sә!̣е

David Carter ${ }^{\star}$ Institute of Astronomy, Madingley Road, Cambridge

Received 1977 August 3; in original form 1977 February 10
Extended summary. Models of elliptical galaxies, such as those of Prendergast \& Tomer (1970); Wilson (1975); Gott (1975) and Larson (1975) make predictions of the shapes of the isophotes of elliptical galaxies. This paper describes procedures for measurement of parameters representing the shapes
 $\stackrel{\circ}{2}$

The main data reduction was done from a IIIaJ plate of this region of the sky taken with the Palomar $48-\mathrm{in}$. Schmidt. The plate was scanned with the
 of the brightest field stars and other galaxies were removed from the scans as described previously (Carter 1977a). Selected isophotes of the galaxies were then extracted from the raster scans as a series of (x, y) coordinates, and to
 the centre $\left(x_{0}, y_{0}\right)$, the major and minor axes and θ, the orientation of the major axis.
The isophote is then transformed to rectified coordinates, in which a per-
ect ellipse would be circular. The rectified isophote is then examined for
 -шо० มə!
 systematic error was found, interpreted and corrected for. The third and fourth-order components indicate systematic deviations from ellipticity,

 й

 Bu! * Present address: Department of Astrophysics, South Parks Road, Oxford.
which was applied for faint isophotes to reduce noise. The correction was
 Hubble-like surface brightness law.
 galaxies whose images are not too circular. Where residual star images or the
 isophote shape is dominated by the point-spread function. Errors in the
 scatter of the points, due to unremoved faint images. The results can be summarized as follows:
 by amounts of order one. This is especially true for the brightest galaxies, the cD galaxies NGC 6166 and 6173 and NGC 6146 and 6160 which are bright elliptical galaxies. Exceptions to this include some fainter galaxies,
where the results are less dependable, and NGC 6159 , some distance from the where the results are less dependable, and NGC 6159, some distance from the
clusters, where ϵ is constant.
 In some galaxies, such as NGC6166 it tends to be negative, but in others such as NGC 6146 and galaxy 13 (III Zw 82) it tends to be positive.
(3) θ varies with radius by up to $0.3 \mathrm{rad}\left(18^{\circ}\right)$. This is most noticeable in
 effects mean that the rotation of ellipsoids of constant density could be
Systematic errors originate from three sources, the plate, the microdensi-

 that such effects here should be small.

 snoب̣әs әsneэ ұои ор sұәәғғә э!

 not systematic errors in the parameters. A closeness of fit parameter was

 јо suойвира ұиеоџ! position angle with radius in Virgo cluster ellipticals.

 dict an ellipticity profile somewhat peaked, in conflict with observation.
Structure of isophotes of elliptical galaxies 799

 show a less peaked ellipticity distribution, resembling the observations more
closely. Gott (1975) considers the collapse of a cloud of stars, and predicts

 mine the distribution function.
Binney (1976), considering
Binney (1976), considering violent relaxation after anisotropic collapse,
showed that this led to a flattened equilibrium system, but his calculations were not sufficiently detailed to predict the ellipticity distribution with radius.
 There are two plausible explanations, either the outer regions of the galaxy
are not relaxed, due to accretion or tidal disturbance, or the galaxy could be in a triaxial equilibrium state (cf. Stark 1977).

 from the nuclei. This again appears to be a real effect, and its cause is not
clear.
The full text of this paper appears on Microfiche MN 182/2

$C 01$
SUMMARY

E
with respect to $a_{y} b_{,} x_{0}, y_{0}$ and ${ }^{2}$, thus deterwing the major axis,
minor axis, centre $\left(x_{0}, y_{0}\right)$ and posibion angle of the major axis of the
best fit ellipse. 8
TAEEE 2

