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Abstract
Inspired by empirical studies of networked systems such as the Internet, social
networks and biological networks, researchers have in recent years developed
a variety of techniques and models to help us understand or predict the behaviour
of these complex systems. In this chapter we will introduce some of the key
concepts of complex networks and review some of the major findings from the
field. Leading on from this background material we will show that analysing
the patterns of interconnections between agents can be used to detect dominance
relationships. Another important aspect of social order is the enforcement of
social norms. By coupling network theory, game theory and evolutionary al-
gorithms, we will examine the role that social networks (the structure of the
interactions between agents) play in the emergence of social norms. Empirical
and theoretical studies of networks are important stepping stones in gaining a
deeper understanding of the dynamics and organisation of the complex systems
that surround us.

Introduction
Many of the systems that surround us, such as road traffic flow, communication
networks, densely populated communities, ecosystems with competing species,

or the human brain (with  neurons), are large, complex, dynamic, and highly
nonlinear in their global behaviour. However, over the past 10 years it has been
shown that many complex systems exhibit similar topological features in the
way their underlying elements are arranged (Albert and Barabási 2002).

Underlying much of the current research is the notion that, in some way, topo-
logy affects dynamics that take place on the network, and vice versa. In this
chapter I will explore some of the properties of complex social networks.

One of the most well known properties of social networks is the small-world

phenomenon. This is something that most of us have experienced. Often we meet
people with whom we have little in common, and unexpectedly find that we
share a mutual acquaintance. The idea of '6 degrees of separation' is now firmly
embedded in folklore, embracing everyone from Kevin Bacon to Monica Lewinsky
(Watts 2003). Analysis of social networks has shown that the patterns of inter-
actions that surround each of us, often determines our opportunities, level of
influence, social circle, wealth, and even our mental well being.
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In this chapter I explore some of the properties of complex social networks. The
following section provides a number of examples of complex networks from a
range of different contexts. Then, I provide an information theoretic-based ap-
proach to detect strong groups in social networks. It is followed by a detailed
description of a game theoretic model, in which each of the agents is a decision
making unit. This example shows how social network can influence the enforce-
ment of certain behaviours within the system.

Networks
In mathematical terms, a network is a graph in which the nodes and edges have

values associated with them. A graph  is defined as a pair of sets ,
where  is a set of nodes (vertices or points within the graph) labelled

 and is a set of edges (links (vi, vj ) that connect pairs of ele-

ments vi, vj  within ). A set of vertices joined by edges is the simplest type of

network. Networks can be more complex than this. For instance, there may be
more than one type of vertex in a network, or more than one type of edge. Also,
vertices may have certain properties. Likewise, edges may be directed. Such
edges are known as arcs. Arcs and edges may also have weights. Figure 5.1, de-
picts networks with various types of properties. Taking the example of a social
network of people, the vertices may represent men or women, people of different
nationalities, locations, ages, incomes or any other attributes. Edges may represent
relationships such as friendship, colleagues, sexual contact, geographical prox-
imity or some other relationship. The edge may be directed such as supervisor
and subordinate. Edges may represent the flow of information from one individu-
al to another. Likewise the edges may carry a weight. This weight may represent
a physical distance between 2 geographical proximity, frequency of interaction,
degree to which a given person likes another person.
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Figure 5.1. Random graphs

(a) Random graph. (b) Directed random graph. (c) Directed random graph with weights (random

network)

Network properties

Connectivity
The degree to which the nodes of a network are directly connected is called
connectivity. A network with high connectivity has a high ratio of edges to the
number of nodes. To calculate a networks connectivity , where  is the
number of edges and  is the number of nodes in the network, the following
equation is used;

Degree distribution
The degree of a node in a network is the number of edges or connections to that
node (Newman 2003). The distribution function P(k) gives the probability that
a node selected at random has exactly k edges (Albert and Barabási 2002). Plotting
P(k) for a network forms a histogram of the degrees of the nodes, this represents
the degree distribution (Newman 2003) or the number of nodes that has that
number of edges for the network.

Shortest average path length
The average path length, ( ) of a network is the average number of edges, or
connections between nodes, that must be crossed in the shortest path between
any 2 nodes (Watts 2003). It is calculated as:

,
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where  is the minimum distance between nodes i and j.

