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The Structure of the Heliospheric
Current Sheet: 1978 - 1982

J. Todd Hoeksema, John M. Wilcox & Philip HW. Scherrer

Institute for Plasma Research,
Stanferd University
Via Crespi
Stanford, CA 94305 USA

ABSTRACT

The structure of the heliospheric magnetic field
changes substantially during the 1l year sunspot cycle. We
have calculated its configuration for the period 1976
through 1982 wusing a potential field model, continuing our
earlier study near solar minimum in 1976 - 1977 (Hoeksema et
al., 1982). 1In this paper we concentrate on the structure
during the rising phase, maximum, and early decline of sun-
ot cycle 21, from 1978 to 1982.

Early in this interval there are four warps in the
current sheet (the boundary between interplanetary magnetic
field (IMF) toward and away from the Sun) giving rise to a
four~sector structure in the IMF observed at Earth. The
location of the current sheet changes slowly and extends to
a heliographic latitude of approximately 50°. Near maximum
the structure is much more complex with the current sheet
extending nearly to the poles. Often there are multiple
current sheets. As solar activity decreases the structure
simplifies until, in most of 1982, there is a single, simply
shaped current sheet corresponding to a two-sector IMF
structure in the ecliptic plane.

The Sui's polar fields, not fully measured by magneto-
graphs such as that at the Stanford Solar Observatory, sub-
stantially influence the calculated position of the current
sheet near sunspot minimum. We have determined the strength
of the polar field correction throughout this period and
include it 1in our model calculations. The lower latitude
magnetic fields become much stronger as the polar f£fields
weaken and reverse poliarity near maximum, decreasing the
influence of the polar field correction. The major model
parameter is the radius of the source surface, the spherical
sur face at which the £field lines become radial. Correla-
tions of IMF polarity observed by spacecraft with tha.
predicted by the model calculated at various source surface
radii indicate that the optimum source surface radius is not
significantly different from 2.5 R, during this part of the
solar cycle.
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I. Introduction

Great changes occur in the w«tructure of the helios-
theric magnetic field during the course of the sunspot
cycle. Near minimum the current sheet, the boundary betwzen
magnetic field toward and away from the Sun, is nearly equa-
torial, with four small excursions away from the solar equa-
torial plane in each rotation. Since the ecliptic plane is
tilted only 7° to the solar equator even these small 10 - 15
degree excursions are large enough to affect the Earth and
produce the four-sector structure commonly observed in the
interplanetary magnetic field (IMF) near minimum (Svalgaard

& Wilcox, 1975).

In an earlier paper Hoeksema et al. (1982) discussad
the heliospheric magnetic structure during the early rising
phase of sunspot cycle 21 as determined by appiying a poten-
tial field model (first introduced by Schatten et al., 1969
and Altschuler & Newkirk, 1969) to the photospheric magnetic
field observations made at the Stanford Solar Observatory in
1976 and 1977. We refer to that paper for detailed descrip-
tions of the model, the observations, the simple current
sheet structure near minimum, and of comparisons with the
observed IMF polarity at Earth. 1In this paper we continue

that analysis through the rising phase, maximum, and the
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beginning of the declining phase of the current sunspot
cycle, from 1978 through 1982, We conclude with a discus-
gion of the source surface radius selection and polar field

correction.

The large scale structure evolves slowly throughout
this entire interval. The latitudinal extent of the struc-
ture increases from approximately 30° early in 1978 to
nearly 90° in 1979. WNear maximum, 1879 - 1980, the struc-
ture becomes quite complex. Often for several consecutive
rotations there are isolated current sheets, some of which
are observed in the IMF polarity at Earth. The structure
simplifies in 1981 as activity begins to decline and is rem-
iniscent of the pattern in 1978: four equatorial sectors
with large excursions in solar 1latitude but having the
polarity of the solar poles reversed. 1In late 1981 and 1982
the structure simplifies even further to a situation indi-
cating two sectors in the IMF. Late in 1982 four sectors

reemerge.

We have comparad the IMF polarity observed at Earth
with that predicted from the calculations of the helios-
pheric magnetic structure throughout the entire interval.
There is little change in the gquality of the prediction from

1976 to 1980 during which the correlation coefficient 1is
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about 0,58, The simpler structure in 1981 and 1982 is
predicted somewhat more accurately (correlation coefficient
of about 0.68). Most errors are in the timing of sector
boundaries rather than isolated errors, indicating that the
general structure is predicted quite accurately while the
details are subject to the effects of variable solar wind
velocities, solar wind plasma accelerated by flares, and

other causes.

