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AB S TRACT

The properties of four superposed static axisymmetric (Weyl) space±times are illustrated by

plotting their gravitational field lines and the shapes of their event horizons. The

superpositions considered represent multiple Weyl systems, which are the most realistic

astrophysically: the Schwarzschild black hole and the Appell ring are chosen as

`background' sources (each of them bears some features of the non-static Kerr source),

and the Bach±Weyl ring and the `annular' disc (inverted first Morgan±Morgan disc) of

Lemos & Letelier are considered in their equatorial planes as additional sources. We study

the influence of the parameters of additional sources on the fields of the central bodies.

Key words: black hole physics ± gravitation ± relativity.

1 INTRODUCTION

Black holes are today considered a possible, sometimes inevitable,

outcome of stellar and galactic evolution. They even play a key

role in the models of some astrophysical objects. In particular, a

standard idea of active galactic nuclei and of some types of X-ray

binaries is based on interaction of a rotating black hole with a

surrounding accretion disc (e.g. Blandford 1987; Rees 1998).

Regarding the usual symmetry of these systems, and also the

Bardeen±Petterson effect (Bardeen & Petterson 1975), the disc is

presumed to reside in the equatorial plane of the hole.

A real accretion disc is likely to have non-stationary and non-

symmetric complex structure. For computational reasons, how-

ever, a `standard model' of disc accretion has usually been

employed as an approximation. Here the disc is taken to be

smooth, axisymmetric and described by just a few parameters.

Non-relativistic (magneto)hydrodynamics and radiative transfer

are used to calculate the observable effects. The central black hole

(of mass M) is treated as a Newtonian body, the gravitational field

of which is described by the simple potential 2M=�r2 2M� of
PaczynÂski & Wiita (1980). It has been pointed out, however, that

the above simplifications may lead to theories far from reality

(e.g. Abramowicz 1987), and the standard model is being

improved in various respects, e.g. to involve more parameters, to

use general relativity (at least) in description of the central hole,

and to deal with rotating black holes (cf. Bardeen 1970); see Kato,

Fukue & Mineshige (1998) for a review.

One should also allow for self-gravitation of the accreting

material, because its mass may not be completely negligible with

respect to that of the hole, and because it may in fact bear most of

the angular momentum of the system. The self-gravity of the disc

can modify the accretion flow at the inner edge of the disc where

the gas has the largest density and speed. Just there, however, it

has the highest temperature and generates most of the radiation.

Also the overall characteristics and stability of the disc might be

sensitive to the details of a gravitational field, in particular to the

mass of the disc (e.g. Abramowicz et al. 1984; Shlosman &

Begelman 1987; Goodman & Narayan 1988; Chakrabarti 1988;

Nishida & Eriguchi 1996, and references therein).

Switching on the self-gravity of the additional matter around

the black hole is also interesting from the point of view of general

relativity itself: the study of the gravitational fields of multiple

systems is a natural step from isolated sources or from uniformly

distributed matter. Owing to the non-linearity of Einstein

equations, however, explicit results have only been reached in

special cases with a high degree of symmetry. Regarding the

geometry presumed in hole 1 disc systems, astrophysically the

most relevant superposed solutions are those describing the fields

of stationary axisymmetric sources around rotating (Kerr) black

holes.

2 STATIONARY AXISYMMETRIC SOURCES

AROUND BLACK HOLES

Stationary axisymmetric fields that describe rotating black holes

with additional matter (usually rings, discs or tori) are found in

three ways: by numerical solution of Einstein equations, by

perturbations of black hole space±times and by exact analytical

solutions of Einstein equations. [In the following, we do not

review superpositions, obtained in either of these ways, of black

holes with external electromagnetic fields. We refer to a review by

Aliev & Gal'tsov (1989) and, for the static case, also to a paper by

Alekseev & Garcia (1996).]

Numerical space±times containing a rotating black hole plus an

additional stationary axisymmetric source were constructed by
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692 O. SemeraÂk, T. Zellerin and M. ZÏaÂcÏek

Lanza (1992) (hole1 thin finite equatorial disc) and by Nishida &

Eriguchi (1994) (hole1 thick toroid).

A great deal of literature has been devoted to perturbations of

black hole space±times, mainly after Teukolsky (1973) succeeded

in separation of decoupled equations for perturbations of a Kerr

black hole into the second-order ordinary differential equations for

scalars constructed from the Weyl tensor (for gravitational pertur-

bations) or from the electromagnetic field tensor (for electro-

magnetic perturbations). In a series of papers, Chandrasekhar (see

his 1979 survey) solved these equations completely. Chrzanowski

(1975) learned how, in principle, the perturbations of the metric

tensor itself can be calculated from the solutions of the

`gravitational' Teukolsky equations. He employed this result to

determine the perturbative distortion of the black hole horizon

(Chrzanowski 1976); a similar problem, in stationary axisym-

metric case, was also treated by Demianski (1976). Linet (1977)

determined explicitly the stationary axisymmetric Green function

of the Teukolsky equation. [Note that recently gauge-invariant

perturbations of black holes have been discussed thoroughly by

Fernandes & Lun (1996, 1997).] Up till now, however, the per-

turbation of the Schwarzschild metric by a (rotating) axisym-

metric weakly gravitating thin equatorial ring, found by Will

(1974) directly by solution of the perturbed Einstein equations, is

the only perturbation of the given type that has been calculated

explicitly.

In the present paper we consider several exact solutions of

Einstein equations, describing a black hole with an additional

source. Regarding the astrophysical motivation, those solutions

that are relevant are mainly those that do not contain `struts' and

membranes ± the supporting singularities, the presence of which

indicates that a given system of sources cannot remain stationary

(or static) according to the field equations. Multiple systems

simply need something to compensate for the gravitational

attraction between the masses of their components. For static

sources, the only possibility among fundamental interactions is the

electric repulsion between electric charges of the same sign; for

rotating sources, magnetic interaction between magnetic dipole

moments (repulsive in the antiparallel case) and gravitomagnetic

interaction between spins (repulsive in the parallel case ± e.g.

