinates
x −→ x, y −→ y, z −→ α(z)z with α satisfying the equation

α(z) + z
dα
dz

=
1

2A(0, 0, z)
·

In this way, in the new coordinates, we have A(0, 0, z) = 1
2 for every (0, 0, z) ∈ U . Now it suffices to define

ϕ = −B, ψ = 2A− 1.
At the end let us note that it would be good to know if ϕ and ψ are invariants of the sub-Lorentzian structure.

This is however not clear to the author.

4. Reachable sets in the general case

In this section we will prove Theorems 1.4 and 1.5. The proof is based in Propositions 2.1–2.9 and on normal
forms constructed in the previous section. Here and below we assume that X and Y are given in the normal
form (1.4), k > 2, while X̂ and Ŷ keep the same meaning as in (2.1).

Consider the system q̇ = X + uY , u ∈ [a, b], on a normal neighbourhood U of the origin. Throughout the
proof we will suppose that U is as small as is needed for our purposes. By (H, g) we denote the time-oriented
sub-Lorentzian structure given on U by declaring X , Y to be an orthonormal frame with a time orientation X ;
(H, ga,b), Za,b and W a,b are given by (1.2). The horizontal gradient of a function f with respect to the structure
(H, ga,b) will be denoted by ∇Ha,bf . We slightly correct the definition of hypersurfaces Γ a,b

i , i = 1, 2:

Γ a,b
1 = {(x, bx, z) : x, z ∈ R} ∩ U
Γ a,b

2 = {(x, ax, z) : x, z ∈ R} ∩ U .

Note that (2.3) and (2.4) carry over to the general case with a small modification:

A[a,b](0, U) ⊂ {(x, y, z) : ax ≤ y ≤ bx} ∩ U , (4.1)
A(a,b)(0, U) ⊂ {(x, y, z) : ax < y < bx} ∩ U . (4.2)

4.1. The case k = 2l + 1 and a < b arbitrary or k = 2l and either 0 ≤ a < b or a < b ≤ 0

We will state the exact proof only for the case where k is odd and a < 0 < b. All other cases contained in
the hypothesis of Theorem 1.4 can be treated in the same manner, the only difference being the formulas of
functions appearing there.

The procedure we are going to use is almost the same as in the proof of Proposition 2.1 (the only difference is
a local character of considerations here. So, for instance, the operator ∂ should be replaced by ∂̃). Since, like in
the flat case, the z-coordinate of Za,b−W a,b = X+aY is positive, and the z-coordinate of Za,b +W a,b = X+bY
is negative, both in the region {ax < y < bx} ∩ U , we construct two analytic functions ηa,b

i , i = 1, 2 as follows.
ηa,b
1 is the solution to the Cauchy problem

(Za,b −W a,b)(η) = (X + aY )(η) = 0, η|Γ a,b
1

(x, bx, z) = z

while ηa,b
2 is the solution to the Cauchy problem

(Za,b +W a,b)(η) = (X + bY )(η) = 0, η|Γ a,b
2

(x, ax, z) = −z.

Let us write X = X̂ + X1, Ŷ = Y + Y1. Setting ηa,b
i = η̂a,b

i + Ri, i = 1, 2, we see that finding e.g. ηa,b
1 is

equivalent to solving the following Cauchy problem

(X + aY )(R1) = −(X1 + aY1)(η̂
a,b
1 ), R1|Γ a,b

1
(x, bx, z) = 0.
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We deduce that R1 = O(rk+2) where r =
√
x2 + y2 + z2, and similarly R2 = O(rk+2). Since η̂a,b

i = ±z +
O(rk+1), ηa,b

i can be viewed as a perturbation of η̂a,b
i , i = 1, 2.

Next, let us notice that

(X + cY )|y=cx =
∂

∂x
+ c

∂

∂y
(4.3)

for any real number c. Now ∇Ha,bηa,b
1 = −Za,b(ηa,b

1 )(Za,b −W a,b) where

Za,b(ηa,b
1 ) =

1
2
(Za,b −W a,b + Za,b +W a,b)(ηa,b

1 ) =
1
2
(Za,b +W a,b)(ηa,b

1 ) =
1
2
(X + bY )(ηa,b

1 ).