M	
8	
\%	8 果 8 g जै b की b
\% है है	

The isophote is then transfommed to rectified co-ordinates by
the following transfomations:

$$
x_{i}^{2}=\frac{\left(x_{i}-x_{0}\right) \cos \theta+\left(y_{i}-y_{0}\right) \sin \theta}{2}
$$

$y_{i}^{i}=\frac{\left(y_{i}-y_{0}\right) \cos \theta-\left(x_{i}-x_{0}\right) \sin \theta}{b}$

The isophote in rectified co-ordinates is then examined for
deviations from circularity, which represent deviations of the

This is done by fourier analysis of the quantity
$R_{i}=\left(x_{i}^{2}+y_{i}^{2}\right)^{\frac{1}{2}}$ as a function of $\phi_{i}=\tan ^{-1}\left(y_{i} / x_{i}\right)$.

$$
A_{0}=\frac{1}{2 \pi} \int \mathrm{R}(\phi) d \phi
$$

$$
\begin{aligned}
& A_{\mathrm{n}}=\frac{1}{\pi} \int \mathbb{R}(\phi) \sin n \phi d \varphi \quad \mathrm{n}=1,2, \ldots \\
& B_{\mathrm{n}}=\frac{1}{\pi} \int \mathbb{R}(\phi) \cos \mathbb{n} \phi \operatorname{d\phi } \quad \mathrm{n}=1,2, \ldots
\end{aligned}
$$

The first five Fourier components, $\left(A_{0}-1\right), A_{1}, B_{1}, A_{2}$, and B_{2} indicate errors in the fitting procedure, if any of these quantities approach 0.1 then the fit is in error, and the isophote is not used in In practice A_{0} is always slightyy less than for a moisy isophote. The reason for this is that the fitting procedure minimises the quantity $\sum\left[R_{i}^{2}-1\right]^{2}$, and not $\sum\left[R_{i}-1\right]^{2}$. Because of this positive deviations in R_{i} have more effect on the fit than negative deviations, and the fit gives a radius systematically too large. This is corrected
for by multiplying a and b by A_{0}, and dividing all of the other

 which is most likely to be systematically non-zero is B_{h}. Figure i Curve 1 is a perfect ellipse which would give $\mathrm{B}_{4}=0$, curve 2 is a
 would give posicive B_{4}.

(1) The centre of the image (x_{0}, Y_{0}) can be fixed at the
light maximum, and the sitting procedure restricted to three free
as before, and the Fourier components A_{1} and B_{1} represent the
deviation of the actual centre of the isophote from the assumed centre
average radii are superimposed on the image. The procedure is then
to follow the ellipse around the image, taking measurewents of the
 method used.
-sesseuyean uqew oma moxy sueyjns pesn oxnporoud aul
rather
(2) The star removal program replaces a star with a constant
density value (Carter $1977 a$). Isophotes thus rewain distorted by the
residual star image. residual star image.
 preferabie from the point of viev of minimising esrors. The procedure
for this method would however be much more difficult to inplessent, and would require much more computer tive to rum.

010

$$
\begin{gathered}
\text { M m } \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline \\
\hline
\end{gathered}
$$

Resules
Figures 2 to 16 are plots of ε, θ, and B_{h} against average radius
for fifteen of the galaxies in Table 1 . Complete sets of data are
presented in tabular form in Appendix A for four of the galaxies,
gaxies $1,2,5$ and 11 . Complete sets of data for all nineteen
galaxies exist and are available on request. Where star images distort
the isophotes noticeably the contours are not used, hence there are
gaps in the data at some points.

