
THE STRUCTURE OF THE EXPONENTS AND SYMMETRIES
OF AN OPERATOR STABLE LAW

by
Mark M. Meerschaert1

Albion College

Jerry Alan Veeh
Auburn University

31 October 1992

Abstract
Operator stable laws and generalized domains of attraction are the nat-

ural multidimensional analogues of the classical stable laws and domains of
attraction in one variable. Exponents of operator stable laws generalize the
index of a classical stable law. In this paper we present a series of decom-
position theorems which completely characterize the algebraic structure of
exponents and symmetries. We give an example of an operator stable law
whose symmetry group is a one parameter subgroup, so that its commuting
exponent is not unique. Our results illuminate the tail behavior of opera-
tor stable laws, which are governed by the exponents, and which must be
preserved by the symmetries. We also discuss applications to generalized
domains of attraction, including moments, centering constants, tails, and
norming operators.
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1. Introduction

Suppose that X,X1, X2, X3, . . . are independent random vectors on Rd

with common distribution µ, and that Y is a random vector on Rd with
distribution ν. Suppose that ν is full, i.e. that it cannot be supported on
a proper hyperplane. If there exist linear operators An on Rd and constant
vectors bn ∈ Rd such that

An(X1 + · · ·+Xn)− bn ⇒ Y (1.1)

then we say that µ belongs to the generalized domain of attraction of ν. In
this case the distribution of the partial sum (X1 + · · ·+Xn) can be usefully
approximated by that of the normalized limit law A−1

n (Y + bn) for n large.
Operator stable laws are those full probability measures on Rd which have
a nonempty generalized domain of attraction.

The theory of operator stable probability measures was begun by Sharpe
(1969). A full probability measure ν on Rd is said to be operator stable if
there is a linear operator B on Rd (called an exponent of ν) and a vector
valued function bt so that for all t > 0

νt = tBν ∗ δ(bt). (1.2)

Here ν is known to be infinitely divisible, so νt, the tth convolutory power,
can be defined by the characteristic function. The operator tB is defined via
power series as exp{B ln t}, and for any linear operator A we define the mea-
sure Aν(E) = ν(A−1E). One of the central features of the theory of operator
stable probability measures is the interplay between ideas from probability
theory, linear algebra, and Lie theory. A consequence of this interplay is
that some ‘probabilistic’ facts about operator stable probability measures
are most easily established using algebraic arguments. In this paper we use
algebraic techniques to prove some facts about the structure of exponents
and symmetries of full operator stable probability measures.

Consider for the moment the case d = 1. When (1.1) holds we say
that µ belongs to the domain of attraction of the nondegenerate probability
distribution ν. The classical stable laws are those nondegenerate probability
measures on R1 which have a nonempty domain of attraction. The exponent
B of a stable law is a unique real number in the interval [ 12 ,∞), and its
reciprocal α is the classical index of the stable law. If α = 2 then ν is a
nondegenerate normal law on R1. In the case α 6= 2 the index governs the
behavior of moments, tails, centering constants, and norming. The absolute
moments E|Y |ρ are finite whenever ρ < 1

α , and infinite for ρ ≥ 1
α . If X is

attracted to Y then E|X|ρ is finite whenever ρ < 1
α , and infinite whenever

ρ > 1
α . The tail functions P (|Y | > t) and P (|X| > t) vary regularly with

index −α, and the norming constants An form a regularly varying sequence
with index − 1

α . The centering constants bn can be omitted when α < 1, and
when α > 1 we can center to zero expectation.
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In general, operator stable probability measures do not have unique
exponents. If E(ν) denotes the collection of exponents of the operator stable
measure ν and S(ν) = {A : Aν = ν ∗ δ(a) for some a} denotes the symmetry
group of ν, then Holmes, Hudson, and Mason (1982) established that

E(ν) = B + TS(ν) (1.3)

where B ∈ E(ν) and TS(ν) is the tangent space (Lie algebra) of the com-
pact group S(ν). This result shows that the structure of the collection of
exponents and the structure of the symmetry group are closely interrelated.
Hudson, Jurek, and Veeh (1986) established the existence of an exponent
B0 ∈ E(ν) which commutes with every element of S(ν). Such exponents
are called commuting exponents and play an important role in our structure
results.

