
T h e  s t r u c tu r e  o f  th e  r e a c t io n  zo n e  in a  f la m e

By  S. F. Bo y s , I . C . I .  Research F e llow  i n  the U n iv e rs i ty  o f  L o n d o n  

a n d  J .  Co r n e r , A r m a m e n t  Research D ep a rtm en t,  M in i s t r y  o f  S u p p l y

(C om m unica ted  by S i r  J o h n  L en n a rd -J o n es ,  F .R .S .— Received  17 Sep tem ber  1948)

The structure o f one-dim ensional flames is shown to  be com pletely  determ ined by  constants  
such as those o f  heat conductiv ity , o f  diffusion, and o f th e  hom ogeneous reaction  rates.

The m athem atica l problem  in th e  m ost general case is in tractable, but three sim ple cases are 
solved  fu lly  by  a m athem atica l m ethod  o f successive approxim ations. The three cases are 
those in  which diffusion is neglected  compared w ith  heat conductiv ity  and in which reaction  
velocities o f  th e  follow ing typ es are considered: unimolecular, bim olecular, and th e  quasi - 
bimolecular form o f a unimolecular reaction  a t low  pressures. The m ethod  o f m athem atica l 
approxim ation  is shown to invo lve  errors o f  th e  order o f  on ly  10 % in som e actual cases, an  
error which is neg lig ib le compared w ith  other uncerta in ties o f  the problem . In  these  sim ple  
cases it  is possib le to so lve all deta ils  o f  th e  structure such  as th e  varia tion  o f com position  
and temperature through th e  flame.

1. I n t r o d u c t i o n

The propagation  of flames is an  extrem ely  im p o rtan t n a tu ra l phenom enon, y e t th e  

theo ry  of th e  s tru c tu re  o f flames has been very  little  developed. H ere we shall give 

a con tribu tion  to  th e  q u an tita tiv e  calculation of th e  s tru c tu re  by  giving m a th e 

m atical solutions for some simplified models, which how ever contain  all th e  essential 

features o f th e  general problem .

Before proceeding w ith  th e  detailed  calculations i t  appears w orth  while to  show 

ju s t w h a t are th e  difficulties in  q u an tita tiv e  theoretical predictions of th e  s tru c tu re  

o f an y  flame. The difficulties are  twofold, first, even if  we were given all necessary 

d a ta , th e  m athem atica l problem  w hen form ulated  is a  particu la rly  in trac tab le  one 

for either analy tic  or num erical solutions, an d  secondly, very  little  o f th e  necessary 

d a ta  is available for an y  ac tu a l flame. The d a ta  necessary are th e  ra te s  of all th e  

reactions occurring in th e  flame an d  th e ir dependences on tem p era tu re  an d  con

cen trations, and  also th e  h ea t conduction and  diffusion constan ts  of all com ponents 

o f th e  m ix ture. The necessary d a ta  will presum ably  become m ore read ily  available 

as a resu lt of fu rth er experim ental m easurem ents and  theoretical q u an tu m  cal

culations, b u t considerable w ork will have to  be done on m ethods of solution of th e  

m athem atica l problem . The p resen t calculation provides some progress tow ards th is .

There appears to  be no difficulty in the  general m athem atica l theo ry  of th e  

s tru c tu re  and  m ode of p ropagation  o f stead ily  m oving plane flames. The well-known 

process of reactions evolving h ea t and  new particles, and  of h e a t conduction and  

diffusion provide a  com plete explanation  of flames w hich m ove sufficiently slowly 

th a t  appreciable pressure waves are  n o t set up. I t  is to  th is  class th a t  th e  ord inary  

designation of flames is usually  applied and  to  which we shall be confining our 

a tte n tio n  in th is  paper. I f  we consider a  plane flame in  a  m edium  which is m oved a t  

such a ra te  th a t  th e  flame is s ta tio n ary  all concentrations, etc., will become m erely 

functions of th e  co-ordinate perpendicular to  th e  flame fron t, which we shall repre-
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sent by x .  I f  we examine in tu rn  the ra te  of accum ulation of any component or energy 

in a th in  region 8x  and equate these to  zero, since in this steady state  there ca

ra te  of accum ulation, we obtain all the differential equations of the structure of 

the flame.