X + bY|Γ a,b
1

is tangent to Γ a,b
1 by (4.3 ), and the trajectories of X + bY|Γ a,b

1
are, geometrically, lines Γ a,b

1 ∩
{z = const.}. Therefore, by definition of ηa,b

1 , Za,b(ηa,b
1 )|Γ a,b

1
= 0 which means that ∇Ha,bηa,b

1 is divisible by
y − bx. Now

Za,b(ηa,b
1 ) = Za,b(η̂a,b

1 + R1) = Ẑa,b(η̂a,b
1 ) + Za,b

1 (η̂a,b
1 ) + Za,b(R1), (4.4)

where Za,b
1 = X1 + 1

2 (b + a)Y1, Z
a,b
1 (η̂a,b

1 ) + Za,b(R1) = O(rk+1) and Ẑa,b(η̂a,b
1 ) is known from (2.11). In this

way we are led to

Za,b(ηa,b
1 ) =

k + 1
4k

(y − bx)

(
yk−1 + yk−2 b (ax− y)

a− b
+ . . .+ y

(
b (ax− y)
a− b

)k−2

+
(
b (ax− y)
a− b

)k−1

+O(rk)

)
.

This proves that ∇Ha,bηa,b
1 is null f.d. with respect to (H, ga,b) in the sector {ax < y < bx} ∩ U . In the same

way we make sure that ∇Ha,bηa,b
2 = −Za,b(ηa,b

2 )(Za,b +W a,b) is divisible by y − ax with

Za,b(ηa,b
2 ) = −k + 1

4k
(y − ax)

(
yk−1 + yk−2 a (bx− y)

b − a
+. . .+ y

(
a (bx− y)
b− a

)k−2

+
(
a (bx− y)
b− a

)k−1

+O(rk)

)
,

showing that ∇Ha,bηa,b
2 is null f.d. in {ax < y < bx} ∩ U . Now we continue as in the proof of Proposition 2.1.

4.2. The case k = 2l and a < 0 < b

To begin with let us note that, similarly as in the flat case described in Section 2.2, there hold two facts.
First of all, the abnormal curve t −→ (t, 0, 0) starting at the origin is geometrically optimal - this follows from
considerations below. Secondly, the z-coordinate of X + bY and that of X + aY have exactly the same signs
as z-coordinates of X̂ + bŶ and X̂ + aŶ in the corresponding areas intersected with U . Therefore we proceed
as in [9], i.e. we construct four analytic functions ηa,b

1 , . . . , ηa,b
4 as follows. ηa,b

1 is the solution to the Cauchy
problem

(X + aY )(η) = 0, η|Γ a,b
1

(x, bx, z) = z,

ηa,b
2 is the solution to the Cauchy problem

(X + bY )(η) = 0, η|Γ a,b
2

(x, ax, z) = z,

ηa,b
3 is the solution to the Cauchy problem

(X + bY )(η) = 0, η|S(x, 0, z) = −z, (4.5)

and finally ηa,b
4 is the solution to the Cauchy problem

(X + aY )(η) = 0, η|S(x, 0, z) = −z.
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As in Section 4.1, ηa,b
i = η̂a,b

i + Ri, where Ri = O(rk+2), so ηa,b
i can be regarded as a perturbation of η̂a,b

i ,
i = 1, . . . , 4. Similarly as above we prove that ∇Ha,bηa,b

1 (resp. ∇Ha,bηa,b
2 ) is divisible by y− bx (resp. by y−ax).

More precisely, making use of (2.27), (2.28) (cf. also (4.4)) we obtain

Za,b(ηa,b
1 ) =

k + 1
4k (a− b)

(y − bx)
[
((a− b) y + b (ax− y))G1 +O(rk)

]
(4.6)

with G1 as in (2.23), and

Za,b(ηa,b
2 ) = − k + 1

4k (a− b)
(ax− y)

[
((a− b) y − a (bx− y))G2 +O(rk)

]
(4.7)

with G2 defined in (2.24).
Next we will show that ∇Ha,bηa,b

i , i = 3, 4, is divisible by y2. In order to do it, first we prove

Lemma 4.1. There exist analytic functions ζ3, ζ4 on U such that ηa,b
3 (x, y, z) = −z + ykζ3 and ηa,b

4 (x, y, z) =
−z + ykζ4 on U .

Proof. We will state the proof for ηa,b
3 only. Clearly, by (4.5), ηa,b

3 = −z + yξ with an analytic function ξ on U .
Suppose that ηa,b

3 can be written in the form ηa,b
3 = −z + ylξ where l < k and ξ is analytic on U . Again by

(4.5), (X + bY )(−z+ ylξ) =
(
xyϕ+ b(1 − x2ϕ)

) (
lyl−1ξ + yl ∂ξ

∂y

)
+O(yl) vanishes identically on U . Taking this

into account we get
∂l−1

∂yl−1
(X + bY )(−z + ylξ) = l!b(1 − x2ϕ)ξ +O(y) = 0.

