The Structure of Some Classes of 3-Dimensional Normal Almost Contact Metric Manifolds

${ }^{1}$ Uday Chand De and ${ }^{2}$ Abul Kalam Mondal
${ }^{1}$ Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
${ }^{2}$ Dum Dum Motijheel Robindra Mahavidyalaya, 208/B/2, Dum Dum Road, Kolkata-700074, West Bengal, India
${ }^{1}$ uc_de@yahoo.com, ${ }^{2}$ kalam_ju@yahoo.co.in

Abstract

The object of the present paper is to study ξ-projectively flat and ϕ-projectively flat 3-dimensional normal almost contact metric manifolds. An illustrative example is given.

2010 Mathematics Subject Classification: 53C15, 53C40
Keywords and phrases: Normal almost contact metric manifolds, ξ-projectively flat, ϕ projectively flat, Einstein manifold.

1. Introduction

Let M be an almost contact manifold and (ϕ, ξ, η) its almost contact structure. This means, M is an odd-dimensional differentiable manifold and ϕ, ξ, η are tensor fields on M of types $(1,1),(1,0),(0,1)$ respectively, such that

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0 . \tag{1.1}
\end{equation*}
$$

Let \mathbb{R} be the real line and t a coordinate on \mathbb{R}. Define an almost complex structure J on $M \times \mathbb{R}$ by

$$
J\left(X, \frac{\lambda d}{d t}\right)=\left(\phi X-\lambda \xi, \eta(X) \frac{d}{d t}\right)
$$

where the pair $(X, \lambda d / d t)$ denotes a tangent vector to $M \times \mathbb{R}, f$ is a smooth function on $M \times R, X$ and $\lambda d / d t$ being tangent to M and \mathbb{R} respectively. M with the structure (ϕ, ξ, η) is said to be normal if the structure J is integrable [1], [2]. The necessary and sufficient condition for (ϕ, ξ, η) to be normal is

$$
[\phi, \phi]+2 d \eta \otimes \xi=0,
$$

where the pair $[\phi, \phi]$ is the Nijenhuis tensor of ϕ defined by

$$
[\phi, \phi](X, Y)=[\phi X, \phi Y]+\phi^{2}[X, Y]-\phi[\phi X, Y]-\phi[X, \phi Y],
$$

for any $X, Y \in T(M)$;

We say that the form η has rank $r=2 s$ if $(d \eta)^{s} \neq 0$, and $\eta \wedge(d \eta)^{s}=0$, and has rank $r=2 s+1$ if $\eta \wedge(d \eta)^{s} \neq 0$ and $(d \eta)^{s+1}=0$. We also say that r is the rank of the structure (ϕ, ξ, η).

A Riemannian metric g on M satisfying the condition

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{1.2}
\end{equation*}
$$

for any $X, Y \in T(M)$, is said to be compatible with the structure (ϕ, ξ, η). If g is such a metric, then the quadruple (ϕ, ξ, η, g) is called an almost contact metric (shortly a.c.m.) structure on M and M is an (a.c.m.) manifold. On such a manifold we also have $\eta(X)=$ $g(X, \xi)$, for any $X \in T(M)$ and we can always define the 2-form Φ by

$$
\Phi(X, Y)=g(X, \phi Y)
$$

where $X, Y \in T(M)$.
It is no hard to see that if $\operatorname{dim} M=3$, then two Riemannian metrics g and g are compatible with the same almost contact structure (ϕ, ξ, η) on M if and only if $g=\sigma g+(1-\sigma) \eta \otimes \eta$, for a certain positive function σ on M.