L et y x represent the  tem perature and y2,y 3, ■■■,yn+i all the concentrations (as 

fractions of the to ta l mass) of all the different chemical species. Then the flux of 

the (r)th com ponent across any u n it cross-section will be a linear com bination of all
dv

the  concentration gradients — 2  K s > where Ars will be given coefficients of heat

conduction or diffusion. Hence the ra te  of accum ulation in is ~  SArQ-^- This
a x  a x

applies equally whether we are considering the first component, which is the tem 

perature, or one of the concentrations. The am ount of the (r)th component passing 

across a u n it cross-section due to the movement of the medium is M y r, where M  is 

the to ta l flow; M  m ust be a constant for the whole system, since there cannot be any 

accum ulation of to ta l mass. Hence the accum ulation of the (r)th component in x

d y r

The structure o f  the reaction zone i

m ust be M  8x  due to  the difference of the flux a t each side of the th in  layer. I t

m ust be noted th a t y x is something of an exception in this case, since the e

contains term s dependent on the work done by the pressure in this case, and for

d
complete accuracy in the general case we m ust use a term  — — 2  csdys in which

CLju

the effects of differing specific heats are also allowed for. Lastly, the rates of accum u

lation due to the generation in the reactions we can write £ ir8x  where each of these 

will be some definite function of all the ys. Hence we have the equations

dV> M  ~ 2  c ,y s +  « ,  = «,
d x  ?  /' lK dx ~ d x

- - Y A  J f —  
d x  s Af8 dx  d x  + r

r > 1

In  addition to this we shall know the values of a t = — oo; they  will be ju st the 

concentrations in the unreacted m ixture which is provided in the particular experi

ment. The values a t x  =  oo will be calculable from ordinary equilibrium 

gether w ith the heat generated in the reactions. Representing these initial and final 

values as y \  and r{ the m athem atical problem is to find solutions for the y r as functions 

of x  which satisfy the differential equations and the boundary conditions, together 

with the value of M  which makes it possible for all these conditions to be satisfied 

simultaneously. This is actually an eigenvalue problem for the value of , and even 

when the values of Ars, Cs and M r are all given it is a singularly intractable problem. 

I t  might perhaps be stressed th a t this is the essential nature of the problem and 

any a ttem pt a t solution for simplified models which do not have this essential 

nature of M  being determined by making the solution of one or more differential 

equations satisfy the boundary conditions cannot be a valid approximation. Since 

M  is the mass flux of the medium in the steady state  it is the velocity of the flame
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expressed by  giving th e  m ass o f th e  m edium  th rough  which u n it a rea  of th e  flame 

moves per u n it tim e.

There appear to  have been only tw o previous a tte m p ts  to  m ake predictions of 

flame velocities on th e  basis o f models o f th e  flame stru c tu re  from  such considera

tions. A n a tte m p t b y  Zeldowitsch & F rank-K am enetzk i (1938) is on these lines, 

reducing th e  system  to  one differential equation  and  th en  m aking an  estim ate  o f a  

solution b y  a  tem porary  neglect o f one of th e  term s of th e  differential equation . I t  

is h a rd  to  estim ate  th e  significance of th is, b u t i t  does n o t give a  system atic  m ethod  

o f successive approxim ation  to  th e  solution of th e  differential equation . In  th e  o ther 

a tte m p t, by  Lewis & von E lbe (1934), a  num ber o f ad  hoc approxim ations are  in tro 

duced in to  th e  problem  and  so far as th e  au thors can trace  th e  proper m ethod  of 

determ ining  M  by  m aking th e  solution fit all th e  boundary  conditions is n o t used.

The simplified models which we shall tre a t  system atically  in  th is  p aper are  those 

in  which a  single reaction  occurs, for which we shall consider b o th  unim olecular 

reactions an d  bim olecular reactions, an d  in  which diffusion is neglected an d  only 

h ea t conduction considered. The ac tu a l circum stances to  which such a  p ic tu re  m igh t 

app ly  accura te ly  are p robab ly  only those o f a  reaction  p ropagated  th ro u g h  a 

liquid. I f  an  exotherm ic reaction  takes place in  th e  upper layers o f a  liquid  th e  

reaction  could be p ropagated  dow nw ards th rough  a  m etastab le  liquid  in  a  m anner 

exac tly  equ ivalen t theoretically  to  a  flame. I t  is conceivable th a t  such a  m ethod  

m ight ac tua lly  be used for th e  m easurem ent o f a  p articu la r fast liquid  reaction  

velocity  by  using one o f th e  form ulae o f th is  p aper in  a  reverse sense. H ow ever, th is  

