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Abstract. We study the regularity of the “free surface” in boundary obstacle problems.
We show that near a non-degenerate point the free boundary is a C1,α (n−2)-dimensional
surface in R

n−1.

1. Introduction

The purpose of this paper is to study the structure and regularity of the free boundary in
“boundary obstacle” problems. Boundary obstacle problems concern the following question.

We are given a smooth Ω in R
n, n ≥ 3, and seek a function u that:

a) In the interior of Ω, u satisfies a nice, elliptic equation, say ∆u = f .
b) Along the boundary of Ω, instead of giving Dirichlet or Neumann con-

ditions we prescribe “complementary conditions” of the following type.
As long as u is bigger than some prescribed function ϕ, there is no flux
across ∂Ω: uν = 0. But as soon as u becomes equal to ϕ, boundary
flux, uν , is turned on (uν > 0) to keep u above ϕ.

This type of problem arises in elasticity (the Signorini problem) when an elastic body is
at rest, partially laying on a surface, in optimal control of temperature across a surface (see
[F], [A]), in the modelling of semipermeable membranes where some saline concentration can
flow through the membrane only in one direction (see Duvaut-Lions [DL]) and in financial
math when the random variation of underlying asset changes in a discontinuous fashion (a
Levi process) (see [S] and references there).

There is considerable literature on the regularity properties of the solution (see [F], [C],
[R], [U]). In particular, two of the authors proved recently (see [AC2]) the optimal regularity
of solutions to such a problem.

This opens the way to study the properties of the interface by using geometric P.D.E.
techniques. This is precisely what we develop in this paper. We show that there is one basic
global non-degenerate profile after blow up, and that in a neighborhood of a point that has
this profile the free boundary is a C1,α “curve” on the boundary (i.e., an n− 2 dimensional
graph on the n − 1 dimensional boundary).

Simple examples show that singular free boundary points and degenerate profiles are
unavoidable. For simplicity, in this paper we only treat the case in which ∂Ω is locally a
hyperplane and f, ϕ ≡ 0.
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2. Description of the problem and known results

In this section we explain exactly which kind of problem we shall deal with and we recall
some known results.

Let B1 = B1(0) the unit ball in R
n, n ≥ 2; we write points x ∈ R

n as x = (x′, xn) ∈
R

n−1 × R and denote by Π the hyperplane {(x′, xn) : xn = 0}.
Given a smooth function ϕ on ∂B1 we look at the unique minimizer u of the Dirichlet

integral

J(v) =
∫

B1

|∇v|2

over the closed convex set

K = {v ∈ H1(B1), v = ϕ on ∂B1, v(x′, 0) ≥ 0}
The minimizer u can be constructed also as the least superharmonic function in K. To have
a nontrivial coincidence set Λ(u) = {(x′, 0) : u(x′, 0) = 0} and a nontrivial free boundary
F (u), the boundary of the set {u ≥ ϕ} on Π∩B1, we assume that ϕ changes sign and that
ϕ(θ′, 0) > 0, θ′ ∈ ∂B′

1 = Π ∩ ∂B1. Without losing generality we can choose ϕ symmetric
with respect to the hyperplane Π so that, u also is symmetric with respect to Π (otherwise
we can symmetrize without changing the coincidence set).

The solution u is harmonic in B1 \Λ(u), it is globally Lipschitz continuous, and (see [C])

‖u‖Lip(B1/2) ≤ C‖u‖L2(B1) (1)

Moreover,
inf
B1/2

uττ ≥ −C‖u‖L2(B1) (2)

for every direction τ on Π. We will call tangential such directions. Inequality (2) expresses
semiconvexity of u along tangential directions.

The optimal regularity of u, proven in [AC2], is C1,1/2 on either side of Π, and

‖u‖C1,1/2(B±
1/2

) ≤ C‖u‖L2(B1) . (3)

Furthermore, uxn = 0 on {(x′, 0) : u(x′, 0) > 0} and uxn(x′, 0+) ≤ 0 on Λ(u).
In this paper we want to examine the structure of the free boundary F (u) (clearly in

dimension n ≥ 3) through the analysis of asymptotic profiles around one of its points, that
we assume to be the origin.

It turns out that only in correspondence to a specific asymptotic profile (that we call
nondegenerate) it is possible to achieve smoothness of F (u). To get a clue of what happens
let us start with an observation of Hans Lewy in dimension 2.

