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THE STRUCTURE OF u-IDEALS OF COMPACT SETS 

A. S. KECHRIS1, A. LOUVEAU AND W. H. WOODIN1 

ABSTRACT. Motivated by problems in certain areas of analysis, like measure 
theory and harmonic analysis, where a-ideals of compact sets are encountered 
very often as notions of small or exceptional sets, we undertake in this pa-
per a descriptive set theoretic study of a-ideals of compact sets in compact 
metrizable spaces. In the first part we study the complexity of such ideals, 
showing that the structural condition of being a a-ideal imposes severe defin-
ability restrictions. A typical instance is the dichotomy theorem, which states 
that a-ideals which are analytic or coanalytic must be actually either complete 
coanalytic or else Go. In the second part we discuss (generators or as we call 
them here) bases for a-ideals and in particular the problem of existence of 
Borel bases for coanalytic non-Borel a-ideals. We derive here a criterion for 
the nonexistence of such bases which has several applications. Finally in the 
third part we develop the connections of the definability properties of a-ideals 
with other structural properties, like the countable chain condition, etc. 

In this paper we study the descriptive set theoretic properties of u-ideals of 
compact sets (in compact metrizable spaces). Such u-ideals occur very frequently 
in various parts of analysis, as "smallness" notions or "exceptional" sets. Usually a 
lot of information about these notions comes from the structural properties inherent 
in the special context in which these u-ideals are studied, but it turns out that the 
purely descriptive set theoretic approach is enough to give nontrivial information 
about these objects. 

The starting point of our investigations was a recent result of Solovay [S] and 
independently Kaufman [Kl] about the u-ideal of compact sets of uniqueness, which 
is shown to be a complete ni (=coanalytic) set. A set of uniqueness is a subset 
of the unit circle T for which every trigonometric series I: cneinx converging to 0 
outside the set is identically O. (Other examples of u-ideals of this kind that were 
known earlier are: the compact subsets of Q, the countable compact subsets of 
R, etc.) Heuristically this kind of result rules out in general potential criteria for 
characterizing when a compact set is in the u-ideal if of a too simple form~here 
Borel, which is usually the proposed form. 

In the first part of this paper we study systematically the possible complexity of 
u-ideals of compact sets. As it happens there are essentially only two possibilities, 
within the analytic or coanalytic ones: Apart from trivial cases they must be either 
true Go sets or else true coanalytic sets. These results extend an older result of 
Christensen [Chr] and Saint-Raymond [StRl] on oo-ideals, i.e. sets of the form 
K (A) for some subset A of a compact metrizable space. (Here K (A) is the set of 
compact subsets of A.) They proved that if K (A) is analytic then A (and hence 
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K(A)) is a G/) set. Our results also extend for oo-ideals throughout the projective 
hierarchy (using strong axioms of set theory), showing that the only possible classes 
for K (A), A projective, are the IT;. 

Once one knows that a u-ideal is too complicated to admit simple criteria, one 
can search for simple criteria for generating the u-ideal. This is the "basis problem" 
that we discuss in the second part. (A basis for a u-ideal is a subset of the ideal 
which generates it as au-ideal.) Again we show that the existence of an analytic 
basis for a a-ideal of compact sets implies the existence of a G/) basis. Of particular 
interest is the problem of the existence of Borel bases for true IT} u-ideals. This 
turns out to be equivalent to a classification problem, namely whether the class of 
compact sets which are locally in the u-ideal is Borel or not. We prove a sufficient 
criterion for nonexistence of Borel bases of true IT} u-ideals, which has several 
applications. It can be used for example to classify completely the IT} oo-ideals 
which have a Borel basis: An oo-ideal K(A), A coanalytic, has a Borel basis iff A is 
the difference of two G/) sets. It implies also for instance that any "sufficiently nice" 
true ITt u-ideal which contains the 0 sets of a "continuous" capacity cannot have a 
Borel basis. This in turn can be used to provide interesting examples of ITt u-ideals 
with no Borel bases. The problem of developing further methods for demonstrating 
the nonexistence of Borel bases for ITt u-ideals is extremely interesting, especially 
in view of the important unsolved problem of the existence of a Borel basis for the 
u-ideal of the compact sets of uniqueness. 

In the third part of the paper, we relate the descriptive set theoretic properties 
of u-ideals to other structural properties. One of them is the notion of thinness 
of u-ideals: It corresponds (dually) to the countable chain condition. In potential 
theory, or more generally when capacities are involved, these notions have been 
extensively studied (see Dellacherie [DiD, and the link between thinness, descrip-
tive set theoretical properties, and approximation properties was noticed by some 
authors, mainly Dellacherie and Feyel, see [DFM and DM]. We give here a general 
"abstract" treatment of thinness, generalizing the results known in the case of ca-
pacities, and showing that these results have very few relations with the particular 
properties of measures and capacities. We also introduce a descriptive set theoretic 
analog of "control", generalizing the concept of a set of measures being controlled 
by a measure. (A set of measures S is controlled by a measure f.l if '\Iv E S (v « f.l).) 
We show for instance that controlled ITt u-ideals are thin (i.e. satisfy the ccc) and 
(extending a result of Dellacherie [D3]) that they are also G/). This last result 
implies for instance that no "sufficiently nice" true ITt u-ideal of compact sets can 
contain the zero sets of a measure. This property is for instance true for the u-ideal 
of sets of uniqueness. This is a well-known theorem in the theory of these sets, but 
the above result reveals an underlying descriptive set theoretic "phenomenon". 

Added in proof (January 1987). The methods and results of this paper have 
recently found several applications in the study of the u-ideals of closed sets of 
uniquenss (U) and extended uniqueness (Uo); see A. S. Kechris and A. Louveau, 
Descriptive set theory and the structure of sets of uniqueness, forthcoming mono-
graph, and G. Debs and J. Saint Raymond, Ensembles d 'unicite et d 'unicite au 
sens large (to appear). In particular, in relation to questions raised in our paper, 
it has been shown that U is calibrated (Kechris-Louveau, Debs-Saint Raymond), 
and that U has no Borel basis (Debs-Saint Raymond), while Uo has a Borel basis 
(Kechris-Louveau). 
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1. Complexity of a-ideals of compact sets. 
1.1 Preliminaries on a-ideals. For the rest of this paper, E is a compact metriz-

able space, and K(E) the space of compact subsets of E with the Hausdorff topol-
ogy, in which the basic open nbhds have the form 

{K E K(E): K ~ UO&KnU1 =f 0&··· &KnUn =f 0} 

where Uo, U1 , ... , Un are open sets in E. Again K(E) is compact metrizable with 
the metric 

p(K,L) = sup{d(x,K),d(y,L): x E L&y E K}, if L,K =f 0, 
= diameter (E), otherwise, 

where d is a metric on E. We will use freely various simple facts about this topology 
(see [Kul) like for example: 

(i) If U: K(K(E)) -+ K(E) is the union function U(L) == UL == U{K: K E 
L}, then U is continuous. Also the function U: K (E) x K (E) -+ K (E) given by 
U(K, F) = K U F is continuous. 

(ii) If tp: E -+ E' is continous, then tpl!: K(E) -+ K(E') given by tp"(K) == 
{tp( x): x E K} is continuous. 

(iii) If Lis clop en in E the map tp: K(E) -+ K(E) given by tp(K) = K n Lis 
continuous. 

We will sometimes restrict our attention to O-dimensional (O-dim) spaces E, 
i.e. totally disconnected ones. Every such space can be always considered a subspace 
of the Cantor set, and moreover K(E) is also O-dim (in fact K(2W) - {0} ~ 2W). 

If I ~ K(E) we say that I is hereditary (resp. an ideal, a-ideal, oo-ideal) if I 
is closed under ~ (and resp. finite unions, countable unions (which are compact), 
arbitrary unions (which are compact)). Similar terminology will be used for other 
families of sets, e.g. a-ideals of G/j sets, Borel sets, etc. 

If I is hereditary and AI = {x E E: {x} E I}, then I ~ K(AI ), where for A ~ E, 
K(A) = {K E K(E): K ~ A}, and if I is an oo-ideal then I = K(AI)' 

1.2 The V-propagation lemma. Let f be a class of sets in compact metrizable 
spaces. Denote by f(E) the class r(E) == f n P(E). Typical examples will be the 
classes ~~ (== open), II~ (== compact), ~g (== Ka),IIg (== G/j), ... , Borel, ~i (== 
analytic), IIi (== coanalytic), ~~ (== PCA), II~(== CPCA), ... sets. The dual class 
t is defined by 

t(E) = {E - A: A E f(E)}. 

For the rest of 1.2 we will restrict ourselves to O-dim compact metrizable spaces. 
If f is a class of sets in such spaces we let Iff be the class defined by 

Vf(E) = {A ~ E:"3B E r(E x 2W)Vx[x E A {:} Vy E 2W(x,y) E B]}. 

(Note that this notion differs from the one frequently encountered in descriptive 
set theory, where one works with O-dim Polish spaces, the basic space is the Baire 
space WW and the V operation is defined over this space.) 

We call f a Wadge class if for some A ~ 2W and for any O-dimE, 

r(E) = {B ~ E: "3 continuous tp: E -+ 2W(B = tp-l[A])}. 
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If f is a Wadge class, and A <;;; Eo a O-dim space, we say that A is f-hard if for 
every E and B E f(E) there is a continuous t.p: E ~ Eo with B = t.p-l[A]. If 
moreover A E f, we call A f-complete. (Viewing Eo as a subset of 2w , this just 
means that A generates f as a Wadge class.) Finally, we say that A is a true f -set 
ifAEf-t. 

Note that if f is not self-dual, i.e. f -=I- t and A is f-complete then A is a true 
f-set. And for f <;;; Borel (resp. any r), Martin's Borel determinacy theorem (resp. 
AD) implies the converse (see e.g. [M-K]). 

We now have 

LEMMA 1 (THE V-PROPAGATION LEMMA). Let f be a Wadge class in 0-
dim compact metrizable spaces. If Eo is O-dim compact metrizable and A <;;; Eo is 
f -hard, then K (A) <;;; K (Eo) is Vf -hard. 