was n o t th e  aim  in  perform ing these calculations. The sim ple cases were tak en  

because th ey  were possible to  solve and  w ould provide form ulae for th e  propagation  

velocities which were of th e  correct na tu re . I t  was hoped th a t  these could be used 

as crude approxim ations for gaseous reactions even though  diffusion does occur in  

these. A ctually  these form ulae d id  n o t prove as useful for m aking predictive e sti

m ates for th e  p a rticu la r flames in which th e  au thors were in te rested  as had  been 

hoped. D etailed  exam ination  ind icated  th a t  th e  circum stances were too com 

plicated  to  be represen ted  b y  a  single reaction. H ow ever, th e  fac t th a t  i t  was possible 

to  carry  o u t th e  com plete analysis for these simple cases appeared  to  be very  helpful 

in  th e  general understand ing  o f the  ac tua l processes in  flame, an d  in  estim ating  w hat 

factors were of im portance in determ ining varia tions o f p ropagation  velocities.

W e shall now proceed to  carry  ou t the  m athem atica l analysis for these simplified 

models.

2. Ma t h e m a t i c a l  t h e o r y  o f  t h e  p r o p a g a t i o n

OF A FLAME BY  THERMAL REACTION

W e shall exam ine th e  s teady  p ropagation  of a plane reaction  zone th rough  a 

homogeneous m edium  w ith  th e  following p ro p erties :

(i) th e  m edium  is capable of a  single reaction  whose ra te  a t  any  po in t in  th e  

m edium  is determ ined solely by  th e  tem peratu re , pressure, and  th e  stage to  which 

th e  reaction  has a lready proceeded a t  th e  po in t;

(ii) diffusion is sm all enough to  be neglected in th e  tim e concerned;

92 S. F. Boys and J . Corner
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(iii) the  velocity of m ovem ent of the  reaction zone is sufficiently slow th a t the 

pressure is effectively constant through this zone.

The general analysis would apply to  a  flame in a gas, or the m ovem ent of a reaction 

zone in a solid or liquid provided the  above conditions were fulfilled. We shall 

examine the general case, and  then  some special cases in which constant specific 

heats and therm al conductivities, together w ith activation energy formulae for the 

reaction rates, are assumed. The general case can always be integrated numerically 

when the  necessary d a ta  are available, and in the special cases explicit formulae for 

the ra te  of burning can be obtained.

We examine the  structure of a steadily moving plane reaction zone. W e take an 

x  axis of reference perpendicular to  the  plane, so th a t the  condition of the  medium 

is dependent only on x ,  and independent of y  and  z. We take an origin moving w ith  

the  reaction zone, so th a t relative to  our axes of reference the  unreacted medium 

moves from the  direction of negative x, and after passing through the  reaction zone 

the  products pass towards x  = oo. All properties of the  system 

W hen U  is the velocity of the medium a t any point, the  ra te  a t which any property  

A  of a small given portion of the medium varies w ith tim e is given by

The structure of the reaction zone in a flame 93

d X  _  v d x  

dt d x  '
( 1 )

U  will a lter as we pass through the reaction zone.

The quantities whose variation through the  reaction zone as required are U  the 

velocity, V  the  volume per un it mass, T  the  tem perature, and e the  fraction the 

reaction has progressed towards completion. We can im m ediately obtain a relation 

between U  and V. I f  we consider the m aterial moving along a cylinder w ith walls 

parallel to  the x  axis and of un it cross-section, i t  is apparent th a t the same mass is 

moving across any cross-section of this per un it time, and representing this by M ,  

we have

( 2 )

Since the pressure is constant, V  m ust be a function of T  and e only, known from 

the equation of state  for the medium with a given e.

The energy crossing any normal section of the  cylinder m ust be a constant, or 

energy would accumulate or disappear between two cross-sections. The energy 

flow is composed of:

(а ) the intrinsic energy E  per un it mass, transported by the mass flow;

(б ) the work done by the m aterial on one side of the section by its pressure on 

the m aterial on the other side of the section;

(c) the flow of heat due to  therm al conductivity.

The flow by conduction a t large distances from the reaction zone will be zero on 

both sides. Denote the conditions a t a large distance before the reaction zone by 

T0> V0, etc., and a t large distances past as Tm, Vm, etc. Then we have

M E + P V - ~  = M E m + PUm =  M E 0+ P U 0, (3)
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94 S. F. Boys and J . Corner

which gives ^[~dx  =  E  — E m + P ( V  — Vm) = H  — Hm or H  — H 0, (

H  is th e  to ta l h ea t con ten t per u n it mass.