No measurements at radii less than 10 arcsec are used, as here the
point spread function dominates the observed isophote shape.

$$
\begin{aligned}
& \text { The errors in } \varepsilon \text {, } \theta \text { and B4 due to the fitting procedure are } \\
& \text { small, and in most cases are within the dimensions of the points in } \\
& \text { the diagrams. A more realistic error is determined by the scatter of } \\
& \text { the points in Figures } 2 \text { to } 16 \text {, due to plate noise and wremoved fant } \\
& \text { stars and residues of images of bright stars. The scatter is estinated } \\
& \text { from Figures } 2 \text { to } 16 \text { to be: }
\end{aligned}
$$

$$
\delta \varepsilon=0.2 \quad(\mathrm{r} / 10 \mathrm{arcsec})^{\frac{3}{2}}
$$

These are the errors on which the error bars in the graphs are
The forms of the graphs in Figures 2 to 16 are discussed below.

Galaxy 1 : NGC 6166

This galaxy has a multiple nucleus, which causes the initial decrease in ε and variation in θ. ε increases from a radius of
about 30 arcsec and then flattens off. B_{4} tends to be negative but very small.

Galaxy 2 : NGC 6173

$$
\delta \theta=0.1 \quad(r / 10 \operatorname{arcsec})^{\frac{2}{2}} \varepsilon^{-1}
$$

ε increases from 50 arcsec, and flattens ofe at a value of
about 5 . It may decrease again frow about 120 arcsec, but here the distortion caused by bright stars imperfectly renoved, and also by galaxy 13, causes errors in the parateeters. 0 varies steadily in sense with increasing radius as seen in Plate $1_{\text {, }}$ the scan being
reflected about an axis. B_{4} is nowhere significantly different \square from zero.
Gataxy 3 : NET 6I46

Gaiaxy $4:$ NC 6160

noise in these uata.

Galany : NGC 6153

Gayexy $6:$ NGC 6180

Ge1axy 7 : WGC 6158

Ge1axy 8

Ge 1 axy 9

Gelexy 10

Galaxy 10 is noarly round whe the centre but e increases to boout

Galaxy 11

Galaxies 16 to 19 are all nearly round, and although the data are available no conclusions can be dram. The resuluions can be drawn.
The obtned can be sumed up by three statements. (1) ε genevally increases with radius and then flattens off. The
amount by which it varies is around. 1 . This is espectaliy true for the
brightest galaxies. There are some exceptions to this rule, mostly shaller
galaxies in which the region of increase of ε way be too nar in to be
observed.
(2) B4 does not depart systematically frow zero by wore than a few
percent. It is not systematically positive or negative.
(3) θ can vary with radius by up to 0.3 radians (i8 degrees).
Projection effects could nean that the real rotation of elipsoids of
constant density could be even greater.
C14

Downloaded from https://academic.oup.com/mnras/article/182/4/797/1107349 by guest on 20 August 2022

GALAXY 5 (NGC E159)

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

GALAXY 9

8

Downloaded from https://academic.oup.com/mnras/article/182/4/797/1107349 by guest on 20 August 2022

II $1 \times \mathrm{x}$ าย

劵

Downloaded from https://academic.oup.com/mnras/article/182/4/797/1107349 by guest on 20 August 2022

m

$91 \times \times 4740$

4. Accuracy and Significance of the results
4.

Comment on the rajor sources of exror
 A.

Three sources contribute to the noise in the data: the photographic
 offect the measurements presented here, as the surface brightnesses the microdensitoweter is $0-40$ the range of densities over which the isophotes used occur is $0.4-2.0 \mathrm{D}$. The density gradients $0.3 \mathrm{D} / \mathrm{resolution}$ elerent (15 microns), and at these density gradients and that of adjacency effects in the photographic enulsion are small
 other photometric studies (Godvin 1976) show no significant density n question. Comarison with resuits from another IIIaJ plate scanned at 25 micron resultion (K.l. Dixon; private comeurication) shows that of the objects. Most of the resolution problems come from the point source response function (seeing profile), and an attempt is nade to
 this study.

$$
\begin{aligned}
& \text { The most serious source of error is the contamination due to } \\
& \text { Tesidual star images and particularly the haloes of other nearby } \\
& \text { galaxies, This affects the outer regions of the inages, causing }
\end{aligned}
$$

satter in the points in Figures 2-16. It seems that these effects
will not be systematic.
Comparison with results from another plate