Since 1 − x2ϕ does not vanish on U , we are led to ξ|y=0 = 0. Thus ξ may be replaced by yξ with some other
analytic ξ on U , and we obtain ηa,b

3 = −z + yl+1ξ. The induction principle yields the existence of an analytic
function ζ3 such that ηa,b

3 = −z + ykζ3 on U . �

Using (2.29), (2.30) we easily come to

Za,b(η̂a,b
3 ) =

k + 1
4kb

(a− b) y2
(
yk−2 +O(rk−1)

)
, (4.8)

Za,b(η̂a,b
4 ) = −k + 1

4ka
(a− b) y2

(
yk−2 +O(rk−1)

)
, (4.9)

and indeed ∇Ha,bηa,b
3 and ∇Ha,bηa,b

4 are divisible by y2.
Taking (4.6)–(4.9) together and applying Lemma 2.10 we conclude that there exists a sufficiently small ε > 0

with ab
2b−a +ε < 0 and |a|b

b−2a −ε > 0, such that ∇Ha,bηa,b
1 is null f.d. on

{(
ab

2b−a + ε
)
x < y < bx

}
∩U , ∇Ha,bηa,b

2

is null f.d. on
{
ax < y <

(
|a|b

b−2a − ε
)
x
}
∩ U , while ∇Ha,bηa,b

3 and ∇Ha,bηa,b
4 are null f.d. on {y �= 0} ∩ U .

Further, by (2.31) and (2.32), maybe for a smaller ε > 0, we have ηa,b
1 < ηa,b

2 , i.e.
{
ηa,b
2 ≤ 0

}
⊂
{
ηa,b
1 ≤ 0

}
on

{εx < y < bx} ∩ U , and ηa,b
1 > ηa,b

2 , i.e.
{
ηa,b
1 ≤ 0

}
⊂
{
ηa,b
2 ≤ 0

}
on {ax < y < −εx} ∩ U .

Consider a semi-analytic set

Z =
{
ηa,b
1 = ηa,b

2 = 0
}
∩ {−εx ≤ y ≤ εx} ∩ U

(see [13] for definition and properties of semi-analytic sets). Clearly, dimZ = 1 which can be seen by observing
that ∇Ha,bηa,b

1 and ∇Ha,bηa,b
2 are linearly independent away from zero on {−εx ≤ y ≤ εx}. Also Z is made up

of a single analytic curve entering zero which follows from (Za,b −W a,b)(η̂a,b
2 − η̂a,b

1 ) = (Za,b −W a,b + Za,b +
W a,b)(η̂a,b

2 ) = 2Za,b(η̂a,b
2 ) < 0 on {−εx ≤ y ≤ εx}.
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Finally let us define a semi-analytic set Σ by the formula Σ = ρ−1(ρ(Z)) ∩ U , where ρ : R
3 	 (x, y, z) −→

(x, y) ∈ R
2 is the projection onto the (x, y)-plane. Now we can apply exactly the same reasoning as in [9]

to finish the proof of Theorem 1.5. We will not repeat arguments from [9] here, however, for further use, we
will explicitly indicate geometrically optimal curves initiating at zero. These are up to reparameterization (i)
concatenations of a segment of the trajectory of X + bY starting from zero with a segment of a trajectory of
X + aY , (ii) concatenations of a segment of the trajectory of X + aY starting from zero with a segment of a
trajectory of X+ bY , (iii) concatenations of a segment of the trajectory of X starting from zero with a segment
of a trajectory of X + bY , (iv) concatenations of a segment of the trajectory of X starting from zero with a
segment of a trajectory of X + aY .

Remark 4.2. Remark that similarly as in the process of constructing nilpotent approximations (cf. e.g. [3]), we
could introduce, for structures of order k, weights for coordinates in the following way: weight(x) = weight(y) =
1, weight(z) = k+1. Then our functions η̂a,b

i become homogeneous polynomials of order k+1, and the structure
given by X̂, Ŷ as in (2.1) is the nilpotent approximation of the structure defined by X,Y , where X,Y are as
in (1.4).

