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Abstract

Single-track Gray codes are cyclic Gray codes with codewords of
length n, such that all the n tracks which correspond to the n distinct
coordinates of the codewords are cyclic shifts of the first track. We
investigate the structure of such binary codes and show that there is
no such code with 2" codewords when n is a power of 2. This implies
that the known codes with 2" — 2n codewords, when n is a power of
2, are optimal. This result is then generalized to codes over G'F(p),
where pis a prime. A subclass of single-track Gray codes, called single-
track Gray codes with evenly spaced heads, 1s also defined. All known
systematic constructions for single-track Gray codes result in codes
from this subclass. We investigate this class and show it has a strong
connection with two classes of sequences, the full-period necklaces and
the full-period self-dual necklaces. We present an iterative construction
for binary single-track Gray codes which are asymptotically optimal if
an infinite family of asymptotically optimal seed-codes exists. This
construction is based on an effective way to generate a large set of
nonequivalent necklaces and a merging method for cyclic Gray codes
based on necklaces representatives.

Keywords: cyclic Gray codes, feedback shift-register, linear complexity,
necklaces, self-dual sequences, single-track codes.

1 Introduction

Gray codes were found by Gray [14] and introduced by Gilbert [13] as a
listing of all the binary n-tuples in a list such that any two successive n-tuples
in the list differ in exactly one position. Generalization of Gray codes were
given during the years. Such generalizations include the arrangements of
other combinatorial objects in a such way that any two consecutive elements



in the list differ in some prespecified, usually small way [14, 13]. Other
generalizaions include listing subsets of the binary n-tuples in a Gray code
manner, in such a way that the list has some more prespecified properties.
These properties were usually forced by a specific application for the Gray
code. As an example we have the uniformly balanced Gray codes. In certain
applications, it is needed that the number of bit changes will be uniformly
distributed among the bit positions. Uniformly balanced Gray codes were
shown to exist for n which is a power of 2 by Wagner and West [23]. Recently
Bhat and Savage [1] have shown that such codes exist for all n. During the
years Gray codes and their generalizations have found applications in a
variaty of areas such as circuit testing [21], signal encoding [19], ordering
of documents on shelves [18], data compression [20], statistics [6], processor
allocation in the hypercube [4], codes for certain memory devices [7] hashing
[9], information storage and retrieval [3], and puzzles, such as the Chinese
Rings and Tower of Hanoi [12]. Finally, for an excellent survey on Gray
codes the interested reader is referred to [22].

The classic example of a Gray code is the reflected Gray code [14, 13].
This code is a list of the 2" binary n-tuples in the following way. For
n = 1 the list consists of the words 0 and 1. Given the list X" of the 277!
binary (n — 1)-tuples, we generate the list of the the 2" binary n-tuples by
attaching a ZERQO as a prefix to every element of the list A" in its order,
and then attaching a ONE as a prefix to every element of the same list A’
in reversed order. As an example, for n = 3 the list of the reflected Gray
code is 000, 001, 011, 010, 110, 111, 101, 100. One of the properties of the
reflected Gray code is that there is a change in the last coordinate of every
other word. We will use this property later.

In this paper we discuss another class of Gray codes, single-track Gray
codes. A single-track Gray code is a list of P binary words of length n, such
that each two consecutive words, including the last and the first, differ in
exactly one position and when looking at the list as an P X n array, each
column of the array is a cyclic shift of the first column. These codes were
defined by Hiltgen, Paterson, and Brandestini [15] who also gave their main
application. A length n, period P Gray code can be used to record the ab-
solute angular positions of a rotating wheel by encoding (e.g. optically) the
codewords on n concentrically arranged tracks. n reading heads, mounted in
parallel across the tracks suffice to recover the codewords. When the heads
are nearly aligned with the division between two codewords, any compo-
nents which change between those words will be in doubt and a spurious
position value may result. Such quantization errors are minimized by us-



ing a Gray code encoding, for then exactly one component can be in doubt
and the two codewords that could possibly result identifies the positions
bordering the division, resulting in a small angular error. When high reso-
lution is required, the need for a large number of concentric tracks results
in encoders with large physical dimensions. This poses a problem in the
design of small-scale or high speed devices. Single-track Gray codes were
proposed in [15] as a way of overcoming these problems. Note, that since
all the columns in these codes are cyclic shifts of the first one, it follows
that the code is also a uniformly balanced Gray code, which again can be
described by a single column. Not many constructions for single-track Gray
codes are known. All these constructions are given in [15] and [8]. None of
the known constructions is known to produce an infinite family of optimal
codes, where by the word optimal we mean that the code has the largest
period for a given length n. The main goal of this paper is to study the
structure of these codes and to construct codes with period P as large as
possible.

In Section 2 we present the formal definitions for single-track Gray codes.
Then, we discuss the the known construction methods and structure of
single-track Gray codes mainly of those generated by the known construc-
tion methods. We discuss all the main known results in this area. In section
3 we present an improvement to one of the known upper bounds, i.e., we
show that single-track Gray codes with words of length n and period 2" do
not exist even if » is a power of 2. This proof establishes as a corollary
that Etzion and Paterson [8] have constructed an infinite family of optimal
single-track Gray codes. In section 4 we present an iterative construction
for Gray codes of length nk from specific classes of Gray codes of lengths n
and k. This class is infinite and the codes constructed are asymptotically
optimal, given an infinite family of asymptotically optimal seed-codes for
the construction.

2 The Structure of Single-Track Gray Codes

In this section we present the formal definitions for single-track Gray codes.
Then, we present some basic properties of such codes and the idea of the
main two known methods to construct such codes. These two methods pro-
vide single-track Gray codes with additional special properties. We further
investigate these properties. We also outline the results of past work in this
area.



Let W = [wg, wy, ..., w,_1| be alength n word. The cyclic shift operator,
E, is defined by EW = [wy, ws, ..., w,_1,wy| and the complementary cyclic
shift operator, E, is defined similarly by EW = [wy, ws, ..., w,_1, Wy], where
b is the binary complement of b. Two length n words W,, W, are said to be
equivalent if there exists an integer 7 such that E'W; = W,, where E' is i
consecutive applications of FE. The equivalence classes under the shift oper-
ator are called necklaces. Efficient algorithms for producing necklaces of a
given length are given in [10, 11]. A length 2n word W = [wq, wy, ..., Wa,_1]
is called self-dual if for each ¢, 0 < ¢ < n -1, w,,; = w;. Finally, for any
two positive integers a and b, gcd(a,b) denotes the greatest common divisor

of a and b.

Definition 1 Let W be a length n word. We define the cyclic order of W
as

o(W) £ min{i | E'W = W,i> 1}
and the complementary cyclic order of W as
(W) 2 min{i | EW = W,i> 1}

If o(W) = n we say that W has full cyclic order (or W is a full-period
word), and if 5(W) = 2n we say that WW is a full-period self-dual word.