While such comparison is one of the few possible tfests
of the model, it 1is important to note that this provides
only a weak constraint. £arth and most spacecraft sample
only the narrow region within 7° of the solar equator. Much
of the interesting activity takes place at higher latitudes.
When spacecraft can provide reliable measurements of solar
wind parameters out of the ecliptic there will be a con-
clusive way to test the results of the potential field model
at higher latitudes. We look forward to the International
Solar Polar Spacecraft. The considerations described here
could be used to predict what such a spacecraft would

observe.

Comparison can also be made with direct coronal obser-
vations. Comparing computed current sheet locations near

sunspot minimum with those derived from maximum polarization
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brightness measurements obtained with the Mauna Leca coronom-
eter suggests that there is generally good agreement between

the two methods (Wilcox & Hundhausen, 1983).

The Sun's polar field strength is very important £for
the potential field model results (Pneuman et al., 1978,
Burlaga et al. 1981, Hoeksema et al. 1982, and Levine et
al., 1982). This 1is especially true near sunspot minimum
when the polar fields are strong and the Jlower latitude

fields are relatively weak. The Stanford Solar Observator

g

magnetograph is a low resolution instrument and does not
measure the flux in the polar regions completely. Only when
the polar fields are corrected does the potential field
model accurately predict the extent in latitude of the
current sheet. We have determined the strength of the solar
polar field correction for the entire interval by extending
the method of Svalgaard et al. (1978) and have included it
in the calculations. Near maximum the polar fields weaiken
and ultimately reverse polarity. Meanwhile the lower lati-
tude fields become much stronger. This suggests that the
relative importance of the polar fields in determining the
magnetic configuration in the equatorial region is much less

near maximum than near minimum.
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The only free parameter in the model is the location of
the source surface. We use a spherical surface at which we
assume the field lineg are radial and open to the solar
wind., From the source surface it is assumed that the solar
wind carries the magnetic field radially outward. Comparing
the correlation of observed IMF polarity with that predicted
by the model computed at several different source sur£face
radii, we £ind that there is no significant change with time
in the distance at waich the source surface should be
located. 1In light of the insensitivity of the determination
of the optimum scurce surface radius, we will use a radius
of 2.5 R in our discussions which reflects the uncertainty
of about 0.25 Rs. At no time does the correlation with the
observed IMF polarity using a radius of 1.6 R, approach the

accuracy of that at 2.5 RS.

I. The Rising Phase of the Sunspot Cycle

——

The radial field strength at the source surface £for
Carrington Rotation 1665 is represented by a contour plot in
Figure 1. This magnetic configuration is characteristic of
the heliospheric structure throughout 1978. Dashed lines
represent regions where the field is directed toward the sun

and the solid 1lines field away from the sun. The heavy
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solid line is the contour of zero radial £ield. Extension
of this contour 1line radially outward by the solar wind
defines the current sheet in the heliosphere. We will hen-
ceforth refer to this line as the current sheet. Also plot-
ted in this figure at the heliographic latitude of Earth are
plusses and minuses representing daily averages of IMF
polarity measurements made near Earth. These measurements
are typically f£from spacecraft such as the International

Sun-Earth Explorer-3 (ISEE-3) or from the Interplanetary

Medium Data Book (King, 1979), but are occasionally inferred

from geomagnetic activity (Svalgaard, 1976) when spacecraft
measurements are not available. These values have been
corotated back to the source surface assuming a propagation

time from Sun to Earth of five days.

There are two extensions of the current sheet north of
the equator and two extensions south of the equator,
predicting a four-sector structure at Earth. The magnetic
field polarity on the source surface agrees well with that
observed at Earth five days later. The current sheet
extends to a latitude of about 60° in each hemisphere so we
would expect that a spacecraft anywhere within 60° of the
equator would observe a four-sector structure similar to

that at Barth. This is in contrast to the period near solar
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minimum in 1976 when the current sheet extended to only
about 15° and Pioneer 11, at a latityde of 16° north,

observed only a single polarity (Smith et al., 1978).