Figures $17-21$ show the results derived by the sawe techniques from loaned by Dr. J.V. Peach and Dr. J. G. Godwin. No colour gradients
are present in the outer regions of these galaxies, so the difteranc alaxies 1,3 and 6 effect. The diagrams are for 9 shows gaiaxies $1,2,3$, 4 and 6 . Comparison with Figures 2-5 and 7 shows
that the basic features of the ellipticity and orientation profiles are the same. Differences in the outernost parts are due to the the images on the red plate are slightay larger than on the ITTas

As this plate is slighty more exposed, some points at suallex raciii As this plate is slightly more exposed, some points at smaliex racil
are not used, as they are affected by erxors in the micxodensitometer
at high densities. The non-zero values of B_{4} still appear not to
be significant. These results tend to confirm ehe conclusion that but do not rule out the possibinity that errors intrinsic to the sky affect the resuits. Values of ε are corrected
spread function of standard deviation 2.8 arcsec.

C. Detailed analysis of the data on galazy 1

 Figure 22 shows some of the isophotes used together with the fittedellipses, both before and after corxection for non-zero Ao. These
diagrams illustrate the effects of the haloes of other galaxies on diagrams illustrate the effects of the haloes of other galaxies on
the isophotes. in Figure 22(a) the isophotes are systematically too large, in Figure 22 (b) they have been corrected for non-zero A0, but the ellipses are affected by the distortions caused by the fainter
gaiaxies. The distortions cause scatter in the points, but it seems that they will not cause systematic errors. A nubber of objects have
been removed from these maps, and only the faint outer haloes of the been removed ino
galaxies remain.

$$
\begin{aligned}
& \text { For each contour of NGC } 6166 \text { a closeness of fit parameter was } \\
& \text { determined by computing the sum }
\end{aligned}
$$

$$
\xi=\frac{\sum_{i}\left[\frac{\left[R_{i}-I\right]^{2}}{n}\right.}{n}
$$

ξ is not a formal x^{2} value, in this case the x^{2} statistic is
not very meaningful, as $\left(R_{i}-1\right)$ is not nomally distributed due to
the fact that adjacent points are not necessarily uncomrelated. Only
if the point spread function is a delta function, and star images are
simply points is it possible to work out a meaningful χ^{2} value.
In this case noise due to the residues of inages of bright foreground
staxs dominates over noise due to faint foreground stars and due to
photon statistics.

[^0](q)

(e)
 outer parts of galamy in iat Besore comxection of the
 Eox non zeto Ao.

Downloaded from https://academic.oup.com/mnras/article/182/4/797/1107349 by guest on 20 August. 2022
crend for ellipticity to increase with radius in elliptical galaxies
 (1975) showed e[1ipticity increasing with radis in two SB0 galaxies.
 unfortunately did not go very deep. They shownd alipgticity inc meakly with radius, and also plotted the position angle of the major
 data are sonewhat inconchusive. A comerisor or the tecminues used by
Barbonio and Capaccioli with those used here would be of interest, but unfortunately Batbon et al say very little about their techniques or the quality of theis obsezvational wateria.
I.R. King (private comamication) has shomn ellipticky to be a monotonically increasing function of ramin in sevemal virgo cluster
ellipticals, and is also reported to heve foud signiftcant variations of position angle with radins.