Pfister & Schedel 1987) are also present. Analysis of the

momentarily stationary and axisymmetric system of two identical

sources was carried out by Dietz & Hoenselaers (1985) for the

Kerr components (with mass M and specific rotational angular

momentum a), and by BicÏaÂk & Hoenselaers (1985) and Manko,

MartõÂn & Ruiz (1994) for the Kerr±Newman components (withM,

a and charge Q). Equilibrium was found to be possible just for

extreme values of the charges (Q � M): rotating centres can

remain in equilibrium only in a superextreme case of two naked

singularities (which have Q2
1 a2 . M2: Parker, Ruffini &

Wilkins 1973; Dietz & Hoenselaers 1985; BretoÂn & Manko

1995), both the magnetic dipole±dipole and gravitational spin±

spin interactions being too weak to keep apart black holes (i.e.

centres having Q2
1 a2 < M2). The configurations with extreme

centres of the Reissner±NordstroÈm type �Q � M� thus remain the

only stationary (in fact static) equlibrium configurations contain-

ing more than one black hole (Gibbons 1980).

Accretion discs of astrophysical interest are likely to lie in the

equatorial plane of the central black hole and unlikely to have a

considerable charge, so neither spin±spin nor electromagnetic

repulsion can support them. Hence, one instead refers to

centrifugal force resulting from orbital motion of the material or

to hoop stresses when interpreting the additional sources.

It turned out to be very difficult to superpose a Kerr black hole

with an additional axisymmetric ring, disc or torus and no explicit

exact solutions describing the systems of this kind have been

known until now. This by no means implies that no solutions

generalizing the solutions containing only isolated black holes

have been found. In the previous two decades, a number of

methods for the construction of stationary axisymmetric solutions

of the (electro)vacuum Einstein equations have been developed.

Two major approaches, developed by the end of the 1970s ± the

group-theoretic techniques and the soliton-theoretic (or inverse-

scattering) techniques ± have been analysed and related, notably

by Cosgrove (1980, 1981, 1982), Hoenselaers & Dietz (1984),

Letelier (1989) and Hoenselaers (1993); the cited works contain a

thorough list of original references. The above techniques have

also been discussed in more recent works in the context of new

results, e.g. Alekseev's electrovacuum solitons and `monodromy

data transform', the Gutsunaev±Manko superposition method,

Sibgatullin's integral equation or finite-gap solutions by Korotkin

& Matveev (e.g. Quevedo 1992; Manko & Novikov 1992; Manko

et al. 1994; Alekseev & Garcia 1996; Chaudhuri & Das 1997a,b).

For other approaches, see e.g. Tanabe (1979), or the results of

Nakamura (and similar ones by Kyriakopoulos), referred to and

worked out by Tertychniy (1990) (see also Vein 1985).

The solution-generating techniques reproduce the already

known space±times, but also provide wide families of new

solutions characterized by arbitrarily large sets of free parameters.

However, only a very restricted number of this variety of solutions

possess a clear physical interpretation. Though several results

probably represent a rotating black hole superposed with an

`external' gravitational field (e.g. Quevedo & Mashhoon 1991;

Manko & Novikov 1992; Chaudhuri & Das 1997a,b), none of the

latter appears to be generated by a ring, a disc or a torus [cf.,

however, the last paragraph of Section IV in Letelier & Oliveira

(1987)].

In the special case of static axisymmetric (i.e. Weyl) metrics,

the Einstein equations simplify considerably and superpositions

are much easier (Section 3). In the present paper (Paper 1), the

properties of four superposed Weyl space±times are illustrated by

plotting their gravitational field lines and the shapes of their

horizons. In the following paper (SemeraÂk, ZÏ aÂcÏek & Zellerin

1999, Paper II in this issue) we compute, in the same fields, the

trajectories of free point test particles. The superposed metrics

considered in Section 3 contain no supporting singularities and

represent, in our opinion, the fields of astrophysically the most

realistic multiple Weyl systems.1 The Schwarzschild black hole

(Section 3.1) and the Appell ring (Section 3.2) are chosen as

`background' sources (their fields resemble, to some extent and

each in different aspects, the non-static Kerr field), and the Bach±

Weyl ring (Section 3.3) and the `annular' disc (inverted first

Morgan±Morgan disc) of Lemos & Letelier (Section 3.4) are

considered in their equatorial planes as additional sources. In

Section 4, the field lines are defined for a general stationary and

static metric as integral curves of the four-acceleration field of the

hypersurface-orthogonal congruence. The field lines are then

plotted for the chosen particular cases, namely for a Schwarz-

schild black hole superposed with a Bach±Weyl ring and with a

q 1999 RAS, MNRAS 308, 691±704

1Recently Letelier & Oliveira (1998) studied the superpositions that, on

the contrary, do contain singular structures; evaluating the compression on

the singularity, they obtained the `attraction force' between the superposed

bodies.
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The structure of superposed Weyl fields 693

Lemos±Letelier annular disc, and also for an Appell ring

superposed with the same additional sources. In Section 5, hori-

zons of these space±times are represented in suitable coordinates.

Our main goal is to study the influence of the parameters of

additional sources on the field of the central bodies.

3 SUPERPOSING WEYL FIELDS

Basic information on static axisymmetric (Weyl) space±times

have been given in many places ± see e.g. Synge (1960), BicÏaÂk,

Lynden-Bell & Pichon (1993b) or Lemos & Letelier (1994). Weyl

showed that in appropriate cylindrical coordinates (today referred

to as canonical Weyl coordinates) �t; r;f; z�; the metric of any

static axisymmetric space±time can be written in terms of just

two functions, n � n�r; z� and l � l�r; z�; in the form2 (Weyl

1917)

ds2 � 2e2n dt2 1 e22n r2 df2
1 e2�l2n��dr2 1 dz2�; �1�

provided that the energy±momentum tensor Tab satisfies Tr
r 1

T z
z � 0: Non-trivial Einstein equations yield

r21n;r 1 n;rr 1 n;zz ; 72n � 4p e2�l2n��Tf
f 2 T t

t�; �2�

r21l;r 2 n2;r 1 n2;z � 4p�Trr 2 T zz�; �3�

r21l;z 2 2n;rn;z � 8pTrz; �4�

l;rr 1 l;zz 2 72n1 n2;r 1 n2;z � 4p e2�l2n��T t
t 1 T

f
f�; �5�

where commas denote partial derivatives.