We now consider the evolution of the field structure,
Figure 2 shows the current sheet at the source surface for
Carrington Rotations 1641 through 1669, May 1976 through
June 1978. Observations began at Stanford during Carrington
Rotation 164)l. The f£oymat for each rotation is the same as
in Figure 1 except that only the zero contour is plotted
(i.e. the locus of the current sheet). Regions of negative
polarity (toward the Sun) are shaded. We have included an
additional half rotation from the previous and following
synoptic maps at the ends of each Carrington Rotation so
that structures near rotation boundaries can be seen more
easily. Evolution in the 1large scale structure occurs
slowly with a time scale of several months. The basic pat-
tern of two northward and two southward extensions of the
current sheet persists throughout this interval. The loca-
tions of maximum latitudinal extent shift only a little in
longitude. For example, the northward bulge of the currant
sheet near 30° longitude, already apparent in rotation 1641,
is present through at least rotation 1670. This corresponds

to a persistent toward polarity structure in the obsorved
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HELIOSPHERIC CURRENT SHEET STRUCTURE: 1976-1978
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IMF polarity. Other features show much the same longevity
with only small, slow drifts in longitude. A permanent
marked increase in latitudinal extent and size of the warps
in the current sheet occurs in early 1978 (rotations 1663 =~
1665) and the pattern begins to drift slowly westward
(left).

Bach Carrington Rotations is 27.28 days long. Features
on the sun which rotate with a synodic period of 27 days
will arrive a little earlier on each successive rotation.
s will be observed as a drift to the right of about 3.5
degrees per rotation or about 559 in 15 rotations. For com-
parison, some structures in the IMF recur with a period near
28.5 days (Svalgaard & Wilcox, 1975) which would be observed
as a vrather rapid drift to the left of about 20° per rota-

tion.

Generally this interval can be characterized by slow
changes in the heliospheric magnetic £field. The major
change is in the latitudinal extent of the <current sheet.
The large scale structure does not in general participate in
differential rotation. This has been noticed earller for
large scale photospheric magnetic structures (Wilcox et al,,
1970), for the green line corona (Antenucci & Svalgaard,

1974) and for coronal holes (Timothy et al., 1975).
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ITI. Sunspot Maximum

Near maximum, 1979 - 1980, the field structure was more
complex. The dominance of the polar fields gradually disap-
peared and the current sheet commonly extended to the poles.
The forwat for Figure 3 is the same as for Figure l. The
structure shown for Rotation 1679 is fairly typicel of the
structure near maximum. There were two large unipolar
regions on the source surface with a smaller region of the
opposite polarity 1in each. At Earth only two sectors wersa
observed. The positive region near 45° longitude was con-
nected to the positive polar regien, but did not extend far
enough south to intersect the latitude of the Barth. The
main current sheet extended almost from pole to pole in an
approximately north-south direction at 150° and 330° longi~-
tude; spacecraft at any latitude would have seen a change in
IMF polarity. The small negative polarity region at 270°
was completely disconnected from the large negative region
thus forming a second <closed current sheet. The second
current sheet lay in the Sun's northern hemisphere and would
therefore have been detected only by an observer there. The
Barth at that time was several degrees south of the solar

equator and so did not see the effect of this region.

-10-
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Carrington Rotation 1698, shown in Figure 4, is another
typical example. Near longitude 90 a positive region con-
nected to the south pole intersected the latitude of the
Earth and there was a cingle day of away polarity. A second
current sheet enclosing positive polarity, somewhat larger
thar in Rotation 1679, intersected the latitude of Earth.

There was an away sector corresponding to it in the IMF.

During the interval near maximum, changes in magnetic
configuration occurred somewhat more rapidly, yet individual
features last for a long time. Figure 5 shows the current
sheets for <Carrington Rotations 1670 - 1699, July 1978
through September 1980, in the same format as Figure 2. The
pelarity of the solar polar fields reversed near the begin-
ning of 1980 ~- about Carrington Rotation 1690. Many rota-
tions exhibit multiple current sheets and often there arve
two sheets at the same longitude. From one rotation to the
next the <changes are usually small: a region of magnetic
flux may grow a little, shrink a little, drift a 1little 1in
longitude or latitude, or connect in a different way with
the surrounding regions of £flux. The transition of the
polar fields from one polarity to the other occurs smoothly.
Catastrophic changes in field alignments or structure occur