Symmetries complicate the behavior of the norming operators An for
generalized domains of attraction. Take for example the case of a standard
normal limit so that the symmetry group S(ν) consists of every orthogonal
linear operator on Rd. If E||X||2 is finite then we get convergence in (1.1)
with An = ( 1

2 )I where I denotes the identity operator on Rd. But if Gn ∈
S(ν) is any sequence of symmetries, then we also get convergence with An =
( 1
2 )Gn. Michaliček (1972) showed that whenever (1.1) holds we have

A[nt]A
−1
n → t−BS(ν) (1.4)

for all t > 0. Here the arrow indicates that the sequence on the left is limit
point compact, and every limit point lies in the compact set on the right.
Relation (1.4) is a regular variation condition on the sequence of norming
operators An. It implies that the asymptotic behavior of An will be like
that of n−BGn where Gn ∈ S(ν). As in the one variable case, the exponent
governs the behavior of norming operators. In the present case, however,
there is an added complication due to the possible influence of multiple sym-
metries. The structure theorems presented in this paper were motivated by
the authors’ desire to understand the behavior of moments, tails, centering
constants, and especially the norming operators for generalized domains of
attraction. At the end of this paper we include some applications of our
structure results, and indicate directions for future research.

2. Preliminary Results

We will begin by examining in more detail the properties of exponents.
We recall that a linear operator on Rd is said to be semisimple if its minimal
polynomial is the product of distinct prime factors. This is equivalent to
the statement that the linear operator is diagonalizable over the complex
numbers. A linear operator N on Rd is nilpotent if Nk = 0 for some k.
One of the fundamental results of linear algebra is the S+N Decomposition
Theorem which states that if T is a linear operator on Rd, then T has a
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unique representation as T = S +N where S is semisimple, N is nilpotent,
and SN = NS. Moreover, both S and N are polynomials in T . A proof
of this result can be found in Hoffman and Kunze (1961). When we speak
of the ‘nilpotent part’ or the ‘semisimple part’ of a linear operator, we are
referring to the nilpotent or semisimple operator in the S+N decomposition
of the given operator. This leads to our first theorem.

Theorem 1. The nilpotent part of every B ∈ E(ν) is the same, and it
commutes with every element of the symmetry group S(ν).

Proof: Choose a commuting exponent B0 and write B0 = S0 +N0 where S0

is semisimple and N0 is nilpotent. Now both S0 and N0 are polynomials in
B0. Hence AS0 = S0A and AN0 = N0A for every A ∈ S(ν). To conclude
the proof, it is enough to show that every exponent B has the same nilpotent
part N0. Let B ∈ E(ν) be arbitrary and write B = S + N as before. Since
E(ν) = B0 + TS(ν), we may write B = B0 + X where X ∈ TS(ν). Then
B = (S0 + X) + N0 and so by uniqueness of the S+N decomposition it
will suffice to show that S0 + X is semisimple. Since S0 commutes with all
A ∈ S(ν) it also commutes with X ∈ TS(ν). Now Billingsley (1966) showed
that S(ν) is conjugate to a subgroup of the orthogonal group. It follows that
TS(ν) is conjugate to a subspace of the space of skew symmetric operators.
Thus every X ∈ TS(ν) is of the form W−1QW where Q is skew symmetric,
and so X is semisimple. Since the sum of two semisimple operators which
commute must also be semisimple, the theorem is proved. The proof of this
theorem contains the germ of an interesting corollary.

Corollary. The set {Re(λ) : λ ∈ σ(B)} (called the real spectrum of B) is
independent of B ∈ E(ν).

Proof: To see this suppose B is a commuting exponent and B + X, X ∈
TS(ν), is any other exponent. Since X is semisimple and BX = XB we can
choose a basis for Cd in which X is diagonal and B has Jordan form. The
result follows from the fact that X, being conjugate to a skew operator, has
purely imaginary eigenvalues.

Another useful result from linear algebra is the primary decomposition
theorem. Suppose A is a linear operator on Rd. Factor the minimal poly-
nomial of A into powers of distinct primes as p1(x)e1 · · · ps(x)es . By letting
Ui = ker pi(A)ei we obtain a direct sum decomposition Rd = U1 ⊕ · · · ⊕ Us
where U1, · · · , Us are all A-invariant subspaces. This is called the primary
decomposition theorem of linear algebra. (See Hoffman and Kunze (1961).)
The projections P1, . . . , Ps which correspond to this decomposition are poly-
nomials in A.