A normal (a.c.m.) structure (ϕ, ξ, η, g) satisfying additionally the condition $d \eta=\Phi$ is called Sasakian. Of course, any such structure on M has rank 3. Also a normal almost contact metric structure satisfying the condition $d \Phi=0$ is said to be quasi-Sasakian [3]. Contact metric manifolds have been studied by several authors [5,7,16]. Also if we consider \tilde{M}^{n} be a complex n-dimensional Kaehler manifold and M a real hypersurface of \tilde{M}^{n}. We denote by \tilde{g} and \tilde{J} a Kaehler metric tensor and its Hermitian Structure tensor, respectively. For any vector field X tangent to M, we put

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi
$$

where ϕ is a (1,1)-type tensor field, η is a 1 -form and ξ is a unit vector field on M. The induced Riemannian metric on M is denoted by g. Then by the properties of (\tilde{g}, \tilde{J}), we see that the structure (ϕ, ξ, η, g) is an almost contact metric structure on M. Real hypersurfaces of a complex manifold have been studied by $[10,19]$ and many others.

In a recent paper [14], Olszak studied the curvature properties of normal almost contact manifold of dimension three with several examples. De, Yildiz and Funda [9] studied locally ϕ-symmetric normal (a.c.m.) manifolds of dimension 3. Also De and Kalam [8] recently characterized certain curvature conditions on 3-dimensional normal almost contact manifolds. Since at each point $p \in M$ the tangent space $T_{p}(M)$ can be decomposed into the direct sum $T_{p}(M)=\phi\left(T_{p}(M)\right) \oplus\left\{\xi_{p}\right\}$, where $\left\{\xi_{p}\right\}$ is the 1-dimensional linear subspace of $T_{p}(M)$ generated by ξ_{p}, the conformal curvature tensor C is a map

$$
C: T_{p}(M) \times T_{p}(M) \times T_{p}(M) \rightarrow \phi\left(T_{p}(M)\right) \oplus\left\{\xi_{p}\right\}, \quad p \in M .
$$

One has the following well known particular cases: (1) the projection of the image of C in $\phi\left(T_{p}(M)\right)$ is zero; (2) the projection of the image of C in $\left\{\xi_{p}\right\}$ is zero; and (3) the projection of the image of $\left.C\right|_{\phi\left(T_{p}(M)\right) \times \phi\left(T_{p}(M)\right) \times \phi\left(T_{p}(M)\right)}$ in $\phi\left(T_{p}(M)\right)$ is zero. An (a.c.m.) manifold satisfying the cases (1), (2) and (3) is said to be conformally symmetric [11], ξ-conformally flat [20] and ϕ-conformally flat [4] respectively.

Apart from conformal curvature tensor, the projective curvature tensor is another important tensor from the differential geometric point of view. Let M be a n-dimensional Riemannian manifold. If there exist an one-to-one correspondence between each coordinate neighborhood of M and a domain in Euclidian space such that any geodesic of the

Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 3, M$ is locally projectively flat if and only if the well known projective curvature tensor P vanishes. Here P is defined by [13]

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}\{S(Y, Z) X-S(X, Z) Y\} \tag{1.3}
\end{equation*}
$$

for $X, Y, Z \in T(M)$, where R is the curvature tensor and S is the Ricci tensor. In fact, M is projectively flat (that is $P=0$) if and only if the manifold is of constant curvature [17, pp. 84-85]. Thus, the projective curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

The present paper is devoted to study ξ-projectively flat and ϕ-projectively flat nor$\mathrm{mal}(\mathrm{a} . \mathrm{c} . \mathrm{m}$.) metric manifold of dimension 3. After preliminaries in section 3, we prove that a compact 3 -dimensional normal (a.c.m.) manifold is ξ-projectively flat if and only if the manifold is β-Sasakian. In the next section, it is proved that a 3 -dimensional normal (a.c.m.) manifold is ϕ-projectively flat if and only if it is an Einstein manifold provided $\alpha, \beta=$ constant . Finally we cited of a normal almost contact metric manifold.