neither near the poles nor at the latitude of the Earth.
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HELIOSPHERIC CURRENT SHEET STRUCTURE: 1878-1980
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Most features can be observed for many rotations and
their evolution can be traced. For example the large posi-
tive region clearly visible in Rotation 1689 centered near
200° longitude can be traced through Rotation 1717. The
small positive feature that appears near 120° on Rotation
1694 does not disappear until at least Rotation 1712. The
extension of negative polarity into the niorthern hemisphere
that first expands in Rotation 166C at longitude 230 drifts
slowly westward until it ~onnects to the northern polar
region in Rotation 1682 or 1683. The eastern boundary of
this reginn can be traced to Rotation 1687. The small nega-
tive feature clearly visible in the northern hemisphere of
Rotation 1678 near 300° longitude can be followed from rota-
tion to rotation in all but Rotation 1684 until it merges
with a larger negative region in rotation 1685, The small
region of positive polarity 1lying across the equator on
Rotation 1674 near 60° lonyitinde drifts slowly westward from
rotation to rotation. During Rotations 168l through 1683 it
is evident only as a warp in the current sheet, but reap-
pears in 1685 through 1687 at 360° longitude. During the
course of 15 rotations it shifts a total of about 60° west-
ward in 1longitude, corresponding to a rotation rate very

close to 27.5 days.
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The greatest changes occur during Rotations 1688
through 1692, just at the time of solar polar field reversal
determined from the magnetograph polar region measurements.
The solar £field added to our computation at this time is
very small and so has little effect on the overall confi-
guration of the fields. During these few rotations the
positive flux region becomes disconnected from the poles and
seems gradually to move southward, enveloping the southern
polar region completely by Rotation 1695. This is indepen=-
dent of the inclusion of additional polar flux; graphs of
the solutions with no polar field correction show essen-
tially the same result. Throughout this interval the
changes near the equatorial plane are small. There are few
sudden changes in the IMF sector structure observed at
Earth. After maximum the pattern returns to the four-sector

structure commonly observed before maximum.

IV. Declining Phase of the Sunspot Cycle

As the new polar fields strengthen during the beginning
of the declining phase from late 1980 through 1982, the
large scale heliospheric magnetic structure simplifies and
becomes wmore ordered. Figure 6 shows the cowputed current

sheets for Rotations 1700 - 1729, October 1980 through

~13-
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December 1982. Through most of 1981 the structure resembles
the structure observed in 1978 except that the polar region
polarity is reversed. Again there are two extensions of the
current sheet into each hemisphere, but now the south pole

is positive polarity and the north pole negative.

The large positive polarity region near 270° longitude
in Rotation 1698 connects to the positive south polar region
in Rotation 1700 and moves southward in succzeding rota-
tions, disappearing by rotation 1719. The large negative
flux region extending from the north pole at at 180° remains
sztrong through Rotation 1710. This region is apparently
undergoing differential rotation and splits in Rotation
1711. The f£lux region which remains connected to the north
pole begins to die away and by Rotation 1718 has disap-
peared. The differentially rotating negative polarity
region in the southern hemisphere merges with another small
extension of negative flux in Rotation 1712 near 0°. fThis
new region grows and continues to move westward at a slower
rate, broadening considerably until by Rotation 1718 there
is only one sector of each polarity. The structure remains
essentially unchanged thrcough most of 1982 (Rotation 1725),
exhibiting almost no signs of differential rotation. A

four—-sector structure seems to be emerging again in the last

-14-
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few rotations. Throughout *this interval the latitudinal
extent of the current sheet is very great, extending almost
to the poles. This 1s very different £rom the structure

near minimuni.

Figure 7 shows Carrington Rotation 1720 which is
characteristic of the simple two-sector structure. A
predominantly two~sector structure in the IMF has been
observed after solar maximum in most of the five previous
sunspoé cycles according to Svalgaard and Wilcox (1975).
Again there is good agreement with the IMF polarity measured

at Earth,

V. Polar Field Strength & Source Surface Radius

The polar fields near sunspot minimum are much stronger
than those measured by line-of-sight magnetograph measure-
ments (Stenflo, 1971; Howard, 1977; Suess et al., 1977;
Pneuman et al., 1973; and Svalgaard et al., 1978). This can
be seen in the Stanford measurements by considering the
field measurements obtained in the apertures nearest the
poles. Svalgaard et al. (1978) determined the strength of
the polar fields by considering the annual variation in
measurad field strength due to the 7° inclination of the

solar rotation axis to the ecliptic plane. That study

-15-
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showed that a sharply peaked field of the form 1l1l.5 cosa(e)

Gauss reproduced the observed variation.