The complex function w = ux − iuy (xn = y) is analytic outside Λ(u), thus

uxuy = −1
2

Im(w2)

is harmonic and vanishes on y = 0. Thus uxuy has a harmonic odd extension across y = 0
and w2 has an analytic extension. Then w is C1/2 and u ∈ C1,1/2, which is indeed the
optimal regularity. Accordingly, the first admissible nontrivial global solution is u0(x) =
ρ3/2 cos 3

2θ and this is the typical nondegenerate asymptotic profile. On the other hand
there are solutions like ρk+1/2 cos((k + 1/2)θ), k ∈ N, k > 1, or ρ2k cos 2kθ, k ≥ 1, with
higher order asymptotic behavior.
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In correspondence to points with these asymptotic profiles the free boundary could be very
narrow or a singular point. Notice that these 2-dimensional solutions can be considered as
n-dimensional solutions, constant with respect to the other n−2 variables, so that analogous
considerations can be made in any dimension.

3. Monotonicity Formulas

In this section we prove some monotonicity formulas that play a crucial role in the
identification of limiting blow-up profiles.

Lemma 1 (Almgreen’s frequency formula). Let u be a continuous function on B̄r, harmonic
in Br \ Λ(u), u(0) = 0, u(x′, 0) · uxn(x′, 0) = 0. Define, for 0 < r < 1,

Dr(u) = r

∫
Br

|∇u|2∫
∂Br

u2dσ
≡ r

Vr

Sr
.

Then, for 0 < r ≤ 1
2 , D′

r(u) ≥ 0 (′ = d
dr ). Moreover, let

µ = lim
r→0+

Dr(u) .

then D′
r(u) ≡ 0 in (0, 1

2) if and only if

u(x) = |x|µg(θ) θ ∈ ∂B1

and µ ≥ 3
2 .

Proof. We have
log Dr = log r + log Vr − log Sr

and
d

dr
log Dr =

1
r

+
V ′

r

Vr
− S′

r

Sr
.

By rescaling, it is enough to show that

1 +
V ′

1

V1
− S′

1

S1
≥ 0 (4)

that is (ν exterior normal)

2 − n +

∫
∂B1

|∇u|2 dσ∫
B1

|∇u|2 − 2

∫
∂B1

uuν dσ∫
∂B1

u2 dσ
≥ 0 . (5)

Since u(x′, 0) = uxn(x′, 0) we get, after an integration by parts,∫
B1

|∇u|2 =
1
2

∫
B1

∆(u2) =
∫

∂B1

uuν dσ .

To control
∫
∂B1

|∇u|2 dσ we use the divergence theorem in B1 \ Λ(u). Let

h(x) = div[x|∇u|2 − 2(x · ∇u)∇u] .

Notice that, in our case
h(x) = (n − 2)|∇u|2 .

From Gauss formula, we have (using that on Λ uτ vanishes continuously)

(n − 2)
∫

B1

|∇u|2 =
∫

B1

h =
∫

∂B1

|∇u|2 dσ − 2
∫

∂B1

u2
ν dσ . (6)



4 I. ATHANASOPOULOS, L. A. CAFFARELLI, S. SALSA

By inserting (6) into (5) we obtain

1 +
V ′

1

V1
− S′

1

S1
= 2

∫
∂B1

u2
ν dσ∫

∂B1
uuν dσ

− 2

∫
∂B1

uuν dσ∫
∂B1

u2 dσ
≥ 0

by Schwarz inequality. The equality sign in D′
r(u) = 0 holds for 0 < r ≤ 1

2 if and only if u
is proportional to uν on ∂Br for every r, which implies u is of the form

u(x) = h(|x|)g(θ) θ ∈ ∂B1 .

From the radial formula of the Laplace operator, in a neighborhood of any point where
u �= 0, it must be

h(|x|) = |x|µ .

In fact, by unique continuation, µ must be the same for all components of B1 \Λ(u) where g
has constant sign. Thus, each connected component of the region where u is harmonic is a
cone, generated by the support of g. Finally, from optimal regularity, it must be µ ≥ 3

2 . �

An important consequence is the following result.

Lemma 2. Let u and µ as in Lemma 1, and

ϕ(r) =
∫
�

∂Br

u2 dσ 0 < r ≤ 1 .

Then we have:
(a) The function

r 	→ r−2µϕ(r)
is increasing; moreover

d

dr
[r−2µϕ(r)] ≡ 0

in (0, 1) if and only if
u(x) = |x|µg(θ) θ ∈ ∂B1

with µ ≥ 3
2 .