In the vacuum case (Tab � 0), equation (2) for n becomes a

Laplace equation,

72n � 0; �6�

and equations (3) and (4) for l imply

l �
�r;z

axis

r��n2;r 2 n2;z� dr1 2n;rn;z dz�; �7�

where the integration is taken along a path going from the axis

�r � 0� to a given point through the region devoid of matter (note

that `elementary flatness' requires l � 0 at the vacuum parts of

the axis; see Synge 1960). Linearity of the Laplace equation for n
allows us to generate relativistic solutions from classical ones and

to obtain the fields of multiple sources by linear superposition.

The superposition of two vacuum Weyl fields, (n1, l1) and (n2,

l2), is described by

n � n1 1 n2 �8�

and

l � l1 1 l2 1 2

�r;z

axis

r��n1;rn2;r 2 n1;zn2;z� dr

1 �n1;rn2;z 1 n1;zn2;r� dz�: �9�
The construction of any Weyl space±time starts from solution

of the Laplace equation for the metric function n . The Green

function G�x; x0� � 2�4p�21jx2 x0j21
is often employed to find

the solution by convolution with the source spatial density w(x),

n�x� � 4p

�

source

w�x 0�G�x; x 0� d3x 0: �10�

Another way is to transform oneself to some coordinates in which

the Laplace equation separates into ordinary differential equations.

Cylindrical (Weyl) and prolate spheroidal coordinates are mostly

used if the source is a rod on the axis, while toroidal coordinates

are suitable for ring solutions and oblate spheroidal ones for discs.

We will see it in the following where particular space±times are

listed which superpositions will be considered below. In these

superpositions, the mass of the `background' source will always be

denoted by M, and that of the additional source by M. The Weyl

radius of the Appell ring will be a, while that of the external

sources (of the Bach±Weyl ring and of the inner edge of the

Lemos±Letelier annular disc) will be denoted by b.

3.1 Schwarzschild black hole

The simplest type of Weyl solution is generated by line sources

lying on the axis (Levi-Civita 1919). For a homogeneous rod of

mass M and length 2l placed about the origin (r � 0; jzj , l ), the

metric functions read, respectively in Weyl and prolate coordinates,

n � M

2l
ln
d1 1 d2 2 2l

d1 1 d2 1 2l
�11�

� M

2l
ln 12

2l

r

� �

; �12�

l � M2

2l2
ln
�d1 1 d2�2 2 4l2

4S
�13�

� M2

2l2
ln
r�r 2 2l�

S
; �14�

where

d1;2 �
�������������������������

r2 1 �z7 l�2
q

� r 2 l7 l cos u �15�

are distances from the ends of the rod, r and u are prolate

spheroidal radial and latitudinal coordinates, related to r and z by

r �
������������������

r�r 2 2l�
p

sin u; z � �r 2 l� cos u; �16�

or

r 2 l � �d2 1 d1�=2; l cos u � �d2 2 d1�=2; �17�

and

S � d1d2 � ��r2 1 z2 1 l2�2 2 4z2l2�1=2 � �r 2 l�2 2 l2 cos2 u

�18�
stands for a square of the mean distance from the singular rod. In

particular, for a single particle placed at the origin, i.e. in the limit

l ! 0, one has the Curzon solution

n � 2M=
���������������

r2 1 z2
p

�19�
� 2M=r; �20�

l � 2
1

2

Mr

r2 1 z2

� �2

�21�

� 2
1

2

M sin u

r

� �2

: �22�

q 1999 RAS, MNRAS 308, 691±704

2The signature of the metric will be2���; Greek indices run from 0±3

and Latin indices from 1±3. We use geometrized units in which

c � G � 1, c being the speed of light in a vacuum and G the gravitational

constant.
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Another special case is the Schwarzschild solution that is obtained

with l � M (then r and u are Schwarzschild coordinates).

3.2 Appell ring

In last-century electrodynamics, an interesting solution (by

Appell) of the Laplace equation appeared, generated by a particle

with charge (here mass) M situated on imaginary extension of

the axis ± at r � 0 and z � ia; a being some positive real

distance; see the first member of the ring family of solutions of

Letelier & Oliveira (1987) and Gleiser & Pullin (1989) with their

a � 0. The real part of the corresponding complex potential

2M=�
����������������������������

r2 1 �z2 ia�2
p

� gives a real solution

n � 2
M
���

2
p

S
�S1 r2 1 z2 2 a2�1=2 �23�

� 2
M
����

S
p cos�c=2� �24�

� 2Mr=S; �25�

where r and u are now oblate spheroidal coordinates,3 given by

r �
���������������

r2 1 a2
p

sin u; z � r cos u; �26�

or

���������������

r2 1 a2
p

� �d2 1 d1�=2; a sin u � �d2 2 d1�=2; �27�

and we have used also toroidal coordinates z and c , related to r
and z by

r � �S=2a� sinh z; z � �S=2a� sinc; �28�

[the inverse transformation is obtained trivially by using S(z ,c )
from below]. Again,

d1;2 �
���������������������������

�r7 a�2 1 z2
q

�
���������������

r2 1 a2
p

7 a sin u �29�

denote extreme distances and

S � d1d2 � ��r2 1 z2 1 a2�2 2 4r2a2�1=2

� 2a2=�cosh z2 cosc� � r2 1 a2 cos2 u �30�

is the square of the mean distance from the source (i.e. from the

singular ring at r � a; z � 0) within the (r , z) plane.
The second metric function reads, respectively in the Weyl,

toroidal and oblate spheroidal coordinates,

l � M2

8a2
12

r2 1 z2 1 a2

S
2

2a2r2�S2
2 8z2a2�

S4

" #

�31�

� M2

16a2
�22 2 cosh z2 sinh2 z cos 2c� �32�

� 2
M2 sin2 u

4S
11

�r2 1 a2��S2
2 8r2a2 cos2 u�
S3

" #

�33�

[this is 1/16 of the expression given by Gleiser & Pullin (1989)].

In the limit a ! 0, the Curzon solution (19)±(22) is obtained

again.

Global structure of the Appell space±time is the same as that of

the Kerr space±time, and also the local properties of the fields are

somewhat similar. The main features of the Kerr solution are the

occurrence of the horizon (if a < M) and of the rotational

dragging that gives rise to the ergosphere. These features,

however, cannot be expected to be present in the Appell solution

(or in any static solution treated in Weyl coordinates). The

resemblance of the Appell and Kerr fields is discussed in the

Appendix. In the context of stationary situations, the Schwarzs-

child and Appell fields can be considered as different static

approximations involving some of the properties of a rotating

black hole.