Near minimum this strong field has a large effect on
the potential field model results as pointed out by Burlaga
et al. (1981) and discussed in Hoeksema et al, (1982). Fig-~
ure 8 shows a diagram of the northernmost aperture of a
Stanford magnetogram. The aperture is 3 arc minutes square.
Ten-day averages of the field skrength measured in this
aperture are shown. The annual variat.on is clearly seen,
as is the reversal of the field polarity which occurred near
the end of 1979. The corresponding plot for the south pole

‘s very similar.

We cannot use the same method to calculate the polar
correction near maximum, since the polar field strength
changes substantially in a year. The straight lines in Fig-
ure 8 show an estimate of the average polar field strength.
We have used this value to scale the strength of the polar
field correction. Thus a nominal field of 11.5 cos8(g)
Gauss is added in 1976, 0 Gauss at the end of 1979, and a
field of about half the original magnitude with the opposite
sign in 1981, As in our earlier work, we have considered
several values of the polar field and investigated the

effect on the correlation of IMF polarity predicted by the

-16-
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FIELD STRENGTH IN NORTHERNMOST APERTURE
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Figure 8. The diagram shows the approximate location and size of the northernmost aperture

on the Sun during the observations for a magnetogram. The aperture is 3 arc minutes square.
Ten-day averages of the field strength measured in this eperture from May 1976 through

Decerber 1982 are plotted. The annual variation due to the inclination of the solar pole to

the ecliptic can be clearly seen. Before polar field reversal the average field strength

was about 95 pytesla. After reversal it was about 45 ptesla. The straight lines show the »
scaling factor used to determine the polar field correction throughout this interval with ;
11.5 cos®(8) gauss being the canonical value in 1976-1977.
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model and observed by ISEE~3 or other spacecraft, Figure 9,
described in more detail below, indicates that near maximum
the added polar fleld has very little effect on the correla-
tion. This is to be expected since the polar fields are
much weaker (zero right at maximum) and the lower latitude
fields are much stronger. At higher heliographic 1latitudes
the effect would be greater (Levine, 1982)., Comparison with

coronagraph measurements might allow a better determination.

As in our earlier paper, we have also investigated the
effect of varying the source surface radius. Previous work-
ers (Schatten et al., 1969, Levine 1977a and b) have used a
source surface radius of 1.6 R near minimum. Near maximum
and over regions of high activity others (Altschuler &
Newkirk, 1969 and Jackson & Levine, 1981) have used a radius
of 2.6 RS. Hoeksema et al., (1982) found that a radius of
2.35 R, gave the best correlation with IMF polarity near
minimum. We have computied the field on source surfaces with
radii ranging from 1.6 to 3.1 R, for several values of polar
field correction. From these we have constructed datasets
of predicted IMF polarity. Figure 9 shows the correlation
coefficient of measured IMF polarity with predicted IMF
polarity (lagged 5 days to account for the transit time from

Sun to EBarth) wvs. source surface radius.

~17-
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MAXIMUM CORRELATION vs, 3SOURCE SURFACE RADIUS
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Figure 9. Correlation of the measured IMF polarity with that predicted by the model vs.
source surface radii;. The maximum correlation coefficient for the time period lMay 1976

to June 1978 (Interval I), indicates an optimum source surface radius near 2.5 Rq. Circles
show the result computed with no.peolar field correction; triangles_for half the standard
field; squares for the standard polar field correction of 11.4 cos® (@) Gauss; and plusses
for 1.5 times that strength. Interval II shows the results for the period around maximum,
July 1978-August 1980, and Interval III for the period September 1980 to December 1982.
The correlation is somewhat higher for this last period. 2.5 Rg still seems to be about

the best source surface radius, and the magnitude of the polar field correction does not
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Interval I includes May 1976 through June 1978, the
rising phase of the sunspot cycle as shown in figure 2. The
four curves correspond to diffwrent values of the polar
field correction. Circles show the result for no polar
field addition; triangles £for half the standard f£field;
squares for the standard correction of 1ll1l.4 coss(e) Gauss;
and plusses for 1.5 times the standard strength. We show
similar curves £for the period around maximum, July 1978 to
August 1980, labelled Interval II. There is almost no
difference in the curves for this interval, which shows the
unimportance of the polar field in determining the equa-
torial structure. Interval III, September 1980 through
December 1982, shows the results for the beginning of the
declining phase. The maximum correlation is substantially
higher, due primarily to the structure's simplicity during
most of 1982, Again the correlation is rather insensitive

to polar field strength.