Remark 4.3. Let us remark that a key object to study, when computing reachable sets for the system q̇ =
X+uY , u ∈ [a, b], is the horizontal gradient with respect to the corresponding sub-Lorentzian structure (H, ga,b).
Rewriting this gradient in terms of our affine control system, we obtain the field which we could denote by ∇aff ,
call it the affine gradient, and which is defined as

∇aff (f) = −(X(f) +
1
2
(a+ b)Y (f))X −

(
1
2
(a+ b)X(f) + abY (f)

)
Y (4.10)

for a smooth function f . The reachable sets A[a,b](0, U) (resp. A(a,b)(0, U), A{a,b}(0, U)) are described by such
functions f for which ∇aff (f) is parallel either to X + aY or to X + bY .

Remark 4.4. Suppose we are given the system (1.1) where X,Y define a generalized Martinet sub-Lorentzian
structure of Hamiltonian type, and X is tangent to the Martinet surface. Having proved Theorems 1.3–1.5,
we do not have to transform our system to normal forms (1.4) in order to compute its reachable sets from a
point q0 lying on the Martinet surface (if [a, b] = [−1, 1] we also do not have to assume that X is tangent to the
Martinet surface). We can proceed as follows. We consider only the case where k is even and a < 0 < b. All other
remaining cases are treated similarly as the contact case – see [8]. Let γ1, γ2 be the two null f.d. Hamiltonian
geodesics with respect to the structure (H, ga,b) starting at q0. Let moreover S denote the Martinet surface and
γ be the abnormal curve starting from q0. Further we chose two analytic hypersurfaces M1, M2 such that Mi

contains γi and is transverse to γj , i �= j, i, j = 1, 2. Next we will chose three analytic functions ζi ∈ Cω(Mi),
i = 1, 2, ζ ∈ Cω(S). First of all we impose the condition ζ−1

i (0) = γi, i = 1, 2, ζ−1(0) = γ. Now we will
determine the signs of these functions. Consider the trajectories of X + aY (resp. of −X − aY ) staring from
γ1, and then project them onto M1; we assume that the obtained curves enter the region {ζ1 > 0} (resp. the
region {ζ1 < 0}). Note that this definition makes sense, provided that the mentioned trajectories are considered
in a sufficiently small neighbourhood of M1. Later consider the trajectories of X + bY (resp. of −X − bY )
staring from γ2, and then project them onto M2; ζ2 is chosen in such a way that the projected curves enter
the region {ζ2 > 0} (resp. {ζ2 < 0}). Again this makes sense if the considered trajectories stay in a sufficiently
small neighbourhood of M2. Finally, project onto S sufficiently short pieces of the trajectories of X + aY (resp.
−X − aY ) starting from γ and assume that the projected curves enter the region {ζ > 0} (resp. {ζ < 0}). Note
that in the latter case we could also use the field X + bY , resulting in the same function ζ. Now we build four
functions describing the reachable set: η1 is the solution to the Cauchy problem (X + aY )(η) = 0, η|M1 = ζ1, η2
is the solution to the problem (X + bY )(η) = 0, η|M2 = ζ2, η3 is the solution to the problem (X + bY )(η) = 0,
η|S = ζ, and η4 is the solution to (X + aY )(η) = 0, η|S = ζ. Of course, during the whole process we chose all
the data Mi, ζi, ζ in the simplest possible way to make the calculations the easiest.



THE STRUCTURE OF REACHABLE SETS 1171

Remark 4.5. Note that even when functions ηi’s cannot be obtained explicitly, knowing the fields X,Y and
using computer methods, we can find as many terms in the Taylor expansions of ηi as we need.

5. Some further results

In this section we state and prove some corollaries of Theorems 1.3–1.5.

5.1. Image under the exponential mapping

Let (M,H, g) be a sub-Lorentzian manifold. Recall that by H we agreed to denote the geodesic Hamiltonian
induced by the structure (H, g). Let Φt stand for the (local) flow of

−→H. Fix a point q0 ∈ M and consider the
set Dq0 =

{
λ ∈ T ∗

q0
M : t −→ Φt(λ) is defined on [0, 1]

}
. Dq0 is nonempty and open. We define the exponential

mapping with the pole at q0:
expq0

: Dq0 −→ R, expq0
(λ) = π ◦ Φ1(λ).

Obviously, expq0
is smooth (analytic) whenever (M,H, g) is smooth (analytic).

Let (H, g) be a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type defined on a
neighbourhood U of a point q0. Fix two numbers a, b, a < b. Now, by expq0

we will denote the exponential
mapping with the pole at q0 for the structure (H, ga,b) defined in Section 4; by Dq0 we denote its domain Further,
we shall write H for the geodesic Hamiltonian associated with (H, ga,b). Using the similar reasoning based on
the Pontriagin maximum principle as in [9] we can prove the following proposition.