Definition 2 A length n period P Gray code is an ordered list of P distinct
binary length n words,

W07W17 o '7WP—1

such that each two adjacent words differ in exactly one coordinate. If Wp_,
and Wy also satisfy this condition, we say the code is cyclic.

Definition 3 Let C' be an ordered list of P length n words,
WO,Wl, .. -7WP_1
For each 0 < ¢ < P we mark the components of W; as,

n-1)

_ 0 1
I/Vi—[wi?wiv"'vwz

The j3-th track of C', for 0 < j < n, is defined as

A S .
tj(C) = [wév w]h .- -7w§3—1]



We say that C' has the single-track property if there exist integers,
kkalv B '7kn—1

where ko = 0, such that t;(C') = E"1,(C) for each 0 < i < n. For each
0 <t < n, k; is called the position of the ¢-th head.

Definition 4 Let C' be an ordered list of P length n words,
W07W17 .. -7WP_1

We say that C' is a length n, period P single-track Gray code if C' is a
cyclic Gray code and C' has the single-track property.

The main goal is now to construct a length n, period P single-track Gray
code, where P is as large as possible. Bounds on P are of a special interest
and a very straightforward result is the following lemma.

Lemma 1 (Lemma 2 [15])
If C is a length n, period P single-track Gray code , then 2n | P and
2n < P <27,

There are only a few constructions for single-track Gray codes [15, 8].
None of them attains the upper bound forced by lemma 1 for infinitely many
values of n. Fach of these constructions is based on one of the following
methods.

Theorem 1 (Theorem 4 [8])

Let 50,51,...,5,_1 be r length n binary nonequivalent full-period words,
such that for each 0 < ¢ < r—1,.5; and S; 1 differ in exactly one coordinate,
and there also ewists an integer I, ged(l,n) = 1, such that S,_, and E'S,
differ in exactly one coordinate, then the following words form a length n,
period nr single-track Gray code :

So, S, e Sed,
E'S,, E'S,, ... E'S._,,
E*S,, E”S, ... E"S,_,,
En-Vig,  EUie . E"TVS



Theorem 2 (Theorem 15 [8])
Let 54,51, ...,5._1 r be length 2n self-dual full-period nonequivalent words.
Foreach i, 1 <i<r—1,let 5; =1s),s! 53" and let

3994999

FIS; = [sh, sl sl
where superscripts are taken modulo 2n.

If for each 0 < ¢ < r —1, 5; and S;;1 differ in exactly two coordinates,
and there also ewists an integer {, ged(l,2n) = 1, such that S,_; and E'S,
differ in exactly two coordinates, then the following words form a length n,
period 2nr single-track Gray code :

P05, P08, L FYS._
FS,, FS,, L FS._,
P2, P2, . PUS.
},’7(271—1)1507 .}77(271—1)1517 . F(Zn—l)lsr_l .

Now, in order to construct a single-track Gray code we want to order
as many as possible full-period necklaces of length n, or full-period self-
dual necklaces of length 2n in a way which satisfies either Theorem 1 or
Theorem 2, respectively. Hiltgen, Paterson, and Brandestini [15] suggested
a method for ordering length n full-period necklaces in a way which satisfies
the conditions of Theorem 1. Their result is summarized in the following
theorem.

Theorem 3 (Theorem 3 [15])
If n > 4, then there exists a length n, period nt single-track Gray code for
each even t which satisfies

2< 1< 2n—|71/2(n—3)—|—1

Etzion and Paterson [8] supplied three iterative constructions. The first
construction produces a special arrangement of 2"~!'r nonequivalent full-
period necklaces of length 2n, which satisfies the conditions of Theorem
1 from a special arrangement of r full-period necklaces of length n which
satisfies the same conditions. If p is prime and such arrangement of the 22%2
full-period necklaces is known, then the construction produces a length 2p,
period 2?7 — 2r+! single-track Gray code. This is an optimal code based on

Theorem 1, but by using Theorem 2 it might be possible to obtain a length



2p period 2?7 — 4 single-track Gray code. This comparison is important as
all the known codes are obtained from these two constructions and no code
which is not obtained by these construction or a variant of Theorem 2, which
will be mentioned later in this section, is known.

The second construction of [8] which is a generalization of the first one
in a certain sense produces a length kn, period rs(2" — s)*~!(k + 1)n single-
track Gray code, where n + 1 < s < 2"~! from a code of length n and
period rn. This code is far from being optimal in any sense. In section 4
we improve this result for most cases, by producing better codes for similar
parameter lengths.

The third construction of [8] is based on Theorem 2 and generates an
infinite family of asymptotically optimal codes. These codes have length
n = 2", m > 3, and period 2" — 2n. As we will see in the next section this
construction actually produces optimal codes since the upper bound given
in Lemma 1 on the period of length n, period P single track Gray code, for n
which is a power of 2, can be improved. A similar construction can be given
for n’s which are not powers of 2. Unfortunately, we need some seed-codes
with some given properties to obtain better codes for other parameters, and
these seed-codes were not found yet.

Definition 5 Let C be a length n, period P single-track Gray code , and
let the head positions be ko, ky, ..., k,_1. We say that C' has evenly k-spaced
heads if

kiy1 =k +k (mod P)

for each 0 <1< n-—2.

It is important to note that all the constructions for single-track Gray
codes known today produce codes which are either with evenly spaced heads
or with a self-dual generating track which can produce a single-track Gray
code with evenly spaced heads, as will be proved later in this section. As
a first step we want to show that all evenly spaced heads single-track Gray
codes are generated by the construction method of either Theorem 1 or
Theorem 2.

Definition 6 Let C be a set of words. The cyclic order and complementary
cyclic order of the code C' are defined as

o(C) 2 min {o(W) | W € C}
5(C) 2 min{a(W)|W e}



Theorem 4 Let C' be a length n, period P single-track Gray code with
evenly k-spaced heads.

o If k is even then:

- ged(k, P) = 0(1;)

- o(W)=0(C)=n for each W € C.

— There exists an ordering of % length n necklaces representatives
of cyclic order m, which satisfies the requirements of Theorem 1.

o Ifk is odd then:
— ged(k, P) = £~

3(C)
- o(W)=29(C)=2n for each W € C.
— There exists an ordering of % length 2n self-dual necklaces rep-
resentatives of full cyclic order 2n, which satisfies the require-
ments of Theorem 2.

Proof W.lo.g. we assume that kg = 0. Let C' be a length n, period P

single-track Gray code with evenly k-spaced heads. Let s = [sy,81,...,5p_1]
be the generating track of C'. The i-th word, W;, of C' has the form W; =
[Siv Sitks Sit2ks s 8i+(n—1)k] and hence VVi+k = [8i+k7 Sit2ks e 8i+(n—1)k7 8i+nk]'

We now distinguish between two cases.