2. Preliminaries

For a normal (a.c.m.) structure (ϕ, ξ, η, g) on M, we have [14]

$$
\begin{equation*}
\nabla_{X} \xi=\alpha\{X-\eta(X) \xi\}-\beta \phi X \tag{2.1}
\end{equation*}
$$

where $2 \alpha=\operatorname{div} \xi$ and $2 \beta=\operatorname{tr}(\phi \nabla \xi), \operatorname{div} \xi$ is the divergence of ξ defined by $\operatorname{div} \xi=$ trace $\left\{X \longrightarrow \nabla_{X} \xi\right\}$ and $\operatorname{tr}(\phi \nabla \xi)=\operatorname{trace}\left\{X \longrightarrow \phi \nabla_{X} \xi\right\}$. As a consequence of (2.1) we have

$$
\begin{align*}
\left(\nabla_{X} \phi\right)(Y) & =g\left(\phi \nabla_{X} \xi, Y\right) \xi-\eta(Y) \phi \nabla_{X} \xi \\
& =\alpha\{g(\phi X, Y) \xi-\eta(Y) \phi X\}+\beta\{g(X, Y) \xi-\eta(Y) X\} \tag{2.2}
\end{align*}
$$

$$
\begin{gather*}
R(X, Y) \xi=\left\{Y \alpha+\left(\alpha^{2}-\beta^{2}\right) \eta(Y)\right\} \phi^{2} X-\left\{X \alpha+\left(\alpha^{2}-\beta^{2}\right) \eta(X)\right\} \phi^{2} Y \tag{2.3}\\
\\
+\{Y \beta+2 \alpha \beta \eta(Y)\} \phi X-\{X \beta+2 \alpha \beta \eta(X)\} \phi Y, \tag{2.4}\\
S(X, Y)=\left(\frac{r}{2}+\xi \alpha+\alpha^{2}-\beta^{2}\right) g(X, Y)-\left\{\frac{r}{2}+\xi \alpha+3\left(\alpha^{2}-\beta^{2}\right)\right\} \eta(X) \eta(Y) \\
-(\eta(Y) X \alpha+\eta(X) Y \alpha)-\{\eta(Y)(\phi X) \beta+\eta(X)(\phi Y) \beta\} \tag{2.5}\\
S(Y, \xi)=-Y \alpha-(\phi Y) \beta-\left\{\xi \alpha+2\left(\alpha^{2}-\beta^{2}\right)\right\} \eta(Y),
\end{gather*}
$$

$$
\begin{equation*}
\xi \beta+2 \alpha \beta=0 \tag{2.6}
\end{equation*}
$$

where R denotes the curvature tensor and S is the Ricci tensor.
On the other hand, the curvature tensor in a 3-dimensional Riemannian manifold always satisfies

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & g(X, W) S(Y, Z)-g(X, Z) S(Y, W)+g(Y, Z) S(X, W) \\
& -g(Y, W) S(X, Z)-\frac{r}{2}[g(X, W) g(Y, Z)-g(X, Z) g(Y, W)], \tag{2.7}
\end{align*}
$$

where $\tilde{R}(X, Y, Z, W)=g(R(X, Y) Z, W)$ and r is the scalar curvature.

From (2.3) we can derive that

$$
\begin{equation*}
\tilde{R}(\xi, Y, Z, \xi)=-\left(\xi \alpha+\alpha^{2}-\beta^{2}\right) g(\phi Y, \phi Z)-(\xi \beta+2 \alpha \beta) g(Y, \phi Z) \tag{2.8}
\end{equation*}
$$

By (2.5), (2.7) and (2.8) we obtain for $\alpha, \beta=$ constant,

$$
\begin{equation*}
S(Y, Z)=\left(\frac{r}{2}+\alpha^{2}-\beta^{2}\right) g(\phi Y, \phi Z)-2\left(\alpha^{2}-\beta^{2}\right) \eta(Y) \eta(Z) . \tag{2.9}
\end{equation*}
$$