3.3 Bach±Weyl ring

The field of a `normal' ring (placed at z � 0; r � b) is different

from the Appell one. Its global structure in Weyl coordinates is

simpler (it is not double-sheeted), although the ring itself also has

non-trivial structure ± it again forms a directional singularity

(Hoenselaers 1995), known from rotating line sources as the Kerr

ring (Hoenselaers 1990; Punsly 1990). The respective metric

functions are more complicated, namely given by elliptic integrals

(Bach & Weyl 1922):

n � 2
2MK�k�
pd2

; �34�

l � M
2k4

4p2b2r
��r1 b��2K2

1 4k 02K _K 1 4k2k 02 _K
2�

2 4rk2k 02�k 02 1 2� _K2�; �35�

where M is mass of the ring, K(k) is the complete Legendre

elliptic integral of the first kind, _K � dK=d�k2�; k 02 � d21=d
2
2; k

2 �
12 k 02 � 4br=d22 and d1;2 �

���������������������������

�r7 b�2 1 z2
p

, similarly to the

previous section.

The potential n can also be written as a series of Legendre

polynomials,

n � 2M
X

1

n�0

�r2 1 z2�n
b2n11

P2n

z
���������������

r2 1 z2
p

 !

P2n�0� �36�

for r2 1 z2 , b2 and

n � 2M
X

1

n�0

b2n

�r2 1 z2�n11=2
P2n

z
���������������

r2 1 z2
p

 !

P2n�0� �37�

for r2 1 z2 . b2: Each of the above terms is itself a solution of the

Laplace equation, so one can cut the sum anywhere and always

obtains a field of some matter distribution. However, this may

differ from that of a ring considerably because of the rather bad

convergence of the above series, mainly at r2 1 z2 , b2 (cf.

Fig. 1). For numerical solutions, it is better to use the form (34),

where the elliptic integral can be computed very effectively in

terms of series by the method of arithmetic±geometric mean (a

sum of five terms is accurate to some 28 digits here).

3.4 Inverted first Morgan±Morgan disc

The simplest two-dimensional Weyl source is an (uncharged)

q 1999 RAS, MNRAS 308, 691±704

3We use the same letters as for prolate spheroidal coordinates defined in

previous section (which yield Schwarzschild coordinates for l � M). This

should not cause confusion ± only in Section 5 will we transform explicitly

from prolate to Schwarzschild coordinates.
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The structure of superposed Weyl fields 695

axisymmetric thin equatorial disc. In order to remain static, it must

be supported by hoop stresses or by inertia of two equal streams of

dust which circulate in opposite directions around the centre of the

disc. The metric for a general static thin counter-rotating disc was

given by BicÏaÂk, Lynden-Bell & Katz (1993a), who also showed

that most vacuum Weyl fields are its special cases. For a finite

disc, the solution for n (given as a series in products of the

Legendre polynomials and Legendre functions of the second kind)

is singular on the rim of the disc in general. The simplest

singularity-free case was found by Morgan & Morgan (1969). Its

Newtonian source density is

w�r; z� � 3M

2pb3

���������������

b2 2 r2
q

d�z� �38�

and the metric potentials are

n � 2�3M=4b���3 cos2 u2 1��r=b�A1 �11 cos2 u�arccot�r=b��;
�39�

l � �3Mr=2b2�2��rB=b�2 2 �11 cos2 u�A2
2 2�r=b�AB sin2 u�;

�40�

where A � �r=b�arccot�r=b�2 1; B � �1=2��r=�r 1 b�2 arccot

(r/b)], and r and u are oblate spheroidal coordinates defined as

in Section 3.2.

Note here that the whole family of Weyl discs and rings was

considered by Letelier & Oliveira (1987) as seed solutions for

generation of stationary disc and ring space±times. The Morgan±

Morgan disc is the first �n � 1� member of the disc family,

given by Newtonian densities wn � ��2n1 1�M=�2pb3�� �
�b2 2 r2�n21=2d�z�: The zeroth member of the associated ring

family is the Appell solution.

The Morgan±Morgan discs have an outer edge (at r � b) but

not an inner one, which makes their superposition with a central

body problematic. In particular, in superposition of these discs

with a black hole, regions develop where the counter-rotating

streams would have to move with tachyonic speeds (in order to

stay on the orbit), because the disc matter reaches up to the

horizon (at r � 0). Lemos & Letelier (1994) proposed to

overcome this by making an inversion (Kelvin transformation)

r ! b2r

r2 1 z2
; z ! b2z

r2 1 z2
�41�

of the Morgan±Morgan solution, which yields a disc with an inner

rim (at r � b), namely with the density

w�r; z� � 2Mb

p2r4

���������������

r2 2 b2
q

d�z� �42�

(its profile is shown in Fig. 2). They found that the potential of the

inverted disc is related to the original one according to

n�r; z� ! 4b

3p
���������������

r2 1 z2
p n

b2r

r2 1 z2
;

b2z

r2 1 z2

� �

: �43�

[The expression given in Lemos & Letelier (1994) must be

multiplied by 4/3p in order to vary exactly as n ,
2M=

���������������

r2 1 z2
p

far from the source. Also, their inverted

Morgan±Morgan density must be multiplied by the same factor

in order to read as (42) and to really yield
� � �

w�r; z�r dr df dz �
M:� This means

n
r2

b2
; cos2 u

� �

! 4b

3p
��������������������������

r2 1 b2 sin2 u
p n

b2 cos2 u

r2 1 b2 sin2 u
;

r2

r2 1 b2 sin2 u

� �

�44�

in terms of oblate coordinates, so the solution (39) transforms

into

n � 2
M

p�r2 1 b2 sin2 u�3=2

� �2r2 2 b2 sin2 u� bjcos uj
��������������������������

r2 1 b2 sin2 u
p A

�

1�2r2 1 b2 sin2 u� arccot bjcos uj
��������������������������

r2 1 b2 sin2 u
p
� ��

; �45�

where

A � bjcos uj
��������������������������

r2 1 b2 sin2 u
p arccot

bjcos uj
��������������������������

r2 1 b2 sin2 u
p
� �

2 1:

q 1999 RAS, MNRAS 308, 691±704

Figure 1. The dependence on the number of terms n of the sum (36,37) for

a Bach±Weyl ring of mass M and Schwarzschild-type radius r � 6M,

calculated at r � 5:997M; u � 808 (there r2 � z2 � b2, which is the case

of worst convergence). One finds that at n � 50 the sum still oscillates by

several per cent about the final result n _�2 0:2484. Hence, it is rather

risky to add e.g. just n < 3 terms like Chakrabarti (1988), and even the

extension to n � 50 (Khanna & Chakrabarti 1992, section 3) may

occasionally turn out to be problematic, mainly in calculations involving

derivatives.