PROOF. Let B <;;; E be a Vf set, say B = VB' with B' E f(E x 2W). Let t.p be 
continuous, t.p: Ex 2w ~ Eo be such that t.p-l[A] = B' and define 'IjJ: E ~ K(Eo) 
by 'IjJ(x) = t.p"({x} x 2W). Then'IjJ is continuous and B = 'IjJ-l[K(A)]. 0 

In order to apply this lemma we need to know what are the Wadge classes of the 
form W. The simplest Wadge classes are {0}, {0}, d~ (== :E~ n TI~ == clopen), 
:E~, TI~, which are all closed under V, hence of this form. Let D2 be (in compact 
metrizable spaces) the class of differences of two TI~ sets, or equivalently the class 
of intersections of a compact and an open set. These can be also characterized as 
the sets which are open in their closure, and also as the locally compact metrizable 
spaces (see [Ku]). The dual class IJz consists of unions of a compact and an open 
set, and the ambiguous part of this class is denoted by 

~(D2) == ~(D2) == D2 n D2. 

It is the smallest Wadge class containing :E~ and TI~. 

PROPOSITION 2. We have 
(i) V(~(D2)) = D2 (= VD2), 
(ii) VD2 = TIg (= VTIg) , 
(iii) V:Eg = TI~ (= VTI~), 
(iv) Forn~1, V:E;=TI;+1 (=VTI;+I)' 

PROOF. For (i) notice that if A = Ao UA 1 is in D2 (E), Ao E TI~,Al E :E~, 
then B = (Ao x {O}) U (AI x {1}) is in ~(D2) in E x 2 and A = :lB. 

For (ii) notice that if A = Un Kn is in :Eg(E), Kn E TI~ then B = Un (Kn X {n}) 
is in D2 (E x (w + 1)) and A = :lB. 

The rest is trivial. 0 
Lemma 1 together with Proposition 2(iv) solves a problem of Dellacherie about 

the complexity of K(A), A E :E~. More generally if A is complete :E;, K(A) is 
complete TI;+I' And using an appropriate level of Wadge determinacy this also 
holds for true :E; sets. One can ask however the following: Can it be proved in 
ZFC that if A is true :E~ then K(A) is true TIP 

Another corollary is the following. 

COROLLARY 3. (i) Let Eo = W· 2 + 1, Ao = w U {w· 2}. Then K(Ao) tS, m 
K (Eo), a complete D2 set. 
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(ii) LetE1 =w2 +1, A1 =E1-{w·(n+l): nEw}. ThenK(At) is, in K(Et), 
a complete rrg set. 

(iii) (Hurewicz [HuJ). Let E2 = 2w , A2 = Q = {o: E 2W : 0: is eventually O}. 
Then K(Q) is, in K(E2), complete ni. 

PROOF. (i) Notice that K(Ao) is a true D2 set. This is because if K(Ao) = 
F u U, F E rr~, U E 'E~, F n U = 0, then for compact K ~ Ao, with w . 2 E K 
we must have KEF. Then {w,w· 2} = lim{n,w· 2} (in K(Eo)), so {w,w· 2} E F, 
a contradiction. By Wadge Borel determinancy K(Ao) is a complete D2 set. 

(ii), (iii) Notice that A1 is a true D2 set in E1 and Q a true 'Eg set in E 2. Then 
use Wadge Borel determinacy, Lemma 1 and Proposition 2. 0 

1.3 Hurewicz-type results. A Hurewicz-type result asserts that if a set (in some 
space) is not in a certain class f, it contains as a relatively closed subset a home-
omorphic copy of some fixed non-f-set, which could be called a Hurewicz-witness. 
Typically, Hurewicz's Theorem [Hu] says that any ni set A in a compact metriz-
able space E which is not ng contains a closed subset homeomorphic to Q. In fact, 
one can also construct a homeomorphic copy F of 2w inside E such that F n A 
is (through the homeomorphism) identified with Q. One could also say here that 
the pair (Q,2W ) is a Hurewicz-witness for non-ng-ness. We now give a (seemingly 
new) proof of a sharpened and extended version of Hurewicz's theorem. 

THEOREM 4. Assume ZF + DC (resp. +AD). Let E be compact metrizable, 
and let A, B be two disjoint subsets of E, with A E 'Ei (resp. arbitrary). If no Eg 
set 0 in E separates A from B (i.e. A ~ 0, OnB = 0), there is a homeomorphism 
ip: 2w -+ F ~ AU B, such that ip-1[F n B] = Q. 

In particular, taking B = E - A we obtain Hurewicz's theorem. Note also that 
the result for A E ni and B = E - A needs some extra hypothesis, since W1 = wf 
and A = 0 1 ~ 2w give a counterexample. For an analysis of the set theoretical 
hypotheses needed for these extensions and a solution to an associated problem of 
Saint Raymond on characterizations of Polish spaces see the forthcoming [KLSS]. 

PROOF. Let Ec = 2W and f: Ec - E a continuous surjection. Let A' = 
f-1[A], B' = f-1[B] and consider the following Wadge-type game: I plays 0: E 2w , 

II plays (3 E 2W and II wins iff: (0: E Q => (3 E B')&(o: ¢: Q => (3 E A'). If 
player I has a winning strategy in this game, his strategy is a continuous function 
g: Ec -+ Ec such that 0' = g-l[Q] separates A' from B', and thus 0 = 1"(0) 
is a Eg set separating A from B, a contradiction. So, assuming AD, player II 
has a winning strategy, and so there is a continuous function ip: Ec -+ Ec with 
ip"(Ec ) ~ A' u B' and ip-1[B'] = Q. Composing with f we obtain continuous 
1jJ: Ec -+ E with 1jJ"(Ec) ~ Au Band 1jJ-1[B] = Q. Then F = 1jJ"(Ec) is 
compact in E, and 1jJ"(Q), 1jJ"(Ec - Q) are disjoint dense subsets of F, hence F is 
perfect. Of course, F might not be O-dim, but an immediate construction inside F 
(a la Cantor) gives a copy F' of 2W with F' n ip"(Q) dense in F' and we are done. 

Now to avoid AD in case A is Ei, we argue, working in ZF + DC only, as 
follows: Let P ~ Ec X Ec be ng and project to A' (which is now ED. In P, 
consider the largest open set U whose projection nU is Eg separable from B'. 
Then Po = P - U -I 0 (since A' cannot be separated from B' by a Eg set), and 
Ao = nPo cannot be separated from B' by a Eg set. Let {Un} be a basis for 
the nonempty open subsets of Po. By maximality of U, nUn n B' -I 0, so choose 
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Xn E 7rUn il B'. Let Bo = {xn: nEw} and consider the pair Po, Bo x Ec in 
Ec x Ec. By the Baire category theorem Po cannot be separated from Bo x Ec 
by a ~g set, because if Un Kn is such a set then for some i, n Ui <;;; Kn and so 
7rUi <;;; 7rKn and 7rUI <;;; 7rKn = 7rKn, since Kn is closed. So Xi E 7rKn and thus 
Kn n (Bo x Ed =1= 0, a contradiction. We can play now the Wadge-type game for 
Po, Bo x Ec as above. Since this game is a Boolean combination of IIg sets (note 
that Po E IIg, Bo E ~g) it is determined, so, as above, player II wins. Composing 
his strategy with the project 7r we obtain the function ip as before. D 

Similar, but much easier, Hurewicz-type results hold at lower levels. Recall the 
pairs (Eo, Ao), (E I , A d defined in Corollary 3. 

PROPOSITION 5. (i) If a set A <;;; E, in a compact metrizable space, is neither 
closed nor open, there is a homeomorphism ip: W· 2 + 1 ----t E with Ao = w U { w . 2} = 
ip-I[Aj. 

(ii) If a set A <;;; E, in a compact metrizable space, is not in D 2 , there is a 
homeomorphism ip: w2 + 1 ----t E with Al = w2 + 1- {w· (n+ 1): nEw} = ip-I[Aj. 

PROOF. (i) As A is not closed, it contains a discrete sequence {xn} converging 
to Xw tt A. Similarly as E - A is not closed there is a discrete sequence {xw+n } in 
E - A converging to Xw.2 EA. Put ip(O:) = X",. 

(ii) Since A is not in D2 , hence not locally compact, let Xw E A have no com-
pact neighborhood, and choose discrete disjoint sequences {xw .n +m } in the ball 
B(x, 1/(n+1)) in A converging to distinct points Xw.(n+l) outside A. Put ip(O:) = X", 
again. D 

Finally we quote another Hurewicz-type result due to Saint Raymond [StR2j. 
THEOREM 6(SAINT RAYMOND [StR2]). Let E3 = 2W x 2W and A3 = {(0:,,8) 

E E3: 0: tt Q or,8 E Q}. Then if a Borel set A <;;; E, E compact metrizable, 
is not a difference of two IIg sets, there is a homeomorphism ip: E3 ----t E with 
ip-I [Aj = A 3. 

1.4 Complexity of a-ideals. We prove now the main results about the complexity 
of IIi a-ideals. 

In the results that follow, if f is a class of sets in compact metrizable spaces 
and A <;;; Eo is in f(Eo), then we will call A f-complete if for any O-dim E and 
BE f(E) there is a continuous ip: E ----t Eo with B = ip-I[Aj. 

THEOREM 7. (i) Let I be a IIi a-ideal of compact sets in a compact metrizable 
space. Let B <;;; I, and let Ba be the class of compact sets which are countable 
unions of sets in B. (Thus Ba <;;; I.) If there exists a ~i set C with Ba <;;; C <;;; I, 
then there exists a IIg set H with Ba <;;; H <;;; I. 

(ii) (The Dichotomy Theorem). Every IIi a-ideal of compact sets is either IIi-
complete or else it is IIg. 

PROOF. (i) If no such IIg set H exists we can apply Theorem 4 to K (E) - I and 
B. This gives a compact Cantor set F <;;; B U (K (E) - 1) and F n B ~ Q. Consider 
the continuous ip: K(F) ----t K(E) given by ip(L) = UL. Then for L E K(F) 

L <;;; F n B {} U LEBa {} U LEI, 

so ip-I[Baj = ip-I[Ij = K(F n B) ~ K(Q), which by Corollary 3 is complete IIi. 
Hence no ~i set C can satisfy Ba <;;; C <;;; I, and we are done. 
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(ii) Put B = I in (i), and apply the preceding proof. D 
It remains to look at rrg a-ideals. The following result completes the picture. 

THEOREM 8. If I is a rrg a-ideal of compact sets in a compact met'rizable space, 
then either I is rrg -complete, or else I is in D2. In the latter case I is an oo-ideal 
and hence is of the form K (A) for some A in D2. In particular, any rrg a-ideal not 
of the form K (A) is complete rrg. And finally if I is in D2 it is either D2-complete 
or else is either E~ or rr~, i. e. of the form K (A) for A open or closed. 