Applying (2.9) in (2.7) we get

$$
\begin{aligned}
R(X, Y) Z= & \left(\frac{r}{2}+2\left(\alpha^{2}-\beta^{2}\right)\right)\{g(Y, Z) X-g(X, Z) Y\}+g(X, Z)\left\{\left(\frac{r}{2}+3\left(\alpha^{2}\right.\right.\right. \\
& \left.\left.\left.-\beta^{2}\right)\right) \eta(Y) \xi\right\}-\left\{\frac{r}{2}+3\left(\alpha^{2}-\beta^{2}\right)\right\} \eta(Y) \eta(Z) X-g(Y, Z)\left\{\left(\frac{r}{2}\right.\right. \\
& \left.\left.+3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right\}+\left(\frac{r}{2}+3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z) Y
\end{aligned}
$$

From (2.6) it follows that if $\alpha, \beta=$ constant, then the manifold is either β-Sasakian, or α-Kenmotsu [12] or cosymplectic [1].

Proposition 2.1. A 3-dimensional normal almost contact metric manifold with $\alpha, \beta=$ constant is either β-Sasakian, or α-Kenmotsu or cosymplectic.

Definition 2.1. An almost $C(\boldsymbol{\lambda})$-manifold M is an almost co-Hermitian manifold such that the Riemannian curvature tensor satisfies the following property:
there exist $\lambda \in R$ such that for all $X, Y, Z, W \in T(M)$:

$$
\begin{aligned}
R(X, Y, Z, W)= & R(X, Y, \phi Z, \phi W)+\lambda\{-g(X, Z) g(Y, W)+g(X, W) g(Y, Z) \\
& +g(X, \phi Z) g(Y, \phi W)-g(X, \phi W) g(Y, \phi Z)\} .
\end{aligned}
$$

A normal almost $C(\lambda)$-manifold is a $C(\lambda)$-manifold. If we take $\lambda=-\alpha^{2}$ for $\alpha>0$, then we get $C\left(-\alpha^{2}\right)$-manifold.

We note that β-Sasakian manifold are quasi-Sasakian [3]. They provide examples of $C(\lambda)$-manifolds with $\lambda \geq 0$.

An α-Kenmotsu manifold is a $C\left(-\alpha^{2}\right)$-manifold [12].
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a real line or a circle [6].

3. 3-dimensional ξ-projectively flat normal almost contact metric manifolds

ξ-conformally flat K-contact manifolds have been studied by Zhen, Cabrerizo and Fernandez [20]. In this section we study ξ-projectively flat normal (a.c.m.) manifold. Analogous to the definition of ξ-conformally flat (a.c.m.) manifold we define ξ-projectively flat (a.c.m.) manifolds.

Definition 3.1. A normal almost contact metric manifold M is called ξ-projectively flat if the condition $P(X, Y) \xi=0$ holds on M, where projective curvature tensor P is defined by (1.3).

Putting $Z=\xi$ in (1.3) and using (2.3) and (2.5), we get

$$
\begin{align*}
P(X, Y) \xi= & -\frac{1}{2}\{(Y \alpha) X-(X \alpha) Y\}+\{(Y \alpha) \eta(X)-(X \alpha) \eta(Y)\} \xi \\
& +(Y \beta) \phi X-(X \beta) \phi Y+2 \alpha \beta\{\eta(Y) \phi X-\eta(X) \phi Y\} \tag{3.1}\\
& +\frac{1}{2}[(\phi Y) \beta X-(\phi X) \beta Y+(\xi \alpha)\{\eta(Y) X-\eta(X) Y\}] .
\end{align*}
$$

Now assume that M is a compact 3-dimensional ξ-projectively flat normal (a.c.m.) manifold. Then from (3.1) we can write

$$
\begin{align*}
& -\frac{1}{2}\{(Y \alpha) X-(X \alpha) Y\}+\{(Y \alpha) \eta(X)-(X \alpha) \eta(Y)\} \xi \\
& +(Y \beta) \phi X-(X \beta) \phi Y+2 \alpha \beta\{\eta(Y) \phi X-\eta(X) \phi Y\} \tag{3.2}\\
& +\frac{1}{2}\{(\phi Y) \beta X-(\phi X) \beta Y+(\xi \alpha)(\eta(Y) X-\eta(X) Y)\}=0 .
\end{align*}
$$