Case 1: k is even. Since C' is a Gray code, it follows that the parity of W;
and Wiy is the same, and hence s; = s;yn, and Wi, = EW,. Therefore,
for each jy, ja, which satisfy j; = j» (mod ged(k, P)) there exists an | such
that E'W;, = W,,. Now, let W,, be a word in C' for which o(W,,) = o(C).
Since Wiy, = E'W;, it follows that Wogotcre = EOW, = W, and
Wi = E'W,,, # Wy, for each 0 < j < o(C'). Since each word appears
at most once in the code, it follows that o(C)k = 0 (mod P) and hence
E“ W = W for each W € C, and E'W # W for each 0 < i < o(C),
which means that o(W') = o(C') and therefore, ged(k, P) - o(C) = P.

It is well known that o(C') divides n, and if o(C') < n, then the weight of
all the words is divisible by n/o(C') > 1. Therefore, no two words differ in
exactly one coordinate. Thus, o(C') = n.

It is obvious that the list Wy, W1, ..., Wp/oc)-1 forms a Gray code, and
since ged(k, P) = P/o(C'), it follows that all the words in it are nonequiva-
lent. Moreover, there exists Iy such that Wpj oy = E"W,. Therefore, there
exists ly such that I,k = 1, P + P/o(C') which implies ﬁ%ﬁ dyi=1y-0(C) = 1.



Since o(C)k/ P is an integer, it follows that ged(o(C'),l;) = 1. Thus, the list
Wo, Wi, ..., Wpoc)—1 satisfies all the requirements of Theorem 1.

Case 2: k is odd. The parity of W; is different from the parity of Wiy,
and hence s; = 51 ,r. The rest of the proof is similar to the one of Case 1,
where we use o(+) and E instead of o(+) and E, respectively. a

Single-track Gray codes with evenly k-spaced heads have some additional
properties as the one given in the following lemma.

Lemma 2 If C is a length n, period P single-track Gray code with evenly
k-spaced heads, k odd, then the generating track of the code is self-dual.

Proof Let C be a length n, period P single-track Gray code with evenly
k-spaced heads, k odd, and s its generating track. From the proof of Theorem
4 there exists an integer I, for which ged(l,9(C)) =1, such that

—
Wirp/scy = EW;

foreach 0 < i < P. Sinceo(C') is even, it follows that | is odd and therefore,

—15(C)/2 —3(C)/2

Wiipp = E W,=E "W, =W,

and the generating track is self-dual. a

When the generating track of a single-track Gray code is self-dual, many
other single-track Gray codes can be generated by selecting any subset of the
columns and complementing them. These new single-track Gray codes do
not necessarily have evenly spaced heads. These are the only known single-
track Gray codes which cannot be constructed directly by the use of either
Theorem 1 or Theorem 2. But, they are of course constructed by a straight-
forward variant of Theorem 2. Moreover, as an immediate consequence from
Theorem 4 we can conclude that there is no similar arrangements as in The-
orems 1 and 2 of feedback shift registers sequences of order n. It is a very
interesting problem to construct single-track Gray codes which do not have
evenly spaced heads and are not constructed by this variant of Theorem 2.
Note, that if » is odd then by complementing every other column of the
code generated by Theorem 2 we obtain a code which can be constructed
via Theorem 1.



3 Nonexistence Result

Let C be a single-track Gray code of length n and period P. By Lemma 1,
there is a theoretic possibility that P = 2", but then, necessarily, n is a power
of 2. The only known code with these parameters is the length 2 period 4
single-track Gray code. In this section we show that there is no other code
with such parameters. The proof will consider the track as a sequence of
length 2™ and investigate the polynomial of minimal degree which generates
this sequence. In the literature the degree of this polynomial is often called
the linear complexity of the sequence. Hence, we first present the necessary
definitions for this discussion.

Definition 7 Let S = [sg, 81,...,8._1] be a length v sequence, and let

r—1
S(x) 2 > st
=0
be a polynomial. We say the S(x) is the characteristic polynomial of S, and

S is the characteristic word of S(z).

Definition 8 Let S be a length r sequence over GF(q). The linear com-
plexity of S is defined as

¢($) = min{deg f(x) | f(z) £ 0, f(x)- S(x) =0 (mod 2" — 1)}

The linear complexity as defined here is the same as the degree of the
minimal degree linear recursion which generates the sequence. This is the
more common definition as given in [17].

Lemma 3 Let S be a length r = p'* sequence over GF(q), where g = p'2, p
prime. The linear complexity of S is ¢ if and only if

(z—1)""S@)=dl+a+2*+...+2"7") (moda” —1) (1)
Jor some d # 0.

Lemma 4 (Theorem 2 [2])
Let S be a length n = 2™ binary sequence. S is self-dual if and only if
e(9)=2""1+1.

We will prove now a result which is stronger than the nonexistence result
that we actually want to prove.

10



Theorem 5 There is no ordering of all the 2", words of length n = 2™,
m > 2, in a list which satisfies all the following requirements:

1. Fach two adjacent words have different parity.
2. The list has the single-track property.

3. Fach word appears exactly once.

Proof Let us assume the contrary, i.e., let s be the track of a single-track
code in which each n-tuple appears exactly once and each two adjacent words
have different parity. Let s(z) be the characteristic polynomial of s and ¢,
the largest integer for which there exists a polynomial pi(z) which satisfies,

s(z) = (x + 1D)py(z) (mod 2" 4+ 1) . (2)

Let ko, ki, ..., ky_1 be the locations of the heads in the list, h(z) 2 Sk
the head locator polynomial of the list, and h the characteristic length 2"
word of h(x). Let ¢y be the largest integer for which there exists a polynomial
po(@) which satisfies,

h(z) = (z + 1)?py(z) (mod 2?4+ 1) . (3)

¥ +1=(x+1)*" over GF(2) and hence 0 < ¢y, ¢y < 2" — 1. Since each
two adjacent words have different parity it follows that

(x+ Dh(x)s(z)=1+a+2"+...+277" (mod z¥ +1). (4)

Since (z + 1) = 22" + 1 and (2 + 1)*" "' = 1+ + 22+ ...+ 22}
(mod 22" + 1), it follows from (1), (2), (3), and (4) that

C1+C2:2n—2. (5)

Equations (1), (2), (3), and (4) also imply the ¢, + 2 is the linear com-
plexity of h, and c3+2 is the linear complexity of s. Since each word appears
in the list exactly once, it follows that s must be of full cyclic order, and hence

Co Z 2n—1 —-1. (6)
If we assume that h is not a full period word, then
{ki}?:_ol = {2n_1 + ki}?:_ol

11



and the i-th word and the (i+2"~1)-th word contain exactly the same compo-
nents of the generating track s. The allzero word appears somewhere in the
list, and hence it will appear at least twice, which is a contradiction. Thus,
h is of full-period and therefore ¢c; > 2771 — 1.

