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1. Introduction

Let M be an almost contact manifold and (φ ,ξ ,η) its almost contact structure. This means,
M is an odd-dimensional differentiable manifold and φ , ξ , η are tensor fields on M of types
(1,1), (1,0), (0,1) respectively, such that

(1.1) φ
2 =−I +η⊗ξ , η(ξ ) = 1, φξ = 0, η ◦φ = 0.

Let R be the real line and t a coordinate on R. Define an almost complex structure J on
M×R by

J
(

X ,
λd
dt

)
=

(
φX−λξ ,η(X)

d
dt

)
,

where the pair (X ,λd/dt) denotes a tangent vector to M×R, f is a smooth function on
M×R, X and λd/dt being tangent to M and R respectively. M with the structure (φ ,ξ ,η)
is said to be normal if the structure J is integrable [1], [2]. The necessary and sufficient
condition for (φ ,ξ ,η) to be normal is

[φ ,φ ]+2dη⊗ξ = 0,

where the pair [φ ,φ ] is the Nijenhuis tensor of φ defined by

[φ ,φ ](X ,Y ) = [φX ,φY ]+φ
2[X ,Y ]−φ [φX ,Y ]−φ [X ,φY ],

for any X , Y∈ T (M);
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We say that the form η has rank r = 2s if (dη)s 6= 0, and η ∧ (dη)s = 0, and has rank
r = 2s+1 if η ∧ (dη)s 6= 0 and (dη)s+1 = 0. We also say that r is the rank of the structure
(φ ,ξ ,η).

A Riemannian metric g on M satisfying the condition

(1.2) g(φX ,φY ) = g(X ,Y )−η(X)η(Y ),

for any X ,Y∈ T (M), is said to be compatible with the structure (φ ,ξ ,η). If g is such a
metric, then the quadruple (φ ,ξ ,η ,g) is called an almost contact metric (shortly a.c.m.)
structure on M and M is an (a.c.m.) manifold. On such a manifold we also have η(X) =
g(X ,ξ ), for any X ∈ T (M) and we can always define the 2-form Φ by

Φ(X ,Y ) = g(X ,φY ),

where X ,Y ∈ T (M).
It is no hard to see that if dimM = 3, then two Riemannian metrics g and ǵ are compatible

with the same almost contact structure (φ ,ξ ,η) on M if and only if ǵ = σg+(1−σ)η⊗η ,
for a certain positive function σ on M.

A normal (a.c.m.) structure (φ ,ξ ,η ,g) satisfying additionally the condition dη = Φ is
called Sasakian. Of course, any such structure on M has rank 3. Also a normal almost
contact metric structure satisfying the condition dΦ = 0 is said to be quasi-Sasakian [3].
Contact metric manifolds have been studied by several authors [5,7,16]. Also if we consider
M̃n be a complex n-dimensional Kaehler manifold and M a real hypersurface of M̃n. We
denote by g̃ and J̃ a Kaehler metric tensor and its Hermitian Structure tensor, respectively.
For any vector field X tangent to M, we put

JX = φX +η(X)N, JN =−ξ ,

where φ is a (1,1)-type tensor field, η is a 1-form and ξ is a unit vector field on M. The
induced Riemannian metric on M is denoted by g. Then by the properties of (g̃, J̃), we see
that the structure (φ ,ξ ,η ,g) is an almost contact metric structure on M. Real hypersurfaces
of a complex manifold have been studied by [10, 19] and many others.

In a recent paper [14], Olszak studied the curvature properties of normal almost con-
tact manifold of dimension three with several examples. De, Yildiz and Funda [9] studied
locally φ -symmetric normal (a.c.m.) manifolds of dimension 3. Also De and Kalam [8]
recently characterized certain curvature conditions on 3-dimensional normal almost contact
manifolds. Since at each point p ∈M the tangent space Tp(M) can be decomposed into the
direct sum Tp(M) = φ(Tp(M))⊕{ξp}, where {ξp} is the 1-dimensional linear subspace of
Tp(M) generated by ξp, the conformal curvature tensor C is a map

C : Tp(M)×Tp(M)×Tp(M)→ φ(Tp(M))⊕{ξp}, p ∈M.