Figure 2. Surface density profile (42) of the inverted Morgan±Morgan

disc. The maximum reaches �3
���

3
p

M�=�8p2b2� and lies very close to the

edge of the disc ± at r � �2=
���

3
p

�b _� 1:115b: The density of the actual

accretion disc is supposed to be of similar shape. In the plot we choose

b � 10M; the r-axis (horizontal) is in units of M, the vertical one is in

units of M21.
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696 O. SemeraÂk, T. Zellerin and M. ZÏaÂcÏek

As already stated by Lemos & Letelier (1994), it is not trivial to

find the other metric function l by analytical methods; instead we

will compute it numerically when needed.

It was shown in Lemos & Letelier (1994) that the inverted

first Morgan±Morgan family of annular discs allows one to

construct realistic configurations mimicking a true accretion disc

around a static black hole. In particular, the disc can be chosen

free of non-physical regions (with negative pressure or/and

superluminal speed of particles) and with its inner edge lying

somewhere at the last stable circular geodesic about the central

hole.

4 GRAVITATIONAL FIELD LINES IN

SUPERPOSED SPACE ± TIMES

Let us consider a stationary axisymmetric space±time and write

down its metric in cylindrical-type (Weyl±Lewis±Papapetrou)

coordinates �t; r;f; z� attached to the symmetries

ds2 � gtt dt
2
1 2gtf dt df1 gff df

2
1 grr dr

2
1 gzz dz

2; �46�

where gab depend only on r and z and the metric functions gtt,

gtf , gff are given invariantly in terms of the two existing Killing

vector fields ha � ­xa=­t and ja � ­xa=­f :

gtt � hih
i; gtf � hij

i; gff � jij
i: �47�

In a stationary axisymmetric field, the simplest type of world

lines are spatially circular orbits, given by r � constant; z �
constant and V � df=dt � constant: They follow the background

symmetries (the tangent to each of these orbits is a Killing

vector), hence all of their characteristics are independent of t and

f (thus also of the proper time t ). In particular, the observers

who move along them see an unchanging field in their nearby

surroundings, thus being called stationary and used frequently as

reference observers in 11 3 splittings and interpretations. Their

four-velocity is

ua � ut�1; 0;V; 0�;

ut � �2gtt 2 2gtfV2 gffV
2�21=2; �48�

and their four-acceleration is

aa � 2
1

2
gik;au

iuk �49�

(it has only r and z components).

Incited by certain counterintuitive relativistic effects in strong

fields around black holes, a considerable interest has recently been

devoted to an interpretation of relativistic motion in terms of

`forces', defined in analogy with classical physics. Though there is

no physically unique way to define individual `forces' in relativity,

and several different approaches have been proposed, there is an

agreement (modulo the boost factor, if any) in what to call the

`gravitoelectric' or `gravitational' (perhaps also `scalar', `Newton-

ian', `Schwarzschild' or `static') component of the source field

(e.g. Greene, Schucking & Vishveshwara 1975; Thorne, Price &

Macdonald 1986; Jantzen, Carini & Bini 1992; Abramowicz,

Nurowski & Wex 1993; SemeraÂk 1995; BarrabeÁs, Boisseau &

Israel 1995): it is generated by mass density and given by the four-

acceleration field of the hypersurface-orthogonal congruence. In

stationary axisymmetric space±times the latter is represented by a

particular case of stationary observers with zero angular momen-

tum with respect to the axis of symmetry (ZAMOs). Their

azimuthal angular velocity

V � V
ZAMO

� 2gtf=gff ; v �50�

is interpreted as the angular velocity of the space±time geometry,

dragged into corotation with the source. The four-velocity u
a then

has the time component

ut � �2gtt 2 gtfv�21=2 �
���������

2gtt
p

: �51�
In static axisymmetric (Weyl) space±times, gtf � 0 (there is no

`gravitomagnetic' component of the field, no dragging), so v � 0

and ZAMOs become static observers having

ut � �2gtt�21=2 �52�

and

aa � gtt;a

2gtt
� 1

2
�ln�2gtt��;a: �53�

Writing gtt � 2e2n as in previous sections, this is simply

aa � n;a: �54�

Therefore, to draw the gravitational field lines of Weyl space±

times, it is sufficient to know the potential n ; the other metric

function l is not required.

For the Schwarzschild field, aa has only a radial component (in

Schwarzschild coordinates),

ar �
M

r�r 2 2M� ; �55�

while for the Appell field, in oblate coordinates,

�ar; au� � �M=S2��r2 2 a2 cos2 u;2ra2 sin 2u�: �56�

The fields of the additional sources are somewhat more

complicated. In oblate coordinates, one has

�ar; au� �
2M

pd42

r
���������������

r2 1 b2
p �d22K 1 4d1 _Kb sin u�;
�

b cos u�d22K 2 4d1 _K
���������������

r2 1 b2
p

�
�

�57�

for the Bach±Weyl ring, while for the Lemos±Letelier annular

disc

ar �
Mr

p�r2 1 b2 sin2 u�3

� 3�2r2 2 3b2 sin2 u�A2 2
r2 1 b2 sin2 u

r2 1 b2
b2 sin2 u

� ��

� bjcos uj1 �2r2 2 b2 sin2 u�
��������������������������

r2 1 b2 sin2 u
p

�arccot bjcos uj
��������������������������

r2 1 b2 sin2 u
p
� ��

; �58�

au �
Mbjcos ujtan u
p�r2 1 b2 sin2 u�3 {��8r

2
2 b2 sin2 u��r2 1 b2�1 2�2r2

2 b2 sin2 u�b2 cos2 u�A1 �4r2 2 b2 sin2 u��r2 1 b2 sin2 u�};
�59�

where A is defined as in equation (45).