Putting $Y=\xi$ in (3.2) and using (2.6), we obtain

$$
(X \alpha) \xi+(\phi X) \beta \xi-(\xi \alpha) \eta(X) \xi=0
$$

which implies

$$
\begin{equation*}
(X \alpha)+(\phi X) \beta-(\xi \alpha) \eta(X)=0 . \tag{3.3}
\end{equation*}
$$

Now (3.3) can be written as

$$
\begin{equation*}
(X \alpha)+g(\operatorname{grad} \beta, \phi X)-(\xi \alpha) \eta(X)=0 \tag{3.4}
\end{equation*}
$$

Differentiating (3.4) covariantly along Y, we get

$$
\begin{align*}
\nabla_{Y}(X \alpha)+g\left(\nabla_{Y} \operatorname{grad} \beta, \phi X\right) & +g\left(\operatorname{grad} \beta,\left(\nabla_{Y} \phi\right) X\right) \\
& -Y(\xi \alpha) \eta(X)-(\xi \alpha)\left(\nabla_{Y} \eta\right)(X)=0 . \tag{3.5}
\end{align*}
$$

Hence, by antisymmetrization with respect to X and Y, we have from (3.5)

$$
\begin{aligned}
g\left(\nabla_{Y} \operatorname{grad} \beta, \phi X\right) & -g\left(\nabla_{X} \operatorname{grad} \beta, \phi Y\right)+g\left(\operatorname{grad} \beta,\left(\nabla_{Y} \phi\right) X\right)-g\left(\operatorname{grad} \beta,\left(\nabla_{X} \phi\right) Y\right) \\
& -Y(\xi \alpha) \eta(X)+X(\xi \alpha) \eta(Y)-(\xi \alpha)\left\{\left(\nabla_{Y} \eta\right)(X)-\left(\nabla_{X} \eta\right)(Y)\right\}=0 .
\end{aligned}
$$

This implies

$$
\begin{align*}
g\left(\nabla_{Y} \operatorname{grad} \beta, \phi X\right) & -g\left(\nabla_{X} \operatorname{grad} \beta, \phi Y\right)+\left\{\left(\nabla_{Y} \phi\right) X \beta-\left(\nabla_{X} \phi\right) Y \beta\right\} \tag{3.6}\\
& -Y(\xi \alpha) \eta(X)+X(\xi \alpha) \eta(Y)+2(\xi \alpha) d \eta(X, Y)=0 .
\end{align*}
$$

Using (2.2) and $d \eta=\beta \Phi$ [14], (3.6) yields

$$
\begin{align*}
& g\left(\nabla_{Y} \operatorname{grad} \beta, \phi X\right)-g\left(\nabla_{X} \operatorname{grad} \beta, \phi Y\right)+\{2 \alpha g(\phi Y, X) \xi-\alpha(\eta(X) \phi Y-\eta(Y) \phi X) \\
& -\beta(\eta(X) Y-\eta(Y) X)\} \beta-\{Y(\xi \alpha) \eta(X)-X(\xi \alpha) \eta(Y)\}+2 \beta(\xi \alpha) \Phi(X, Y)=0 . \tag{3.7}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \xi\right\}$ be an orthonormal ϕ-basis where $\phi e_{1}=-e_{2}$ and $\phi e_{2}=e_{1}$. Taking $Y=e_{1}$ and $X=e_{2}$ in (3.7), we find that

$$
\begin{equation*}
g\left(\nabla_{e_{1}} \operatorname{grad} \beta, e_{1}\right)+g\left(\nabla_{e_{2}} \operatorname{grad} \beta, e_{2}\right)=2 \alpha(\xi \beta)+2 \beta(\xi \alpha) \tag{3.8}
\end{equation*}
$$