One has the following well known particular cases: (1) the projection of the image of C in
φ(Tp(M)) is zero; (2) the projection of the image of C in {ξp} is zero; and (3) the projection
of the image of C |φ(Tp(M))×φ(Tp(M))×φ(Tp(M)) in φ(Tp(M)) is zero. An (a.c.m.) manifold
satisfying the cases (1), (2) and (3) is said to be conformally symmetric [11], ξ -conformally
flat [20] and φ -conformally flat [4] respectively.

Apart from conformal curvature tensor, the projective curvature tensor is another im-
portant tensor from the differential geometric point of view. Let M be a n-dimensional
Riemannian manifold. If there exist an one-to-one correspondence between each coordi-
nate neighborhood of M and a domain in Euclidian space such that any geodesic of the
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Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said
to be locally projectively flat. For n≥ 3, M is locally projectively flat if and only if the well
known projective curvature tensor P vanishes. Here P is defined by [13]

(1.3) P(X ,Y )Z = R(X ,Y )Z− 1
n−1

{
S(Y,Z)X−S(X ,Z)Y

}
,

for X ,Y,Z ∈ T (M), where R is the curvature tensor and S is the Ricci tensor. In fact, M is
projectively flat (that is P = 0) if and only if the manifold is of constant curvature [17, pp.
84–85]. Thus, the projective curvature tensor is a measure of the failure of a Riemannian
manifold to be of constant curvature.

The present paper is devoted to study ξ -projectively flat and φ -projectively flat nor-
mal(a.c.m.) metric manifold of dimension 3. After preliminaries in section 3, we prove
that a compact 3-dimensional normal (a.c.m.) manifold is ξ -projectively flat if and only if
the manifold is β -Sasakian. In the next section, it is proved that a 3-dimensional normal
(a.c.m.) manifold is φ -projectively flat if and only if it is an Einstein manifold provided
α,β = constant. Finally we cited of a normal almost contact metric manifold.

2. Preliminaries

For a normal (a.c.m.) structure (φ ,ξ ,η ,g) on M , we have [14]

(2.1) ∇X ξ = α{X−η(X)ξ}−βφX ,

where 2α = divξ and 2β = tr(φ∇ξ ), divξ is the divergence of ξ defined by divξ =
trace{X −→∇X ξ} and tr(φ∇ξ ) = trace{X −→ φ∇X ξ}. As a consequence of (2.1) we have

(∇X φ)(Y ) = g(φ∇X ξ ,Y )ξ −η(Y )φ∇X ξ

= α
{

g(φX ,Y )ξ −η(Y )φX
}

+β
{

g(X ,Y )ξ −η(Y )X
}
,(2.2)

R(X ,Y )ξ =
{

Y α +(α2−β
2)η(Y )

}
φ

2X−
{

Xα +(α2−β
2)η(X)

}
φ

2Y

+
{

Y β +2αβη(Y )
}

φX−
{

Xβ +2αβη(X)
}

φY,
(2.3)

S(X ,Y ) =
(

r
2

+ξ α +α
2−β

2
)

g(X ,Y )−
{

r
2

+ξ α +3(α2−β
2)

}
η(X)η(Y )

− (η(Y )Xα +η(X)Y α)−
{

η(Y )(φX)β +η(X)(φY )β
}(2.4)

(2.5) S(Y,ξ ) =−Y α− (φY )β −
{

ξ α +2(α2−β
2)

}
η(Y ),

(2.6) ξ β +2αβ = 0,

where R denotes the curvature tensor and S is the Ricci tensor.
On the other hand, the curvature tensor in a 3-dimensional Riemannian manifold always

satisfies
R̃(X ,Y,Z,W ) = g(X ,W )S(Y,Z)−g(X ,Z)S(Y,W )+g(Y,Z)S(X ,W )

−g(Y,W )S(X ,Z)− r
2
[
g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W )

]
,

(2.7)

where R̃(X ,Y,Z,W ) = g(R(X ,Y )Z,W ) and r is the scalar curvature.
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From (2.3) we can derive that

(2.8) R̃(ξ ,Y,Z,ξ ) =−(ξ α +α
2−β

2)g(φY,φZ)− (ξ β +2αβ )g(Y,φZ).

By (2.5), (2.7) and (2.8) we obtain for α,β = constant,

(2.9) S(Y,Z) =
(

r
2

+α
2−β

2
)

g(φY,φZ)−2(α2−β
2)η(Y )η(Z).