In fact one can prove the following stronger result about ideals in general. 

THEOREM 9. If I is a ~g (i. e. both rrg and Eg) ideal of compact sets in a 
compact metrizable space, then it is an oo-ideal, and so of the form K (A) for some 
AED2 . 

PROOF OF THEOREMS 8 AND 9. That every rrg a-ideal which is not rrg-
complete is in D2 follows from Proposition 5(ii) and Corollary 3(ii), as in the proof 
of Theorem 7. Similarly if I is in D2 but not D 2-complete we use Proposition 5(i) 
and Corollary 3(i). It remains only to prove Theorem 9. 

Let I = Un Ln, where without loss of generality we can assume that Ln are 
hereditary compact subsets of K(E). Put as usual AI = {x E E: {x} E I} and 
consider 

Uo = U{U open in E: K(AI n U) <;;; I}. 

Since I is an ideal, an easy compactness argument shows that K(AI n Uo) <;;; I, 
i.e. Uo is the largest open set U with K(AI n U) <;;; I. We want to prove that 
actually K(AI n Uo) = I. For that it is enough to check that I <;;; K(Uo). If 
not, then I' = 1- K(Uo) -1= 0. Since I is rrg, so is I', so since I' <;;; Un L n , we 
can find by the Baire category theorem an open set V in K (E) and some n with 
V n I' -1= 0 and V nI' <;;; Ln. We may assume that for some Go, Gl, ... , G k open 
in E, V = {K: K <;;; GO&KnG i -1= 0,1 S; i S; k}. Let Ko E VnI', so that 
Ko <;;; Go, Ko <;;; AI but Ko ct Uo· So Go n (AI - Uo) -1= 0, hence K(AI n Go) ct I 
(else Go <;;; Uo). We will derive a contradiction to this. 

Let Kb <;;; K o be finite with Kb E V, and Kb n (E - Uo) -1= 0. Then Kb E V nI'. 
If now K <;;; AI n Go is finite, K U Kb <;;; AI and thus K U Kb E I (being finite). 
Also KUKb ct Uo, so KUKb E I' and clearly KUKb E v. So K <;;; KUKb E Ln 
and thus K E Ln. So all finite subsets of AI n Go are in Ln and since Ln is closed 
K(AI n Go) <;;; Ln <;;; I, a contradiction. D 

In view of Theorem 8 all the rrt a-ideals of compact sets which are not of the 
form K (A) fall in exactly one of two categories: 

(A) The "simple" ones, which are rrg-complete. Typical examples are the 
nowhere dense compact sets or the Il-measure 0 compact sets for any continuous 
finite measure 11, on any perfect compact space E. 

(B) The "complicated" ones, which are rri-complete. Typical examples are 
the countable compact sets in a perfect compact space E or the compact sets of 
uniqueness in the circle T. 

To finish this section, let us consider the case of Ei a-ideals. It follows easily 
from the proof of Theorems 4 and 7, that if we use the determinacy of Et games, 
the Et a-ideals are actually rrg. This indeed can be proved without this additional 
assumption, using as a key step a lemma of Saint Raymond [StRl]. (This was 
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the main lemma used by him to prove that K(A) E I:} * A Eng. Actually the 
hypotheses of the lemma in [StRl] are a bit stronger than the ones we use here, 
but one can easily check that the proof goes through with the weaker hypotheses 
given below.) 

LEMMA 10 (SAINT RAYMOND [StRl]). Let E be compact metrizable, and 
A <;;; E a I:~ set. Let P be Polish and cp: P - A a continuous surjection such that 
for any compact countable K <;;; A there is compact L <;;; P with cp" (L) = K. Then 
A is Polish, i. e. ng in E. 

We now have 

THEOREM 11. Let I be a I:} a-ideal of compact sets in some compact metrizable 
space E. Then I is actually ng. 

PROOF. Consider 

J <;;; K(K(E)), given by L E J ~ UL E I. 

Since I is I:L so is J. So let X be Polish and f: X - J a continuous surjection. 
Define P <;;; X x K(E) by 

(x,K) E P ~ K E f(x). 

Then P is closed in XxK(E), so is Polish. Let cp: P -+ K(E) be given by cp(x, K) = 
K. Then cp is continuous and we will check that it satisfies the hypotheses of Saint 
Raymond's lemma with cp"(P) = I. It then follows that I is ng. 

So first let K E I. Then {K} E J, so for some x E X, (x, K) E P and thus 
cp"(P) ;2 I. Conversely, if (x, K) E P then K E f(x) E J, hence K <;;; U f(x) E I, 
thus K E I. So cp"(P) = I. Finally, if L is a countable compact subset of I, then 
U LEI, since I is a a-ideal, so L E J and thus let XL E X be such that f(xL) = L. 
Put L' = {(xL,K): K E L} = {xLl x L. Then L' is a compact subset of P, and 
cp"(L') = L. 0 

2. Bases for a-ideals of compact sets. 
2.1 The concept of basis. Let I be a a-ideal of compact sets in a compact 

metrizable space. A set B <;;; I is a basis for I if I is the a-ideal generated by B, 
i.e. if for each K E I there is a sequence {Kn }, Kn E B with K <;;; Un Kn. If B is 
hereditary this is equivalent to I = Bu' We say that I admits a f-basis if such a 
basis B can be found in the class f. We will be mainly interested in the problem 
of existence of Borel bases for n} a-ideals. 

First an easy proposition. 

PROPOSITION 1. Let I be a n~ a-ideal of compact sets in some compact metriz-
able space. Then the following are equivalent: 

(i) I admits a I:~ -basis; 
(ii) I admits a Borel basis; 
(iii) I admits a hereditary Borel basis. 

PROOF. Clearly (iii) * (ii) * (i). Let now Bo be a I:~-basis. By separation 
find Borel Co with Bo <;;; Co <;;; I. Let B1 be the hereditary closure of Co. Then 
Bl E I:} and Co <;;; B1 <;;; I, hence there is Borel C1 with B1 <;;; C1 <;;; I, etc. 
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So inductively we define Bn ~ Cn ~ Bn+l' Cn Borel and Bn+! hereditary. Let 
B = Un Bn = Un Cn. Then B is Borel, hereditary and a basis since Bo ~ B. 0 

Proposition 1 has the following converse: 
If a a-ideal I admits a Borel, in fact even a II~ hereditary basis, then it is II~. 
This follows from work of Cenzer and Mauldin, characterizing hereditary II~ 

subsets of K(E) as those sets B for which there is a II~ set T ~ EW with K E B {:} 
KW ~ T (see [C-M or Ll]), and from work of Dellacherie, Hillard and Louveau 
[Hi, L 1]. An explicit proof of the result above-together with some generalizations 
can be found in [Ll, Chapter 3, pp. 48-54]. 

However, one cannot drop the hypothesis that B is hereditary: Let A ~ E be a 
true E ~ set, and let 

1= Kw(A) = {K E K(E): K is countable&K ~ A}. 
Clearly I admits the (hereditary) E~-basis B = {0} U {{x}: x E A}, and we will 
see in the next subsection that this implies that A admits a IIg-basis. But I is not 
II}, and so I cannot have a hereditary Borel basis (this can be also seen directly 
as follows: If C ~ I is hereditary Borel, {x E E: {x} E C} is a Borel subset of A, 
so C does not generate I). 

Using similar ideas, one gets counterexamples to various possible conjectures, 
showing in particular (in combination with the results of 2.2) that the notions of 
basis and hereditary basis are quite different. 

Let first A be a true II} set. Then I = Kw(A) is the simplest example of a 
II~ a-ideal with no Borel basis. 

Let now A be a Borel set. Then I = Kw(A) is II~ and admits a Borel basis, 
e.g. B = {0} U { {x}: x E A}, but any hereditary Borel basis C must be of Borel 
complexity at least that of A, since x E A {:} {x} E C. So the complexity of 
hereditary Borel bases can be arbitrarily high in the Borel hierarchy. This should 
be compared with the result in 2.2 showing that there is always a IIg-basis (if there 
is a Borel one). 

We will see now that the problem of the existence of a Borel basis is equivalent 
to a classification problem. 

For a a-ideal I of compact sets in E, let 1£ (the "local" version of 1) be defined 
by 

K E 1£ {:} :JU open in E (K n U =I- 0& K n U E I) . 
For example, let I = Kw(2W) ~ K(2W) be the a-ideal of countable compact sets 
in 2W. It is well known that I is II~-complete. (Here is a simple proof, based on 
Theorem 1.7: Let rp: 2W ----> K(2W) be defined by rp(o:) = {8 E 2W: \in(o:(n) = 0 '* 
f3(n) = O}. Then rp is continuous and rp-l[I] = Q, so I is not IIg.) Now K(E)-1£ 
consists of exactly the perfect compact subsets of 2w , which is a IIg set. 

We have now 
THEOREM 2. Let I be a II} a-ideal of compact sets in a compact metrizable 

space E. Then the following are equivalent: 
(i) I admits a Borel basis; 
(ii) 1£ is Borel. 
PROOF. If I admits a hereditary Borel basis B then by a Baire category argu-

ment we have 
K E 1£ {:} :JU open in E (K n U =I- 0 & K n U E B) , 

so 1£ is Borel. 
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Conversely if h is Borel, let { Un} be a basis for open sets for E, and for each 
n let Cn = {K: KnUn i 0&KnUn E I}. Then Cn E nl and h ~ UnCn. 
By Novikov's theorem there is a Borel function 'P: h -+ w such that for K E 
h, K n Ucp(K) i 0&K n U cp(K) E I. Let B = {K n U cp(K): K E h}. Then B is 
~l and B ~ I, so it is enough to show B is a basis. So let K E I and put 

K' = K - U {U basic open in E: un K is covered by the union of a 

sequence of elements of B}. 

If we show that K' = 0, we are done. But if K' i 0, then since K' E I we have 
that K' E h. But then for U = Ucp(K') we have that both K n U is covered by the 
union of a sequence of elements in B and K' n U i 0, a contradiction. D 

Note that by the preceding proof we can also add another equivalence, namely 
(iii) There is a Borel set A with I ~ A ~ h U {0}. 
2.2 ng-bases. We can view the following result as an analog of Theorem 1.11 for 

bases. 