(b) Let 0 < r < R ≤ 1; given ε > 0, for r ≤ r0(ε)

ϕ(R) ≤
(

R

r

)2(µ+ε)

ϕ(r) . (7)

Proof. (a) We have

ϕ′(r) =
d

dr

∫
�

∂Br

u2 = 2
∫
�

∂Br

uuν dσ = 2r
∫
�

Br

|∇u|2 (8)

so that
d

dr
[r−2µϕ(r)] = 2r−2µ−n

{
r

∫
Br

|∇u|2 − µ

∫
∂Br

u2 dσ

}

and (a) follows from the frequency formula.
(b) Let r0 = r0(ε) such that Dr(u) ≤ µ + ε. From (8)

Dr(u) =
r

2
d

dr
log ϕ(r) ≤ µ + ε

and (7) follows by integrating over (r,R). �
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4. Limiting Profiles

Given a solution u of our thin obstacle problem, we consider the blow-up family

vr(x) =
u(rx)

(
∫
�

∂Br
u2)1/2

.

If µ = limr→0+ Dr(u), our purpose is to identify the limit of vr as r → 0 when 3
2 ≤ µ ≤ 2.

Observe that
‖vr‖L2(∂B1) = 1 (9)

and, from Lemma 2
‖vr‖L2(BR) ≤ R(µ+ε)

for every R > 1 and every small r such that rR ≤ r0(ε). Thus, there exists a sequence
vj = vrj such that

vj → v0 (10)
in L2 and uniformly on every compact set in R

n. Because of (9), v0 is a nontrivial global
solution.

Since
Drj(u) = D1(vrj ) → D1(v0) = µ

as rj → 0, from Lemma 1 we deduce that

v0(x) = |x|µg(θ) θ ∈ ∂B1 .

Theorem 3 (blow up limits). Let u be a solution of our thin obstacle problem, µ =
limr→0+ Dr(u) and v0 the global solution defined above. The following hold:

(a) Assume 3
2 ≤ µ < 2. Then, up to a multiplicative constant, in a suitable system of

coordinates
v0(x) = ρ3/2 cos

3
2
ψ

where ρ2 = x2
n−1 + x2

n and tan ψ = xn/xn−1.
(b) Assume µ = 2. Then v0 is a quadratic polynomial

v0(x) =
∑
i<n

aix
2
i − cx2

n , ai ≥ 0 .

Proof. Let 3
2 ≤ µ < 2. From the tangential quasi-convexity property of u, we have, for

every tangential direction τ :

Dττvrj ≥ −c
r2
j

(
∫
�

∂Brj
u2)1/2

. (11)

In Lemma 2(b), choose ε such that µ + ε < 2. Then, letting rj → 0 in (11) we obtain from
(7)

Dττv0 ≥ 0
so that v0 is tangentially convex and Λ(v0) is a convex cone. We first observe that on Λ(v0),
v0 ≡ 0, and Dnv0 ≤ 0 and for xn ≥ 0, Dnnv0 ≤ 0. This implies that v0(x′, xn) ≤ 0 if (x′, 0)
belongs to Λ0. Assume now that the vector −en−1 belongs to (Λ(v0))0. For any point
x, consider the line Lx = {x + ten−1}. For t negative enough the function v0(x + ten−1)
becomes negative from the remark above.

Since v0 is convex along Lx, it follows that w = Den−1v cannot be negative anywhere on
Lx. In particular, since x is arbitrary w ≥ 0 in R

n. On the other hand, w = 0 on Λ(v0)
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and wxn = 0 on {xn = 0} \ Λ(v0) (by symmetry). Thus, the restriction of w to the unit
sphere must be the first eigenfunction of the Dirichlet problem for the spherical Laplacian,
with zero data on ∂B1 ∩ Λ(v0). Now, if Λ(v0) is not a half-plane, and thus from convexity,
is strictly contained in half a plane. Then the homogeneity degree of w should be less than
1/2 (see [AC2]), since homogeneity 1/2 corresponds to the case in which half a plane is
removed, contradicting µ ≥ 3

2 . Therefore Λ(v0) is a half-plane, w(x) = ρ1/2 cos ψ
2 where

ρ2 = x2
n−1 + x2

n, and tan ψ = xn/xn−1. This implies

v0(x) =
2
3
ρ3/2 cos

3
2
ψ . (12)

Observe that if τ = αen−1 + βe, where e is tangential, e ⊥ en−1 and α2 + β2 = 1, α > 0,
then outside a η-strip, |xn| < η, we have in B1, say

Dτv0(x) ≥ C(α, η) > 0 . (13)

Let now µ = 2. The limiting profile is of the form v0(x) = |x|2g(θ), θ ∈ ∂B1 and Λ(v0)
is a cone. Consider w = Dxnv0; w is linearly homogeneous and w = 0 on {xn = 0} \ Λ(v0).
We reflect evenly with respect to the hyperplane xn = 0, defining

w̃(x) =

⎧⎨
⎩

w(x′, xn) xn > 0

w(x′,−xn) xn < 0
.