B. Comparison With theoretical yredictions

 two types. Those of Prendergast and Tomer (1970), nud Nison (1975)
are based on finding steady suate soluthons of the norminedr poisson

$*(n \cdot \bar{x}) d y x^{4}=(x) n z^{\Delta}$

 where $E=\frac{1}{2} v^{2}+U(x)$ is the total energy, $J=r \sin \theta v_{\text {p }}$ ts the mgular monentum, U(x) is the gravitational potential, $d^{3} y$ refers to integration over vePrendergast and Toner used:
$r g+{ }^{-3}=\left(\rho^{5} \operatorname{D}\right) d$
Which has a sonewhat unrealistic aiscontimuity at $E=0$. The models produced has a reailstic man of density with radius.
 as much as 4 , and then decrease back down to in. Although they did not
 box-shaped, i.e. to have negative $B_{4,3}$ espectaliy at laxge radius

Wilson used the distribution function:
$\mathrm{F}(\mathrm{E}, \mathrm{J})=\left(e^{-\mathrm{E}}-1+E\right) \exp \left(\beta J-\frac{5}{2} \xi^{2} J^{2}\right), E \leq 0$
$E>0$.
His extra free parameter, ξ_{s} enabled him to treat differential rotation rodependenty of the energy catoff. His ellipticity protiles were also
strongly peaked, he compared them wh measurewents of the elippticity profile of NGC 3379 , based on the surface photsmaty of miller and
Prendergast (1962), and on his own neasurements from photographs by Pendergast (1962), and on his own measurements from photographs by
Denison and by Hodge. He found that the ellipticity protile of NGE 3379 was much less sharply peaked tham those of has wodeis, as found
for the present galaxies. From Foumer analysis of his isophotes he or the present galaxies prom Fouriex analysis or in
concluded thet deviations fron elupticity were swall

[^1]The second chass of modes inelvies shose on wasom (107S) and

 account in a madial direction, and mexmenai wopent reluxationt is not

Lydem-Ben (967 showed that the foxm of tive thetwitwation

 Lyncien-Bell. The theory of the violene melamation or wotating systens

> A completely different interpretation of the flattenng of

are required before a final verdict on the reality of this effect can be given. The cause of the asymaetry, if real, is not clear, it may
 communication). Sufficiently large quadrupole distortions are not the supergiant galaxy of material from other galaxies (Richstone 1976), which could be somewhat anisotropic.

Acknowledgements

I thank C.D. Mackay, D. Lynden-Bell and B.J.T. Jones for many helpful
discussions on the subject of this paper, and for coments on the
nanuscript. I thank Professor I.R. King and an anownous referee for
comments on the original draft of this paper. I thank Dr. Jon Godwin
for comnents and for providing several references. The wethod of
Fourier analysis of the isophotes of gaiaxies was suggested to me by
E.J. Kibulewhite. The loan or the plates by C.D. Mackay and
RJ.E. Kraft, and by J.V. Peach and J.G. Godwin is gratefully
acknowledged. I thank G.E.M. Jared for assistance with the computing
and J. Pilkington and K.F. Hartey for assistance with the pos
microdensitometer. I acknowedge an S.R.C. studentship whilst the
first part of this work was carried out.
Axp, H.C., and Bertola, F., 1969, Astrophys.Lete., 4, 23. Barbon, R., Capaccioli, W., \& Tarenghi, M., 1975, Astr.Astrophys, 388, 315. Barbon, Re, and Capaccioli, M. 1975, Astr.A.trophys., 42, 103 Barbon, R., Benacchio, L., \& Capaccioli, M., 1976, Astr.Astrophys.,51, 25. Binney, J.J., 1976, Mon,Not.R.Astr.Soc., 177, 19. Carter, D., 1977a, Mon.Not.R.Astr.Soc., 178, 137.
Carter, D., 1977, Thesis, Cambridge lniversity. Carter, D., and Dixon, K.L., 1977, Submitted to Godwin, J.G., 1976, Thesis, Oxford University.
Gott, J.R., 1975, Astrophys. J., 201, 296.
lodge, P.W., 1963, Astron.J., 68,
Hodge, P.W., 1973, Astrophys.J., 182, 671.
Hodge, P.W., 1976, Astron.J., 81, 25.
hoffran, A. W., and Crane, P., 1977, Astrophys.J., 215, 379. Kibblewhite, E.J., 1969, Thesis, Cambridge University. Larson, R.B., 1975, Mon.Not.R.Astr.Soc., 173, 671. Liller, M.H., 1960, Astrophys. ${ }^{3}$. . 132, 306. Liller, M.H., 1966, Astrophys.J., 146, 28. ynden-Be11, D., 1967, Mon.Not.R.Astr.Soc., 135, 101. Giller, R.H., and Prendergast, K.H., 1962, Astrophys.J., 136, 713. Miller, W.C., 1971, A.A.S. Photo-Bulletin No.2, p3. Prendergast, K.H., and Tower, E., 1970, Astron.J., 75, 674. Redman, R.O., and Shirley, h.G., 1938, Mon .Not.R.Astr.Soc., 98, 613. Richstone, D.0., 1976, Astrophys.J., 204, 642. Rood, H.J., and Sastry, G., 1972, Astron.J., 77, 451. Stark, A.A., 1977, Astrophys.J., 213, 368.
Wilson, C.P., 1975, Astron.J., 80, 175.
Zuicky, F., 1973; Catalogue of selected compact and post-eruptive
Zwicky, Fo, and Herzog, E., 1966, Catalogue of galaxies and clusters
APPENDTX A