THEOREM 3. Let I be a a-ideal of compact sets in a compact metrizable space 
E. If I has a ~~ -basis, then it actually has a ng -basis. 

PROOF. We can of course assume that I has a hereditary ~l-basis B. We 
distinguish two cases. 

Case 1. Every set in I is countable. Then I = Kw (AI)' where AI = {x: {x} E 
I} = {x: {x} E B} is ~~ in E. We have now two subcases: 

(a) If AI is uncountable, let Ko be a copy of 2W inside AI and let P ~ E x Ko 
be a n~ set projecting to AI - Ko. Then A = {{x}: x E Ko} U {{x,y}: x E 
AI - Ko & (x, y) E P} is a ng-basis for I. 

(b) If AI is countable, say AI = {xn : nEw}, let A consist of 0, {xo ... xn}, n E 
w. One checks that A - A = {AI}, hence A is ng (in fact D2 ) and clearly a basis 
for I. 

Case 2. I contains some compact perfect set Ko. Choose first a sequence {Vn } 

of open sets with V n ~ Vn+1 and Un Vn = E - Ko. Then choose open sets Un with 
Ko n Un i 0, Un n Vn = 0 and Un n Urn = 0 if n i m. 

Now let Bn = B n K(V n). Since Bn is ~~ in K(E) and K(Un n Ko) contains a 
copy of 2w , there exists a ng set 

Pn ~ K(E) x (K(Un n Ko) - {0}) 

with 7rPn = Bn. Put 

A = {Ko} U {K E K(E): :::In (K ~ Un U Vn) 
&Vn [K ~ Un U Vn =} K ~ Ko U V n 

& (KnVn,KnKo) EPn]}. 

First A is a ng set: This is because the function K 1---+ (K n V n, K n Ko) from 
K (KoUV n) into K (E) x K (E) is continuous, since V nand Ko are clop en in KoUV n. 

Also A ~ I: Indeed if K E A, either K = Ko E I or for some n K = (K n V n) U 
(KnKo) and KnVn E 7rPn = Bn, so KnVn E I and then K E I. 
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Finally we check that A is a basis for I: Let K E B. Then for each n K n 
V n E Bn+1, so for some K~ ~ Un+1 n Ko, K~ i 0, (K n V n, K~) E Pn+1. 
We claim that K~ = (K n V n) U K~ is in A, which completes the proof since 
K = Ko U Un(K n V n) ~ Ko U Un K~. Indeed, K~ ~ Un+1 U Vn+1 and if 
K~ ~ Um U Vm, then clearly m = n + 1 (recall that the Vm's are disjoint and 
o i K~ ~ Un+d; so K~ ~ KoUV m and (K~nV m, K~nKo) = (KnV n, K~) E Pm, 
so we are done. 0 

This result is best possible, because if A ~ E is a true ng set, then K (A) is ng 
but cannot have a :Eg-basis, since otherwise A would have been :Eg also. 

But if a a-ideal has a :Eg-basis then one has a further reduction. 

THEOREM 4. Let I be a a-ideal of compact sets in a compact metrizable space. 
If I has a :Eg-basis, it has actually a D2 -basis. 

PROOF. First note that I is ni (by the remarks following Proposition 1) since 
I has a hereditary :Eg- basis B. We have again two cases: 

Case 1. Ever K E I is finite. Then AI = {x E E: {x} E I} must be discrete 
and so in D2, and therefore I = K (AI) is D2 itself. 

Case 2. Some K E I is infinite. Then there is Ko E I homeomorphic to w + 1, 
say Ko = {Xn: nEw} U {xw}. Let Un = E - ({xm: m ;:::: n} U {xw}). Then Un 
is open and Uo = E - Ko. Let B' = B n K(Uo). Then B' is :Eg in K(E), so let 
B' = Un Ln, with Ln closed in K (E), and Ln ~ Ln+1. Put 

A = {K: K = {xw} or ::In::lK' E Ln [K = K' U {xo·· ·xn}]}. 

Clearly A ~ I and A is a basis for I. 
We prove that A E D2 : First note that Xo is contained in every element of 

A except {xw} so {xw} is an isolated point in A. Thus it is enough to show 
A' = A - {{xw}} is in D2 • For that let 

L~ = U {K U {xo ... xp}: KELp}, 
p<n 

so that L~ is closed (in K(E)). Then notice that 

K E A' {} ::In > 0 (K ~ Un) & \:In > 0 (K ~ Un :::} K E L~), 

so A' is D2 . 0 
Note again that this is best possible: If A ~ E is a true D2 set, K (A) is a D2 

a-ideal with no D2-basis. 
Finally we have 

THEOREM 5. Suppose I is a a-ideal of compact sets in some compact metrizable 
space. If I has a D2-basis, it has actually a 1l(D2) = 1l(D2)-basis. 

PROOF. Let Bl in D2 be a basis for I. Say Bl = FUU1 , where F is closed and 
U1 is open. We can assume that F is hereditary. Moreover U1 is the union of a 
countable sequence Un Vn, where 0 i Vn = {K E K(E): K ~ G(n) & K n Gin) i 
0& ... & K n G~:) i 0}, with G;n) open in E. 

Let V~ = K(G(n)). Then Vn ~ V~ s;: I, so if U = Un V~, then B = F U U is still 
a basis and F, U are hereditary, F is closed and U is open. 
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Let now V = Au = {x: {x} E U}. Then V is open in E and for each x E V 
there is n with x E G(n) and K(G(n)) ~ U. So U ~ K(V) ~ I. Let L = E - V, and 
B' = B n K(L) = F n K(L). If V = 0, then B' is a closed basis for I. If V =J 0, 
choose V' open, V' =J 0, with V' ~ V and let A = B'U{K: K ~ V & KnV' =J 0}. 
Then A is a basis for I. Now 

{K: K ~ V & K n V' =J 0} ~ {K: K n V' =J 0} 

so the closure of {K: K ~ V & K n V' =J 0} is disjoint from B' , thus A E ~(D2) 
and we are done. 0 

As usual this is best possible: If A is a ~(D2) set in E which is neither closed 
nor open, then Kw(A) has a ~(D2)-basis but not an open or closed one. 

If I has an open basis then an argument as in the preceding proof shows that 
1= K(AJ) is itself open. But on the other hand Kw(2W) has a closed basis (i.e. {0}U 
{{x}: x E 2W }), but is complete Ill. 

We conclude with a few questions: 
Ql. What can be said about ideals with closed bases? (They should be somehow 

simple.) 
Q2. What is the exact maximum complexity of a-ideals with I:l (:. Ilg) bases? 

(They must all be I:~.) 
Q3. Say that a Ilg-basis B of a a-ideal I is homogeneous if for every K E 

K(E), BK = {K n L: L E B} is Ilg. Which a-ideals admit homogeneous Ilg-
bases? 

2.3 Which III a-ideals have no Borel basis? The search for a-ideals with no Borel 
basis seems quite hard. Ordinary examples of III a-ideals like the nowhere dense 
compact sets, the zero sets for a Radon measure, a Hausdorff measure or a capacity, 
are all Ilg a-ideals, while some of the standard examples of true III a-ideals such 
as K(Q) or Kw(2W) have natural Borel bases. Of course an example is Kw(A) (or 
K(A)) for some true Il~ set A, but one is looking for more interesting examples. 
For instance as we said earlier it is not known if the a-ideal of compact sets of 
uniqueness has a Borel basis. (The nonexistence of a Borel basis here would have 
interesting implications in the theory of sets of uniqueness. ) 

Here is however an example of an interesting Il~ a-ideal with no Borel basis. 

PROPOSITION 6. Let E = 2W and let E# = {p,: J1(E) = 1, J1 ::=:: O} with the 
weak*-topology. To each K E K (E#) associate the capacity IK defined by 

IK(F) = sup{J1(F): J1 E K}. 

Let I = {K E K(E#): IK is thin}. Then I is a Il~ a-ideal with no Borel basis. 

(Recall that a capacity is thin if there is no uncountable family of pairwise 
disjoint compact sets of positive capacity.) 

PROOF. Let cp: K(E) ~ K(E#) be defined by cp(K) = K# = {J1 E E#: J1(K) 
= 1}. Then cp is continuous, and we claim that cp-l[I] = cp-l[h U {0}] = Kw(E), 
which implies that h is not Borel and by Theorem 2 finishes the proof. If K E K (E) 
is countable then IK# is clearly thin, so Kw(E) ~ cp-l[I] ~ cp-l[hU{0}]. Assume 
now K is uncountable, towards showing that K# ~ h U {0}. Let U be open in E# 
such that K# n U =J 0. We want to prove that IK#nV is not thin. Let Ko ~ K be 
a copy of 2W. If J10 E K# n U then by the definition of the weak* -topology there is 
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c > 0 with Vx E Ko[(c· 8x + (1- c)· J.lo) E K# n U], where 8x is the Dirac measure 
at x. But then {{x}: x E Ko} is an uncountable family demonstrating that IK#nfJ 
is not thin. 0 

We proceed now to establish a sufficient criterion for nonexistence of Borel bases 
for II~ a-ideals. As application we will solve completely the problem of when the 
ideal K (A), A E II~ has a Borel basis and we will give also another interesting 
example of a II~ a-ideal with no Borel basis. This criterion will look a bit technical 
at first sight but we will give some motivation immediately after stating it. 

LEMMA 7 (A sufficient criterion for nonexistence of Borel bases). Let I be a 
II~ a-ideal in K(E), E compact metrizable and let {In}, I n ~ K(E) and D ~ E 
satisfy: 

(a) I n is nonempty hereditary open in K(E), and [K E I n &x ED=> K U 
{X}EJn ], 

(b) Let I = {X ~ E: VK E K(X) Vn(K E I n)}. If {Kn} is a sequence of sets 
in I, HE I is a Go and K = H U Un Kn is compact, then K E I. 

Then if I is true II ~ and D = E, or InK (U) is true II ~ for all open nonempty 
U ~ E and D is dense in E, the a-ideal I has no Borel basis. 

Let us mention an immediate corollary which was an original motivation for this 
kind of criterion, and whose proof illustrates also the meaning of the hypotheses 
above. 

COROLLARY 8. Let I be a true IIi a-ideal of compact sets on a compact metriz-
able space E. Let, be a capacity on E such that 1( K u {x}) = 1( K) for K E K (E) 
and x E E. Let i-y be the class of null sets for the capacity I. Assume that if 
Kn E I, Vn, H is a Go, HE i-y and K = H U UnKn is compact then K E I. 
Then I has no Borel basis. 