W e need a  fu rth e r relation , w hich is supplied by  consideration o f reaction  velocity. 

The homogeneous ra te , expressed as de/dt, will be a f

in itia l assum ptions. H ence we have

(5)

E quations (4 ) an d  (5 ) can be w ritten  in term s o f e an d  T  alone, since H  will be 

a know n function  of e, T  an d  V, and  th e  la tte r  can be elim inated  b y  using th e  eq u a

tion  of s ta te . In  th is  w ay we can ob ta in  tw o differential equations in  e, x  an d  T ,  

which can be simplified by  dividing one b y  th e  o ther, giving

de  _  A ^(e, T )  .

d T  = W V { W ^ H J ‘ ( '

This is possible only because x  does n o t appear except as dx .  In  m ore general cases 

th a n  we are considering in th is  paper, x  m ay  appear explicitly ; th is  happens when, 

for exam ple, th e  phenom ena in  th e  flame zone depend on th e  distance from  some 

solid boundary . In  such cases the re  is no p o in t in  form ing (6 ). In  our case, how ever, 

th is  step  is useful because th e  problem  can be solved from  equation  (6 ) alone. I f  

d istances in  th e  flame zone are of in te rest th e  results can be su b stitu ted  in (4), giving 

th e  rela tion  betw een x  and  T or e.

W e require  th e  in tegral o f (6) which is such th a t  T  =  T0 w hen — 0 , an d  T  =  

w hen e =  1. T0is th e  tem p era tu re  a t  a  large distance inside th e  un reacted  m ediu

th e  in itia l tem peratu re , w hich is know n in  an y  p a rticu la r set of experim ents. 

Tm follows from  th is  by  th e  re la tion

=  0 ,

where H m is th e  to ta l h ea t co n ten t for e =  1, and  H 0 refers to  =  0 .

Tm is th e  tem p era tu re  o f burn ing  a t  constan t pressure, easily calculated  from  

therm ochem ical d a ta .

E q u a tio n  (6 ) is a  first-order equation , and  its solution is determ ined  by  th e  p a ra 

m eters o f th e  equation , together w ith  one pa ir o f corresponding values of e an d  T .  

The solution determ ined  by  th e  condition a t  T0 will in  general n o t fulfil th e  condition  

a t  th e  upper lim it Tm.There will be one value of M  for which bo th  co

satisfied; th is  determ ines th e  only velocity  possible for a stead ily  m oving reaction  

zone. This value of M is a  function  of th e  o th er param eters in  th e  equation

The form  of th e  equations ensures th a t  e and  T  rem ain  constan t beyond th e  po in t 

where e =  1 and  T  — Tm. This has th e  resu lt th a t  we can re s tric t our a tte n tio n  to  

th e  equation  for d e /d T ,  w hen try in g  to  find th e  correct value of M .  N o m a tte r  

w hether th e  po in t e =  1, T  =  Tmis a

th a t  everyw here beyond th is  po in t th e  outgoing gases will be a t  th e  tem p era tu re  

Tm and  will be com pletely reacted , which is necessary for a  physically  satisfac to ry  

reaction  zone. A t d istances which are large com pared w ith  th e  effective th ickness
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95

of the  flame, the  gas m ay be subjected to  cooling and consequent changes of com

position, b u t these cannot affect the ra te  of burning. The only influences which 

can have any effect on the ra te  of burning are those which can act in the region where 

by far the  greater p a rt of the  reaction takes place.

As the  problem is solved by  choosing an arb itra ry  param eter in a differential 

equation so th a t it  has a solution which satisfies several boundary conditions, the 

problem is essentially the  determ ination of an eigenvalue. The very general form in 

which we have left the various functions such as the heat content data, makes no 

difference to the principles of solution of the problem. We shall of course make much 

more special assum ptions in following sections, b u t we shall no t need to introduce 

any other general ideas of the reaction zone.

The velocity of the reaction relative to the unburn t medium is MV0. The corre

sponding relation between e and T  is the solution of (6) w ith the proper value of M ; 

finally, the  ( x , T )  relation can be found by substituting in (4). This provides a sca

of distances for the variation of T  and e through the reaction zone.