4



Theorem 2. Suppose B0 is a commuting exponent of ν and Rd = U1 ⊕
· · · ⊕ Us is the primary decomposition for B0. Then each of the subspaces
U1, . . . , Us is an invariant subspace for any B ∈ E(ν) and any A ∈ S(ν).

Proof: Let S be the semisimple part of B0. Since S is a polynomial in B0 we
know that S commutes with every exponent and every symmetry of ν. Any
linear operator which commutes with S must preserve the eigenspaces of S,
real or complex. Each Ui represents either a real eigenspace of S, or the real
part of the direct sum of the two complex eigenspaces of S corresponding to
a single complex conjugate pair of eigenvalues. So in either case, Ui must be
an invariant subspace for any exponent or symmetry.

Let us say that a linear operator is primary if its minimal polynomial is
the power of a single prime polynomial. We will say that an operator stable
law ν is primary if it has a primary commuting exponent. The theorem just
proved reduces the problem of characterizing exponents and symmetries to
the primary case. For B commuting, each component Bi = BPi = PiB is a
primary commuting exponent of νi = Piν and

E(ν) ⊆ E(ν1)⊕ · · · ⊕ E(νs)
S(ν) ⊆ S(ν1)⊕ · · · ⊕ S(νs).

(2.1)

Meerschaert (1991) contains an example due to J. Veeh showing that there
may be strict inclusion, and moreover the primary components ν1 · · · νs need
not be independent.

We may also obtain information about the sum of certain primary pro-
jections. Suppose a1, . . . , an is an enumeration of the real spectrum of some
(any) B ∈ E(ν). Denote by πi =

∑
Re(λj)=ai

Pj where P1, . . . , Ps are the
primary projections of B. Then πi does not depend on the choice of B used
to construct it. Moreover, each of the projections πi is a polynomial in B.
This decomposition according to the real spectrum of an arbitrary exponent
is called the spectral decomposition. The strikingly simple proof just given
shows the advantage of algebraic methods over the geometrical approach used
in Meerschaert (1991). It also illustrates the utility of commuting exponents.

3. Exponents and Symmetries

Before presenting our main theorems we introduce a bit of terminology.
A vector x is said to be of order k if k = min{j : N jx = 0}. A subspace
W is said to be of order k if every non-zero element of W is of order k. We
also make the following two observations. If W is a subspace of order k > 1
then NW is a subspace of order k− 1 and dim(NW ) = dim(W ). If W is an
S(ν)-invariant subspace, then NW is also S(ν)-invariant, since N commutes
with every element of S(ν).
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Theorem 3. Suppose ν is operator stable and let N be the nilpotent part
of (any) exponent B ∈ E(ν). Then there is a direct sum decomposition
Rd = V1 ⊕ . . .⊕ Vn so that

(i) The subspace Vj is S(ν)-invariant and of order j

(ii) Vj = NVj+1 ⊕Wj where Wj is also S(ν)-invariant and of order j.

(iii) There is a basis that respects the direct sum decomposition of (i) and
(ii), in which every A ∈ S(ν) has the formA1

. . .

An

 (3.1)

where Aj is the dim(Vj)×dim(Vj) square orthogonal matrix which rep-
resents the restriction of A to Vj and

Aj =
(
Aj+1 0

0 Cj

)
(3.2)

where Cj is a dim(Wj)× dim(Wj) square orthogonal matrix.

Proof: First suppose that S(ν) is a subgroup of the orthogonal group. Let
Kj = kerN j , and observe that since N commutes with all elements of the
symmetry group each of the subspaces Kj is S(ν)-invariant. Furthermore,
since the symmetry group is contained in the orthogonal group, the perp
space of any S(ν)-invariant subspace is also S(ν)-invariant. Assume Nn =
0 and set Vn = K⊥n−1 and also set Wj = (NVj+1 ⊕ Kj−1)⊥ ∩ Kj . It is
straightforward to use the above comments to see that these subspaces are
S(ν)-invariant and of the asserted order.

Now let {bin : 1 ≤ i ≤ dim(Vn)} be an arbitrary orthonormal basis
for Vn. For j < n define bij = Nbi,j+1, 1 ≤ i ≤ dim(Vj+1). If dim(Vj) >
dim(Vj+1), complete the basis for Vj by letting {bij : dim(Vj+1) + 1 ≤ i ≤
dim(Vj)} be an arbitrary orthonormal basis for Wj . Each Vj is A-invariant,
and we may write

Abij =
dim(Vj)∑
k=1

ajki bkj .