In particular (using the terminology of 3.2) if I is a true II~ calibrated a-ideal 
[i.e. K = H U Un Kn, where K E K(E), Kn E I, HE Go and VL E K(H) (L E I), 
implies K E I], then I-y = i-y n K(E) ~ I => I has no Borel basis. In other words 
every calibrated true IIi a-ideal which contains the compact zero sets of some 
capacity as above has no Borel basis. 

If we call, for any capacity I, a set A ~ E 1- thin if there is no uncountable 
family of pairwise disjoint sets in K (A) of positive capacity, then 

J-y = {K E K(E): K is I-thin} 

is a calibrated II~ a-ideal of compact sets (see for example Corollary 3.4). Thus, if 
I satisfies I(K U {x}) = I(K), since clearly I-y ~ J-y, it follows that 

J-y is Borel ¢:} J-y has a Borel basis. 

Sometimes the ideal J-y is Borel. For example the electrostatic capacity 10 has 
the strange property that J-yo = I-yo' so J-yo is IIg in this case. But another natural 
capacity gives an example where J-y has no Borel basis. 
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PROPOSITION 9. Let E = [0,1] x [0,1], and let for A ~ E, I(A) = /-L(7rA). 
Then 1 is a capacity with I(K U {x}) = I(K) for any K E K (E), x E E and 

I = J, = {K E K(E): K is I-thin} 
= {K E K(E): /-L{x E [0,1]: Kx is uncountable} = O} 

is a (translation and homotheties invariant) IT} a-ideal with no Borel basis. 

PROOF. It is enough to prove that I is a true IT} set. But {K ~ [0,1]: [0,1] x 
K E I} = Kw([O, 1]), so I cannot be Borel. 0 

We prove now Corollary 8 (from the lemma): 
Take I n = {K E K(E): I(K) < lin}, and D = E. Clearly (a) is satisfied, since 

I(K) = infu ;2K;U open I(U), For (b) note that H E IT~, HE I {:} H E i, by the 
capacitability theorem for IT~ sets. 

We finally give the 
PROOF OF LEMMA 7. First let us notice that it is enough to prove the second 

case of this lemma. Because if I is true IT} and D = E, let Uo = U{U open in 
E: In K(U) is IT~}. Then In K(Uo) is IT~, so E' = E - Uo -I- 0 by hypothesis. 
Working in E', I' = InK(E'), J~ = JnnK(E') and D' = E' satisfy the hypotheses 
of the second case, so l' has no Borel basis and thus neither has I. 

So let us assume InK (U) is true IT} for all nonempty U ~ E and D is dense 
in E. Let B ~ I be Borel and hereditary. We want to prove that B is not a basis 
for I. 

First note that for each nonempty U open in E, InK (U) -I- B n K (U), so there 
is compact Ku ~ U, Ku E I-B. Also each K E I is nowhere dense (because if 
o -I- U ~ K, InK (U) = K (U) is open). Finally if K is nowhere dense compact in 
E, U:2 K is open and D is dense in E we can find a discrete sequence of points 

D(K,U) = {xn(K,U): nEW} ~ (DnU)-K 

such that D(K, U) = D(K, U) UK. 
We proceed now to construct for each s E w<w a compact set Ks and an open 

set Us satisfying the following: 
(i) Us -I- 0 & Ks = Kus (hence Ks E I - B), 
(ii) n -I- m =} UsAn n UsAm = 0, 
(iii) UsAn ~ Us &UsAn n Ks = 0, 
(iv) diam(UsA n) ::::: 2- lsl , 
(v) Un UsAn = (Un UsAn) U K s, 
(vi) Ks ~ Un KsAn, 
(vii) If K is compact and K ~ U 1s1=n+1 USl then K E I n . 

Let U0 = E, K0 = Ku0 • Suppose we have constructed Us, Ks for lsi ::::: k 
satisfying (i)-(vi). For lsi = k, consider D(Ks, Us) and enumerate U1s1=k D(Ks, Us) 
as {xn: nEw}. Since Xo E D we have by (a) that {xo} E Jk. But as {xo} = nN B(xo, liN) and Jk is open, one of the balls B(xo, liN) E Jk. If Xo is the nth 
point of D(KSl Us) i.e. Xo = Xn(KSl Us) we choose N = No large enough to have 

diam(B(xo, 1INo)) ::::: 2- ls1 = 2-\ 

B(xo, 11No) nKs = 0, B(xo, 11No) ~ Us and B(xo, 11No) n {xn : n 2: 1} = 0. Let 
then UsAn = B(xo, 1INo). Now we look at Xl; say Xl = xm(Kt, Ut ), with It I = k. 
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By (a) 
B(xo, l/No) U {Xt} = n(B(xo, l/No) U B(Xl, liN)) 

N 

is in Jk, so we can find N = Nl so that 

B(xo, l/No) U B(Xl, liNd E Jk, diam(B(xl, liNd) :::; 2-(k+l), 

B(Xl, liNd n K t = 0, B(Xl, liNd ~ Ut , B(xo, l/No) n B(Xl, liNd = 0, 
and 

B(Xl, liNd n {xn: n;::: 2} = 0. 
Let then UtJ"m = B(Xl, liNd. Continuing this way we construct sets Usl\n for all 
lsi = k, nEw and then we let Ksl\n = Ku 1\ • Then (i)-(vi) are clearly satisfied. 
For (vii) note that if K ~ U1s1=k+l Us, the~ by compactness K E Jk. 

Let now H = nn qsl=n Us, K = H U Us Ks. Clearly H is a ng set and every 
L E K(E), L ~ H is in nn I n by (vii). Also Ks E I, for all s. We claim now that K 
is compact, so that by (b) K E I, but also that K cannot be covered by a sequence 
of elements of B, which leads to a contradiction and finishes the proof. 

K is compact: In fact we have K = nn U1s1=n Us. The inclusion ~ is easy by 
(vi). If now x E nn U1s1=n Us but x tt Us Ks then by (v) for each n, x E Us for 
some lsi = n, and by (ii), (iii) x E nn U1s1=n Us = H. 

K cannot be covered by a sequence of elements in B: Suppose not. Then by the 
Baire category theorem there is Uo open in E with Uo n K =I- 0 and U 0 n K E B. 
Let x E Uo n K. If x E H then for some unique 0: E wW, {x} = nn Uarn by (ii), 
(iii) and (iv), hence for some no, U a rno ~ Uo and Karno ~ Uo n K, so Ka rno E B, 
a contradiction. If finally x E Ks, there is a sequence of sets {Ssl\nk: k E w} 
converging to {x}, so for some p, Usl\p ~ Uo, hence Ksl\p ~ Uo n K, which again 
gives a contradiction, and we are done. D 

We will apply now Lemma 7 to characterize the ni sets A for which K(A) has 
a Borel basis. 

THEOREM lO. Let E be compact metrizable and A ~ E be ni. Then K (A) 
admits a Borel (hence ng) basis iff A is the difference of two ng sets. 

PROOF. If A = H n UnKn, where H E ng and Kn E K(E), let B = 
Un{K: K ~ HnKn}. Then B is Borel (in fact the difference of two ng sets), and 
clearly is a basis for K (A). Suppose now K (A) admits a Borel basis. Then A is 
Borel. If A is not the difference of two ng sets then by Saint Raymond's theorem 
(1.6) there is a copy F of 2W x 2W inside E with An F the corresponding copy of 
A3 = {( 0:,;3): 0: tt Q or ;3 E Q}. Since K (A) is assumed to have a Borel basis so 
does K(A3). So it is enough to show that 1= K(A3) has no Borel basis. 

Let {Un} be a decreasing sequence of open sets in 2w x 2w with D = nn Un = 
{(0:,;3): 0: tt Q}. Let I n = K(Un). We claim that I, {In} and D satisfy the 
hypotheses of Lemma 7 and this will complete the proof. 

First D is clearly dense in 2W x 2W. Also I n is hereditary open and if K E I n , 

i.e. K ~ Un and xED, then K U {x} ~ Un, so (a) is satisfied. 
If now H is ng for each K E K(H), K E I n for all n then H ~ D and so if 

L = H U Un Kn is compact with Kn E I then L ~ D U A3 = A3, so LEI. 
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Finally if U is non empty and basic in 2w X 2w, then U n A3 is homeomorphic 
to A3 , hence not ng, so In K(U) = K(U n A3 ) is complete nt by 1.7 (or merely 
the Christensen-Saint Raymond Theorem). So Lemma 7 applies and K (A3) has no 
Borel basis. 0 

We finally study the problem of :Eg-bases. We start with the following simple 

LEMMA 11. Let I be a a-ideal of compact sets in a compact metrizable space 
E. If 1 contains only nowhere dense sets then 

1 - {0} is nonmeager in K(E) * I has no :Eg-basis. 

PROOF. Assume I has a :Eg-basis and consider h. By the proof of Theorem 2 
h is :Eg and clearly 1- {0} ~ h. But K(E) - h is dense, since it contains 
all sets of the form G1 U ... U Gn , where Gi are basic open. So h is meager and 
1- {0}. 0 

Thus for a a-ideal I which contains all singletons and only nowhere dense sets 
it follows that 

(i) 1- {0} is meager * I is complete nt. 
(ii) 1- {0} is nonmeager * I has no :Eg-basis. 
(For (i) just note that 1- {0} contains all singletons, therefore is dense.) 
We can also use Lemma 11 to see for example the following 

COROLLARY 12. The a-ideal of sets of uniqueness (in T) does not have a :Eg-
basis. 

PROOF. It is enough to show that this ideal is comeager in K (T). Here are two 
different arguments. 

ARGUMENT 1 (DUE TO SAINT RAYMOND). We use the notation of [K-SJ. Let 

FN = {K E K(T): :JS E PM(K)(Vn(IS(n)1 ~ 1) 
& 18(0)1 :::: ~ &Vlnl :::: N(18(n)1 ~ !)}, 

where PM(K) are the pseudomeasures (distributions with bounded Fourier co-
efficients) with support contained in K. Then the compact sets of multiplicity 
(= not of uniqueness) are contained in U~=1 FN , so it is enough to show that 
K(T) - U~=1 FN is dense, since F)./ is closed. But note that this set contains all 
finite sets of rationals so we are done. 

ARGUMENT 2. We show that the class of compact H-sets (again see [K-SJ) is 
comeager. Since these are all sets of uniqueness we are done. (One can prove by 
similar arguments here stronger facts, like for example that the class of Kronecker 
sets is comeager.) 