The structure of the reaction zone in a flame

3. A SOLUTION  B Y  SUCCESSIVE  A PPROX IM AT IONS

W e shall now examine three simple cases which can be integrated explicitly by 

a m ethod of successive approximations. These cases correspond to  simple forms of 

the  reaction ra te  which are frequently found in practice. The m ethod of successive 

approxim ations is no t necessarily restricted to  these cases.

We shall lim it our exam ination to a zone in perfect gases w ith constant specific 

heats per un it mass. All these assumptions will be discussed fully in appendices.

I f  Qm is the heat of reaction a t constant pressure a t the tem perature Tm of the final 

products, we have

H - H m =  (1 - 6) Qm + ( T - T J  [Cj( 1 -  

where Cp is the specific heat of the reactan t and th a t of the products, both a t 

constant pressure. I t  would be possible to integrate this case if the problem required 

this refinement, b u t since a simpler case is adequate for our purposes we shall pu t 

Cp = Cp = C. We can also write Q instead of Qm, since now the heat of reaction is 

independent of the tem perature. Thus finally

H -Hm= ( l - e ) Q  + ( T - T JC ,

, ,  . A  dT
so th a t —

M  d x

and substituting in (6),
de _  A& ( e ,T )

d T  ~

Q ( l - e )  + C { T - T m),

( 8 ) 

(9)

M W { { l - e ) Q  + ( T - T m) C y  (10)

In  a simple reaction in which molecules of molecular weight W  give molecules of 

molecular weight w, the equation of state  is

[ ~ w + l \ R T
(1 + ne)

R T
(11)

TV
where n  =-1, and R  is the gas constant per mole.
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96

I f  th e  rea c ta n t consists o f m ore th a n  one ty p e  o f molecule w ith  different m olecular 

weights, th is  equation  will have th e  sam e form  b u t w ith  a  different value of n .

W e shall derive form ulae for th e  ra te  of burning  associated w ith  th ree  types of 

homogeneous reaction: (I) a  first-order ra te  from  a  unim olecular m echanism ; 

(II) a  second-order ra te  from  a  bim olecular reaction; (I II)  a  second-order ra te  as 

th e  low pressure resu lt o f a  unim olecular breakdown. T hese are  described b y  th e

S. F. Boys and J . Comer

values of dejd t  as functions o f e, V  an d  T .

(I)
d f

&{e, V, T )  =  j t =  B 1( l - e ) e x v ( - A / B T ) . (12)

(II)
(Ip

@ { e , V , T ) ~ j t =  J52(l ~ e)2 F -1 exp { — A (13)

(H I)
rj p

& ( e ,V ,T )  =  ^  =  J53(l — e) (1 + n e) F ^ e x p (14)

The values o f th e  constan ts  will be discussed when th e  results are applied  to  

p articu la r cases.

S u bstitu ting  in (10), we have

( I )

(II) 

(H I)

de ABj(l — e )exp ( — A / R T )
(15)

d T  ~ M W { Q ( l - e ) + C ( f - T j y

de Ai?2(l — e)2exp ( — A j R T )
(16)

d T  = M W 2{ Q ( I - e )  + C ( T - T m ) y

de AB3(1 — e) (1 +ne)exp
(17)

d T ~ M W \ Q ( l - e )  + C ( T - T „ l)} '

The essentials of th e  m ethod  of in teg ra tion  are th e  sam e in  all cases, b u t case 

(III)  is sim plest in  algebraic detail, and  we shall consider th is  first. F rom  (11) an d  

(17), th e  rela tion  betw een e an d  T  is

de A-Bg P 2 JF2( 1 — e) exp ( —

d T  ~  M 2R i T 2( l + n e ) { Q ( l - e )  +  C(T-( '

This equation  canno t be in teg ra ted  exactly . N ear th e  ou te r boundary  o f th e  reaction  

zone T  — Tm and  1 — e are  small, an d  these term s determ ine th e  behaviour o f th e

solution in  th is  region. All o ther functions of and  can be given th e  values corre

sponding to  T  = Tmand  e =  1 . The equation  th u s  simpl

a t  large distances, where T  — Tm and  1 — e are sufficiently sm a

solution of th e  original equation  satisfying th e  boundary  condition th a t  

w hen e =  1 . This (e, T )  re la tion  will th en  be used in th e  aw kw ard  cou

m ake (18) in tegrable by  quadra tu res. This provides us w ith  a  second app rox im ation  

to  th e  solution of (18). W e shall n o t go beyond th is  o rder o f approxim ation , because 