In Figs 3±6 we deal with four types of superpositions ± of the

Schwarzschild black hole or the Appell ring of radius r � a�� 3M�
with the equatorial Bach±Weyl ring or the Lemos±Letelier

q 1999 RAS, MNRAS 308, 691±704
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The structure of superposed Weyl fields 697

annular disc. Three different masses of the external sources are

chosen, M � 0:1M, M and 10M, M being mass of the central

source; the unrealistic, `supermassive' case of M � 10M is

included just for interest, as it demonstrates what a strong source

the black hole is. The `external' sources (namely the ring and the

inner edge of the disc) are placed near the last stable circular

equatorial geodesic of the `background' space±time, which lies at

r � 6M in the Schwarzschild case and at r _� 9:6M in the Appell

case (see Paper II for further discussion on this point). The plots

are to be compared with the structure of the pure backgrounds; the

Schwarzschild field lines are known to be purely radial, and those

of the Appell space±time considered here are given in the

Appendix.

The field lines are followed within the interesting, strong-field

central regions of the superposed space±times, in meridional

sections of natural coordinates of the background source, i.e. of

(prolate) Schwarzschild coordinates for the Schwarzschild centre,

or in Weyl axes with the mesh of oblate coordinates for the Appell

centre. The field lines appear as solid lines in each of the plots, as

well as the axes (which are r sin u , r cos u in the case of a

q 1999 RAS, MNRAS 308, 691±704

Figure 3. Field lines in the space±times of a Schwarzschild black hole (of mass M) with a Bach±Weyl ring, drawn in Schwarzschild coordinates. The ring is

placed at u � 908, r � 6M and has mass M � 0:1M, M and 10M as taken from top to bottom.
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698 O. SemeraÂk, T. Zellerin and M. ZÏaÂcÏek

Schwarzschild centre, and r , z in the case of an Appell centre).

The empty quarter-circle at r � 2M (in Figs 3 and 4) is a

Schwarzschild horizon; the solid abscissa with a bullet at the end

(in Figs 5 and 6) represents the Appell disc r � 0 with singular

rim at u � 908 ± see the Appendix for the structure of Appell

space±time. A bullet is also used for the Bach±Weyl ring (at

r � 6M and r � 9M, respectively), and a very thick solid half-line

for the Lemos±Letelier annular disc with non-singular inner edge

(at r � 6M and r � 8M). The Schwarzschild coordinate mesh (in

plots with a black hole) and oblate spheroidal mesh (in those with

an Appell ring) are dotted. The values written along the axes are in

the units of M.

Note that we do not use as radial coordinate the `circumfer-

ential' radius R � ��������

gff
p � r e2n�r;z� (in terms of which the

physical circumference of the circle r � constant; z � constant

is given by 2pR). The circumferential radius is `more physical'

than r and generally more suitable for comparing different space±

times, but only if it is unique, which is equivalent to the condition

R;r . 0; i.e. rn;r , 1: The requirement is usually fulfilled for

discs (see e.g. BicÏaÂk et al. 1993b), but not for sources for which n

q 1999 RAS, MNRAS 308, 691±704

Figure 4. Field lines in the space±times of a Schwarzschild black hole (of mass M) with an equatorial Lemos±Letelier annular disc, drawn in Schwarzschild

coordinates. The disc has an inner rim at r � 6M and mass M � 0:1M, M and 10M as taken from top to bottom.
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The structure of superposed Weyl fields 699

is singular somewhere. This, however, is typical for rings ± for the

Bach±Weyl solution (34), for example, k � 1 and n �
2MK�1�=�pb� � 21 at the ring itself. Fig. 7 illustrates the

dependence R � R�r� in the equatorial plane of space±times of

the Bach±Weyl ring and the Lemos±Letelier annular disc. Note

that Chakrabarti (1988) considered the Bach±Weyl ring (around

Schwarzschild hole) at r � b, or r � rc, and thus at infinite

circumferential radius r e2n � r e2nring �u � 908�, so his figs 2 and

3 are plotted against r and r (respectively) rather than against

circumferential radius (v ; r e2cr in the original notation) as

claimed ± the ring could not be at vc � 8M; cf. fig. 1 of Khanna

& Chakrabarti (1992).

Figs 3±6 show that the additional sources have an

expectable effect on the `background' field: the field lines

bend towards the external ring or disc, and the greater is its

mass, the more of them end there. The singular ring clearly

generates stronger field than the extended disc of the same

mass. The strongest sources, however, are the central ones ±

they even dominate in cases when the additional matter has

greater mass. Note that not only changes of the shape of the

q 1999 RAS, MNRAS 308, 691±704

Figure 5. Field lines in the space±times of the Appell ring (of mass M and radius a � 3M) with a Bach±Weyl ring, drawn in Weyl coordinates. The Bach±

Weyl ring is placed at u � 908; r � 9M and has mass M � 0:1M, M and 10M as taken from top to bottom.
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700 O. SemeraÂk, T. Zellerin and M. ZÏaÂcÏek

field are illustrated, but also its intensity is roughly indicated

by density of the field lines.

5 DISTORTION OF THE SCHWARZSCHILD

HORIZON BECAUSE OF AN EXTERNAL

SOURCE

Geroch & Hartle (1982) analysed thoroughly the properties of

static axisymmetric (Weyl) black holes distorted by an external

matter distribution. They showed that the horizon of any Weyl

black hole must have either spherical or toroidal topology; if the

external matter has a positive energy density, then only spherical

topology is possible (Hawking 1972). Below we depict the

deformation of the Schwarzschild horizon induced by the presence

of an external equatorial ring or disc.