Notice first that given pairwise disjoint intervals h··· Ik and an interval li 
there are arbitrarily large enough n and intervals J1 ~ h, ... , Jk ~ h such that 
n· (U7=1 Ji) ~ J. Intervals here are say in (0,27f) and multiplication n·x is modulo 
27f. 

Consider now the game in which players I, II take turns in playing at each move 
a finite sequence II ... h of pairwise disjoint closed intervals with the only require-
ment that if I played at some stage h ... h then II must play next Jl ... J~l' ... , Jf 
... J~k where Jj,. ~ Ii and nl,"" nk :::: 1. (Similarly for II.) If Kn is the union of 
the intervals played in the nth move, let K = nn Kn. II wins if K is an H-set. It 
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is easy to see that if II has a winning strategy in this game then the class of H -sets 
is comeager. 

To show that II has a winning strategy fix some interval ~ in advance and let 
II play as follows: On the side II plays (secretly) in his nth move an integer kn . 

If I played in his nth move II'" h then II uses the observation before to play 
Jl ... Jk, Ji ~ Ii and plays kn > kn - 1 such that kn · (h U ... U Jk) ~ ~. If K is 
the closed set produced at the end of the game we clearly have kn . K ~ ~ for all 
n, so ko < kl < ... and any interval disjoint from ~ are witnesses that K is an 
H-set. 0 

We can also characterize completely the Borel a-ideals with :Eg-basis. 

THEOREM 13. Let I be a Borel (hence ng) a-ideal of compact sets in a compact 
metrizable space E. Then I has a :Eg-basis iff 1= K(A), where A is .6.g in E. 

PROOF. If A is :Eg and I = K (A) then I clearly has a :Eg-basis. 
If now I has a :Eg-basis, let AI = {x: {x} E I}. AI is ng as I is, and AI is:Eg 

because if B is some hereditary :Eg-basis for I, x E AI {:} {x} E B. So it remains 
to show that I = K(AJ). Let Uo = U{U open in E: Un AI is a countable union 
of elements of I}. Clearly Uo is the largest open set in this family. We claim that 
Uo = E. Suppose not, and let X = E - Uo, Ix = InK (X). If K E Ix, K must be 
rare in X, for if V is open and V n X ~ K, i.e. V ~ K U Uo, then by maximality of 
Uo, V ~ Uo hence V nX = 0. So we can apply Lemma 11 and get that Ix ~ {0} 
is meager in K(X). On the other hand, AI nX is dense in X, for if V open satisfies 
VnAInX = 0, i.e. VnAI ~ Uo, then again by maximality V ~ Uo, i.e. vnX = 0. 
But then the finite subsets of AI n X, and a fortiori Ix, form a dense subset of 
K(X). As Ix is ng, Ix is comeager in K(X), a contradiction which shows X = 0. 
So Uo = E and AI is a countable union of elements of I, hence I = K(AI)' 0 

As an immediate corollary we have 

COROLLARY 14. If E is a perfect compact metrizable space and, a subadditive 
capacity (in particular a measure) with ,({x}) = O,\lx E E, then the a-ideal I"f of 
compact 0 sets of, does not have a :Eg-basis. Similarly the a-ideal of nowhere 
dense closed sets on a perfect E has no :Eg -basis. 

We have also 

COROLLARY 15. Let E be compact metrizable, and I a a-ideal of compact sets 
on E, which is nontrivial, i.e. contains all singletons but not E. Then if I has a 
:Eg-basis, I is complete n~. 

PROOF. If I has a :Eg-basis it has a hereditary :Eg-basis so I is n~. If it is not 
complete then it is n~ so by Theorem 13, I = K (AI) contradicting the nontriviality 
if I. 0 

So this shows that the existence of a simple enough basis implies that the a-ideal 
must be complicated. Finally note that if I is a n~ a-ideal, {In} and D = E satisfy 
(a), (b) of Lemma 7 and E 1:- I, then I cannot have a :Eg-basis. This is because 
either I is true n~ and we can use Lemma 7 or else I is Borel and we can use 
Theorem 13 (note that by (a), (b) {x} E I, \Ix E E). 
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3. Thinness of a-ideals. 
3.1 Motivation and background. The notion of thinness has been introduced and 

extensively studied in the theory of capacities. 
Recall that a function 1: P (E) t-+ R + is a capacity on the compact metrizable 

space E if 
(i) 1(0) = 0 and A ~ B ~ l(A) ~ l(B). 
(ii) l(Un An) = SUPn l(An), if Ao ~ Al ~ A2 ~ ... . 
(iii) l(nn Kn) = infn l(Kn), if Ko ~ KI ~ K2 ~ ... are compact sets. 
In the presence of (i) property (iii) is in fact equivalent to the restriction of 1 to 

K(E) being l.s.c., i.e. for K E K(E), l(K) < t E R+ ~ :3 open U ~ K, l(U) < t. 
So 

I-y = {K E K(E): l(K) = O} 
is always a rrg set, and if 1 is subadditive i.e. l(A U B) :S l(A) + l(B) then I, is a 
a-ideal. 

The main result on capacities is Choquet's theorem [eh]: If A ~ E is ~t, l(A) 
is the supremum of b(K): K E K(An. Note that this sup is taken over a rr~ set 
(sometimes a complete one). But in fact one can prove that if A = 7fP, where P 
is rrg in Ex 2w , the sup can be taken on {K: K = 7fK', for some K' E K(pn 
which is a ~t set. Therefore {A E ~t: l(A) = O} is a rrt set (in fact the relation 
l(A) > t is ~t in the codes of ~t sets). Moreover by the outer capacitability 
theorem (Dellacherie [Dl]), if A is ~t and l(A) = 0, there is Borel B ~ A with 
l(B) = 0, i.e. A is in the hereditary closure of 

I, = {B E Borel (E): l(B) = O}. 

Associated with the capacity 1 is a thickness function e-y, defined by 

e-y (A) = sup{ t E R +: :3<1> uncountable 
(<I> ~ K ( A) consists of pairwise 
disjoint sets &l(K) > t,VK E <l>n. 

A set A is 1-thin if e,(A) = 0, i.e. there is no uncountable family of pairwise disjoint 
compact subsets of A of positive capacity. If E itself is 1-thin, we call 1 thin. When 
1 is subadditive so that l-y is a a-ideal, then we have that 1 is thin {:} Borel (E)j l-y 
satisfies the countable chain condition. 

The main result concerning thinness is due to Dellacherie [Dl]: If A ~ E is ~L 
then 

e-y(A) = sup{t E R+: :3<1> ~ K(A) 

It follows easily that 

(<I> is perfect consisting of pairwise 
disjoint sets &VK E <l>h(K) > tn. 

J-y = {K E K(E): K is 1-thin} 
is a rrt a-ideal, and using the same trick as above, that the relation e-y(A) > t is 
~t on ~t sets in E. 

From this it follows that for a capacity 1, the following are equivalent: 
(i) 1 is thin. 
(ii) If H ~ E is rrg then there is F ~ H, F in ~g with l(H - F) = 0 (Feyel). 
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(iii) If A ~ E is ~i there is B Borel, B ~ A with i(A - B) = 0 (Dellacherie). 
(iv) For some fixed ~, every Borel set B contains a Borel set B' ~ B of rank ::; ~ 

with i(B - B') = 0 (Louveau) (see [DFM]). 
The previous results can be extended to the following situations: 
Give the space 

E+ = {Il E M+(E): Il(E) ::; 1} 
the weak*-topology, for which it is compact metrizable. For H ~ E+ let iH: P(E) 
-+ [0,1] be defined by 

iH(A) = sup 1l*(A). 
IlEH 

If H is compact, iH is a subadditive capacity (but the converse is not true). If now 
H is ~i in E+ we calliH an analytic submeasure. In [D3] Dellacherie extends all 
the results quoted above to such analytic submeasures, except that in this case the 
a-ideal LIH may be complete IIi. An interesting example of such a situation occurs 
in the theory of sets of uniqueness. Taking E = T = the unit circle, let H = R+ = 
the positive Rajchman measures = {Il E E+: fl(n) -+ a}. Then I'1R+ = Uo == the 
compact extended uniqueness sets. Solovay [S] and independently Kaufman [Kt] 
have shown that Uo is complete IIi. 

Moreover in this context one has the following. 
For an analytic submeasure i = iH on E the following are equivalent: 
(i) i is thin. 
(ii) There is a measure Il which controls i, i.e. Il(K) = 0 * i(K) = 0 (Dellacherie 

[D2]). 
(iii) 1'1 = Ill' for some measure Il (from a result of Mokobodzki, see [DFM]). 
(iv) i'1 = {B E Borel (E): i(B) = o} is Borel (in the codes of Borel sets) 

(Louveau [L2]). 
Notice that from (i), (ii) it follows that if a measure controls iH then LIH is 

Borel (being equal to Ill' for some Il). In particular no measure can controliR+ 
i.e. if Il is any measure on T then there is a compact Il-measure 0 set which is not 
in Uo i.e. is of restricted multiplicity. (This is a known fact-we are only making 
the point here that it is also a consequence of the classification of Uo as true IIi.) 

In the following subsections we will give abstract versions of almost all these 
results, in the context of IIi a-ideals. 

3.2 Extending a-ideals of compact sets. Let I be a a-ideal of compact. sets on a 
compact metrizable space E. We say that a a-ideal of sets 1 extends I if 1 n K (E) 
= I. 

Of course there is a smallest a-ideal extending I, namely I.,. = {A E P(E): :3{Kn } 

(Vn(Kn E I) & A ~ Un Kn)} (there is an abuse of notation here since for each X we 
denote usually by X.,. the set {A: :3{ An }[''V'n( An E X) & A = Un An]} but this will 
cause no confusion here). The restriction of I.,. on ~g (E) is the unique extension 
of I to ~g(E), i.e. any a-ideal 1 extending I must satisfy 1 n ~g(E) = I.,. n ~g(E). 
Note also that if I is IIg, resp. IIi in K(E), I.,. n K.,.(E) is IIg, resp. IIi in the 
codes of ~g sets. 