Proposition 5.1. Let U be a sufficiently small normal neighbourhood of a point q0 belonging to the Martinet
surface. Then

expq0

({
λ ∈ Dq0 : H(λ) < 0,

〈
λ, Za,b(q0)

〉
< 0
}) ∩ U = A(a,b)(q0, U),

expq0

({
λ ∈ Dq0 : H(λ) ≤ 0,

〈
λ, Za,b(q0)

〉
< 0
}) ∩ U = A(a,b)(q0, U) ∪ σ1 ∪ σ2,

where σ1, σ2 are the two null f.d. Hamiltonian geodesics initiating at q0.

It follows that the set of all points that are not accessible along Hamiltonian maximizers is equal to
∂̃A(a,b)(0, U)\ (σ1 ∪ σ2) in case k = 2l+ 1 and a < b arbitrary or k = 2l and either 0 ≤ a < b or a < b ≤ 0, and
to ∂̃A(a,b)(0, U)\ (σ1 ∪ σ2 ∪ γ) in case k = 2l and a < 0 < b, γ being the abnormal curve for H starting from q0.

Thus the timelike reachable set for generalized Martinet sub-Lorentzian structures is accessible by Hamilto-
nian geodesics, and it would be interesting to know if (locally) the uniqueness of geodesics holds. So far the
uniqueness of geodesics has been established in the Heisenberg case – see [11].

5.2. Continuity of the sub-Lorentzian distance

Let (H, ga,b), q0, U and γ keep the same meaning as in the previous subsection. Recall [7] that f [U ] : U −→ R,
the sub-Lorentzian distance function from q0 relative to U for the structure (H, ga,b), is defined by formula

f [U ](q) =
{

sup
{
L(γ) : γ ∈ Ωnspc

q0,q (U)
}

: q ∈ J+(q0, U)
0 : q /∈ J+(q0, U) ,

where q ∈ U , Ωnspc
q0,q (U) stands for the set of all nspc.f.d. with respect to (H, ga,b) curves in U joining q0 to q,

and L(·) is the sub-Lorentzian length which for a curve γ : [a, b] −→M is defined to be

L(γ) =
∫ b

a

|g(γ̇(t), γ̇(t))|1/2 dt.

Using [7] we easily obtain
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Proposition 5.2. Let f [U ] be the sub-Lorentzian distance from a point q0 belonging to the Martinet surface.
Suppose that a < 0 < b. If k = 2l+1 then f [U ] is continuous at points of γ, and if k = 2l, f [U ] is not continuous
at points of γ.

Thus f [U ] is not continuous at points of the singular trajectory starting at q0 if this trajectory is geometrically
optimal.

5.3. Conjugate locus

Let (M,H, g) be a sub-Lorentzian manifold. A point q is said to be conjugate to a point q0 if there exists a
covector λ ∈ T ∗

q0
M such that expq0

(λ) = q and dλ expq0
is not of full rank. In such a situation we say that q is

conjugate to q0 along a geodesic γ(t) = expq0
(tλ). The future null (resp. future timelike) conjugate locus of a

point q0 is defined to be the set of all points conjugate to q0 along null f.d. (resp. t.f.d) Hamiltonian geodesics.
We will denote it by Conjnull

q0
(resp. Conjt

q0
). Similarly as in [9] we prove that

Proposition 5.3. Let (M,H, g) be an analytic time-oriented generalized Martinet sub-Lorentzian structure of
order k of Hamiltonian type. Then the future null conjugate locus of a point q0 for the structure (H, ga,b) is
equal to the union of the two null f.d. Hamiltonian geodesics starting at q0.

Let us remark that, similarly as in [9], the two null f.d. Hamiltonian geodesics starting from q0 are unique
maximizers, and the same time they are entirely contained in Conjnull

q0
. Also, when q0 belongs to the Martinet

surface, k is even, and a < 0 < b, the abnormal curve starting from q0 is the unique maximizer which is entirely
contained in Conjt

q0
.

5.4. Future null cut locus

Let (M,H, g) be a time-oriented sub-Lorentzian manifold. Recall a definition of Cutnull
q0

(M), the (future) null
cut locus of a given point q0. So, by definition, a point q ∈M belongs to Cutnull

q0
(M) if there exists a null f.d.

geodesic γ : [0, T ] −→M with the following properties: γ(0) = q0, γ(t1) = q where 0 < t1 < T , γ|[0,t1] is a length
maximizer and γ|[0,t1+ε] is not a length maximizer for any ε > 0, t1 + ε ≤ T .