Diameter
The diameter of a network is the longest shortest path within a network. The
diameter is defined as:

.

Clustering
A common property of many social networks is cliques. Cliques are groups of
friends, where every member of the group knows every other member. The in-
herent tendency to cluster is quantified by the clustering coefficient (Watts and
Strogatz 1998). For a given node i within a network, with ki neighbours, the

degree of clustering around node i is defined to be the fraction of links the exist
between the ki  neighbours and the ki (ki-1)/2potential links. Let Ei , be the

number of links that actually exist between the ki  neighbours. The clustering

coefficient is then:

.

Subgraphs
One of the first properties of random graphs that Erdös and Rényi studied was

the appearance of subgraphs. A graph consisting of the set of nodes  and

the set  of edges is said to be a subgraph of  if and . The
simplest examples of subgraphs are cycles, trees, and complete subgraphs. One of
the most fundamental concepts in graph theory is a walk. Given a graph , a
walk is a sequence ( 0,  1), ( 1,  2,), … ( k-1,  k,) of vertices and edges from vertex

to vertex . The number of edges in the walk is its length. A walk in which
all vertices are only visited once is known as a path. A walk in which all of the
edges are distinct is a trail. A cycle is a closed loop of  edges, such that every
2 consecutive edges only have common nodes. A tree is of order if it has 
nodes and  edges, and none of its sub-graphs is a cycle. The average degree

of a tree of order  is , which approaches the limit 2 for large trees. A

complete subgraph of order  contains  nodes and all the possible  edges,
in other words, all the nodes in the subgraph are connected to all other nodes
(Wilson 1994).

Criticality
Probably the most important finding from random graph theory was the discov-
ery of a critical threshold at which giant clusters form (in this context, cluster
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refers to a group of connected nodes) (Erdös and Rényi 1961). Below this
threshold, the network exists as a series of disconnected subgraphs. Above this
threshold, the graph is one all-encompassing cluster. Figure 5.2 shows this crit-
ical phase change using a simple graph model. Initially, all nodes within the
graph are disconnected. At each time step, new edges are introduced. Figure 5.2
(a) shows that as edges are added, the nodes very quickly move from being dis-
connected to being fully connected. While Figure 5.2 (b) shows the standard
deviation of the size of the largest connected subregion, the greatest deviation
occurs at the critical threshold: at either side of this point the network exists as
a series of small-disconnected subregions or as one giant cluster. Finally, Figure
5.2 (c) shows the time required to traverse the graph from one node to another.
Again, the maximum time required to traverse the graph exists just below this
critical level. This phase change is particularly important in percolation and
epidemic processes.

Figure 5.2. Example of criticality phenomena in the evolution of graphs

Critical phase changes in connectivity of simple random lattice, as the proportion of active

cells increases (x-axes). (a) Average size of the largest connected subregion (LCS). (b)

Standard deviation in the size of LCS. (c) Traversal time for the LCS. Each point is the result

of 1000 iterations of a simulation. Note that the location of the phase change (here )

varies according to the way we defined the connectivity within the model.

Real world complex networks
In this section we look at what is known about the structure of networks of
different types. Recent work on the mathematics of networks has been driven
largely by observation of the properties of actual networks, and attempts to
model the processes that generate their topology. An excellent example of the
dual theoretical and observational approach is presented in the groundbreaking
work by Watts and Strogatz (1998). The remainder of this section examines the
statistical properties of a number of complex networks. Figure 5.3 illustrates a
number of different complex networks.
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Ecological populations
Food webs are used regularly by ecologists to quantify the interactions between
various species. In such systems, nodes represent species and the edges define
predator–prey and other relationships that have positive and negative effects
on the interacting species. Weights associated with the edges determines the
magnitude of the relationship (May 2001). Solé and Montoya (2001) studied the
topological properties of the Ythan Estuary (containing some 134 species with
an average of 8.7 interactions per species), the Silwood Park ecosystem (Memmott
et al. 2000) (with some 154 species with each species on average having 4.75 in-
teractions) and the Little Rock Lake ecosystem (having a total of 182 species each
of which interacts with an average of 26.05 other species). These studies found
that these ecosystems were highly clustered and quite resilient against attack.