com parison w ith  step-by-step  in teg ra tion  of th e  differential equation  has shown th a t  

th e  accuracy is am ple for our purpose; m oreover, th e  n ex t app rox im ation  equation  

would be as difficult to  solve analy tica lly  as th e  original equation  itself. I t  is n o t 

possible to  stop  a t  th e  ex trem ely  sim ple first approxim ation , because th e  e rro r in  th e  

ra te  o f burning, as com pared w ith  an  accura te  num erical solution of th e  equations,
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The structure of the reaction zone in a flame

is a  factor of about three. The error in the  second approxim ation has no t been more 

th a n  15 % in those examples which we have tested; these belonged to  case (II), and 

the  errors are presum ably of the  same order of m agnitude in cases (I) and (III).

W rite 1 -  e=. £ and Tm - T  = rj.

The first approxim ation is the  solution of the  equation

= AB,P*W*Zexp(-A/JBTJ _  

dy A

D 3£

Q i ~ C y '

where D 3 is defined by this equation. Hence

Qdr] C 7

M + d »1 "  d

(19)

( 20 )

The boundary condition T  — Tm when e —  1 , is 0 when £ =  0 . The solution of 

(20) which satisfies this condition is

C + D a
( 2 1 )

Inserting this in the  coupling term  of (18), we have as the  equation for the second 

approxim ation,
de _  \ B 3P 2W 2(C + D 3)exj>( — A

d T  ~~ M 2R 2(1 + n e )  Q D 3

of which the integration is immediate:

[e + ime2]S = XBZM > m t b J h ) A {e- ' V (22)

This contains one param eter which is still arb itrary , nam ely M .  This we m ust 

choose so th a t the  solution satisfies the boundary condition a t the beginning of the 

flame, th a t  e =  0 when T  = T0. W hen T  is small, e~A/RT° is effectively zero in com

parison w ith e~A/RTm, and so the equation which m ust be satisfied by M  is

I I  »  IB3P*WHC + D3)(B\ I a  )
+  2 U /  P l R T J '

and using (19), the definition of D 3, we find

M 2
Aj53 P 2 W 2 exp ( — A 'IR T m)

j?2n . c ( i + » ) U 1 + M ( i i (
l \ i + W U  T J \OTmJ j

(23)

This gives M ,  the mass of the medium which passes through unit cross-section of 

the reaction zone per un it time. V0 is the specific volume of the original reactant, and 

MV0 is the velocity of movement of the reaction zone relative to the unreacted 

medium. To obtain the relation between e and T  through the flame, the value of M  

from (23) would be used in the solution (22). By solving a quadratic the solution 

can be w ritten as an explicit function e = f ( T ) .

Vol. 197. A. 7

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0

2
2
 



98 S. F. Boys and J . Corner

In  using th is equation  an d  sim ilar ones which we shall ob ta in  la ter , one po in t m ust 

be noted . The gas constan t R  appears from  tw o sources; as 

equation  o f s ta te  o f the  gas, i t  has to  be in th e  u n it

(unit o f pressure) x (un it o f volume) 

u n it of tem peratu re
of a  mole of gas.

In  o ther words, R  is in  th e  appropria te  m echanical units. The ac tiva tion  energy A  

is conventionally  given in h eat units, as calories, so th e  R  associated w ith  th e  A  is 

in  h ea t un its, calories per mole per degree. To p reven t possible confusion, we have 

w ritten  all th e  form ulae in  term s of R  and  A / R ,  which has th e  dim ensions of 

tem peratu re .

Case (I) can be trea ted  sim ilarly, an d  if  we m ake a  fu rth er sm all approx im ation  

th e  answ er can be w ritten  in term s o f functions which are as sim ple as in  th e  case 

we have ju s t discussed. The accurate  re la tion  betw een e an d  T  is

de \ B 1P W ( l - e ) e x p ( - A /

d T  ~  M 2R T (  1 +  ne) {#( 1 

derived from  (15) and  (11).