Now let (H, g) be an analytic generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type,
defined by (1.4) on a neighbourhood U of the origin in R

3. Take two numbers a < b and suppose that U is a
normal neighbourhood for (H, ga,b). If Cutnull

0 (U) stands for the future null cut locus of zero for (U,H, ga,b)
then.

Proposition 5.4. Suppose that k, a, b are as in the hypothesis of Theorem 1.4. Then Cutnull
0 (U) = {0}.

Proof. The situation is exactly the same as in the contact case – cf. [8]. Each null f.d. maximizer starting
from 0 is a piecewise smooth curve with at most one corner point, where smooth pieces are segments null f.d.
Hamiltonian geodesics. Such curves do not cease to be maximizing. �

Proposition 5.5. Suppose that k, a, b satisfy the hypothesis of Theorem 1.5. Then Cutnull
0 (U) = ∂̃A[a,b](0, U)∩

{z > 0} ∩Σ.

Proof. See the proof of the analogous result in [9]. Note that all geometrically optimal curves are listed in
Section 4 just before Remark 4.2. �

Let us remark that in all cases the set Cutnull
0 (U) is semi-analytic. Let us also notice that Cutnull

0 (U) ∩
Conjnull

0 = ∅.
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6. More applications of normal forms

Suppose that X , Y is an orthonormal basis, with X being a time orientation, for a generalized Martinet
sub-Lorentzian structure (H, g) of order k, defined on an open set U ⊂ R

3. Note that we do not assume that X
is tangent to S. Let us see what we can say about reachable sets for the system

q̇ = X + uY , u ∈ [a, b]. (6.1)

Using a Lorentz transformation we can find functions α, β, analytic on U , such that the field α(q)X(q)+β(q)Y (q)
is tangent to S whenever q ∈ S. Assuming that

X̃ = X + β(q)/α(q)Y , Ỹ = Y

is an orthonormal basis with a time orientation equal to X̃ we have defined a generalized Martinet sub-Lorentzian
structure on U which we will denote by (H, g̃) (by the definition of Lorentz transformations α �= 0). Now (6.1)
can be rewritten in the form

q̇ = X̃ − (u− β(q)/α(q)) Ỹ .

Provided that (H, g̃) is of Hamiltonian type, we can transform X̃ and Ỹ to normal form (1.4) which can, in
many cases, simplify the study of (6.1).

Suppose now that (H, g) is a sub-Lorentzian structure such that H satisfies the condition (Mk) and g is
such that the field of directions S 	 q −→ TqS ∩ Hq is null f.d. Let X,Y be an orthonormal basis for (H, g)
with a time orientation X . We are interested in the reachable set for the system (6.1). Multiplying Y by −1 if
necessary, we can assume that X − Y restricted to S is tangent to S. Define a sub-Lorentzian structure (H, g̃)
by assuming that the two fields

X̃ = X − Y, Ỹ = Y

form an orthonormal basis for (H, g̃) with X̃ being a time orientation. We see that (H, g̃) is a generalized
Martinet sub-Lorentzian structure of order k, and if it is of Hamiltonian type we can transform X̃, Ỹ to normal
forms (1.4). Now (6.1) takes the form

q̇ = X̃ + ũỸ , ũ ∈ [a+ 1, b+ 1],

and its reachable set is known by above considerations.

Appendix A. Some other normal forms

Normal forms centered at a point q0, as those constructed in Theorem 1.3, are adjusted to problems which
are ’measured’ by the distance from q0. Similarly as in [9] we can construct normal forms which may be more
suitable when considering problems involving, in some sense, the distance to the Martinet surface. This is done
in the following

Proposition A.1. Let (H, g) be a smooth time-oriented generalized Martinet sub-Lorentzian structure of order
k of Hamiltonian type, defined on a neighbourhood U of the origin in R

3. Denote by S the Martinet surface for
H. Then, provided that U is sufficiently small, there exist coordinates x, y, z on U in which S = {y = 0}, and
(H, g) admits an orthonormal frame in the following normal form

X = (1 + ya)
∂

∂x
+ yk(1 + b)

∂

∂z

Y =
∂

∂y
(A.1)

with a time orientation X, where a, b ∈ C∞(U), b(0, 0, z) = 0.
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The proof is based on the following:

Lemma A.2. Let (H, g) be a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type,
k ≥ 2, defined on a neighbourhood U of the origin in R

3. Then, provided that U is sufficiently small, there exist
coordinates x, y, z on U in which (H, g) admits an orthonormal frame in the form

X = (1 + ya)
∂

∂x
+ ykb

∂

∂z

Y =
∂

∂y
, (A.2)

where a, b are smooth functions on U , X is a time orientation, S = {y = 0} is the Martinet surface for H, and
X|S is tangent to S.