No such uniqueness holds in general for IIg(E). We say however that a a-ideal 
1 of IIg sets (resp. of Borel sets, etc.) has the inner approximation property if for 
every IIg (resp. Borel, etc.) set H ~ E, 

H ~ 1 *:3K E K(E)(K ~ H &K ~ 1). 
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For example the a-ideals i'"1 for I a subadditive capacity or a submeasure have this 
property. We now have the following 

PROPOSITION 1. Let I be a a-ideal of compact sets in a compact metrizable 
space E. Then the following are equivalent. 

(i) There is a a-ideal 1 ofng sets extending I and having the inner approximation 
property. 

(ii) ino = {H E ng(E): 'VK E K(H) (K E In is a a-ideal. 
2 

(iii) If FE 1(7 n ~g(E), HEino and K = F U HE K(E), then K E I. 
2 

In this case, ino is the unique a-ideal of ng sets extending I and having the 
2 

inner approximation property. 
DEFINITION. We say that a a-ideal I of compact sets in a compact metrizable 

space is calibrated if it satisfies (any of) the conditions of Proposition 1. 
Thus the a-ideals 1'"1 for I a subadditive capacity or a submeasure are calibrated. 

We conjecture that the a-ideal of closed sets of uniqueness is also calibrated. On 
the other hand the a-ideal of nowhere dense closed sets of 2W is not calibrated. 

We prove now Proposition 1. 
PROOF OF PROPOSITION 1. Clearly (ii) =* (i). To see that (i) =* (ii) note 

that if 1 ~ ng (E) extends I, then 1 ~ i ng and if 1 has the inner approximation 
property ing :2 1. Moreover (ii) =* (iii) is obvious. So it remains only to prove 
(iii)=* (ii). 

Assume (iii) and let {Hn} be a sequence of ng sets in ing. Let H ~ Un Hn , Hn 
E ino. We want to prove HEino, and for that it is enough to prove that if 

2 2 
K E K(E), K ~ Un Hn then K E I. Assume not, towards a contradiction. Let 
E - Hn = Up K~, with K~ E K(E). Then K = (K n Ho) u Up(K n Kg) and 
KnHo E ino, so by (iii) there is Po with KnKgo tt. I. Now KnKgo = (KnKgo n 

2 

Ht}uUp(KnKgo nKf), so again there is Pl with KnKgo nKfl tt. I, etc. So we can 
construct a sequence {Pi} with K n ni<n Kfi tt. I, all n. Thus K n ni<n Kfi i= 0, 
all n and so K n niEw Kfi i= 0. This contradicts K ~ Un Hn. 0 

3.3 Thinness and approximation properties. Let I be a a-ideal of compact sets 
on a compact metrizable space E. A set A ~ E is I-thin if there is no uncountable 
family cI> ~ K(A) of pairwise disjoint sets which are not in I. In case of I = 1'"1 as 
3.1 this corresponds to the usual concept of thinness. We say that I is thin if E is 
I-thin. 

One can prove for this abstract notion an analog of the result for thickness 
functions. 

THEOREM 2. Let I be a n} a-ideal of compact sets in a compact metrizable 
space E. Let A ~ E be ng. If A is not I -thin there is a continuous function 
rp: 2W --+ K(A) such that (i) 'Va E 2W(rp(a) tt. 1)& (ii) 'Va,j3 E 2W(a i= j3 =* 
rp(a) n rp(j3) = 0). 

Such a rp will be called a thickness witness for A. 

The proof of this theorem follows easily from the following lemma of Mokobodzki 
(unpublished, see [DFM]), independently rediscovered and used for other purposes 
by many authors (Burgess-Mauldin [BM], Louveau [L2]). 
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LEMMA 3. Let P be a Polish space, R a ~g symmetric reflective relation on 
P. Let A ~ P be ~~. If there is an uncountable subset of A consisting of pairwise 
not in R elements, there exists such a perfect set. 

PROOF. Let first Q be Polish and cp: Q - A a continuous surjection. Define R' 
on Q by (x, y) E R' {:} (cp( x), cp(y)) E R. Then Q, R', A' = Q satisfy the hypotheses 
of the lemma, and if F ~ Q is perfect and consists of pairwise not in R' elements, so 
does cp"(F) relative to P, R. So we may assume A = P. If there is an uncountable 
subset of P of pairwise not in R elements, there is an uncountable dense in itself 
such set, say D ~ P. Let R = Un Rn where each Rn is symmetric, reflexive and 
closed in p2 and flo ~ Rl ~ R2 ~ .... Now perform the usual construction a la 
Cantor, using balls centered at points in D, of decreasing diameter, and insuring at 
the nth step that for pairs (x, y) where x, yare in different balls, (x, y) tt Rn. This 
gives the desired perfect set. 0 

PROOF OF THEOREM 2. Apply Lemma 3 to K(A), {K E K(A): K tt I}, and 
the closed relation R = {(K, K') E K(A)2: K n K' i- 0} u {(0, 0n. 0 

Note that we never used the fact that I is a a-ideal. 

COROLLARY 4. Let I be a II~ a-ideal of compact sets in a compact metrizable 
space E. Then 

(i) If h = {K E K(E): K is I-thin}, then h is a II~ a-ideal. 
(ii) If I is calibrated, so is J I. 

PROOF. (i) By Theorem 2 K tt h {:} K has a thickness witness, and this is ~~. 
If Kn E h for all n, and K = Un Kn is not I-thin, then let {KO:}O:E2w be a 

thickness witness for K. Let Dn = {o: E 2W : Kn n Ko: tt I}. Then Dn is countable, 
so let 0:0 tt Un Dn, i.~Ko:o n Kn E I for all n, therefore Kao E I, a contradiction. 

(ii) Suppose H E (h)rro, Kn E hand K = HUKn is not I-thin. Let {KO:}O:E2w 
2 

be a thickness witness for K. Again D = Un Dn = {o:: :In(Kn n Ko: tt In is 
countable. If 0: tt D, then Ko: = (Ko: n H) U Un(Kn n Ko:) is not in I but for all 
n Ko: n Kn E I. Since I is calibrated there is K~ ~ Ko: n H with K~ tt I. So H 
is not I-thin contradicting Theorem 2, which implies that then H must contain a 
closed non-I-thin set. 0 

A stronger result can be proved if the ideal I has a stronger calibration property. 
DEFINITION. Let I be a a-ideal of compact sets in a compact metrizable space 

E. We say that I is strongly calibrated if for every K tt I and any P E IIg, 
P ~ Ex 2w with rrP = K there is K' E K(P) with rrK' tt I. (Notice that it is 
equivalent to have P E ~ ~ .) 

This concept essentially comes from [Dl]. Note first that strongly calibrated => 
calibrated. (If K = HUUn Kn, Kn E I, H E jrr~, let P = H x {O}uUn (Kn x {n}). 
If K tt I let K' be as in the definition of "strongly calibrated" and let K* = 
rr(K' n (E x {0}).) Then rrK' ~ UnKn U K* so K* tt I. But K* ~ H, a 
contradiction.) Note also that I'"Y' for a capacity or submeasure /, is strongly 
calibrated. 

We have now the following 

COROLLARY 5. Let I be a strongly calibrated a-ideal of compact sets in a com-
pact metrizable space E. Then 

(i) h is strongly calibrated. 
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(ii) If A E "Et is not I -thin then A contains a thickness witness and 

h = {A E "Et(E): A is I-thin} 

is a CT-ideal of"Ei sets extending Jr. 
PROOF. (i) Let K ¢:. Jr, P ~ E x 2w , 1fp = K. Let {KoJaE2w be a thickness 

witness for P. Then if K~ = (Ka x 2W) n P, 1fK~ = Kat, so choose K~ ~ K~ with 
1f K~ ¢:. I. As in the proof of Theorem 2 it follows that there is 'P: 2W ---+ K (P) with 
1f'P(a) n 1f'P(B) = 0 if a =f:. f3 and 1f'P(a) ¢:. I. This completes clearly the proof. 

(ii) If A E"Ei, P ~ E x 2w is IIg with 1fp = A then we have as before 

A E II {o} :3F E K (P):3L [L E K (K(F)) & L is perfect 

&VKVK'(K E L&K' E L&K =f:. K' '* 1fKn1fK' = 0)&1f (UL) ¢:. I] 

which is clearly "Ei. 
Suppose now {An} are I-thin "Ei sets and let {Pn} be IIg sets in E x 2W with 

1fPn = An. Let P = Un(Pn x {n}) in E x 2w x (w + 1) (viewed as a subset of 
E x 2W). Then 1fp = Un An = A. So if A is not I-thin, we have as before a 
thickness witness L ~ K(P). For each K E L let Kn = K n (E x 2W x {n}). For 
each n, all but count ably many of the 1fKn must be in I, since An is I-thin. But 
this easily contradicts that for K E L, 1fK ¢:. I. So A is I-thin. 0 

It is an interesting question to find out for a given I whether I = Jr i.e. whether 
every compact I-thin set is actually in I. This does not happen for example if 
I is thin (and does not contain all compact sets), e.g. if I = IH for a controlled 
"Ei-submeasure H. For capacities 1 we have mentioned in §2.3 that J,o = 1'0 if 
10 is the electrostatic capacity, but J, =f:. I, for the capacity in Proposition 2.9. 
For nonthin submeasures an interesting case is H = R+ = the positive Rajchman 
measures. Kaufman [K2] has shown that J'R+ = I'R+ = Uo. It follows that 
the CT-ideal I'R+ of"Ei I'R+ -thin sets is exactly the CT-ideal of "Ei zero sets for 
IR+, i.e. the class of "Ei extended uniqueness sets. The case I = U = the CT-ideal 
of compact uniqueness sets is also of particular interest. Kaufman [K2] has also 
shown that Ju = U in this case as well. 

We discuss now approximation properties. Recall that for each CT-ideal of sets I 
on E we denote i = {A ~ E: K(A) ~ I}, i ng = in IIg, iBorel = in Borel, etc. 

PROPOSITION 6. Let I be a thin CT-ideal of compact sets in a compact metrizable 
space E. Then 

(i) If H ~ E is IIg, there is"Eg F ~ H with H - F E i ng . 
(ii) If i Borel is a CT-ideal, then for any A ~ E in IIi there exist Borel sets B I, B2 

such that BI ~ A ~ B2 and (B2 - Bd E i Borel. 

PROOF. (i) Let {Kn} be a maximal family of pairwise disjoint compact subsets 
of H which are not in I (since I is thin this is countable). Let F = Un Kn. Then 
by maximality, H - F E ino. (Note that we only used the thinness of H here.) 