In the static case, the black hole horizon is the set of points at

which the static Killing field ­/­t becomes null, while the norm of

the axisymmetric Killing field ­/­f remains bounded, i.e. where

gtt � 2e2n � 0 and gff � e22n r2 , 1: This implies r � 0, thus

q 1999 RAS, MNRAS 308, 691±704

Figure 6. Field lines in the space±times of the Appell ring (of mass M and radius a � 3M) with an equatorial Lemos±Letelier annular disc, drawn in Weyl

coordinates. The disc has an inner rim at r � 8M and mass M � 0:1M, M and 10M as taken from top to bottom.
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The structure of superposed Weyl fields 701

in Weyl coordinates the horizon may appear only as a part of the

symmetry axis. In Schwarzschild coordinates (also `distorted'

because of the external matter), introduced by the transformation

r � ��������������������

r�r 2 2M�p
sin u; z � �r 2M� cos u; the metric appears as

ds2 � 2�12 2M=r� e2next dt2 1 e2�lext2next�

12 2M=r
dr2

1 r2 e22next �e2lext du2 1 sin2 u df2� �60�

by using (12), (14) and (18) with l � M; we denote

lext � l2 lSchw, where

lSchw � 1

2
ln

r2 2 2Mr

r2 2 2Mr 1M2 sin2 u
:

On the horizon, r � 0 implies l � 0 and r � 2M, so the metric

reduces to

ds2 � R2
H�du2 1 sin2 u df2�; �61�

where RH �
�����������������������������

guu�r � 2M; u�
p

� 2M e2next�r�2M;u� is the (latitudi-

nal) circumferential radius of the horizon (then 2
� p

0
RH�u� du is the

proper poloidal circumference of the horizon and 2pRHsin u its

proper azimuthal circumference at given u ). The dependence of

the function RH � RH�u� (which gives the proper shape of the

horizon) on parameters (mass or/and position) of the external

source reveals the response of the horizon to the presence of this

source.

For the equatorial Bach±Weyl ring (with mass M and radius

r � b) we have, from (34),

next�r � 2M� � 2
M

�����������������������������

b2 1M2 cos2 u
p ; �62�

because, on the horizon, k � 0; K�0� � p=2 and d2 �
���������������

b2 1 z2
p

�
�����������������������������

b2 1M2 cos2 u
p

in Schwarzschild coordinates (the

prolate ones used in Section 3.1, with l � M). Thus the horizon is

of oblate shape (it inflates towards the superposed ring; cf.

Chakrabarti 1988), its radius

RH � 2M exp
M

�����������������������������

b2 1M2 cos2 u
p
� �

�63�

decreasing monotonically when going from the equatorial plane to

the axis.

To find the shape of a Schwarzschild black hole surrounded by

an equatorial Lemos±Letelier annular disc (with mass M and

inner edge at r � b), one must transform the expression (45)

from the oblate coordinates of Sections 3.2 and 3.4 to

Schwarzschild coordinates and evaluate it at the horizon. This

yields r2 1 b2 sin2 u ! M2 cos2 u; 2r2 7 b2 sin2 u ! 2M2 cos2 u
and bjcos uj ! b; so

next �r � 2M� � 2
2M

pM3jcos uj3

� �b2 1M2 cos2 u�arccot b

Mjcos uj

� �

2Mbjcos uj
� �

: �64�

Inflating towards the external source, the horizon is again

oblate. Fig. 8 shows its shape for several different masses and

radii of the Bach±Weyl ring and Lemos±Letelier annular disc.

Note that Wild, Kerns & Drish (1981) found that the external

magnetic field directed along the symmetry axis has the

opposite effect (on a Kerr black hole): it stretches the horizon

along the axis.

It is interesting to check whether the Gaussian curvature of the

horizon, which is constant and positive �RH � 1=4M2� for a

Schwarzschild black hole, can somewhere become negative

because of the presence of the external sources. From its

definition (e.g. Thorne et al. 1986, equation (6.15a)),

RH � 2
1

R2
H sin u

�RH sin u�;u
RH

� �

;u

; �65�

we obtain

RH � R22
H �11 next;u cot u1 next;uu�: �66�

Hence, for a Bach±Weyl ring, RH is always positive in the

q 1999 RAS, MNRAS 308, 691±704

Figure 7. Circumferential radius R as a function of r in the equatorial

plane �z � 0� of the Bach±Weyl ring with radius b � 6M (left plot) and in

that of the Lemos±Letelier annular disc with inner rim at b � 6M (right

plot). The condition of uniqueness, R;r . 0, is clearly not satisfied for the

ring, whereas it is for the disc. (Note that for a disc surrounding a

Schwarzschild hole at the Schwarzschild radius r � 6M, this would only

become untrue in an extremely massive case, M . 12:6M:) The line R �
r is indicated for comparison.

Figure 8. Distortion of the Schwarzschild horizon caused by the external

Bach±Weyl ring (left plots) and by the external Lemos±Letelier annular

disc (right plots). The intrinsic shape of the horizon, given by the function

RH(u), changes with the mass (top plots) and Schwarzschild radius (bottom

plots) of the additional sources. As expected, the horizon inflates towards

the external source when decreasing the radius or increasing the mass of

the latter. However, quite unrealistic values must be chosen in order to

raise an evident flattening: in the top plots, r=M � 2:2 with M=M � 0:15;

0.3, 0.45, ¼, 0.9 for the ring, and r=M � 2:1 with M=M � 0:25; 0.5,

0.75, ¼, 1.5 for the disc; in the bottom plots,M=M � 0:63 with r=M � 8;
3.2, 2.5, 2.25, 2.15, 2.1 for the ring, and M=M � 1:05 with r=M � 6, 2.8,

2.31, 2.15, 2.08, 2.05 for the disc.
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702 O. SemeraÂk, T. Zellerin and M. ZÏaÂcÏek

equatorial plane,

RH � 1

4M2 exp�2M=b� 11
MM2

b3

� �

; �67�

whereas on the axis one has

RH � 1

4M2 exp�2M=
�����������������

b2 1M2
p

�
12

2MM2

�b2 1M2�3=2
� �

; �68�

which can turn negative, though only for large values of M (even

for a ring just above the horizon, b ! M, it would require

M _�M=2).
Note that Will (1974) came to a similar conclusion (for a ring)

perturbatively. Demianski (1976) and Chrzanowski (1976)

calculated the perturbation of a Kerr black hole by an equatorial

ring using the Newman±Penrose formalism; here the rotation of

the hole itself flattens the horizon ± the latter has negative

RH�u � 0� for the values of specific angular momentum a bigger

than
���

3
p

M=2 (Smarr 1973). A similar approach was employed by

Hartle (1973 and 1974) to analyse the shape of the weak tide

raised on a non-rotating and slowly rotating black hole by an

exterior source. The horizon distortion has also appeared in

numerical stationary space±times generated by (rotating) black

holes and equatorial discs. Lanza (1992) considered thin discs and ±

interestingly ± found the resulting holes prolate in some cases; in

contrast, Nishida & Eriguchi (1994) always ended up with oblate

shapes for thick toroids.
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APPENDIX A: KERR AND APPELL