Applying (2.9) in (2.7) we get

R(X ,Y )Z =
(

r
2

+2(α2−β
2)

){
g(Y,Z)X−g(X ,Z)Y

}
+g(X ,Z)

{(
r
2

+3(α2

−β
2)

)
η(Y )ξ

}
−

{
r
2

+3(α2−β
2)

}
η(Y )η(Z)X−g(Y,Z)

{(
r
2

+3(α2−β
2)

)
η(X)ξ

}
+

(
r
2

+3(α2−β
2)

)
η(X)η(Z)Y.

From (2.6) it follows that if α,β = constant, then the manifold is either β -Sasakian, or
α-Kenmotsu [12] or cosymplectic [1].

Proposition 2.1. A 3-dimensional normal almost contact metric manifold with α,β =
constant is either β -Sasakian, or α-Kenmotsu or cosymplectic.

Definition 2.1. An almost C(λ )-manifold M is an almost co-Hermitian manifold such that
the Riemannian curvature tensor satisfies the following property:

there exist λ ∈ R such that for all X ,Y,Z,W ∈ T (M):

R(X ,Y,Z,W ) = R(X ,Y,φZ,φW )+λ
{
−g(X ,Z)g(Y,W )+g(X ,W )g(Y,Z)

+g(X ,φZ)g(Y,φW )−g(X ,φW )g(Y,φZ)
}
.

A normal almost C(λ )-manifold is a C(λ )-manifold. If we take λ = −α2 for α > 0,
then we get C(−α2)-manifold.

We note that β -Sasakian manifold are quasi-Sasakian [3]. They provide examples of
C(λ )-manifolds with λ ≥ 0.

An α-Kenmotsu manifold is a C(−α2)-manifold [12].
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems

as they are locally product of a Kaehler manifold and a real line or a circle [6].

3. 3-dimensional ξ -projectively flat normal almost contact metric manifolds

ξ -conformally flat K-contact manifolds have been studied by Zhen, Cabrerizo and Fernan-
dez [20]. In this section we study ξ -projectively flat normal (a.c.m.) manifold. Analogous to
the definition of ξ -conformally flat (a.c.m.) manifold we define ξ -projectively flat (a.c.m.)
manifolds.

Definition 3.1. A normal almost contact metric manifold M is called ξ -projectively flat if
the condition P(X ,Y )ξ = 0 holds on M, where projective curvature tensor P is defined by
(1.3).
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Putting Z = ξ in (1.3) and using (2.3) and (2.5), we get

P(X ,Y )ξ =−1
2
{
(Y α)X− (Xα)Y

}
+

{
(Y α)η(X)− (Xα)η(Y )

}
ξ

+(Y β )φX− (Xβ )φY +2αβ
{

η(Y )φX−η(X)φY
}

+
1
2
[
(φY )βX− (φX)βY +(ξ α)

{
η(Y )X−η(X)Y

}]
.

(3.1)

Now assume that M is a compact 3-dimensional ξ -projectively flat normal (a.c.m.) man-
ifold. Then from (3.1) we can write

− 1
2
{
(Y α)X− (Xα)Y

}
+

{
(Y α)η(X)− (Xα)η(Y )

}
ξ

+(Y β )φX− (Xβ )φY +2αβ
{

η(Y )φX−η(X)φY
}

+
1
2
{
(φY )βX− (φX)βY +(ξ α)(η(Y )X−η(X)Y )

}
= 0.

(3.2)

Putting Y = ξ in (3.2) and using (2.6), we obtain

(Xα)ξ +(φX)βξ − (ξ α)η(X)ξ = 0

which implies

(3.3) (Xα)+(φX)β − (ξ α)η(X) = 0.

Now (3.3) can be written as

(3.4) (Xα)+g(gradβ ,φX)− (ξ α)η(X) = 0.

Differentiating (3.4) covariantly along Y, we get

∇Y (Xα)+g(∇Y gradβ ,φX)+g(gradβ ,(∇Y φ)X)

−Y (ξ α)η(X)− (ξ α)(∇Y η)(X) = 0.
(3.5)

Hence, by antisymmetrization with respect to X and Y , we have from (3.5)

g(∇Y gradβ ,φX)−g(∇X gradβ ,φY )+g(gradβ ,(∇Y φ)X)−g(gradβ ,(∇X φ)Y )

−Y (ξ α)η(X)+X(ξ α)η(Y )− (ξ α){(∇Y η)(X)− (∇X η)(Y )}= 0.