Suppose w̃ changes sign. Then, since w̃ is harmonic on its support and w(0) = 0, we can
apply the monotonicity formula in [CS, Corollary 12.4], to w+ and w−. According to this
formula, the homogeneity and the linear behavior of w̃ forces w̃ to be a two plane solution
with respect to a direction transversal to the plane xn = 0, say, w̃(x) = αx+

n−1 − βx−
n−1,

due to the even symmetry of w̃. This is a contradiction since along xn = 0, w is negative
on Λ0 and zero otherwise and therefore w̃ cannot change sign. Suppose now that Λ(v0) has
non-empty interior. Then w̃ is the first eigenfunction for the spherical Laplacian, with zero
boundary data on ({xn = 0} \Λ(v0)) ∩ ∂B1. This forces a superlinear behavior of w̃ at the
origin since linear behavior corresponds to a half sphere and we reach again a contradiction.
Thus, Λ(v0) has empty interior, v0 is harmonic across Λ(v0) and therefore v0 must coincide
with a quadratic polynomial (v0(x) =

∑
i<n aix

2
i − Cx2

n, ai ≥ 0). �

5. Lipschitz continuity of the Free Boundary (µ < 2)

Through the identification of the limiting profile in section 4, we can prove that, when
3
2 ≤ µ < 2, the free boundary F (u) is locally a Lipschitz graph. Precisely:

Lemma 4. Let u be a solution of the thin obstacle problem in B1. Assume that 3
2 ≤ µ < 2.

Then, there exists a neighborhood of the origin Bρ and a cone of tangential directions Γ′
(en−1, θ), with axis en−1 and opening θ ≥ π

3 (say), such that, for every τ ∈ Γ′ (en−1, θ), we
have

Dτu ≥ 0 .

In particular, in that neighborhood, F (u) is the graph of a Lipschitz function xn−1 =
f(xn−1, . . . , xn−2).

Proof. From the definition in section 4,

vrj (x) =
u(rjx)∫

�
∂Brj

(u2)1/2
.
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We know that vrj (x) → v0(x) with v0 given by (12), uniformly on compact sets. Fix α ≥ 1
2

(say) and let τ = αen−1 + βe be a tangential direction (α2 + β2 = 1). For σ > 0, small, and
rj ≤ r0(σ), we deduce from (13) that Dτvrj enjoys the following properties in B5/6.

(i) Dτvrj ≥ 0 outside the strip |xn| < σ;
(ii) Dτvrj ≥ c0 > 0 for |xn| ≥ 1

2 ;
(iii) Dτvrj ≥ −cσ1/2 in the strip |xn| < σ

(from (i) and optimal regularity).
Then, we conclude the proof by applying to h = Dτvrj the following approximation

Lemma. �

Lemma 5. Let u be a solution of the thin obstacle problem in B1. Suppose h is a continuous
function with the following properties:

(i) ∆h ≤ 0 in B1 \ Λ(u);
(ii) h ≥ 0 for |xn| ≥ σ, h = 0 on Λ(u), with σ > 0, small;
(iii) h ≥ c0 > 0 for |xn| ≥ 1

8(n−1) ;
(iv) h ≥ −ω(σ), where ω is the modulus of continuity of h, for |xn| < σ.

There exists σ0 = σ0 (n, c0, ω) such that, if σ ≤ σ0 then h ≥ 0 in B1/2.

Proof. Suppose z = (z′, zn) ∈ B1/2 and h(z) < 0. Let

Q =
{

(x′, xn) : |x′ − z′| ≤ 1
3 , |xn| <

1
4(n − 1)

}

and
P (x′, xn) = |x′ − z′|2 − (n − 1)x2

n .

Define
v(x) = h(x) + δP (x)

where δ > 0 is to be chosen later. We have
(a) v(z) = h(z) − δ(n − 1)z2

n < 0
(b) ∆v ≤ 0 outside Λ(u)
(c) v ≥ 0 on Λ(u), since h ≥ 0, P ≥ 0 there.