Self-dual sequences of length 2" have weight 2"~! and since h has weight
n, it follows that h is not self-dual when 2™ > 4, and hence by Lemma j the
linear complexity of h is not 2"~ + 1. Therefore,

Cq Z 2n—1 . (7)
Summing (6) and (7) we get that
Cq + Co Z 2" —1

in contradiction to (5). Thus, no such single-track code with track s exists.
a

Corollary 1 There are no single-track Gray codes of length n > 3 and
period 2",

As mentioned in Section 2, Etzion and Paterson [8] have constructed single-
track Gray codes of length n = 2™ and period 2" — 2n.

Corollary 2 The single-track Gray codes of length n = 2™ and period 2" —
2n are optimal.

The nonexistence theorem can be generalized in a very interesting way to
single-track Gray codes over G F'(p), where pis a prime. Since, we don’t dis-
cuss nonbinary codes in this paper elsewhere, we present this generalization
of the nonexistence theorem in Appendix A.

4 An Iterative Construction

In this section we describe an iterative construction which generates long
period single-track Gray codes. We are given two pairs of disjoint Gray
codes, of lengths n and k, from nonequivalent necklaces. Each pair satisfies
a set of properties needed for the construction. The construction itself is
made of five stages. The first stage is an iterative generation of a large
amount of nonequivalent, full-period necklaces. The second, is ordering of
the necklaces into many Gray codes. The third stage consists of merging

12



these Gray codes into two sets of Gray codes. In the fourth stage, the
Gray codes of each set are concatenated into two cyclic Gray codes which
satisfy the properties needed for the construction. The last stage is a simple
merging of these two Gray codes into one Gray code.

4.1 Nonequivalent Necklaces Generation

The first step in generating a long single-track Gray code based on neck-
laces, is to generate a large set of nonequivalent full-period necklaces. This
construction should generate the necklaces in such a way that it will be easy
to order them into a Gray code. The construction of these nonequivalent
necklaces will be iterative, i.e., given two sets of nonequivalent full-period
words of length n and length k, respectively, we generate a set of nonequiv-
alent full-period words of length nk. We first partition the set of all binary
m-tuples into two sets, those ending in a ZERO and those ending in a ONE,
i.e., for each b € {0,1}, we define,

Xl E [0t By 1] € {0,137 | 2y = b}
Construction 1 For each b € {0,1}, let

YN LA Nl 4
A
N2 (PSS

be sets of nonequivalent, full-period necklaces, such that
n—1 ) k—1 )
NIOYULES 1S eN =N (YULES | S eN =10
=0 =0
From these sets we generate the following set,

k-2
Nn,k é {[X07X17- . -7Xk—27s+ ZXZ] [b07b17' . '7bk—1] € N];O UN]élv
i=0

X;eXxh 0<i<k-—1,
k—1
=0

Theorem 6 The set N, ; of Construction 1 contains nonequivalent full-
pertod words of length kn.

13



Proof LetY = [yo,Y1y---»Urn_1] and Z = [zo,21,. .., Zkn_1] be two
words in the defined set N, ;. Let us assume that EY = Z for some
0 <e¢ < kn. Now,

k—1
S EEY = [E°Sp, ,E°Sp,, ... E°S,]

j=0

k—1 )
ZEJ”Z = [Sm27sm27 b ‘7Sm2]
j=0

where Sy,, € N2 and S,,, € N, ay,a, € {0,1}.

For ay # as, S,,, and S,,, are nonequivalent, and hence a; = a,. For
my # Mo, Sy, and S,,, are nonequivalent, and therefore m; = ms, which
implies Sy, = E°Sp,, .

Sm, s a full-period word, and hence n | c. This implies, that if we look at

[yn—lv Yon—15++ 5 ykn—l]

7
1
m’2 — [Zn—hZZn—lv"'van—l]

then Ec/”ST’n,1 = S,’n;. As before, Sr’n,l and Sr’n; are nonequivalent full-period
words, and hence k | ¢/n or kn | ¢. Therefore, Y = Z and thus, all the
words in N, j, are nonequivalent.

O

Construction 1 produces iteratively a large set of nonequivalent, full-
period necklaces. This set is generated in a way which makes it relatively

easy to order its necklaces in a cyclic Gray code, provided that the elements
of NO NI NP N/' can be ordered as a cyclic Gray code.

4.2 Generation and Merging of Gray Codes

Given a Gray code of length n, we will generate many Gray codes of the
same period and length nk, for which all words belong to nonequivalent
necklaces. Those Gray codes will be then merged into two sets of Gray
codes. The generation of one such short Gray code and the merging of some
of these Gray codes will be based on the following two trivial lemmas whose
proofs are omitted.

14



Lemma 5 If the words Sy, 51,...,5._1 € {0,1}" form a cyclic Gray code,
then the following words form a cyclic Gray code:

[(Xo, X1, ..o, Xpoo, S0+ Zf:_oz Xi]
[X07X17 o '7Xk—27 Sl + Zfz_oz XZ]

[X07X17 .. '7Xk—27 Sr—1+ Zfz_oz XZ]
where X; € {0,1}" for each 0 <i <k — 1.

Lemma 6 Let X; € {0,1}" for each 0 <1 < k—1 and for some j, 0 < j <
k—1, let X; € {0,1}" be a word such that X; differs from X; in exactly
the d-th coordinate. Furthermore, the necklaces Sq,51,...,5._1 € {0,1}"
form a cyclic Gray code in which, for some i, S; and S; 1 differ in the d-th
coordinate. Then, the following necklaces form a cyclic Gray code in which
the last and first pair of necklaces differ in the (d 4+ jn)-th coordinate:

(Xow X1, oo, Xjo oo 0, Xpon, Si + Xo+ X0 4+ 00+ X 400+ Xos)
[Xo,Xl,...,X;,...,Xk_z,sm+X0+X1+...+X]’.+...+Xk_2]

[(Xow Xop oo s Xfh oo s X, Socn + Xo+ Xo A+ XD+ X
[Xow Xoyoo s Xfh oo s Xy So + Xo + X oo+ XD+ o4 X o]

[Xow Xoy oo s Xfyo oy Koo, Si + Xo + X 4o XD+ Xl
(Xoo Xis oo Xjo oo, X, Sin + X0+ X+ o+ X5+ 00+ Xpo]

4.3 A Set of Properties for the Codes

In order to make an iterative construction of Gray codes based on nonequiv-
alent full-period necklaces we need that our Gray codes will satisfy certain
additional properties. One of the important properties concerns the posi-
tions in which adjacent words in the code differ.

Definition 9 Let W, W, be words of length n which differ only in the i-th
coordinate. We define,

A

=1

AWy, W)
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We are now in a position to state the set of properties required for some
Gray codes based on nonequivalent necklaces in order to obtain the iterative
construction. Let

NO = 508050

ro—1

N o= 5SS

ri—1

10 10 10 10
Nk - 507‘917"'7Srl’]—1
11 _ /1 /1 /1
N =SSt

be cyclic Gray codes such the the following properties are satisfied:
(p-1) The sets of necklaces which belong to NP, N1 AP N/L, respectively,
satisfy the conditions of Construction 1.