 North-South direction. For galaxies 1, 2 and 11 this is positive in a clockwise sense, and for galaxy 5 it is positive in an

 give the first eight Fourier components. They are corrected for non zero A_{0}, the correction in most cases is small.

[^2]| ∞ | |
| :---: | :---: |
| 4 | |
| \cdots | |
| \% | |
| 10^{*} | |
| \sim^{20} | |
| cc^{+2} | |
| $<$ | |
| 5 | |
| \times | |
| | |
| | |
| | |

R	ε	θ	x_{0}	y_{0}	A_{1}	B_{1}	A_{2}	B_{2}	A_{3}	B_{3}	${ }_{4}{ }_{4}$	B_{4}
10.44	2.66	2.34	0.0	0.0	-0.0087	0.0101	-0.0046	0.0018	-0.0149	-0.0021	0.0014	-0,0036
11.47	2.64	2.31	-0.05	-0.16	0.0060	0.0051	-0.0092	0.0049	-0.0001	-0.0024	0.0003	-0.0206
12.93	2.67	2.29	-0.06	-0.15	-0.0009	0.0015	-0.0037	0.0060	0.0017	0.0062	-0.0038	-0.0055
13.58	2.82	2.31	-0.11	-0.19	0.0005	0.0041	-0.0086	-0.003?	-0.0002	0.0093	0.0026	-0.0187
14.33	2.79	2.30	-0.07	-0.37	0.0080	0.0088	-0.0033	-0.0045	0.0036	0.0112	0.0106	-0.0192
15.23	2.73	2.28	-0.02	-0.34	0.0066	-0.0023	-0.0020	0.0005	0.0068	0.0053	0.0046	-0.0152
16.38	2.56	2.24	0.02	-0.08	-0.0060	0.0017	0.0036	0.0015	-0.0005	0.0026	-0.0187	-0.0042
17.74	2.73	2.26	-0.20	-0.21	-0.0009	-0.0156	-0.0021	-0.0079	-0.0043	-0.0122	-0.0087	-0.0173
19.47	2.62	2.28	0.08	-0.09	-0.0038	0.0080	0.0003	-0.0019	0.0111	0.0021	-0.0001	-0.0229
21.87	2.58	2.25	0.24	-0.47	0.0034	0.0026	-0.0037	0.0101	-0.0051	0.0059	-0.0084	-0.0048
24.90	2.55	2.22	0.07	0.06	-0.0011	-0.0032	0.0019	0.0070	-0.0089	0.0148	-0.0165	-0.0089
30.44	2.49	2.20	0.83	0.25	-0.0231	0.0050	0.0048	0.0106	0.0022	0.0182	-0.0188	-0.0091
46.28	2.90	2.20	0.67	-0.26	0.0023	-0.0129	0.0142	0.0010	0.0303	-0.0004	0.0084	-0.0220
54.10	2.63	2.34	1.94	-0.55	-0.0129	0.0091	0.0016	-0.0183	-0.0158	0.0228	-0.0072	-0.0389
64.81	4.15	2.14	8.27	2.29	0.0330	0.0180	0.0335	-0.0274	-0.0086	0.0867	-0.0378	0.0603
69.54	4.27	2.10	13.02	2.21	0.0291	-0.0279	0.0438	-0.0044	0.0055	0.1083	-0.0137	0.0765