On the other hand (2.6) yields $g(\operatorname{grad} \beta, \xi)=-2 \alpha \beta$, whence by covariant differentiation we get, on account of (2.1)

$$
\begin{equation*}
g\left(\nabla_{\xi} \operatorname{grad} \beta, \xi\right)=-2 \alpha(\xi \beta)-2 \beta(\xi \alpha) \tag{3.9}
\end{equation*}
$$

Denoting by \triangle the Laplacian defined by $\triangle=$ divgrad, in view of (3.8) and (3.9) we have $\triangle \beta=0$. Since M is compact, β is a constant. Now if $\beta \neq 0$, (2.6) implies $\alpha=0$. This implies M is a β-Sasakian manifold. Conversely, if M is a β-Sasakian manifold, then from (3.1) it is easy to see that $P(X, Y) \xi=0$. Hence we can state the following:

Theorem 3.1. A compact 3-dimensional normal almost contact metric manifold is $\xi_{-p r o-}$ jectively flat if and only if it is a β-Sasakian manifold.

4. 3-dimensional ϕ-projectively flat normal almost contact metric manifolds

Analogous to the definition of ϕ-conformally flat contact metric manifold [4], we define ϕ-projectively flat normal almost contact metric manifold. In this connection we can mention the work of Ozgur [15] who has studied ϕ-projectively flat Lorentzian Para-Sasakian manifolds.

Definition 4.1. A 3-dimensional normal almost contact metric manifold satisfying the condition

$$
\phi^{2} P(\phi X, \phi Y) \phi Z=0
$$

is called ϕ-Projectively flat.
Let us assume that M is a 3 -dimensional ϕ-projectively flat normal (a.c.m.) manifold. It can be easily seen that $\phi^{2} P(\phi X, \phi Y) \phi Z=0$ holds if and only if

$$
g(P(\phi X, \phi Y) \phi Z, \phi W)=0
$$

for $X, Y, Z, W \in T(M)$.
Using (1.3) and (1.1), ϕ-projectively flat means

$$
\begin{equation*}
g(R(\phi X, \phi Y) \phi Z, \phi W)=\frac{1}{2}\{S(\phi Y, \phi Z) g(\phi X, \phi W)-S(\phi X, \phi Z) g(\phi Y, \phi W)\} \tag{4.1}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, \xi\right\}$ be a local orthonormal basis of the vector fields in M and using the fact that $\left\{\phi e_{1}, \phi e_{2}, \xi\right\}$ is also a local orthonormal basis. Putting $X=W=e_{i}$ in (4.1) and summing up with respect to i, then we have

$$
\begin{equation*}
\sum_{i=1}^{2} g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right)=\frac{1}{2} \sum_{i=1}^{2}\left\{S(\phi Y, \phi Z) g\left(\phi e_{i}, \phi e_{i}\right)-S\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)\right\} \tag{4.2}
\end{equation*}
$$

It can be easily verified that

$$
\begin{gathered}
\sum_{i=1}^{2} g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right)=S(\phi Y, \phi Z)+\left(\xi \alpha+\alpha^{2}-\beta^{2}\right) g(\phi Y, \phi Z), \\
\sum_{i=1}^{2} g\left(\phi e_{i}, \phi e_{i}\right)=2, \quad \sum_{i=1}^{2} S\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)=S(\phi Y, \phi Z)
\end{gathered}
$$

So using (1.2) and (2.4), the equation (4.2) becomes

$$
\left(\frac{r}{2}+3\left(\xi \alpha+\alpha^{2}-\beta^{2}\right)\right)\{g(Y, Z)-\eta(Y) \eta(Z)\}=0
$$

which gives $r=-6\left(\xi \alpha+\alpha^{2}-\beta^{2}\right)$. So we state the following:
Proposition 4.1. The scalar curvature r of a 3-dimensional ϕ-projectively flat normal almost contact metric manifold is $-6\left(\xi \alpha+\alpha^{2}-\beta^{2}\right)$.