(p-2)
e The words [0"7*1],[0"~?11] are adjacent in N .
o [0F711] € NI

(p-3)

o There exist ig,4; such that S} and S? ., differ in exactly the last
coordinate, and also S7 and S}, differ in exactly the last coordinate.
We say that 7y and 7; are the bridging indices of NV and N} respectively
and that S7, S0 1,57 ,5} ., are the bridging words of their respective
codes.

e There exist ¢, 7] such that Sl’,ll and Sz{{?+1 differ in exactly the last coor-
dinate, and also SZ/;? and Slf,j_l_l differ in exactly the last coordinate. We
say that i) and i} are the bridging indices of N° and N/* respectively
and that 57, 577, |, 577, Siiy, are the bridging words of their respective
codes.

(p-4)

e Let j be the index for which {5}, 5/,,} = {[0"~'1],[0"~*11]}, and let

ip and 7; be the bridge indices of N? and N} respectively, then
{A(S?,Slo_l_l) | 0 S l < To,l# ’Lo} =
{AS), SL) [0<T <l #0,0l# 5} =
(0,1,2,...,n— 2}
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o Let i and 7] be the bridge indices of N} and N]' respectively, then

(AW, S 10 < U<yl #4) =
(AL SE) 0 <t <l #4 ) =
{0,1,2,....k—2}

4.4 Generation of Short Gray Codes

We are given the four cyclic Gray codes NP, N, V%, N}! based on nonequiv-
alent full-period necklaces of period n and k, respectively. We partition the
necklaces generated by Construction 1 into disjoint Gray codes, where each
Gray code corresponds to a necklace B = [by,b,...,0,_1] € Ni (b= by_1).
Let p 2 Efz_ol b; be the parity of B. For any choice of W; € X', for each
0 <1< k-1, we use Lemma 5 to construct a cyclic Gray code with the

words:
E—2

[Wo, Wi, s Wisa, ST4Y W] (05 <mp) .

i=0

This code is of length £n and period r, and will be denoted by
C(B,[Wo, Wi, ... ,W,_5]) .

By Theorem 6, all the words in this code are nonequivalent, full-period
words.

For the given B we continue and merge all its cyclic Gray codes into one
Gray code. There are 2*=D(*=1) Gray codes which are related to B and we
want to order them in such a way that it will be simple to merge them in
the given order. The merging will be performed as done in Lemma 6. To
apply this lemma we need two Gray codes

C(Bv[Wlev'"7VV]'7"'7Wk—2])

and

C(Bv[Wlev' . '7VV]'/7' . '7Wk—2])

such that W; and W differ in exactly one coordinate. This coordinate is
not the last one since the last coordinate is predetermined by B. Thus, we
should order the 2(»=D¥*=1 soquences of the form

W07W17 Tty Wk—Z
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in such a way that any two differ in exactly one coordinate. This is a
Gray code ordering and most (and usually all) Gray codes are good for
this purpose. But, for the simplicity of the construction we will choose the
reflected Gray code, which was introduced in the Introduction, and in the
appropriate positions we will plug in the predetermined values of B. We
call this code, the merging Gray code and we require another property from
the merging Gray code (and this property can be removed if we request
some more properties from the four Gray codes of length n and k, which
can be easily obtained). As said in the Introduction half of the changes
in a reflected Gray code is in one specified coordinate (usually the last

one). We require that this coordinate will not be congruent modulo n to

A(S?,S5F 1), or A(S?,SP . ,), or m— 2. This can be done easily by an
appropriate permutation on the code coordinates. After this is done in the
generated merging Gray code no two consecutive changes are in a coordinate
congruent to A(S}, 5} 1), or A(S?, S ,1), or n—2, modulo n. Our Gray

code of length n(k — 1) and period 2*=D¥*=1 will be denoted by
XB é X()BleBv o '7XZB(n—1)(k—1)—1‘
We note that in X'#

g(r—1)(k=1) _{

(A(XE XE — {0, 1,2, (k= 1) — 1]\ L_]{m —1).

We are now in a position to merge all the Gray codes which are related
to B. During this merging we make sure that each two adjacent words of
length nk constructed from either bridging words or the words [07~!1] and
[0"=211] will remain adjacent. The merging starts with the code C(B, X})
and the code C(B, X?). Since X2 and X P differ in exactly one coordinate,
say, the d-th coordinate, (0 < d < (k—1)n,d#n—1 (mod n)) then it is
possible to merge the latter into the former using (p.4) and Lemma 6. The
resulting code will be called the main code. In a typical step of the merging
we have a main code obtained by merging the following Gray codes,

C(B,X7)
C(B,X7)

C(B,X[7)
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and we merge to it the Gray code C(B, X[},). Let
A = AL X
d = AXPXE).

AP was chosen in a way that if d; = d5 (mod n) then dy # A(S}, 5] 1),
dy # A(SP,52..), and dy # n —2 (mod n). Hence, in this case and

ig? “ig+1

also when d; # dy (mod n), by (p.4) and Lemma 6 there is a pair of
adjacent words in C(B, X), originated from pair of adjacent words in in N7,
which are not the bridging words or the words [0"~'1],[0"~211]. Therefore,
C(B,X/},) can be merged by Lemma 6. This merging process ends when
all the Gray codes

C(B,X7)
C(B,X7)

C(B, X Jtnvye-1)_1)
are merged together. The resulting code is called C(B).

Lemma 7 For each B = [bg,by,...,by_1] € NJPUN', p = Zk o bs,
code C(B) = Yy, Y1,...,Yp_y is a cyclic Gray code of length kn and perzod
P = 206=00=Up which satisfies:

{A(Yi,YiH)|0§i<P}:{0,1...,kn—1}\0{ni—1} .

Proof It is obvious that C(B) is of length kn, and since we merged 2(:=1n=1)
codes of period r,, it follows that the period of the resulting is P = Q(k_l)(”_l)rp.
By lemma 6, the resulting code is a cyclic Gray code. Finally, since

(AP, X2 =0, 1,2, (k= 1) = 1\ | {ni — 1,
it follows by Lemma 6, and (p.4) that

{A(Yi,YiH)|0§i<P}:{0,1...,kn—1}\0{ni—1} .
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4.5 Concatenation the Short Gray Codes

Now, we have a set of r( + 7] cyclic Gray codes, each one corresponds to an-
other member of N/° [JN;!. Recall that the bridging indices of V%, V7L V%, N2
are ig, 1,1, 1, respectively. Let Vo, Vi,...,Vi_o € {0,1}"7! be k — 1 words
of length n — 1 chosen arbitrarily. For each B = [by, by,...,bp_1] € NPUN
and p 2 Ef:_ol b; , we cyclically shift the rows of the cyclic Gray code
C(B,[Zg, %1, ...y Zk_1]), where Z; = [V;,b;] for each 0 < ¢ < kK — 1, in
such a way that the first word will be

k=2
[Zo, Z1se ooy Zo, ST oy 4+ Zi]
i=0
and the last word will, therefore, be
k=2
(Zos Zv,y ooy Zieo, ST 4+ > 7]
i=0

We look at the following two concatenations of our cyclic Gray codes.

r(z)k = C(S£5+1)7C(Sz{g+2)v"-vC(S;*(’JD—l)vC(S(/JO)v'-'76(52{5)
Nr}k = C(S;’11+1)7C(Sz/’11+2)776(57{}1—1)76(561)776(‘9;’11)

In the rest of this section and in the next section we will prove that this
pair of codes satisfies properties (p.1) through (p.4) and thus can be used
for further iterations of the construction.