This implies

g(∇Y gradβ ,φX)−g(∇X gradβ ,φY )+
{
(∇Y φ)Xβ − (∇X φ)Y β

}
−Y (ξ α)η(X)+X(ξ α)η(Y )+2(ξ α)dη(X ,Y ) = 0.

(3.6)

Using (2.2) and dη = βΦ [14], (3.6) yields

g(∇Y gradβ ,φX)−g(∇X gradβ ,φY )+
{

2αg(φY,X)ξ −α(η(X)φY −η(Y )φX)

−β (η(X)Y −η(Y )X)
}

β −
{

Y (ξ α)η(X)−X(ξ α)η(Y )
}

+2β (ξ α)Φ(X ,Y ) = 0.
(3.7)

Let {e1,e2,ξ} be an orthonormal φ -basis where φe1 =−e2 and φe2 = e1. Taking Y = e1
and X = e2 in (3.7), we find that

(3.8) g(∇e1 gradβ ,e1)+g(∇e2 gradβ ,e2) = 2α(ξ β )+2β (ξ α).

On the other hand (2.6) yields g(gradβ ,ξ ) =−2αβ , whence by covariant differentiation
we get, on account of (2.1)

(3.9) g(∇ξ gradβ ,ξ ) =−2α(ξ β )−2β (ξ α).
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Denoting by 4 the Laplacian defined by 4 = divgrad, in view of (3.8) and (3.9) we
have4β = 0. Since M is compact, β is a constant. Now if β 6= 0, (2.6) implies α = 0. This
implies M is a β -Sasakian manifold. Conversely, if M is a β -Sasakian manifold, then from
(3.1) it is easy to see that P(X ,Y )ξ = 0. Hence we can state the following:

Theorem 3.1. A compact 3-dimensional normal almost contact metric manifold is ξ -pro-
jectively flat if and only if it is a β -Sasakian manifold.

4. 3-dimensional φ -projectively flat normal almost contact metric manifolds

Analogous to the definition of φ -conformally flat contact metric manifold [4], we define
φ -projectively flat normal almost contact metric manifold. In this connection we can men-
tion the work of Ozgur [15] who has studied φ -projectively flat Lorentzian Para-Sasakian
manifolds.

Definition 4.1. A 3-dimensional normal almost contact metric manifold satisfying the con-
dition

φ
2P(φX ,φY )φZ = 0

is called φ -Projectively flat.

Let us assume that M is a 3-dimensional φ -projectively flat normal (a.c.m.) manifold. It
can be easily seen that φ 2P(φX ,φY )φZ = 0 holds if and only if

g(P(φX ,φY )φZ,φW ) = 0,

for X ,Y,Z,W ∈ T (M).
Using (1.3) and (1.1), φ -projectively flat means

(4.1) g(R(φX ,φY )φZ,φW ) =
1
2
{

S(φY,φZ)g(φX ,φW )−S(φX ,φZ)g(φY,φW )
}
.

Let {e1,e2,ξ} be a local orthonormal basis of the vector fields in M and using the fact that
{φe1,φe2,ξ} is also a local orthonormal basis. Putting X = W = ei in (4.1) and summing
up with respect to i, then we have

(4.2)
2

∑
i=1

g
(
R(φei,φY )φZ,φei

)
=

1
2

2

∑
i=1

{
S(φY,φZ)g(φei,φei)−S(φei,φZ)g(φY,φei)

}
.

It can be easily verified that
2

∑
i=1

g(R(φei,φY )φZ,φei) = S(φY,φZ)+(ξ α +α
2−β

2)g(φY,φZ),

2

∑
i=1

g(φei,φei) = 2,
2

∑
i=1

S(φei,φZ)g(φY,φei) = S(φY,φZ).

So using (1.2) and (2.4), the equation (4.2) becomes(
r
2

+3(ξ α +α
2−β

2)
){

g(Y,Z)−η(Y )η(Z)
}

= 0,

which gives r =−6(ξ α +α2−β 2). So we state the following:

Proposition 4.1. The scalar curvature r of a 3-dimensional φ -projectively flat normal al-
most contact metric manifold is −6(ξ α +α2−β 2).
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Also if r = −6(ξ α + α2− β 2), it follows from (2.4) that the manifold is an Einstein
manifold provided α,β = constant. Hence we can state the following:

Proposition 4.2. A 3-dimensional φ -projectively flat normal almost contact metric manifold
is an Einstein manifold, provided α,β = constant.