Thus, v must have a negative minimum on ∂Q.
On ∂Q ∩ {|xn| > 1/8(n − 1)},

v ≥ c0 − δ

16(n − 1)
≥ 0

if δ ≤ 16(n − 1)c0.
On |x′ − z′| = 1/3, σ ≤ |xn| ≤ 1/8(n − 1), we have h ≥ 0 so that

v ≥ δ

[
1
9
− 1

64(n − 1)

]
≥ 0 .

Finally, on |x′ − z′| = 1/3, |xn| < σ, we have

v ≥ −cω(σ) + δ

[
1
9
− (n − 1)σ2

]
≥ 0

if σ is small enough.
Hence, v ≥ 0 on ∂Q and we have reached a contradiction. Therefore h ≥ 0 in B1/2. �
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6. Boundary Harnack Principles and the C1,α
Regularity of the Free

Boundary (µ < 2)

We are now in position to show that the free boundary is locally a C1,α graph, if µ < 2.
Precisely, our main result is the following.

Theorem 6. Let u be a solution of the thin obstacle problem in B1. If µ = limr→0+ Dr(u) < 2
then the free boundary F (u) is given in a neighborhood of the origin by the graph of a C1,α

function xn−1 = f(x1, . . . , xn−2).

One way to prove the theorem is to use the results in [AC1]. Through a bilipschitz
transformation, a neighborhood of the origin in B1\Λ(u) is mapped onto the upper half ball,
say, B+ = {|z| < 1, zn−1 > 0}, and the Laplace operator is transformed into a uniformly
elliptic divergence form operator. Each tangential derivative Dτu, with τ belonging to the
cone Γ′(en−1, θ) of monotone directions, is mapped onto a positive solution of Lv = 0 in
B+, vanishing on {zn−1 = 0}. An application of Corollary 1 in [AC1] concludes the proof.

On the other hand, there is a more direct proof based on the following result, that could
be of interest in itself.

Let D be a subdomain of B1 and let Ω = ∂D ∩ B1. We denote by dg(x, y) the geodesic
distance in D of the points x, y. We will assume that the following properties hold:

(1) For every x, y ∈ D, dg(x, y) is finite.
(2) Non tangential ball condition. Let Q ∈ Ω. There exist positive numbers r0 =

r0(D,Q) and η = η(D) such that, for every r ≤ r0 there is a point Ar(Q) ∈ Br(Q)
such that

Bηr(Ar(Q)) ⊂ Br(Q) ∩ D .

(3) Harnack chain condition. There exists a constant M = M(D) such that, for all
x, y ∈ D, ε > 0 and k ∈ N satisfying

d(x,Ω) > ε , d(y,Ω) > ε , dg(x, y) < 2kε ,

there is a sequence of Mk balls Br1, . . . , BrMk
⊂ D with

x ∈ Br1 , y ∈ BrMk
, Brj ∩ Brj+1 �= ∅ (j = 1, . . . ,Mk − 1)

and
1
2
rj < d(Brj ,Ω) < 4rj (j = 1, . . . ,Mk) .

(4) Uniform capacity condition. Let Q ∈ Ω. There exist positive numbers r0 =
r0(D,Q) and γ = γ(D) such that, for every r ≤ r0,

cap∆

[
(Br(Q) \ Br/2(Q)) ∩ Ω

] ≥ γrn−2

where cap∆(K) is the capacity of K in B1, with respect to the Laplace operator.

Conditions (2) and (3) appear in the notion of non tangentially accessible domain (see
[JK]). Condition (4) replaces the exterior tangential ball property in that definition. Since
condition (4) is related to the Laplace operator we call a domain D with properties (1)–(4) a
∆-N.T.A. domain. A simple example of ∆-N.T.A. domain is an (n−1)-dimensional smooth
manifold with Lipschitz boundary.

Let now L be a uniformly elliptic operator with ellipticity constant λ and bounded mea-
surable coefficients. Recall that capL(K) ∼ cap∆(K) with constant depending only on λ
and n, so that the notion of ∆-N.T.A. domains is actually related to an entire class of
operators. The following result holds.
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Theorem 7. (Boundary Harnack Principles). Let D ⊂ B1 be a ∆-N.T.A. domain. Sup-
poses v and w are positive functions in D, continuously vanishing on Ω, satisfying Lv =
Lw = 0 in D. Assume x0 ∈ D ∩ B2/3, d(x0,Ω) = d0 > 0 and v(x0) = w(x0) = 1. Then:

(a) For every Q ∈ Ω ∩ B1/2

sup
D∩B1/3(Q)

v ≤ C(u, d, d0,D) (Carleson estimate)

and
sup

D∩B1/3(Q)

v

w
≤ C(u, λ, d0,D) .