Social systems
Studies of human and other animal groups have determined that the structure
of many communities conforms to the small worlds model. For example, Liljeros
et al. (2001) studied the sexual relationships of 2,810 individuals in Sweden
during 1996. The result was a network in which the degrees of the vertices
conformed to power–law distribution. Another commonly studied class of systems
consists of association networks. Given a centroid, the task is to calculate the
distance (number of steps removed) one individual is from another. Perhaps the
best known example is the network of collaboration between movie actors
(Newman 2000), which takes the popular form of Bacon numbers (Tjaden and
Wasson 1997). Other popular examples include Lewinsky numbers and scientific
collaboration networks (Newman 2003). The most notable of the scientific col-
laboration networks are the Erdös numbers (Hoffman 1998) that use the famous
mathematician Paul Erdös as the centroid.

World Wide Web and communications networks.
Computer networks and other communication networks have in recent times
attracted a lot of attention. The World Wide Web (WWW), the largest informa-
tion network, contained close to 1 billion nodes (pages) by the end of 1999
(Lawrence and Giles 1998). Albert et al. (2000) studied subsets of the WWW and
found that they conformed to a scale free network. Other networks, such as the
Internet and mobile phone networks, were also found to conform to the scale
free network model (Faloutsos et al. 1999).

Neural networks
Studies of the simple neural structure of earthworms (Watts and Strogatz 1998)
were able to study the topological properties of underlying networks. In Watts
and Strogatz’s model of these brains, nodes represented neurons, and edges were
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used to depict the synaptic connections. The neural structure of the earthworm
was found to conform to the small world network model, in which groups of
neurons were highly clustered with random connections to other clusters.

Figure 5.3. Examples of complex networks

(a) the Internet, where nodes are routers and edges show physical network connections. (b)

an ecosystem (c) professional collaboration networks between doctors; and (d) rail network

of Barcelona, where nodes are subway stations and edges represent rail connections.

Models of complex networks
Complex networks can be generally divided into two major classes based on

their degree distribution , i.e. the probability that a node in the network is
connected to  other nodes. This first class of graphs is referred to as exponential
graphs, and the distribution of edges (i.e. the numbers per node) conforms to a
Poisson distribution. This class of graphs includes the Erdös-Rényi type random
graphs, and small-world networks.
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Random graphs
Paul Erdös and Alfred Rényi (1959, 1960, 1961) were the first to introduce the
concept of random graphs in 1959. The simple model of a network involves
taking some number of vertices, N and connecting nodes by selecting edges
from the N(N-1)/2 possible edges at random (Albert and Barabási 2002; Newman
2003). Figure 5.4 shows three random graphs where the probability of an edge
being selected is p=0, p=0.1 and p=0.2.

Figure 5.4. Erdös-Rényi model of random graph evolution

(a) Initially 20 nodes are isolated. (b) Pairs of nodes are connected with a probability of p of

selecting an edge. In this case (b) p=0.1 , (c) p=0.2, notice how the nodes become quickly

connected

The Erdös and Rényi random graph studies explore how the expected topology
of the random graph changes as a function of the number of links (Strogatz 2001).

It has been shown that when the number of links is below , the graph is
fragmented into small isolated clusters. Above this threshold the network be-
comes connected as one single cluster or giant component (Figures 5.2 and 5.4).
At the threshold the behaviour is indeterminate (Strogatz 2001). Random graphs
also show the emergence of subgraphs. Erdös and Rényi (1959, 1960, 1961) ex-
plored the emergence of these structures, which form patterns such as trees,
cycles and loops. Like the giant component, these subgraphs have distinct
thresholds where they form (See Figure 5.5).
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Figure 5.5. Different subgraphs appear at varying threshold probabilities in a
random graph (After Albert and Barabási 2002)

Small-world networks
In the late 1960s, Stanley Milgram (1967) performed the famous small-worlds

experiment. While no physical networks were constructed during this experi-
ment, the results do provide valuable insights into the structure of social net-
works. Essentially, the experiment examined the distribution of paths lengths
in an acquaintance network by asking participants to pass a letter to one of their
first-name acquaintances in an attempt to get the letter to the designated target.
While most of the letters were lost, about one quarter reached the target person.
One average the letter passed through the hands of between 5 and 6 people. This
experiment was the source of the popular concept of 6 degrees of separation.