It is known [18] that a 3-dimensional Einstein manifold is a manifold of constant curva-
ture. Also M is projectively flat if and only if it is of constant curvature [17]. Now trivially,
projectively flatness implies φ -projectively flat. Hence using Proposition 4.2 we can state
the following:

Theorem 4.1. A 3-dimensional normal almost contact metric manifold is φ -projectively flat
if and only if it is an Einstein manifold, provided α,β = constant.

5. Example of a 3-dimensional normal almost contact metric manifold

We consider the 3-dimensional manifold M =
{
(x,y,z) ∈ R3,z 6= 0

}
, where (x,y,z) are

standard coordinate of R3.
The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂ z
are linearly independent at each point of M.

Let g be the Riemannian metric defined by

g(e1,e3) = g(e1,e2) = g(e2,e3) = 0,

g(e1,e1) = g(e2,e2) = g(e3,e3) = 1,

that is, the form of the metric becomes

g =
dx2 +dy2 +dz2

z2 .

Let η be the 1-form defined by η(Z) = g(Z,e3) for any Z ∈ T (M). Let φ be the (1,1)
tensor field defined by

φ(e1) =−e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1, φ
2Z =−Z +η(Z)e3, g(φZ,φW ) = g(Z,W )−η(Z)η(W ),

for any Z,W ∈ T (M).
Then for e3 = ξ , the structure (φ ,ξ ,η ,g) defines an almost contact metric structure on

M.
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[e1,e3] = e1e3− e3e1 = z
∂

∂x

(
z

∂

∂ z

)
− z

∂

∂ z

(
z

∂

∂x

)
= z2 ∂ 2

∂x∂ z
− z2 ∂ 2

∂ z∂x
− z

∂

∂x
=−e1.

Similarly
[e1,e2] = 0 and [e2,e3] =−e2.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )−g(X , [Y,Z])

−g(Y, [X ,Z])+g(Z, [X ,Y ]),
(5.1)
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which is known as Koszul’s formula.
Using (5.1) we have

(5.2) 2g(∇e1e3,e1) =−2g(e1,e1) = 2g(−e1,e1).

Again by (5.1)

(5.3) 2g(∇e1e3,e2) = 0 = 2g(−e1,e2)

and

(5.4) 2g(∇e1 e3,e3) = 0 = 2g(−e1,e3).

From (5.2), (5.3) and (5.4) we obtain

2g(∇e1e3,X) = 2g(−e1,X),

for all X ∈ T (M). Thus
∇e1e3 =−e1.

Therefore, (5.1) further yields

∇e1e3 =−e1, ∇e1e2 = 0, ∇e1e1 = e3,

∇e2e3 =−e2, ∇e2e2 = e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

(5.5)

(5.5) tells us that the manifold satisfies (2.1) for α =−1 and β = 0 and ξ = e3. Hence the
manifold is a normal almost contact metric manifold with α , β = constants.

It is known that

(5.6) R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z.

With the help of the above results and using (5.6) it can be easily verified that

R(e1,e2)e3 = 0, R(e2,e3)e3 =−e2, R(e1,e3)e3 =−e1,

R(e1,e2)e2 =−e1, R(e2,e3)e2 = e3, R(e1,e3)e2 = 0,

R(e1,e2)e1 = e2, R(e2,e3)e1 = 0, R(e1,e3)e1 = e3.

From the above expressions of the curvature tensor we obtain

S(e1,e1) = g
(
R(e1,e2)e2,e1

)
+g

(
R(e1,e3)e3,e1

)
=−2.

Similarly, we have
S(e2,e2) = S(e3,e3) =−2.

Therefore,
r = S(e1,e1)+S(e2,e2)+S(e3,e3) =−6.

We note that here α , β and r are all constants. It is sufficient to check

S(ei,ei) =−2 =−2(α2−β
2)g(ei,ei),

for all i = 1,2,3 and α = −1, β = 0. Hence M is an Einstein manifold. Therefore M is
φ -projectively flat. Thus Theorem 4.1 is verified.
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