Also

ANbi,j+1 = Abij =
dim(Vj)∑
k=1

ajki bkj
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while

NAbi,j+1 = N

dim(Vj+1)∑
k=1

aj+1
ki bk,j+1


=

dim(Vj+1)∑
k=1

aj+1
ki Nbk,j+1

=
dim(Vj+1)∑

k=1

aj+1
ki bkj .

Using the fact that NA = AN we find that aj+1
ki = ajki for all 1 ≤ i, k ≤

dim(Vj+1). This means that Aj = Aj+1 on NVj+1, as asserted.
Now suppose S(ν) is not a subgroup of the orthogonal group. For any

invertible linear operator T it is true that S(Tν) = TS(ν)T−1, and since
S(ν) is conjugate to a subgroup of the orthogonal group there is an operator
U so that the symmetry group S(Uν) of the operator stable law Uν is a
compact subgroup of the orthogonal group. Apply the above argument to
show that there is a basis {bij} in which every element of S(Uν) has the
desired form. For every A ∈ S(ν) we have UAU−1 ∈ S(Uν), and the matrix
of UAU−1 in the basis {bij} is the same as the matrix of A in the basis
{U−1bij}. This concludes the proof.
Remark 1. In the basis just constructed the nilpotent operator N has
matrix 

0 N1 0 0 . . . 0 0
0 0 N2 0 . . . 0 0
...

...
0 . . . . . . 0 Nn
0 . . . . . . 0 0

 (3.3)

where Nj is a dim(Vj)× dim(Vj+1) matrix of the form
(
I
0

)
.

We now present a result which shows how exponents and symmetries
can be represented simultaneously in a form similar to that of the previous
theorem.

Theorem 4. Suppose that ν is operator stable and that B is a commuting
exponent of ν. Then there is a direct sum decomposition Rd = U1⊕ . . .⊕Us
into subspaces invariant under B, S(ν), and N , and a basis of Rd which
respects this direct sum decomposition in which

(i) Every element of the symmetry group is block diagonal, with the ith
block being of size dim(Ui)× dim(Ui) and itself having the block struc-
ture specified in Theorem 3

(ii) The nilpotent operator N is block diagonal, with the ith block being of
size dim(Ui)× dim(Ui) and itself having the structure specified above
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(iii) The semisimple part of the exponent B is block diagonal, with the ith
block being of size dim(Ui)×dim(Ui) and being either a multiple of the

identity or block diagonal consisting of blocks of the form

(
c −d
d c

)
.

Proof: As in the proof above it suffices to consider the case in which S(ν) is
a subgroup of the orthogonal group. The subspaces {Ul} are the subspaces
given in the primary decomposition theorem for B. Each of these spaces
is invariant under S(ν) as well as N and B, so it suffices to consider the
restriction of all operators to one of the subspaces Ul. Denote by S the
semisimple part of the exponent B restricted to Ul. We will be done if we
show how to construct a basis in which it has the desired form. If S has a
single real eigenvalue c we have S = cI and we simply construct a basis of Ul
as in Theorem 3. Suppose then that S has a single complex conjugate pair
of eigenvalues c± id. Complexify so that now S is diagonalizable and every
A ∈ S(ν) is unitary. We can write the complexification of Ul as U1 ⊕ U2

where U1 and U2 are the eigenspaces of S belonging to c + id and c − id
respectively. We note that U1,U2 are S(ν)-invariant. Write S = S1⊕S2 and
A = A1⊕A2 using this direct sum decomposition. Now use the construction
of the previous theorem to obtain a basis {bij} for U1 in which the conclusions
of that theorem hold for any A1. All of the arguments extend to complex
vector spaces without difficulty. If Sb = (c + id)b then Sb̄ = (c − id)b̄ and
so {b̄ij} forms a basis for U2. Write Abij =

∑
δklbkl and Ab̄ij =

∑
γklb̄kl.