The ground breaking work of Watts and Strogatz (1998) showed that many
complex networks display two key features: they possessed the 6 degrees of
separation phenomenon, that Milgram discovered; but locally they had many
properties similar to that of a regular lattice. In an attempt to model these systems
Watts and Strogatz (1998) proposed a one-parameter model, which interpolates
between an ordered finite dimensional lattice and a random graph. The algorithm
behind the model is as follows: start with a regular ring lattice with nodes in

which every node is connected to its first  neighbours (  neighbours on
either side); and then randomly rewire each edge of the lattice with a probability

 such that self-connections and duplicate edges are excluded. This process
introduces long-range edges which connect nodes that otherwise would be part
of different neighbourhoods. Varying the value of  moves the system from

being fully ordered to random . Figure 5.6 shows steps in this
transition. Small world networks have been used to describe a wide variety of
real world networks and processes; Newman (2000) and Albert and Barabási
(2002) provide excellent review of the work done in this field.
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Figure 5.6. Progressive transition between regular and random graphs

Source: Watts and Strogatz 1998

Scale-free networks
The second class of graphs is referred to as scale free networks. Specifically, the

frequency of nodes  with connections follows a power-law distribution

, in which most nodes are connected with small proportion of other
nodes, and a small proportion of nodes are highly connected (Albert and Barabási
2002). In exponential networks the probability that a node has a high number
of connections is very low. In scale free networks, however, highly connected

nodes (i.e. ) are statistically significant (Albert and Barabási 2002).

Hierarchies and dominance
In competitive interactions between two individuals there is always a winner
and a loser. If an individual A consistently defeats player B, then it is said that
A dominates B. Such a relationship can be captured in a network in which the
nodes represent players and arcs show which player is dominated. Animal beha-
viourists have frequently employed linear hierarchical ranking techniques to
determine the dominant individuals within a community.

Dominance and linear hierarchical ranking
There are many procedures, of varying complexity, for ranking the members
of a social group into a dominance hierarchy (see de Vries 1998 for a review of
these techniques). In general dominance hierarchy, techniques can be divided
into 2 categories. The first class of methods attempts to determine the dominance
ranking by maximising or minimising some numerical criteria. The second class
aims to provide a measure of overall individual success from which the rank can
be directly derived. One relatively simple ranking method belonging to the
second class is David’s score (David 1987, 1988).
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Individual ranks calculated with David’s Score are not disproportionately
weighted by minor deviations from the main dominance direction within dyads,
because win/loss asymmetries are taken into account by the use of dyadic dom-
inance proportions in the calculations. The proportion of wins/losses by indi-

vidual  in his interactions with another individual  ( ) is the number of times

that defeats  (αij ) divided by the total number of interactions between  and

 ( ), i.e. . The proportion of losses by  in interactions with ,

is . If  then and  (David 1988; de Vries 1998). The
David’s Score for each member,  of a group is calculated with the formula:

where  represents the sum of i’s values, represents the summed values

weighted by the appropriate values, (see the worked example in the following

section) of those individuals with which i interacted,  represents the sum of

i’s values and  represents the summed  values (weighted by the appropriate

 values) of those individuals with which i interacted (David 1988: p. 108; de
Vries 1998).

A worked example
Table 5.1 shows a worked example with calculated w, w2, l, and l2 values.

Specifically for individual A,  represents the sum of A’s  values (i.e.

), and  represents the summed values (weighted

by the appropriate  values) of those individuals with which A interacted (i.e.