In no interval is there a sharp peak suggesting that
one source surface radius or polar field strength is clearly
the best. There ig, therefore, substantial uncertainty in
the selection of source surface radius and polar field.
Good choices are a source surface radius of 2.5 Rs and the

standard polar field correction. At no time is 1.6 Rs as

-18-




good. We must emphasize that Earth is not a good probe of
the heliosphere being limited to solar latitudes less than
7.5 degrees. When the latitudinal extent of the current
sheet 1is much greater than this we cannot easily determine
which source surface radius or polar field correction is

best using this method.

One additional correction has been made in the results
presented in this paper which was not made in Hoeksema et
al. (1982). PFor a variety of reasons there is usually a
small 2zero offset in the average magnetic field value for a
given Carrington Rotation. This is partially due to meas-
urement errors in the magnetograph: saturation effects,
luminosity deficiency of strong magnetic £field regions,
measuring only line-of-sight fields, missing data, and the
tilt of the polar regions (Pneuman et al., 1978). In addi-
tion the measurements making up one rotation are observed
over a period of 27 days during which the fields are evolv-
ing. Furthermore rotation rates are slower away from the
equator and so a complete rotation is not observed at higher
latitudes in 27 days. The zero onffset is usually small,
being only a few per cent of typical field wvalues at the

photosphere. Its value has been computed for the 360° gyr-

rounding each Carrington longitude and removed.

~19~
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VIi. SUMMARY & DIGCUSSION

ome——

The heliospheric current sheet reaches high 1latitudes
for much of the solar cycle. From 1978 through at least
1982 the extent was greater than 50°. The large scale
structure of the heliosphere changes slowly during most of
this period. Even near maxinum there is continuity for many
rotations in the structure, in spite of the complexity of
the photospheric fields. The IMF polarity predicted by the
model agrees fairly well with that observed near Earth by
spacecraft such as ISEE-3 in every interval. This suggests
that the potential field model, which does not treat rapidly
evolving fields accurately, is adequate to approximate the
heliospheric magnetic structure for this period. We would
expect improved comparisons if we used a more complex, non-

spherical source surface (Levine et al., 1982).

The structure of the IMF observed at Earth remains
fairly simple, consisting of either four or two polarity
sectors. The three dimensional configuration of the helio-
sphere 1s more complex near maximum. These calculations
show that multiple current sheets probably exist in the two
or three years near maximum. The current sheets shown in
Figure 5 show that the time of polar field reversal 1is not

one of cataclysmic change in the heliospheric magnetic

-20-
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structure, but rather marks the moment when an ongoing pro-

cess reaches a certain stage.

That the current sheet extends to such high latitudes
over such a large fraction of the solar cycle suggests that
cosmic ray propagation models may need to take this into
account. Jokipii and Thomas (198l1) considered the effect of
a simple two-sector current sheet on the solar modulation of
galactic cosmic rays by varying the latitudinal extent of
the current sheet from 10 to 30 degrees. This study shows
that not only is the structure much more complex, but the
extent in latitude is greater than 50° from 1978 through
1982, Comparison of IMF observations taken in the last few
years with inferred measurements of five previous sunspot
cycles (Svalgaard & Wilcox, 1975) suggests that the struc-
tures observed during this cycle are not very different from
those observed in past epochs. We expect that similar con-
figurations of heliospheric magnetic field occur in each

cycle.

While a few of the large scale structures shown here
exhibit differential rotation effects, many of them do not,
even though they stretch over great ranges in 1latitude.
This is similar to the rotation of coronal holes. This sug-

gests that some sort of underlying magnetic structure far

-21-
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beneath the photosphere may be rotating rigidly. Discussion
of the nature of such a structure is beyond the scope of

this paper.
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