Since A(bij + b̄ij) is real and hence equal to its own complex conjugate,
we must have γkl = δ̄kl which means that A2 = Ā1. We will now show that
{Re(bij), Im(bij)} is a basis for Ul in which the results of the previous theorem
hold, and in addition the matrix of B is block diagonal with blocks of the

form
(
c −d
d c

)
. We know that the matrix of A in the basis {b11, b21, . . .} is

of the form
(
A1

A2

)
where A2 = Ā1 and A1 is unitary. Write A1 = (aij)

so that A2 = (āij). A change of basis will be done in two steps. First note
that in the basis {b11, b̄11, b21, b̄21, · · ·} the matrix of A is of the form

M =


a11 0 a12 0 . . .
0 ā11 0 ā12

a21 0 a22 0
0 ā21 0 ā22
...

. . .


and so in the basis {Re(b11), Im(b11), · · ·} we see that A has the matrix M ′ =

C−1MC where C is block-diagonal with blocks of the form
(

1/2 1/2i
1/2 −1/2i

)
.
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So C−1 is block-diagonal with blocks of the form
(

1 1
i −i

)
and we compute

that

M ′ =


α11 β11 α12 β12 . . .
−β11 α11 −β12 α12

α21 β21 α22 β22

−β21 α21 −β22 α22
...

. . .

 .

Here we have let apq = αpq + iβpq. We know that the complex inner product
of the ith and jth column of A1 is equal to one if i = j and is zero otherwise,
since A1 is unitary. From the fact that the inner product of a column with
itself is 1, we see that every column of M ′ is a unit vector. By taking the
real and imaginary parts of the inner product of the ith and jth column we
also see that the columns of M ′ are orthogonal. Therefore M ′ is orthogonal.
This completes the proof.
Remark 2. In the basis just constructed the tangent space of the sym-
metry group consists of skew matrices. This is because the tangent space
of the orthogonal group consists of the skew symmetric matrices. It should
also be noted that the skew symmetric matrices in the tangent space of the
symmetry group inherit the special form given in Theorem 3. This follows
immediately from the definition of the derivative. In the basis above any
exponent may be written in the form D + Q + N where D =

∑n
i=1 ai πi as

discussed earlier. Here D is diagonal and Q is skew and has the same block
form as a symmetry. Moreover D is unique. The uniqueness of D is part of
the spectral decomposition discussed previously.
Remark 3. Let j1, . . . , jp be the subset of j = 1, . . . , n for which dim(Vj) >
dim(Vj+1) and define dr = dim(Vjr )−dim(Vjr+1). Then the theorem implies
that S(ν) is isomorphic to a compact subgroup of O(Rd1) × · · · × O(Rdp).
The dimensions d1, . . . , dp are uniquely determined by the nilpotent operator
N . Hirsch and Smale (1974) show that for every N nilpotent on Rd there
is a basis for Rd in which the matrix of N has a block-diagonal form with
blocks of the form 

0

1
. . .
. . . 0

1

 .

The matrix above is called an elementary nilpotent block. If N has elemen-
tary nilpotent blocks of sizes s1, . . . , sq where s1 < s2 < · · · < sq then dr is
the number of blocks of size sr, for each r = 1, . . . , q. See Hirsch and Smale
for a more general discussion of the relationship between N, dr, and dim(Vj).

4. An Example
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In this section we give an example of an operator stable law with multiple
commuting exponents. In this case, the primary decomposition (2.1) may
depend on the choice of exponent. We give an example in R4. This example
makes use of the fact that an operator stable measure is infinitely divisible,
and that the Lévy measure M of an operator stable measure can be defined
by the equation

M(E) =
∫
S

∫ ∞
0

1E(tBx)t−2 dt dK(x) (4.1)

where K is a Borel measure on a Borel set S which is intersected exactly once
by each orbit {tBv : t > 0}. For more details of this sort of construction,
see Hudson, Jurek, and Veeh (1986). The measure K is called the mixing
measure.

We begin with some notation. Denote v1 = e1, v2 = e3, v3 = (e1 +
e3)/
√

2, and v4 = (e1 + e4)/
√

2 where {e1, . . . , e4} is the standard basis

of R4. Denote J =
(

0 −1
1 0

)
, Q = block diag {J, 2J}, and define a one

parameter group by {gθ = eθQ : 0 ≤ θ ≤ 2π}. Define a Borel measure K on
the unit sphere by