. A’s  and  values are
calculated in a similar manner (David 1988; de Vries 1998).
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Table 5.1. Example of ranking between players according to David’s score

 Player Losses 

EDCBA  

3.202.903.052(0.5)7(1)4(0.8)4.5(0.75)—APlayer Victor-
ies

2.452.382.055(1)0(0)4(0.8)—1.5(0.25)B

-0.201.521.404(1)0(0)—1(0.2)1(0.2)C

-1.950.000.000(0)—0(0)0(0.0)0(0)D

-3.51.520.50—0(0)0(0)0(0.0)2(0.5)E

   2.501.001.600.950.95 

   3.020.951.521.031.80 

Bobby Fischer and the Ruy Lopez opening line
Bobby Fischer is probably the most famous chess player of all time and, in many
peoples' view, the strongest. In the 1970s, Fischer achieved remarkable wins
against top ranked grandmasters. His celebrated 1972 World Championship
Match with Boris Spassky in Reykjavik made headline news all around the
world. One of Fischer's favoured opening lines is the Ruy Lopez. The Ruy Lopez
has been a potent weapon for Bobby throughout his career. Strategic play across
the board suited Fischers talents. In his prime (and later in his career) Fischer
was so proficient (dominant) in the main lines of the Ruy Lopez that many of
his opponents chose irregular setups when attempting to defend their positions.

The Ruy Lopez was named after the Spanish clergyman, Ruy Lopez, of Safra,
Estramadura. In the mid-sixteenth century, he published the first systematic
analysis of the opening. The speed of development, flexibility and attacking
nature, has seen the Ruy Lopez remain popular since its conception to the
modern chess era. Figure 5.7 shows the board setup of the Ruy Lopez.
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Figure 5.7. The Ruy Lopez opening line

All the games played by Fischer were converted into a network. Each player
was represented as node or vertex within the system, with each game between
2 players shown as an arc. The arcs are drawn from loser to the winner, and
given a weight of 1 for each victory of a given player. In the event of a
draw/tie/stalemate, an arc was drawn in both directions and given a weight of
½. In many ways, the data presented here is limited, as the dataset does not
contain all top level games played within the Ruy Lopez opening system (some
notable players are missing from the database), nor does it capture all the Ruy
Lopez games played between players. Also, some of the games are incomplete
or the result of the game is unknown. While these constraints will limit the ac-
curacy of the result, the dataset is complete enough to detect trends and regular-
ities, and will not greatly influence the general findings of this chapter.

Fischer’s dominance
In this experiment, I examine the relationships between Fischer and his nearest
neighbours. The network contains a total of 65 players. Figure 5.8 shows the
network relationships between Fischer and his immediate opponents, the size
of the arc represents the level of dominance of that player. Application of David’s
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score to this network reveals that Bobby Fischer is the most successful player
within his local neighbourhood. Table 5.2 lists the top 10 players in the neigh-
bourhood.

Figure 5.8. Bobby Fischer’s network of immediate opponents

Table 5.2. Top 10 players in Fischer’s gaming network

PlayerRankPlayerRank

David Bronstein6.Bobby Fischer1.

Leonid Stein7.Mikhail Tal2.

Eliot Hearst8.Vasily Smyslov3.

Yefim Geller9.Boris Spassky4.

Borislav Ivkov10.Bent Larsen5.

Some closing comments on dominance hierarchies
In this section, I have been able to show that, from the network formed by the
competitive interactions of individuals, key or dominant individuals can be
identified. The proposed approach can also be used to determine a ‘pecking order’
between individuals within a group, in which individuals are ranked from most
to least dominant. While the context of illustration is the world of chess, the
framework can be applied to any network in which dominance between elements
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can be established. One should note, however, that hidden patterns, such as
incorrect weightings and missing links or nodes, can distort the final result.

Enforcement of social norms
As individuals, we are each better off when we make use of a common resource
without making a contribution to the maintenance of that resource. However,
if every individual acted in this manner, the common resource would be depleted
and all individuals would be worse off. Social groups often display a high degree
of coordinated behaviour that serves to regulate such conflicts of interest. When
this behaviour emerges without the intervention of a central authority, we tend
to attribute this behaviour to the existence of social norms (Axelrod 1986). A
social norm is said to exist within a given social setting when individuals act in
a certain way and are punished when seen not to be acting in accordance with
the norm. Dunbar (1996, 2003) suggests that social structure and group size play
important roles in the emergence of social norms and cooperative group beha-
viour.