Also if $r=-6\left(\xi \alpha+\alpha^{2}-\beta^{2}\right)$, it follows from (2.4) that the manifold is an Einstein manifold provided $\alpha, \beta=$ constant. Hence we can state the following:

Proposition 4.2. A 3-dimensional ϕ-projectively flat normal almost contact metric manifold is an Einstein manifold, provided $\alpha, \beta=$ constant.

It is known [18] that a 3-dimensional Einstein manifold is a manifold of constant curvature. Also M is projectively flat if and only if it is of constant curvature [17]. Now trivially, projectively flatness implies ϕ-projectively flat. Hence using Proposition 4.2 we can state the following:

Theorem 4.1. A 3-dimensional normal almost contact metric manifold is ϕ-projectively flat if and only if it is an Einstein manifold, provided $\alpha, \beta=$ constant.

5. Example of a 3-dimensional normal almost contact metric manifold

We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are standard coordinate of \mathbb{R}^{3}.

The vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=z \frac{\partial}{\partial z}
$$

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0, \\
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1,
\end{aligned}
$$

that is, the form of the metric becomes

$$
g=\frac{d x^{2}+d y^{2}+d z^{2}}{z^{2}} .
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in T(M)$. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=-e_{2}, \quad \phi\left(e_{2}\right)=e_{1}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of ϕ and g, we have

$$
\eta\left(e_{3}\right)=1, \quad \phi^{2} Z=-Z+\eta(Z) e_{3}, \quad g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W),
$$

for any $Z, W \in T(M)$.
Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\left[e_{1}, e_{3}\right]=e_{1} e_{3}-e_{3} e_{1}=z \frac{\partial}{\partial x}\left(z \frac{\partial}{\partial z}\right)-z \frac{\partial}{\partial z}\left(z \frac{\partial}{\partial x}\right)=z^{2} \frac{\partial^{2}}{\partial x \partial z}-z^{2} \frac{\partial^{2}}{\partial z \partial x}-z \frac{\partial}{\partial x}=-e_{1} .
$$

Similarly

$$
\left[e_{1}, e_{2}\right]=0 \quad \text { and } \quad\left[e_{2}, e_{3}\right]=-e_{2} .
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z]) \\
& -g(Y,[X, Z])+g(Z,[X, Y]), \tag{5.1}
\end{align*}
$$

which is known as Koszul's formula.
Using (5.1) we have

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right)=-2 g\left(e_{1}, e_{1}\right)=2 g\left(-e_{1}, e_{1}\right) \tag{5.2}
\end{equation*}
$$

Again by (5.1)

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{2}\right)=0=2 g\left(-e_{1}, e_{2}\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)=0=2 g\left(-e_{1}, e_{3}\right) \tag{5.4}
\end{equation*}
$$

From (5.2), (5.3) and (5.4) we obtain

$$
2 g\left(\nabla_{e_{1}} e_{3}, X\right)=2 g\left(-e_{1}, X\right)
$$

for all $X \in T(M)$. Thus

$$
\nabla_{e_{1}} e_{3}=-e_{1}
$$

Therefore, (5.1) further yields

$$
\begin{array}{rrr}
\nabla_{e_{1}} e_{3}=-e_{1}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{1}=e_{3} \\
\nabla_{e_{2}} e_{3}=-e_{2}, & \nabla_{e_{2}} e_{2}=e_{3}, & \nabla_{e_{2}} e_{1}=0 \tag{5.5}\\
\nabla_{e_{3}} e_{3}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0
\end{array}
$$

(5.5) tells us that the manifold satisfies (2.1) for $\alpha=-1$ and $\beta=0$ and $\xi=e_{3}$. Hence the manifold is a normal almost contact metric manifold with $\alpha, \beta=$ constants.