SOLUTIONS : S IMILARIT IES AND

DIFFERENCES

The Kerr metric is astrophysically the most important axisym-

metric solution of the Einstein equations. In Boyer±Lindquist

oblate spheroidal coordinates (t, r, u ,f) it reads (Misner, Thorne

& Wheeler 1973, p. 878)

ds2 � 2 12
2Mr

S

� �

dt2 2
4Mar sin2 u

S
dt df

1
A

S
sin2 u df2

1
S

D
dr2 1 S du2; �A1�

where M and a �. 0� denote mass and specific rotational angular

momentum of the source and D � r2 2 2Mr1 a2; S � r2 1

a2 cos2 u; A � �r2 1 a2�2 2 Da2 sin2 u: Outside the horizons

�D . 0�, the metric is stationary and in fact describes the most

general space±time around an isolated uncharged stationary black

hole. The innermost part of the manifold (in particular the ring-

like character of the singularity) is better represented in the Kerr±

Schild cylindrical coordinates,

r �
���������������

r2 1 a2
p

sin u; z � a cos u: �A2�
In the words of Israel (1970):

A key feature of the Kerr geometry is an equatorial disc,

centered on the axis of symmetry, which is intrinsically

flat and of radius a. The ringlike boundary of the disc

comprises the geometrical singularity of the metric. In

addition, the disc itself has a remarkable property: As one

approaches it from either above or below, r tends to zero

through positive values, but (grad r) (directed outward from

the disc) does not vanish. Since r has an intrinsic meaning,

this must be interpreted in one of the following ways: (i) The

complete Kerr manifold is defined so that r > 0 everywhere,

and there is a discontinuity in the normal derivative of the

metric across the flat disc. (ii) Alternatively, the metric

remains smooth everywhere away from the ring singularity,

but an observer crossing the disc r � 0 from a region with

r . 0 emerges into a new asymptotically flat space

characterized by r , 0; the two `Riemann sheets' with r . 0

and r , 0 are to be considered as joined together on the disc

r � 0 which serves as a branch cut.

Adopting interpretation (i), one eliminates the non-causal features

that may occur at r , 0 �z , 0�, in a toroidal region where A , 0.

(In this region spanned by the ring singularity, gff , 0, the vector

­/­f becomes time-like and thus closed time-like curves are

possible. Carter 1968.) The lack of smoothness at r � 0 (z � 0;
r � a sin u) is ascribed to a layer of mass spread over the disc. It is

made of unphysical material, rotating with supraluminal velocity

and having negative effective surface mass density

s � 2
M

2pa2 cos3 u
� 2

Ma

2p�a2 2 r2�3=2
: �A3�

The density diverges to 21 as u ! 908 (r ! a); at the singular

rim it jumps to 11 and yields the finite positive net value of M.

Consequently, the spherical region r , ajcos uj �r2 1 z2 , a2� is
`repulsive' in a sense that momentarily static particles �dxi=dt �
0� are radially accelerated away from the disc �d2r=dt2 . 0�:
[Note that this conclusion was already reached by Keres (1967);

see also the related papers by Hamity (1976); LoÂpez (1981);

McManus (1991).]

Adopting interpretation (ii), one considers the whole maximal

extension of the Kerr metric by Boyer & Lindquist (1967). In the

metric, the sign of r is relevant only in terms containing Mr, so the

r , 0 sheet of the manifold can be understood to be physically

the same as the r . 0 sheet, but with negative mass, 2M (thus

also with negative angular momentum, 2Ma). In other words, in

q 1999 RAS, MNRAS 308, 691±704

Figure A1. Gravitational field lines (defined according to Section 4) of the

Kerr space±time, depicted in Kerr±Schild coordinates (top plot), and of

the Appell space±time, depicted in Weyl coordinates (bottom plot). The

parameters of both space±times are M and a � 3M and the meaning of the

plots is the same as that of the plots grouped in Figs 3±6. The very close

similarity of the fields is clearly visible.
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the r , 0 sheet the gravitational field is exactly opposite to that at

r . 0; in particular, it is `repulsive' everywhere except for the

region �0 .�r . 2ajcos uj, the dragging effects also having

opposite sign. On circling twice round (through) the singular ring,

one passes from r , 0 to r . 0 and back. From the r . 0 region, it

is possible to reach the singularity only along trajectories bound to

the equatorial plane (and having small angular momentum).

Almost everything summarized above is also true for the Appell

solution,4 described in Section 3.2, however, with r and z now

being Weyl coordinates; r and u are again related to these by

equations (A2) (namely by equation 26). In the oblate coordinates,

the Appell metric reads

ds2 � 2e22Mr=S dt2 1 e2Mr=S�r2 1 a2� sin2 u df2

1 e2�l2n� S

r2 1 a2
dr2 1 S du2

� �

: �A4�

Comparing this with (A1), we find that the local properties of the

Kerr and Appell space±times are similar at large r, and also at

small r close to the axis: in these regions, �l2 n� and Mr/S (and

thus also the Kerr dragging component gtf � 22Mar sin2 u=S)
are small and D . r2 1 a2. The greatest differences appear, as

expected, where the Kerr space±time has a horizon �D � 0�.
However, the horizon does not exist for a . M, and indeed the

fields are also similar for very large a.

The similarity of the Kerr and the Appell fields is illustrated in

Fig. A1 where the field lines of both are drawn with the same

parameter a �� 3M� as was chosen for the Appell background

considered in Section 4.

This paper has been typeset from a TEX/LATEX file prepared by the author.

q 1999 RAS, MNRAS 308, 691±704

4The described double-sheeted (or even multisheeted) topology is in fact

typical for the Weyl solutions obtained in oblate coordinates (Zipoy 1966).

At the Appell space±time, it even survives for a ! 0, i.e. in the Curzon

limit (Scott & Szekeres 1986).
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