Models of social dilemmas
All social dilemmas are marked by at least one deficient equilibrium (Luce and
Raiffa 1957). It is deficient in that there is at least one other outcome in which
everyone is better off. It is equilibrium in that no one has an incentive to change
their behaviour. The Prisoners' Dilemma is the canonical example of such a social
dilemma. The Prisoners' Dilemma is a 2 2 non-zero sum, non-cooperative game,
where non-zero sum indicates that the benefits obtained by a player are not ne-
cessarily the same as the penalties received by another player, and non-cooperative

indicates that no per-play communication is permitted between players. In its
most basic form, each player has 2 choices: cooperate or defect. Based on the
adopted strategies, each player receives a payoff.

Figure 5.9 shows some typical values used to explore the behaviour of the Pris-
oners' Dilemma. The payoff matrix must satisfy the following conditions (Rapo-
port 1966): defection always pays more, mutual cooperation beats mutual defec-
tion, and alternating between strategies doesn’t pay. Figure 5.9 also shows the
dynamics of this game, the vertical arrows signify the row player’s preferences
and horizontal arrows the column player’s preferences. As can be seen from this
figure, the arrows converge on the mutual defection state, which defines a stable
equilibrium.
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Figure 5.9. Prisoners' Dilemma

The payoff structure of Prisoners' Dilemma: the game has an unstable equilibrium of mutual

cooperation, and a stable equilibrium of mutual defection, this is shown by the arrows,

moving away from mutual cooperation to mutual defection

While the 2-person Prisoner’s Dilemma has been applied to many real-world
situations, there are a number of problems that cannot be modelled. The Tragedy
of the Commons is the best known example of such a dilemma (Hardin 1968).
While n-person games are commonly used to study such scenarios, they generally
ignore social structure, as players are assumed to be in a well-mixed environment
(Rapoport 1970). In real social systems, however, people interact with small tight
cliques, with loose, long-distance connections to other groups. Also, traditional
n-person games don’t allow players to punish individuals that do not conform
to acceptable group behaviour, which is another common feature of many social
systems. To overcome these limitations, I will introduce the Norms and Meta-
Norms games, which are variations on the n-person Prisoners' Dilemma. They
can easily be played out on a network and allow players to punish other players
for not cooperating. Figure 5.10 illustrates the structure of the n-person Prisoners'
Dilemma, Norms and Meta-Norms games.

86

Complex Science for a Complex World



Figure 5.10. The architecture of the Norms and Meta-norms games (After
Axelrod 1986)

Both games start with a variation on the n-person Prisoner’s Dilemma. The Norms Game allows

players to punish those players caught defecting. The Meta-Norms Game allows players to

punish those players who do not punish defectors.

The Norms game
The Norms game begins when an individual (i) has the opportunity to defect.
This opportunity is accompanied by a known chance of being observed defecting
(S) by one of i's nearest neighbours. If i defects, he/she gets a payoff T (temptation
to defect) of 3, and each other player that is connected to i, receives a payoff H
(hurt by the defection) of -1. If the player does not defect then each player re-
ceives a payoff of zero. To this point the game is equivalent to an n-person
Prisoners' Dilemma played on a network (Rapoport 1970). However should i

choose to defect, then one of his n neighbours may see the act (with probability
1-S) and may choose to punish i. If i is punished he receives a payoff of P=-9,
however the individual who elects to punish i also incurs an expense associated
with dealing out the punishment of E=-2. Therefore the enforcement of a social
norm to cooperate requires an altruistic sacrifice.

From the above description it can be seen that each player’s strategy has 2 di-
mensions. The first dimension of player i’s strategy is boldness (Bi ), which de-

termines when the player will defect. Defection occurs when S < Bi . The second
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dimension of i’s strategy is vengefulness (V), which is the probability that a
player will punish another player if caught defecting. The greater the vengeful-
ness the more likely they are to punish another player.

The Meta-Norms game
The Meta-Norms game is an extension of the Norms game. If player i chooses to
defect, and player j elects not to punish i, and i and j have a common neighbour
k, and k observes j not punishing i, then k has can punish j. Again, j receives
the penalty P=-9, and, like the norm game, k receives an expenses E=-2.