R	ε	θ	x_{0}	y_{0}	A_{1}	B_{1}	A_{2}	B_{2}	A_{3}	B_{3}	A_{4}	B_{4}
9.87	3.10	0.51	0.0	0.0	0.0069	-0.0029	0.0035	-0.0124	-0.0183	-0.0063	0.0035	0.0007
11.47	2.51	0.56	-0.10	-0.06	-0.0120	-0.0206	0.0103	0.0137	0.0051	0.0164	0.0051	-0.0030
12.35	2.77	0.64	-0.14	0.01	0.0034	0.0024	-0.0039	0.0	-0.0026	0.0035	-0.0205	-0.0178
12.84	2.87	0.65	-0.35	0.05	-0.0013	-0.0015	-0.0039	-0.0002	0.0046	0.0011	-0.0215	-0.0125
13.33	2.91	0.66	-0.49	0.15	-0.0037	-0.0037	-0.0046	0.0003	0.0076	0.0002	-0.0221	-0.0094
14.00	3.21	0.67	-0.06	0.11	0.0001	-0.0025	-0.0036	0.0010	-0.0092	0.0234	-0.0206	0.0067
14.71	3.00	0.70	0.02	0.11	-0.0084	-0.0029	-0.0083	0.0104	-0.0113	0.0270	-0.0173	0.0046
15.59	2.38	0.72	-0.02	0.64	0.0055	0.0	-0.0047	0.0288	0.0078	0.0275	-0.0066	0.0223
16.62	2.16	0.70	0.19	0.81	0.0056	0.0008	0.0001	0.0228	0.0280	0.0123	0.0082	0.0116
18.02	2.48	0.82	0.47	0.34	-0.0027	-0.0053	-0.0180	0.0115	0.0425	-0.0054	0.0234	0.0276
19.79	1.95	0.95	0.78	-0.68	-0.0148	-0.0035	-0.0215	0.0294	0.0755	-0.0149	0.0201	0.0192
23.78	2.11	0.62	3.78	-0.96	-0.0229	-0.0565	-0.0392	-0.0095	-0.0118	-0.0614	-0.0662	-0.0067
24.60	1.49	0.66	3.65	-0.99	-0.0213	-0.0374	-0.0345	0.0174	-0.0071	-0.0780	-0.0596	-0.0079
26.38	1.60	1.32	1.46	2.89	-0.0296	-0.1301	-0.0503	-0.0849	-0.0344	-0.0848	0.0490	-0.0236
29.66	1.97	1,01	2.56	1.91	0.0286	0.0274	-0.0261	0.0215	0.0709	0.0202	-0.0345	-0.0046
31.94	1.99	1.06	2.49	2.43	0.0094	0.0077	0.0072	0.0102	0.0515	0.0738	-0.0458	-0.0353

OHE 601

[^0]: This table also gives uncorrected values of R and all roumer

[^1]: The models of wilson and of Preadergast and Toner were constructed
 fit NGC 3379 , but should scale siaply to larger and more massive galaxies

[^2]: Distortion of isophotes by a single star will often show up on-zero values of first and second order components are due to distortion by some object. Fourth order Fourior connonts, particularly B_{4}, show the deviations of the isophote Erom,