It is known that

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{5.6}
\end{equation*}
$$

With the help of the above results and using (5.6) it can be easily verified that

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) e_{3}=0, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, \quad R\left(e_{1}, e_{3}\right) e_{3}=-e_{1} \\
R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, \quad R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{1}, e_{3}\right) e_{1}=e_{3}
\end{gathered}
$$

From the above expressions of the curvature tensor we obtain

$$
S\left(e_{1}, e_{1}\right)=g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right)=-2
$$

Similarly, we have

$$
S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-2
$$

Therefore,

$$
r=S\left(e_{1}, e_{1}\right)+S\left(e_{2}, e_{2}\right)+S\left(e_{3}, e_{3}\right)=-6
$$

We note that here α, β and r are all constants. It is sufficient to check

$$
S\left(e_{i}, e_{i}\right)=-2=-2\left(\alpha^{2}-\beta^{2}\right) g\left(e_{i}, e_{i}\right),
$$

for all $i=1,2,3$ and $\alpha=-1, \beta=0$. Hence M is an Einstein manifold. Therefore M is ϕ-projectively flat. Thus Theorem 4.1 is verified.
Acknowledgement. The authors are thankful to the referees for their valuable comments and suggestions for the improvement of this paper.

References

[1] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976.
[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhäuser Boston, Boston, MA, 2002.
[3] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry $\mathbf{1}$ (1967), 331-345.
[4] J. L. Cabrerizo, L. M. Fernández, M. Fernández and Z. Guo, The structure of a class of K-contact manifolds, Acta Math. Hungar. 82 (1999), no. 4, 331-340.
[5] C. Călin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361-368.
[6] F. Cantrijnt, M. De Leon and E. A. Lacomha, Gradient vector fields in cosymplectic manifolds, J. Phys. A. Math. Gen. 25 (1992), 409-416.
[7] B.-Y. Chen and V. Martin-Molina, Optimal inequalities, contact Δ-invariants and their applications, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 2, 263-276.
[8] U. C. De and A. K. Mondal, On 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions, Commun. Korean Math. Soc. 24 (2009), no. 2, 265-275.
[9] U. C. De, A. Yildiz and A. F. Yalınız, Locally ϕ-symmetric normal almost contact metric manifolds of dimension 3, Appl. Math. Lett. 22 (2009), no. 5, 723-727.
[10] S. Deshmukh, Real hypersurfaces in nearly Kaehler 6-sphere, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 2, 325-331.
[11] Z. Guo, Conformally symmetric K-contact manifolds, Chinese Quart. J. Math. 7 (1992), no. 1, 5-10.
[12] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27.
[13] R. S. Mishra, Structures on a Differentiable Manifold and Their Applications, Chandrama Prakashan, Allahabad, 1984.
[14] Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50.
[15] C. Özgür, ϕ-conformally flat Lorentzian para-Sasakian manifolds, Rad. Mat. 12 (2003), no. 1, 99-106.
[16] M. H. Shahid, F. R. Al-Solamy, J.-B. Jun and M. Ahmad, Submersion of semi-invariant submanifolds of Trans-Sasakian manifold, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 1, 63-71.
[17] K. Yano and S. Bochner, Curvature and Betti Numbers, Annals of Mathematics Studies, No. 32, Princeton Univ. Press, Princeton, NJ, 1953.
[18] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Sci. Publishing, Singapore, 1984.
[19] A. Yildiz and C. Murathan, Ricci generalized pseudo-parallel Kaehlerian submanifolds in complex space forms, Bull. Malays. Math. Sci. Soc. (2) 31 (2008), no. 2, 153-163.
[20] G. Zhen, J. L. Cabrerizo, L. M. Fernández, M. Fernández, On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math. 28 (1997), no. 6, 725-734.