2 

(ii) Let A be IIi in E, and let x I---> Tx ~ WW be a Borel function associating 
to each x E E a tree Tx on w such that x E A {o} Tx is well-founded. Let Ae = 
{x: ITxl < .0, and A:o;e = {x: ITxl ::::: .0, where ~ < WI and ITI is the rank of 
the well-founded tree T. Since the Ae's are pairwise disjoint, and I is thin, we 
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must have Ae E iBorel, for all ~ ~ ~o (some ~o < WI). Similarly for u E w<w let 
A¥ = {x: IT~I = 0 where T~ = {v: UV E Tx}. Again A¥ E iBorel for ~ ~ ~(f. 
Let ~l = sUPu ~o < WI· Then let Bl = A::;6 and B2 = BI U Uu At. Then 
BI ~ A ~ B 2, since if x E A - B l , then ITxl > ~l so for some U E Tx, IT~I = 6. 
Since iBorel is a a-ideal, B2 - Bl ~ UU A¥ is in iBorel. 0 

Proposition 5 admits a kind of converse, which generalizes the Dellacherie-Feyel 
results on capacities. 

THEOREM 7. (i) Let I be a calibrated ng a-ideal of compact sets in a compact 
metrizable space E. If 

(*) For each ng H ~ E there is ~g F ~ H with H - F E ing, 

then I is thin. 
(ii) Suppose I is a a-ideal of compact sets in E such that iBorel is a a-ideal and 

is n~ in the codes of Borel sets. If 

For each ~t set A ~ E there exist Borel sets B l , B2 with Bl ~ 
A ~ B2 and B2 - Bl E iBorel, 

then I is thin. 

PROOF. (i) If I is not thin let '(): 2w -+ K (E) be a thickness witness for E. 
If H ~ 2w is ng, let H' = u':>EH '()(a). Then H' is ng in E, so by (*) there is 
~g F' ~ H' with H' - F' E i ng . Then we claim that 

a E H {:} F' n '()(a) t/: Ia n ~g(E). 
Granting this, we have that it is ~g, since I is ng and thus the relation F' n '()( a) E 
Ia is also ng. But H was arbitrary ng, and we have a contradiction. 

To prove the claim note that if a E H, then '()(a) ~ F' U (H' - F'), so since I 
is calibrated and H' - F' E ino we have that F' n '()(a) t/: Ia. If at/: H now, then 

2 

'()(a) n F' ~ '()(a) n H' = 0, so '()(a) n F' E Ia. 
(ii) The proof is similar. Using again a thickness witness for E, and taking a ~i 

set A ~ 2W we get that A' = UaEA '()(a) is ~L hence by (**) there are Borel Bi, 
B~ with B~ ~ A' ~ B~ and B~ - B~ E i Borel. Using that iBorel is a a-ideal, we 
get that 

a E A {:} '()(a) - B2 E i Borel , 

which by hypothesis is nl, and leads to a contradiction. 0 
3.4 Controlling a-ideals. Let I be a a-ideal of compact sets on E, and A a 

collection of ng subsets on E. We say that A is compatible with I if the least 
a-ideal of ng sets I containing I and A extends I, i.e. satisfies In K(E) = I. 

LEMMA 8. A set A ~ ng(E) is compatible with I iff for each H E A, F E 
Ia n ~g(E), K E K(E), 

K~HUF*KEI. 

PROOF. The condition is clearly necessary, as such a K must be in I. Con-
versely, if the condition is fulfilled, a capacitability argument as in Proposition 1 
gives the result. 0 
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For example, I is calibrated iff ina is compatible with I. Similarly condition (b) 
2 

in Lemma 2.7 can be read: (n In)na is compatible with I. In case of a E~ submea-
2 

sure, and a measure /1, the a-ideal I/-L = {H E ng(E): /1(H) = O} is compatible 
with I, = {K: ,(K) = O} iff /1 controls the submeasure ,. More generally if I, I' 
are calibrated a-ideals of compact sets then I c:;;; I' {:} i ng is compatible with I'. 

DEFINITION. A a-ideal of compact sets I on a compact metrizable space E is 
said to be controlled if there is A c:;;; ng(E) such that 0 E A, A is compatible with 
I and A is E~ in the codes of ng sets. Such an A is called a control set for I. 

For example, if /1 is a control measure for the E~ submeasure " then I/-L is a 
control set for IT Also, if the Et submeasure, satisfies A = {H E ng(E): ,(H) = 
O} is Borel in the codes, then A controls ,. On the other hand, for E uncountable, 
{0} is not a control set since the relation H = 0 is a true nt relation in the codes 
of ng sets. 

The next results can be thought of as abstract definability versions of the stan-
dard facts about controlled (by measures) submeasures. 

THEOREM 9. Let I be a controlled nt a-ideal of compact sets in a compact 
metrizable space. Then I is thin. 

This extends half of Dellacherie's result on control by measures. 

THEOREM 10. Let I be a controlled nt a-ideal of compact sets in a compact 
metrizable space. Then I is ng. 

Here is an immediate corollary. 

COROLLARY 11 (UPWARD PRESERVATION OF BORELNESS). Let I, I' be two 
calibrated nt a-ideals of compact sets in a compact metrizable space, with I c:;;; I'. 
Then 

ina is Borel in the codes =? I' is Borel (:. ng). 
2 

In particular if /1 is a measure and I/-L c:;;; I' then I' is ng, i.e. any calibrated 
ni a-ideal containing the O-sets of some measure is ng. This can be rephrased as 
follows. 

If I is a calibrated true ni a-ideal and /1 is any measure, then there is a compact 
set of /1-measure 0 which is not in I. 

So this can be viewed as an abstract definability version of the standard result in 
the theory of sets of uniqueness which says that for any measure /1 there is a perfect 
set of /1-measure 0 which is a set of restricted multiplicity (the case /1 =Lebesgue 
measure is of course the famous construction of Menshov). 

We prove now these two theorems. 
PROOF OF THEOREM 9. Assume E is not I-thin, towards a contradiction. Let 

cp be a thickness witness for E. If A is a control set for I, we have for each ng 
subset H of 2w , 

H = 0 {:} U cp(a) E A. 
aEH 

But the relation on the left side is complete ni, while the one on the right is Ei 
by hypothesis, a contradiction. 0 
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Note that in this proof we only needed that A has the property: K ~ G E A =} 

K E I, for all K E K(E), i.e. A ~ lng. 
PROOF OF THEOREM 10. We will need first a lemma on increasing families 

of rrg sets, which is an unpublished result of Choquet, and that we independently 
rediscovered. 

LEMMA 12 (CHOQUET). Let A be a rr~ set in a Polish space P, {Ade<wl 
an increasing family of rrg sets with A = Ue A,. Then A is rrg in P. 

REMARK. By Hausdorff's well-known construction {Ad need not be eventually 
constant. 

PROOF. One can use Hurewicz's Theorem: If A is not rrg, A must contain 
a copy D of Q as a relatively closed subset. But D is countable, so for some 
~ < WI, D = D n Ae = DnA is relatively closed in Ae. Since A, (being rrg) is 
Polish this is impossible. (This quick proof was noticed by Saint Raymond.) 

One can also give a direct proof: Let B = P - A, and let Q be Polish, cp : Q - B 
a continuous surjection. Let U ~ Q be the largest open subset of Q such that 
cp"(U) is contained in a ~g set disjoint from A. We want to show U = Q (and so 
cp"(U) = B). So, by contradiction, let Q' = Q - U -=1= 0, and let {Vn } be a basis for 
nonempty open sets in Q'. By an easy Baire category argument, there exists for 
each ~ an integer n with cp(Vn ) n A, = 0. Let n, be the least such. There must 
be no such that ne = no for cofinally many ~'s and since the A, 's are increasing 
¢(Vno) n Ue A, = 0, hence Vno U U contradicts the maximality of U. 0 

We continue the proof of Theorem 10 now: Let A control I, and let B ~ I be 
Borel. Consider 

B' = {K E K(E): 3{Kn} [Vn(Kn E B)& (K - yKn) E A]}. 

As A is ~} in the codes, B' is ~~. Also since 0 E A, Ba ~ B' and since A 
is compatible with I, B' ~ I. By Theorem 1.7 (i), there is a rrg set C with 
B ~ C ~ I. Applying this to the components {Bd,<wl of I, we easily get an 
increasing family of rrg sets { Cd e < W 1 with union I, so I is rrg. 0 

Related to Theorems 9 and 10 are two natural questions. 
Q1. Is every calibrated thin rr~ a-ideal of compact sets necessarily rrg? 
Q2. Is every calibrated thin rrg a-ideal of compact sets necessarily controlled? 
Question 2 is some kind of weak version of the Maharam conjecture for control 

by measures (which is itself open). In the context of measures, a partial answer is 
given by the (second half) of the result of Dellacherie we quoted in 3.1. The same 
proof gives a similar partial result in the abstract frame. 

Say that a a-ideal of Borel sets 1 on E is regular if I = 1 n K (E) is controlled, 
and normal if it is the intersection of regular a-ideals. (This is the abstract version 
of 1 being a supremum of measures. ) 

THEOREM 13. Let 1 be a normal a-ideal of Borel sets on a compact metrizable 
space E, with the inner approximation property. If 1 n K(E) = I is thin, then I is 
controlled (hence 1 is regular). 

PROOF. The hypotheses imply that Borel (E)j 1 has the c.c.c. As the countable 
intersection of regular a-ideals is regular (by taking as control set the intersection 
of control sets), the result follows from the next lemma. 
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LEMMA 14 (MOKOBODZKI [DFM]). Let 1 = nXEX Ix be a a-ideal of Borel 
sets, and suppose Borel (E)/I has the c.c.c. Then for some countable Y ~ X, 1 = 
nXEY Ix. 

PROOF. Since Borel (E) / 1 is a complete Boolean algebra, families of Borel sets 
admit ess. suprema modulo 1. For each x E X, let Bx be an ess. supremum modI 
of Ix. Then Bx E lx, and if A is Borel and A - Bx E lx, A - Bx E 1. Let now 
B = Un B~n be an ess. supremum modI of {B~: x E X}, and let Y = {xn: nEw}. 
We claim that 1 = nxEY Ix. If A E nxEY lx, then for each n, A n B~n E I xn , 
hence A n B~n E 1. So it is enough to show BC E 1. If not, there is x E X with 
Be 1:. lx, hence BC - Bx = B~ - B 1:. lx, and a fortiori B~ - B 1:. 1, contradicting 
the choice of B. 0 
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