K(E) =
4∑
i=1

∫ 2π

0

i · δvi(gθE) dθ/2π (4.2)

and let φ be the Lévy measure with exponent B = I and mixing measure K.
Let ν be the operator stable law with Lévy representation (0, 0, φ). We now
argue that S(ν) consists of only the operators gθ. It will follow from this
that all commuting exponents are of the form I + tQ where t is real. Thus if
t = 0 there is one primary component, and otherwise there are two. To show
that S(ν) consists only of the operators gθ, we argue as follows. Denote by
Vi = {tBgθvi : t > 0, θ ∈ R} and by Ci = {gθvi : θ ∈ R}.
(1) We know that there is a positive definite W so that WS(ν)W−1 is

a subgroup of the orthogonal group. It would be convenient for our
purposes if we knew that all symmetries were orthogonal. The bulk
of this example consists of showing that this is in fact the case. We
begin by examining W . It is clear that W is by no means unique. We
shall first show that W can be assumed to have a special structure.
Since gθ = eθQ is a symmetry must have WetQW−1 orthogonal for all
t. Hence WetQW−1W−1e−tQW = I, or etQW−2 = W−2etQ for all
t. Writing this in block form and using the fact that W is positive
definite and that the only matrices which commute with J are multiples
of a rotation matrix, we see that W is block diagonal. Moreover, the
diagonal blocks are positive multiples of I. We may therefore assume
that W = block diag (I, αI) where α > 0.
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(2) Utilizing the previous comment, if A ∈ S(ν) and the matrix of A in

the standard basis is (in block form) A =
(
A11 A12

A21 A22

)
then A′ =

WAW−1 =
(
A11

1
αA12

αA21 A22

)
∈ S(Wν) and A′ is orthogonal.

(3) We look now in detail at K ′, the mixing measure of φ′ = Wφ, which
is also supported on a subset of the unit sphere. Since W commutes
with gθ and B we see that WVi = {tBgθWvi : t > 0, θ ∈ R}. Let
v′i = Wvi/‖Wvi‖ and let C ′i = {gθv′i : θ ∈ R}. Note that

v′i =


v1 i = 1
v2 i = 2

1√
1+α2 (e1 + αei) i = 3, 4.

Note also that supp (K ′) =
⋃4
i=1 C

′
i. We now compute K ′(C ′i).

K ′(C ′i) = φ′{tBx : t ≥ 1, x ∈ C ′i}
= Wφ{tBx : t ≥ 1, x ∈ C ′i}
= φ{W−1tBx : t ≥ 1, x ∈ C ′i}
= φ{tBx : t ≥ 1, x ∈W−1C ′i}.

Now simple computations show that

W−1C ′i =


C1 i = 1
1
αC2 i = 2√

2
1+α2Ci i = 3, 4.

Hence, from the fact that tBφ = t·φ for the Lévy measure of an operator
stable measure, the fact that B = I, and the definition of K, we see that

K ′(C ′i) =


1 i = 1
2α i = 2
i
√

1+α2

2 i = 3, 4.

(4) Since any symmetry A′ of Wν commutes with B and is orthogonal,
it is also a symmetry of K ′. In particular, since supp (K ′) is the
disjoint union of the C ′i, A

′ must map each C ′i into a C ′i having the
same mass under K ′. Simple calculation shows that the C ′i have dis-
tinct masses except when α = 1/2. In this case, C ′1 and C ′2 have
the same mass, and it is possible that A′C ′1 = C ′2. Our immediate
goal is to show that this doesn’t happen. Suppose A′C ′1 = C ′2. Then
α = 1/2. Choose θ so that A′′ = gθA

′ has the property A′′e1 = e3.
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Then A′′ =


0 0 a b
0 0 c d
1 0 0 0
0 ±1 0 0

 by orthogonality. Now A′′C ′3 = C ′3

since both A′ and gθ have this property. Hence A′′v′3 ∈ C ′3. But

A′′v′3 = A′′ 1√
1+α2 (e1 + αe3) = 1√

1+α2


αa
αc
1
0

. For this to be in C ′3

we need c = 0 and αa = ±1. But by orthogonality a2 + c2 = 1, so
a = ±1. This contradicts α = 1/2. We conclude that A′C ′i = C ′i for
1 ≤ i ≤ 4.

(5) We have shown that A′C ′i = C ′i for all i. Since A′ is orthogonal the first
two of these relations show that A′ = block diag (A11, A22). Thus all
symmetries are block diagonal and we may assume that α = 1, i.e., the
symmetry group of ν and hence φ is a subgroup of the orthogonal group
consisting of block diagonal matrices (in the standard basis).