Lemma 8 N?, and N}, are cyclic Gray codes of length kn and period
2n=VE=D=1(p 4 p )l and 20"VE=D=Y 0 4 p )l respectively.  Further-
more, NP, and N}, contain nonequivalent full-period words.

Proof All the necklaces of N, and N7}, were produced as in Construction
1 and hence by Theorem 6 all the necklaces are nonequivalent full-period and
of length nk.

For a given B = [by, by, ...,b,_1] and Wo, Wy, -+, W;, -+ - Wy _s, clearly
C(B,[Wo, Wy, -, W;, -+« ,Wy_s]) has period r,, where p is the parity of
B. C(B) was constructed by merging 2"~Y% =1 Gray codes of the form
C(B,[Wo, Wy, -+, W;, -+, Wy _s]) and hence its period is 20"~ D=Lp - Gince
Sitand 57| have different parity, it follows that C(S7') and C(S},) together
have 200 DE=U(p; 411 ) necklaces, and Nt has 20 =DE=D=1 o4 )t words.
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To complete the proof we have to show that N, is a cyclic Gray code.
As said before the last word in C(S5}') is

k-2

[Zo.Z1s oo Zymo, ST+ Z4],
i=0
where p is the parity of S*, and the first word in N'(S},) is

k-2
/ / / 2 /
[Zov Zlv i '7Zk—27 Sz’ﬂ_l + Z_; Zz]

Clearly, these two words differ in exactly one coordinate. If S]’»b and S]’»Iil_l
differ in the d-th coordinate, 0 < d < k — 1, then for each 0 < 7 < k — 1,
J#d, Z; = Z}, and Zq and Z}, differ in the last coordinate. Since by (p.3)
Sf»; and Sf;_l differ in exactly the last coordinate, it follows that the last word
of C(S}') and the first word of C(S,) differ in exactly the (n(d 4+ 1) — 1)-
th coordinate. Thus, NP, is a cyclic Gray code of length nk and period
2= Dk=D= 1 4y Yrs. O

4.6 Properties of the Generated Gray Codes

In this Section we will prove that the generated Gray codes A% and N},
satisfy (p.1) through (p.4) and therefore can be used for further iterations
of the construction. The first lemma is an immediate consequence of Lemma,

8.

Lemma 9 N, and N}, satisfy (p.1).

Lemma 10 The words [0™*~'1] and [0"*~211] are adjacent in N}, .

Proof By (p.2) we have that [0*711] € N}' and [0"~'1] and [0"~%11] are
adjacent in N}. Therefore, the words [0"*~11] and [0"*=211] are adjacent
in C([0¥=11],[0%*=1)"]). Since during the merging process we didn’t separate
these words, it follows that they are also adjacent in C([0¥~'1]). To complete
the proof we have to show that these two words weren’t separated during the
concatenation. This is an immediate consequence from the fact that [0"~'1]
is not a bridging word since [0"] is not a full-period word. a

Lemma 11 N}, N, satisfy (p.3).
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Proof Observe that the last word of N}, which is also the last word of
C(5i;) is
k-2
[Zos Zy,e ooy Zo, ST 4D 73],
i=0
where p is the parity of Sl’,ll The first word of N°,, which is also the first
word of C(5,,) is

k-2

[Z07Z17 . -7Zk—27szpp—|—1 ‘|‘ ZZz]v

i=0

where clearly P is the parity of SI7 b1 Since Sp and Sp__l_l differ in exactly
the last coordinate, it follows that these two words dzﬂer exactly in the last
coordinate. Similarly, the first word of N}, and the last word of N'°, differ in
exactly the last coordinate. Therefore, these four words can serve as bridging
words of N, and N}.

O

Lemma 12 Let N}, = S5°, 57", ..., 55 _, j* be the index such that {57, 571, } =

075 =11], [0"*=211]}, and % and i* be the bridging indices of N° andN ,
0 1 nk nk
respectively. Then
{A(ST S 0 <L <rg L # i3} =
{A(STL S [0S < L # i L 57} =
(0,1,2,...,nk — 2}

Proof If B € N}°, then by lemma 7,
k
{A(Y;, i) [0 <i< Py = {0, 1. kn — 13\ [ J{in — 1},

where C(B) = Yu,Y1,...,Yp_1. By the proof of Lemma 8 we obtain the
changes in all positions which are congruent to n — 1 modulo n in the con-
catenation of the short Gray codes, and thus by taking into consideration
(p.3) for N)® and N', and the fact that one change in a coordinate implies
at least two changes in the same coordinate we have.

(AGSI S 10 <1< rid £ i3, 0# 57} = {0,1,2,...,nk — 2} .
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a

In Lemmas 9 through 12, we have proved that the pair of codes N, , N},
satisfy properties (p.1) through (p.4). Thus, we can use this pair of codes
for another iteration of the construction.

4.7 Optimality of the Code

Lemma 13 Concatenating the two codes given by the construction,
A
Car = Nr?kv/\/’r}k

produces a Gray code of nonequivalent, full-period words of length kn and
period 2~V =U=Y(p L ) (rh 471 ) which satisfies the conditions of Theorem
1.

Proof By Lemmas 8 and 11 C,; is a cyclic Gray code of nonequivalent
Sfull-period words of the required parameters. In addition, by Lemma 10 the
words [0"*=11],[0"*=211] are adjacent in the code. The code can be cyclically
shifted so they become the first and last words. Since [0"~211] and E[0*"~'1]
differ in exactly one coordinate, the conditions of Theorem 1 are satisfied.
O

The code of Lemma 13 can be used in Theorem 1 to produce a single-
track Gray code of length kn and period

U=V =D=1 () 4y Yl + 7 Yk

In order to use the construction, we need seed-codes which satisfy the con-
ditions of Theorem 1. Such seed-codes exist for n > 9. A simple computer
search has found such seed-codes for length 9 through 13. The seed-codes
for n =9, 10, and 11, are presented in appendix B.