Like the Prisoners' Dilemma, the Norms game and Meta-Norms game have un-
stable mutual cooperation equilibrium and a stable mutual defection equilibrium.
The altruistic punishment is also an unstable strategy, as punishing an individual
also requires a self-sacrifice. The stable strategy is mutual defection with no
punishment for defectors. However, the global adoption of this strategy means
that the population as a whole is worse off than if the unstable equilibrium
strategy of mutual cooperation with punishment for defectors is adopted.

Model of social structure
Let us imagine 2 variables (B and V) that make up a strategy are each allowed
to take on a value between [0,1]. The variables represent the probability of de-
fecting and punishing respectively. The variables are each encoded as a 16 bit
binary number (as per Axelrod 1986). The evolution of players' strategies pro-
ceeds in the following fashion: (1) A small world network of 100 players with a
degree of randomness p is created; (2) Each player is seeded with a random
strategy; (3) The score or fitness of each play is determined from a given player’s
strategy and the strategies of the players in their immediate neighbourhood; (4)
When the scores of all the players are determined, a weighted roulette wheel
selection scheme is used to select the strategies of the players in the next gener-
ation; (5) A mutation operator is then applied. Each bit has a 1 per cent chance
of being flipped; (6) Steps 3–5 are repeated 500 times, and the final results are
recorded; (7) Steps 2–6 are repeated 10,000 times. (8) Steps 1–7 are repeated for
p values between 0 and 1 in increments of 0.01. The above experimental config-
uration was repeated for both the Norms game and the Meta-Norms game. Figure
5.11 shows the results of these simulations.
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Figure 5.11. Simulation results

(A) Average values for boldness and vengefulness over social networks with varying degrees

of randomness for the Norms game. (B) Average values for boldness and vengefulness over

social networks with varying degrees of randomness for the Meta-Norms game. (C) Compar-

ison of the fitness values for the Norms game and Meta-Norms game. (D) Trade-off between

Boldness and Vengefulness

From the simulation results we can see that, regardless of the social structure,
the first order altruistic punishment isn’t enough to enforce the social norm of
mutual cooperation. Figure 5.11(A) shows that, regardless of the social structure,
the vengefulness decreases to zero, and boldness increases toward one. Essentially
all players are attempting to exploit the shared resource, with no fear of being
punished. However, for the Meta-Norms game, with second-order punishment,
there is a distinct set of circumstances when the population as a whole will not
exploit the common resource. Figure 5.11(B) shows that, when the social structure
is regular and highly clustered, players boldness decreases, but as the social
structure becomes more random (and clustering breaks down), the boldness of
a given player increases, and each individual attempts to exploit the common
resource. However, the level of exploitation is lower than that observed in the
Norms game. These differences in system behaviour are also seen in the average
payoff received by a player (Figure 5.11(C)). The average payoff per player in
the Meta-Norms game is always higher that that received in the Norms game.
The average payoff for the Meta-Norms game maximises just before the transition
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to a state of global exploitation. Statistical analysis of the network structure re-
veals that this maximum payoff point coincides with the breakdown of clustering
within the network. Finally, Figure 5.11(D) depicts the trade-off between
vengefulness and boldness. The Norms game (squares) converges to a strategy
of low vengefulness and high boldness. While the Meta-Norms game produces
a range of behaviours (circles), from the plot it can be seen that there is a trade-
off between boldness and vengefulness. The Meta-Norms game produces a wide
variety of strategies. These strategies are governed by the topology of the under-
lying social network. The trade-off surface can be thought of as the set of viable
strategies, as nonviable strategies (such as high boldness and vengefulness) are
selected against.

Discussion and implications
The results from the previous section provide a number of interesting insights
into the emergence of social norms and group behaviour. Social structure and
second order interactions seem to play an important role in the evolution of
group behaviour. In the wider literature, there are many recorded instances
where these 2 factors have been observed to influence group behaviour. Here I
will explore 3 examples.

Animal innovation
Japanese macaque were among the first primates observed by humans to display
innovation and diffusion of new novel behaviours to other group members
(Reader and Laland 2004). While many individual animals invent new behaviour
patterns, most new behaviours (even if they are beneficial) are unlikely to become
fixed within the community. Reader and Laland (2002) have shown that there
is a link between the social structure of primates and the frequency with which
new technologies are uptaken. Populations that tend to be more cliquish are
more likely to adopt a new behaviour as member of the clique help to reinforce
the novel behaviour.