(b) v
w is Hölder continuous in B1/2 ∩ D up to Ω.

Proof. the proof follows by now standard lines (see for instance [CS, section 11.2] and [JK]).
We sketch the main steps emphasizing the main differences.

(a) Fix Q ∈ Ω ∩ B1/2 and let

v(y0) = N = sup
B1/3Q∩D

v .

The interior ball condition and the Harnack chain condition plus the interior Harnack
inequality imply that if N is large, d(y0,Ω) ≡ |y0−Q0| ≤ N−ε where ε = ε(n, λ, d0,D) > 0.
Let r0 = d(y0,Ω).

The uniform capacity condition implies that

sup
B2r0 (Q0)

v ≡ v(y1) ≥ CN

where C = C(n, λ,D) > 1. Iterating the process, one constructs a sequence of points yk,
satisfying

i) v(yk) ≥ CkN
ii) d(yk,Ω) ≤ (CkN)−ε

iii) |yk − yk+1| ≤ 4(CkN)−ε.
If N is large enough, we can make

∑
|yk − yk+1| ≤ 1

16
and we get a contradiction. This proves (a). To prove (b), let P ∈ B1/3(Q) ∩ Ω and
R0 = d(x0, P ) + d0

2 . Notice that 3
2d0 ≤ R0 ≤ 1. Define

ψR0(P ) = BR0(P ) ∩ D

and
Σ0 = ∂BR0(P ) ∩ Bd0(x0) .

Observe that Σ0 ⊂ D. We first control the Green’s function G(x, x0) for L in ψR0(P ) from
above by the L-harmonic measure ωx

L(Σ0), in ψR0(P ) \ Bd0/3(x0). This follows from the
maximum principle. In fact, on ∂Bd0/3(x0) we have, from Hölder continuity,

ωx
L(Σ0) ≥ c > 0

and
G(x, x0) ≤ c d2−n

0 .
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On the other hand, on ∂ψR0(P ), we have G(x, x0) = 0 and ωx
L(Σ0) ≥ 0. Therefore, outside

Bd0/3(x0) we get
G(x, x0) ≤ c d2−nωx

L(Σ0) . (14)
Let now Σ1 = ∂ψR0(P )\Ω and let ϕ be a C∞ cut-off function such that ϕ ≡ 0 in BR0/4(P ),
ϕ ≡ 1 outside BR0/2(P ) and 0 ≤ ϕ ≤ 1 in BR0/2(P ) \ BR0/4(P ) ≡ CR0(P ).

We have

ωx
L(Σ1) ≤

∫
∂ψR0

(P )
ϕdωx

L .

Fix x ∈ BR0/8(P ) ∩ D. Then

0 = ϕ(x) =
∫

∂ψR0
(P )

ϕdωx
L −

∫
CR0

(P )∩D
aij(x)DyiG(x, y)Dyj ϕ(y) dy .

Therefore, from Caccioppoli estimate and Carleson estimate, we have, in BR0/8(P ) ∩ D,

ω∗
L(Σ1) = c(u, λ, d0)

(∫
CR0

(P )∩D
|∇yG(x, y)|2 dy

)1/2

≤ c(u, λ, d0)
(∫

CR0
(P )∩D

G2(x, y) dy

)1/2

≤ c(u, λ, d0)G(x, x0) .

(15)

From (14) and (15) we obtain the following doubling condition for the L-harmonic measure:

ωx
L(Σ1) ≤ c(u, λ, d0)ωx

L(Σ0)

for every x ∈ BR0/8(P ) ∩ D.
The rest of the proof of (a) and the proof of (b) follow now, for instance, as in [CS, section

11.2]. �

Proof of Theorem 6. We apply Theorem 7 with Ω = Λ(u), D = B1 \ Λ(u) and v = Dτu,
w = Den−1u where τ ∈ Γ′(en−1, θ). We obtain, in particular, that on {xn = 0} \ Λ(u),
the quotient Dτu/Den−1u is Hölder continuous up to F (u) in a neighborhood of the origin.
This implies that the level sets in R

n−1 of u are C1,α surfaces and, in particular, the C1,α

regularity of F (u) in B1/2. �
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