If we assume that 7o +7; = (2" —¢,)/n and 7, + 7} = (2¥ —¢;,)/k then by
Lemma 13 one iteration of the construction gives a single-track Gray code
of length kn and period

P = 2”’“(1 —2 27+ ckcn2_("+k))

If we further assume that

lim 2 =0 , lim =0 (8)

n—oo 2N



then the period P* asymptotically reaches the upper bound of Lemma 1,

lim P* = 2",
n,k—oco
When P* = 27F — ¢, 1 we have that ¢, = 27%(c;27% + ¢,27" — ¢, 277 +0)),
Under assumption (8), we get, again, that
. Cnk _
it or =0
which means that the family of codes generated by any number of iterations
of the construction is still asymptotically optimal. Of course, as said before
one needs an infinite family of optimal seed codes to make the resulting
sequence of codes also optimal. If we start with "good” codes which are
not optimal we obtain codes which are usually better than the best known
codes.

4.8 Generalization

As mentioned before, seed codes for our construction exist only for length
n > 9. This fact limits the list of lengths for which we can obtain good single-
track Gray codes by our construction. We can overcome this limitation by
weakening the requirements induced by the properties (p.1) through (p.4).
Let,

N = 5080 .80

ro—1

N = §LSL...8

ri—1

/ / / /
Nk = ‘907‘917"'7 ri—1

be cyclic Gray codes, such that the following properties hold:
(q.1) The sets of sequences which belong to MY, V! satisfy the conditions
of Construction 1, and A contains nonequivalent, full-period words.

(q-2)
e The words [0"7'1],[0"?11] are adjacent in N!.
o [0F 1] e N/

(q.3) There exist ig,4; such that S} and S ., differ in exactly the last
coordinate, and also 57 and S ., differ in exactly the last coordinate. We
say that i, and ¢, are the bridging indices of NP and N! respectively and
that SP, S0 1,5),50 ., are the bridging words of their respective codes.

i9Y Mig+1o Me0 My
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(q.4) Let j be the index for which {57, 57, ,} = {[0"~*1],[0"~211]}, and let

JrMi+1
iy and i; be the bridging indices of A0 and N} respectively, then

{A(SlovSlOH) |0 <1l <ro,l#d} =
{ASH S 0<T<r,l #4145} =
{0,1,2,...,n =2}

Unlike the first construction, this one is not symmetric relative to the
parameters n and k of the seed-codes. Therefore, we say that AN, V! are
the multiplied codes and N is the multiplier code. The construction process
itself is very similar to the first construction. We start by constructing for
each B € N/, the code C(B). As before, we concatenate the codes to get
the main code:

1 2 C(55),C(57),C(58), -, C(Shy)

This code contains nonequivalent full-period words of length kn and satisfies
all the properties of a multiplier code. Using Theorem 1 we can obtain a
length nk, period

2 =DE=D=1(p 45 Y nk

single-track Gray code ,when k > 3. If £ = 2 then the only word of length
2 used is [01] and we use only Nj. In this case the construction coincides
with the first construction of [8] and we obtain a length 2n, period 2"r;n
single-track Gray code. Unlike the first construction, this construction has
multiplier seed-codes for length k& > 3 and they are given in Appendix C.

Appendix A

We discuss the generalization of Gray codes over nonbinary alphabets. Let
Z,, a > 2 be the group of residues {0,1,---,a — 1} modulo a, and Z? the
set of a” n-tuples over Z,.

Definition 10 For X = [z¢,21,...,&n_1] » Y = [Yo, Y1y Yn_1] € Z7
We define,

n—1

dp(X,Y) = (yi — ;)

i=0

where the subtraction is done in Z, and the addition is an integer addition.
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Definition 11 A length n period P Gray code over Z, is an ordered list of
P distinct length n words over Z,,

W07W17 o '7WP—1

such that for each 0 < i < P—1, W; and W;y, differ in exactly one coordinate
and d,(W;,W;11) = d, for a given d € Z,. If Wp_, and W, satisfy this

condition, we say that the code is cyclic.

Single-track Gray codes are cyclic Gray codes which have the single-track
property. A single-track Gray code over Z,, is equivalent to a single-track
Gray code over Z,/zcd(a,q)- For this reason we only consider the case where
ged(a,d) = 1. The following lemma is a straightforward generalization of
its binary equivalent.

Lemma 14 If C is a length n, period P single-track Gray code over Z,,
then na | P and na < P < a™.

All the results regarding single-track Gray codes with evenly spaced
heads can be easily generalized in a very natural way. The nonexistence
theorem can be proved for certain cases, with an interesting generalization
of the proof.

Theorem 7 Fxcept for p =2 and m = 1, there is no ordering of all the p®
words of length n = p™ over GF(p), where m > 1 and p is a prime, in a list
which satisfies all the following requirements:

1. There exists a nonzero constant d € GF(p), such that for any two
consecutive words in the list W; and Wy, we have d,,(W; 1, W;) = d,
0<e<pr—1.

2. The list has the single-track property.

3. Fach word appears exactly once.

Proof Let us assume the contrary, i.e., that such a code with a track s
exists. Let s(z) be the characteristic polynomial of s, and ¢, be the largest
integer such that there exists a polynomial p,(x) which satisfies,

s(z) = (z — 1)“py(2) (mod 2P —1).

Let ko, ki, ..., ky_1 be the locations of the heads in the list, h(z) 2 Sk
the head locator polynomial of the list, and h the characteristic length p"
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word of h(x). Let ¢y be the largest integer for which there exists a polynomial
po(@) which satisfies,

h(z) = (z — 1)?py(z) (mod 2P — 1) .

2P — 1= (2 —1)"" over GF(p) and hence 0 < ¢, ¢y < p* — 1.
Since the distance between any two adjacent words is d, it follows that

(x — Dh(x)s(z)=d(1+z+2>4+...+227) (mod a2t —1) (9)

and therefore,
e +e=p"—-2. (10)

Fquation (9) also implies that ¢, + 2 is the linear complexity of h, and
co+2 is the linear complexity of s. Since each word appears in the list exactly
once, s must be of full cyclic order, and hence

ey >ptTh =1 (11)

In order to restrict the linear complexity of h, we notice that

p—1
inp"‘l =(z — 1)(17—1)17"‘1 )
i=0

Now, let us assume that ¢; < (p— 1)p*~t =1, i.e.,
p—1
h(w)le"’n_ =0 (moda" —1).
i=0

Since h contains only zeros and ones, and the calculations are performed
over GF(p), it follows that h has the following form

h=[AA...A], AcGF" " (p)

P

This means that

{kiiZy =" + hi}isy
and then, the i-th word and the (i 4 p"~')-th word contain exactly the same
components of the generating track s. Since the allzero word appears some-

where in the list, it will appear at least twice, which is a contradiction.
Therefore, ¢; > (p— 1)p"~*t — 1.
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The linear complexity of h cannot be (p — 1)p"~! + 1, otherwise,

p"-1

p—1
h(ac)zzac”’n_1 =c- Z ' (mod 2P — 1)
=0 =0

for some ¢ € GF(p), ¢ # 0. The polynomial on the right has p" nonzero
components. h(x) has exactly p™ nonzero components and hence, the left
side has at most p™Tt nonzero components. Thus,

ptt >,
but this equation can hold only if p = 2 and m = 1. Therefore,
az(p—1)p" . (12)

Summing (11) and (12) we get that
it >pt—1

and this contradicts (10). o

Corollary 3 There are no single-track Gray codes over GF(p), p prime, of
length n > 2 and period p*, except for the trivial binary code of length 2 and
period 4.