Social cohesion
Dunbar (1996) has shown that there is a correlation between neocortex size and
the natural group size of primates. Also correlated with neocortex size is the
cliquishness of the social structure. Dunbar (2003) conjectures that the increase
in neocortex size may mean that individuals can manage and maintain more
group relationships. The ability to maintain more complex relationships may
allow individuals to locally enforce social behaviour. It has also been observed
that, when primate groups grow too large, social order breaks down and the
troop split into 2 or more smaller troops in which social order is re-established
(Dunbar 2003).
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Control of social behaviour
The notion of Meta-Norms is widely used in denunciation in communist societies.
When authorities accuse someone of doing something wrong, others are called
upon to denounce the accused. Not participating in this form of punishment is
itself taken as a defection against the group and offenders are punished.

Some comments on the enforcement of social norms
In this section, I explored the emergence and enforcement of social norms through
the use of 2 variations on the n-persons Prisoners' Dilemma. The simulation results
suggest that a combination of second order interactions, altruistic punishment
and social structure can produce coherent social behaviour. Such features have
been observed to enforce norms in a number of social systems. The results from
this study open a number of interesting future directions:

• As conjectured by Dunbar (2003), social order in primate troops breaks down
when the troop becomes too large. This raises the question: What is the rela-
tionship between link density, number of nodes and other network statistics,
and how do these statistics influence the behaviour of evolutionary games
such as those described in this chapter?

• Coalitions and factions form and dissolve through time. How do the general
results change if the underlying network is allowed to evolve?

• Several studies (Luce and Raiffa 1957) have shown that concepts such as the
Nash equilibrium don’t hold when rational players are substituted for human
players. Do the patterns and tradeoffs described previously hold when ra-
tional computer players are replaced by human decision makers?

All these questions require further experimentation but can be explored in the
context of the framework proposed here.

Closing comments
From social networks to large scale critical infrastructure, the systems that sur-
round us are large and complex. Despite their obvious differences these systems
share a number of common regularities—such as the small world properties. In
this chapter we have reviewed some recent work on the structure and function
of networked systems. Work in this area has been motivated to a high degree
by empirical studies of real-world networks such as the Internet, the World
Wide Web, social networks, collaboration networks, citation networks and a
variety of biological networks. We have reviewed these empirical studies, focus-
ing on a number of statistical properties of networks that have received particular
attention, including path lengths, degree distributions, and clustering. Moving
beyond these statistical regularities, the structure and nature of the interactions
between the elements within a system can provide insights into the dynamics
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taking place in the network and as well as the way the network is being shaped
by the dynamics.

In this chapter I have explored several notions. First, by understanding the
nature of the interaction between players of chess we can extract dominance
hierarchies. These hierarchies can be examined through time to gain an under-
standing as to how the system evolves, in this case, how the dynamics affect the
topology. I also explored how the structure of a network affects the dynamics
taking place upon it and showed that the regularities we see in social systems
may be a consequence of the dynamics taking place. These regularities are also
echoed across other types of social systems, suggesting universal laws of organ-
isation.

In looking forward to future developments in this area, it is clear that there is
much to be done. The study of complex networks is still in its infancy. Several
general areas stand out as promising for future research. First, while we are be-
ginning to understand some of the patterns and statistical regularities in the
structure of real world networks, our techniques for analysing networks are, at
present, no more than a grab-bag of miscellaneous and largely unrelated tools
(Newman 2003). We do not yet, as in some other fields, have a systematic program
for characterising network structure. We need a systematic framework by which
we can analyse complex networks in order to identify key dynamical and
structural properties. Second, there is much to be done in developing models of
networks, both to help us understand network topology and to act as a substrate
for the study of processes taking place on networks (Watts and Strogatz 1998;
Newman 2003). Finally, and perhaps the most important direction for future
study, is the behaviour of processes taking place on networks. The work describ-
ing the interplay between social structure and game theoretic decision making
is only a timid first attempt at describing such processes, and yet this, in a sense,
is the ultimate goal in the field: to understand the behaviour of the network
systems that surround us.
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