Proof. The proof is by induction and is quite similar to that of Proposition 3.2. The case k = 2 is treated
in [9], equation (5.4). As the induction hypothesis we assume that any structure of order k can be transformed
to (A.2). Now suppose we are given a structure (H, g) of order k+1, defined in a neighbourhood U of the origin.
By induction hypothesis, possibly after shrinking U , we can find coordinates x, y, z on U in which (H, g) has an
orthonormal frame X,Y in the form (A.2).

We will make use of the condition (Mk+1). In view of H|S = ker dz, we must compute z-coordinates of
successive Lie brackets of the fields X and Y . To this end notice that

[X,Y ] (z) = yk−1

(
kb+ y

∂b

∂y

)
= O(yk−1),

(adX · [X,Y ]) (z) = O(yk−1),

while
(adY · [X,Y ]) (z) = − (ad2Y ·X) (z) = O(yk−2)

as y −→ 0. Consequently, only computation of
(
adkY.X

)
(z)|S can gives any nontrivial conditions. Clearly

(
adlY.X

)
(z) = k(k − 1) . . . (k − l + 1)yk−lb+O(yk−l+1),

from which (
adkY ·X) (z) = k!b+O(y). (A.3)

By assumption
(
adkY ·X) (z)|y=0 = b|y=0 vanishes identically, thus b in (A.2) can be replaced by yb for some

other smooth function b, therefore we are led to

X = (1 + ya)
∂

∂x
+ yk+1b

∂

∂z
, Y =

∂

∂y
· �

To end the proof of Proposition A.1 suppose we are given a generalized Martinet sub-Lorentzian structure
(H, g) of order k of Hamiltonian type. By Lemma A.2 we can assume that it is given by an orthonormal frame
X,Y as in (A.2). In view of (A.3), in order to have

Span
{
X(q), Y (q), adkY ·X(q)

}
= TqR

3

for q = (x, 0, z) ∈ S, it is necessary that b(x, 0, z) �= 0. Then we can achieve b(0, 0, z) = 1 by renormalizing the
z-axis as in Section 3. This permits us to replace b in (A.2) by 1 + b for yet some other smooth b satisfying
b(0, 0, z) = 0. The proof is over.
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Appendix B. Possible generalizations

When one looks at the results presented in this paper, there appear at least two possible directions for further
studies. One is to consider structures with non-smooth Martinet surfaces, and this is the objective of the next
paper by the author. The other is to keep smoothness of the Martinet surface but drop the assumption (ii) in the
definition of condition (Mk) in Section 1. We will make some comments on this latter case, since the situation
when a given distribution is tangent to its Martinet surface in isolated points appears generically (cf. [10] where
the authors give complete classification and list of normal forms of generic singularities of rank 2 distributions
on 3-manifolds). So let H be a distribution defined on a neighbourhood of the origin in R

3, and let M be its
Martinet surface. Suppose that T0M = H0. According to [10], the field of directions M 	 q −→ TqM ∩ Hq

generically has only two types of singularities at 0: a focus and a saddle. We will present two examples describing
the structure of reachable sets in the two indicated cases.

Example B.1. Let H = kerω, where ω = dz− 1
2 (z−x2−y2)(ydx−xdy). We define a time-oriented Lorentzian

metric g on H by supposing the frame

X =
∂

∂x
+

1
2
y(z − x2 − y2)

∂

∂z

Y =
∂

∂y
− 1

2
x(z − x2 − y2)

∂

∂z

to be orthonormal with X being a time orientation. Since [X,Y ] =
(−z + 2x2 + 2y2

)
∂
∂z , the Martinet surface in

our case is equal to M =
{
z = 2x2 + 2y2

}
. Obviously TM = Span

{
∂
∂x + 4x ∂

∂z ,
∂
∂y + 4y ∂

∂z

}
, hence H0 = T0M ,

whileHq∩TqM is 1-dimensional for every q ∈M , q �= 0. It is easy to verify that, under suitable parameterization,
the abnormal curves are trajectories of the field(

8y + x
(
2x2 + 2y2

))
X − (8x− y

(
2x2 + 2y2

))
Y (B.1)

considered as a vector field on M . Writing equations for the abnormal curves in polar coordinates:

ṙ = 2r3, θ̇ = −8

we see that they are spirals that enter zero for t −→ −∞. It follows that 0 is a focus for (B.1) and, consequently,
the system q̇ = X + uY , |u| ≤ 1, has no singular trajectories starting from zero. As in Sections 2 and 4 we
will compute null f.d. curves starting from Γ1 and Γ2, respectively. So the trajectories of X − Y initiating at
Γ1 ∩ {z = 0} are of the form γ(t) = (x0 + t, x0 − t, z(t)) with

z(t) = − 1
x2

0

(
2x4

0 + 4
)
ex0t +

1
x2

0

(
2x4

0 + 2x2
0t

2 + 4x0t+ 4
)

= −2x3
0t+O

(
t2
)
.