Appendix B

In this appendix we present the seed-codes for 9 < n < 11.

Seed-codes for n=9
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[010001010] [010001000] [011001000] [011011000] [011010000]
[011110000] [011111000] [111111000] [111111100] [111101100]
[111101110] [111111110] [111111010] [101111010] [001111010]
[011111010] [011011010] [011011110] [011010110] [010010110]
[010110110] [010111110] [010011110] [010001110] [110001110]
[110001100] [110001000] [110001010] [110001011] [110001001]
[110000001] [110100001] [010100001] [010000001] [000000001]
[000000011] [000001011] [000001001] [100001001] [101001001]
[101001011] [100001011] [100101011] [100101001] [100111001]
[110111001] [110101001] [010101001] [010101101] [011101101]
[111101101] [110101101] [110001101] [010001101] [010001001]
[010001011]



0110101110
0101111110
0011111100
0101010110
1101110010
0101110010
0111100110
0010100010
1100001010
1000001100
1010010010
0010101110
1110110111
1111101111
0110001001
0000000001
1010010001
1101000101
1100001001
0110101111
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[0111101110]
[0101110110]
[0011110100]
[0101000110]
[1101111010]
[0111110010]
[0110100110]
[0010000010]
[1100001000]
[1000011100]
[1010000010]
[0010101111]
[1110110011]
[1111001111]
[0010001001]
[0000000011]
[1011010001]
[1101001101]
[1100001011]

[0111101010]
[0001110110]
[0111110100]
[0101100110]
[1100111010]
[0111100010]
[0110100010]
[0110000010]
[1110001000]
[1000011000]
[1010000110]
[0010100111]
[1110111011]
[1111001101]
[0000001001]
[1000000011]
[1011000001]
[1101011101]
[0100001011]

[0101101010]
[0011110110]
[0111010100]
[1101100110]
[0100111010]
[0111100000]
[0110110010]
[1110000010]
[1110001100]
[1010011000]
[1010100110]
[0110100111]
[1110101011]
[1110001101]
[0100001001]
[1010000011]
[1111000001]
[1100011101]
[0100101011]

Seed-codes for n = 10.
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[0101111010]
[0011111110]
[0101010100]
[1101100010]
[0100110010]
[0111100100]
[0010110010]
[1100000010]
[1100001100]
[1010010000]
[1010101110]
[1110100111]
[1111101011]
[0110001101]
[0100000001]
[1010000001]
[1111000101]
[1100001101]
[0110101011]



10101110000
11101110000
11011100000
10101100000
10111100000
11111111000
11111011110
10101101010
10011111100
10010111010
10010011100
11010101100
11101011100
11111101100
11001101000
11110101000
10100111000
10010011000
10111010000
10001111001
01001101111
01001101101
11011101111
00111101111
00101011111
00101101011
00110011001
01010010001
00111010001
00001110001
00001101011
00001010011
00000000111
00000000011
00110000001
10011000001
11011110001
10101110001

— e —r—r—r—— ———— —— —r—r— — — — —
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[10101010000]
[11101010000]
[11010100000]
[11101100000]
[00111100000]
[11111111100]
[10111011110]
[10111101010]
[10010111100]
[10010011010]
[10110011100]
[11011101100]
[11101010100]
[11111101000]
[11001001000]
[11110111000]
[10100101000]
[10011011000]
[10111110000]
[10001111101]
[01001101011]
[01101101101]
[11011101011]
[00101101111]
[00101010111]
[00101001011]
[00110111001]
[01010110001]
[00110010001]
[00001111001]
[00001101001]
[00001011011]
[00000000101]
[00000000001]
[00111000001]
[10001000001]
[11010110001]

Seed-codes for n=11
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[10001010000]
[11111010000]
[11110100000]
[11101000000]
[00111110000]
[11111111110]
[10111111110]
[10111101000]
[10010111110]
[10010011110]
[11110011100]
[11011001100]
[11101110100]
[11111001000]
[11011001000]
[10110111000]
[10110101000]
[10011111000]
[10111110001]
[11001111101]
[01001111011]
[01111101101]
[01011101011]
[00101101101]
[00101010011]
[00101011011]
[01110111001]
[01011110001]
[00010010001]
[00001111011]
[00001001001]
[00001001011]
[00000001101]
[00010000001]
[00101000001]
[11001000001]
[10010110001]

[11001010000]
[11011010000]
[10110100000]
[10101000000]
[00111111000]
[11011111110]
[10101111110]
[10111111000]
[10010101110]
[10010010110]
[11010011100]
[11111001100]
[11101111100]
[11101001000]
[11011101000]
[10110011000]
[10010101000]
[10011110000]
[10011110001]
[11001101101]
[01001111111]
[01011101101]
[01111101011]
[00101001101]
[00101110011]
[00101011001]
[01110110001]
[01011010001]
[00010110001]
[00001110011]
[00001011001]
[00001000011]
[00000001001]
[10010000001]
[00001000001]
[11001010001]
[10110110001]

[11001110000]
[11011110000]
[10100100000]
[10111000000]
[01111111000]
[11011011110]
[10101101110]
[10111111100]
[10010101010]
[10010010100]
[11010111100]
[11101001100]
[11101101100]
[11101101000]
[11010101000]
[10100011000]
[10010111000]
[10011010000]
[10001110001]
[11001101111]
[01001111101]
[11011101101]
[00111101011]
[00101001111]
[00101111011]
[00111011001]
[01110010001]
[00011010001]
[00011110001]
[00001100011]
[00001010001]
[00001000111]
[00000001011]
[10110000001]
[00011000001]
[11001110001]
[10100110001]



Appendix C

In this appendix we present the seed-codes of the second constructions for
3<n <8,

[001] [011]

Seed-codes for n = 3.

[0001] [0011]

Seed-codes for n = 4.

[00001] [00011] [00111] [01111] [01101] [00101]

Seed-codes for n = 5.

[000001] [000011] [000111] [001111] [011111] [011101] [001101] [000101]

Seed-codes for n = 6.

[0000001] [0000101] [0001101] [0001001] [1001001] [1011001]
[1111001] [1111101] [0111101] [0110101] [0110111] [0100111]
[0100101] [1100101] [1000101] [1000111] [0000111] [0000011]

Seed-codes for n = 7.

[00000001] [00000011] [00000111] [00010111] [00010011] [00011011]
[00011001] [00011101] [00010101] [00101011] [00100101] [00100111]
[00101111] [00101101] [00111101] [00111111] [00111011] [01101111]
[00110111] [00110101] [01010111] [01011111] [00011111] [00001111]
[00001101] [00001001] [00001011] [00000101]

Seed-codes for n = 8.

31
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