(6) Let A ∈ S(ν) = S(φ) be arbitrary. We now choose a θ so that the matrix
A′ = gθA has the property A′v1 = v1. We shall show that A′ = I, and
hence that A = g−θ, thus completing our example. By using the fact
that A′ is orthogonal, and the facts that A′v3 ∈ V3, A′v4 ∈ V4, and
A′gπ/2v3 ∈ V3, and computing directly as above, this result is obtained.
This completes the example.

5. Applications

We will say that a full probability measure ν on Rd is operator α-stable
provided that ν is operator stable with some index B, all of whose eigen-
values have real part equal to 1/α. The spectral decomposition theorem of
Meerschaert (1991) reduces the analysis of generalized domains of attraction
to the special case of an operator α-stable limit. Suppose that X is in the
generalized domain of attraction of some arbitrary operator stable law. Then
it is always possible to write X = X(1) + · · · + X(r) where each component
belongs to the generalized domain of attraction of some operator α-stable
law.

Operator α-stable laws are directly analogous to the classical α-stable
laws on R1. We know that α ∈ (0, 2]. If α = 2 then ν is a nondegenerate
normal law on Rd. Suppose then that α 6= 2 and that Y is a random vector
with distribution ν. The absolute moments E||Y ||ρ are finite whenever ρ < 1

α
and infinite whenever ρ ≥ 1

α . If X is attracted to Y then E||X||ρ is finite
whenever ρ < 1

α , and infinite whenever ρ > 1
α . The centering constants

bn in (1.1) can be omitted when α < 1, and when α > 1 we can center to
zero expectation. These facts about moments were established by Hudson,
Veeh, and Weiner (1988) and the behavior of the centering constants is due
to Meerschaert (1992).
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As in the one variable case, the tail functions P (||Y || > t) and P (||X|| >
t) tend to zero about as fast as t−α, but in the present case we cannot
conclude that the tails are regularly varying. Instead we have the slightly
weaker condition that the tails are R-O varying with both upper and lower
global index equal to −α. See Bingham, Goldie, and Teugels (1987) for
information about R-O variation, and Meerschaert (1992) for the proof that
the tails of both X and Y are R-O varying. The structure results of this
paper give sharper growth rates on the tails. Suppose ν is operator α-stable
with commuting exponent B. Since νt differs from tBν by a translation, B
governs the tail behavior of ν. Specifically we have from Meerschaert (1990)
that P (| < Y, θ > | > t) = O(1/t∗(r)) where t∗(r) is the asymptotic inverse of
R∗(t) = ||tB∗

θ||. The asymptotic behavior of tB is governed by the nilpotent
operator N . Referring to theorem three, we have ||tB∗

θ|| = O(t
1
α (log t)j−1)

for every unit vector θ ∈ V ∗j . For θ ∈ V ∗1 we have P (| < Y, θ > | >
t) = O(t−α), and for all other unit vectors θ, the tails tend to zero more
slowly than t−α. The fact that N governs the tail behavior of the limit also
provides a geometrical interpretation for some of our structure results. Since
N determines the decay rate of the tails of ν, it cannot vary with choice of
exponent. Since symmetries cannot alter the tail behavior, they must also
preserve the direct sum decomposition Rd = V1 ⊕ . . .⊕ Vn induced by N .

As in the one variable case, the norming operators shrink to zero about
as fast as n−

1
α . From theorem 4.1 in Meerschaert (1991) it is not difficult to

infer that ||Anθ|| is R-O varying with both upper and lower global indices
equal to − 1

α for every unit vector θ. The regular variation condition (1.4)
shows that the behavior of norming operators is governed by the exponents
and symmetries of the limit law ν. The asymptotic behavior of An is ap-
proximately the same as that of n−BGn where B is an exponent of ν and
Gn ∈ S(ν). We can use our structure results to obtain precise information
about the behavior of operators of this form. Use the remark 2 following
theorem four to write B = ( 1

α )I + Q + N where Q is skew symmetric and
commutes with N . Then nBGn = n

1
αnN (nQGn). Since Q is skew symmet-

ric, nQGn is orthogonal. Therefore we have ||nBGnθ|| = O(n
1
α (log n)j−1)

for every unit vector θ ∈ Vj . Note also that n−BGn preserves the spaces
Kj = kerN j . The authors are currently investigating the extent to which
the norming operators An inherit this behavior.
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