Similarly, the trajectories of X + Y initiating at Γ2 ∩ {z = 0} are of the form (x0 + t,−x0 + t, z(t)) where this
time

z(t) = − 1
x2

0

(
2x4

0 + 4
)
e−x0t +

1
x2

0

(
2x4

0 + 2x2
0t

2 − 4x0t+ 4
)

= 2x3
0t+O

(
t2
)
.

Repeating arguments from Section 2 we make sure that J+(0, U) is described by two analytic functions, where
U is supposed to be sufficiently small normal neighbourhood of 0.

Example B.2. Now, let H = kerω, where ω = dz − 1
2 (z − xy)(ydx− xdy). A time-oriented Lorentzian metric

g on H will be defined by supposing the frame

X =
∂

∂x
+

1
2
y(z − xy)

∂

∂z

Y =
∂

∂y
− 1

2
x(z − xy)

∂

∂z



1176 M. GROCHOWSKI

to be orthonormal with respect to g with a time orientation X . This time M = {z = 2xy} and TM =
Span

{
∂
∂x + 2y ∂

∂z ,
∂
∂y + 2x ∂

∂z

}
. It follows that H0 = T0M and dim (Hq ∩ TqM) = 1 for every q ∈ M , q �= 0.

The abnormal curves, under suitable parameterization, are trajectories of the field

x (4 + xy)X − y (4 − xy)Y (B.2)

restricted to M . It is seen that the origin is a saddle for (B.2), and there is a unique t.f.d. abnormal curve starting
from the origin, namely the x-axis. As in the previous sections we find null f.d. curves. So, the trajectories of
X − Y starting from Γ1 ∩ {z = 0} are computed to be γ(t) = (x0 + t, x0 − t, z(t)) where

z (t) = − 1
x2

0

(
x4

0 − 2
)
ex0t +

1
x2

0

(
x4

0 − t2x2
0 − 2x0t− 2

)
= −x3

0t+O
(
t2
)
;

the trajectories of X + Y starting from Γ2 ∩ {z = 0} are computed to be γ(t) = (x0 + t, x0 − t, z(t)) with

z (t) =
1
x2

0

(
x4

0 − 2
)
e−x0t +

1
x2

0

(−x4
0 + t2x2

0 − 2x0t+ 2
)

= −x3
0t+O

(
t2
)
.

On the other hand, the trajectories of X+Y initiating at {y = 0}∩{z = 0} are of the form γ(t) = (x0 +t, t, z(t))
where

z (t) =
1
x2

0

(
2x2

0 − 8
)
e−

1
2x0t +

1
x2

0

(
x3

0t− 2x2
0 + t2x2

0 − 4x0t+ 8
)

=
1
4
x2

0t
2 +O

(
t3
)
,

and the trajectories of X − Y initiating at {y = 0} ∩ {z = 0} are of the form γ(t) = (x0 + t,−t, z(t)) with

z (t) =
1
x2

0

(
2x2

0 + 8
)
e

1
2 x0t +

1
x2

0

(−x3
0t− 2x2

0 − t2x2
0 − 4x0t− 8

)
=

1
4
x2

0t
2 +O

(
t3
)
.

Using similar reasoning as in Section 2 we deduce that J+(0, U) (U being a sufficiently small normal neighbour-
hood of the origin) is described by four analytic functions.

Thus, apparently, similar interrelation between geometric optimality of singular trajectories and the number
of analytic functions needed for describing reachable sets also holds after dropping the condition (ii) in the
generic case.

In order to obtain some general theorems, we need normal forms convenient for computations, and it seems
to be a hard task. It is already not easy without a metric, as it can be again seen from [10]. The ideas used
in Section 3 of the present paper are of course not applicable, since they are based on transversality of the
distribution to its Martinet surface. Therefore, to generalize the results from Examples B.1, B.2 probably quite
different reasoning should be used.
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