F o r T  — Tman d  1 — e sm all th e  equation  takes th e  form

d£ D xg 

d y  Qg

where

giving

D i
A B 1 P  W  exp ( — A  jR T m)

W r T J I  + n ):

Q

Tm T  C  + ̂

and  th e  equation  for the  second approx im ation  is

(25)

(26) 

(27)

de A B XP W T  1C  +  DA (exp ( -M /I2 T ))

d T  ~  M 2R { \  +  ne) \  Q B l j  { '

This can be in teg ra ted  exactty , the  answ er involving th e  exponential in tegral, 

which is a tab u la ted  function. An approxim ate  solution, from  which th e  behaviour 

is more obvious, can be ob ta ined  by  replacing T  in  th e  n u m era to r by  This 

approxim ation  canno t be a serious source of error, since in an y  case th e  rep resen ta 

tion  of the  reaction ra te  as B  e~AfRT is itse lf an  approxim ation  which m ay n o t be 

very  close a t the  tem peratu res involved. M oreover, th e  exponential in tegral of th e  

accura te  solution can be expanded in an  asym pto tic  series which shows th a t  th e  

error is of the  order of a few per cent for the  values of R T m w hich we shall consider.

M aking th is approxim ation , then , the  in tegration  proceeds as before, and  th e  

equation  for th e  ra te  of burning is

M 2
A-Bj P W exp ( — A I R T m)

C R T w( l  + n)
/ l  +hA ( A  \ ( Q \
\  1 + n ) \s t J \  C T j

(29)
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The presence of a factor (1 — e)2 in the case (II) equation makes its trea tm en t more 

complicated. The m ethod is the same as before. The exact equation is

The structure of the reaction zone in a flame 99

_ X B 2P 2 — e)2exp( —

d T  =  W W Y 2 ( 1 +  we)2 {0(1  - e

and the equation for the first approxim ation is

d£ P 2g2 

dr) ~  Q i -C r } '
(31)

where D 2 =

The equation can be w ritten  as

AP2 P 2 W 2 exp ( —

M 2R 2T 2J \ + n ) 2

drj _

of which the  solution passing through £ =  =  0 is

’ e x p ( - z ? | )  =  # J „ £ e x p ( - ^ | )
d j

r

The exponential integral is defined (e.g. Jahnke & Emde, 1933, p. I) as

(32)

(33)

E i(  — x)
f
J c
e~(dt/t. (34)

L et =  CID2. Transform ing the variable of integration in (33) to  ^ /£  we see th a t 

the  solution (33) can be w ritten as

(35)

The exponential integral has been tabulated  in several places.

Substituting in the T  — Tm term  of (30),

de X B 2P 2W 2 exp ( - A / R

d T  ~  M 2R 2Q( 1 + n e f T 2 {

Hence f  (£ +  ^ e x p  (^ /£ )P i( -^ /£ )} { ( l  + w)/£-w}2d£
J 1 —€

AJ5 P 2W 2 /R \
= ip ^ - ^ j [ e xP ( - ^ / ^ ^ 1) - e x p ( - ^ / P P w)]. (36)

This solution satisfies the boundary condition a t bu t not necessarily a t the

beginning of the flame. Imposing the condition th a t 0 when T  — P0, gives as 

the equation to determine M ,

f 1
J  () ( £  +  ^ exp ( ^ / £ )  Ei{ -  r/r/£)\{ ( 1  +  n ) j £ -  

W rite 6 = r/r/£. The result is

(1 + n ) 2g1( i / r ) - 2 n { l  + n ) g 2(i/r) + n 2g.d{ft) =  ( z )  e xP ( - ^ / ^ m ) } (37)
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100 S. F. Boys and J . Comer

where 9 i ( ^ )  =  ^  f  {1 /d  + ed E

(^ ) =  f  {l/<9 +  e0 -  0 )}
J f

g3(ifr) = ft* f° ° { l l6 + eeEi
J ft

(38)

Sim plifying th e  rig h t o f (37) by  using th e  definitions of an d  D 2, i t  becomes ju s t 

( CTml Q ) ( RTm/ A)  (1 +n )2, an d  (37) becomes

i M f ) -  +  ( l ^ ) 2!,3(l!f) =  (C T J Q )  <39>

W e have tab u la ted  th e  func tions gx, g2 and  g3 for th

used. These are given in tab le  1.

(39) is an  equa tion  to  de term ine f t ,  and  w hen its  v

been de term ined th e  value of M  is found from

f t  =  C /D 2,

giving M 2 =  \ B 2P 2W 2f t e x v { - A I B T J / C R 2T 2m( l + n

I t  should be no ted th a t  (39) does n o t contain  P ,  so for a  given reac tion  \Jr is 

independen t o f the  pressure, an d  M  p roportional to  th e  pressure.

The accu racy  of th e  second app rox im ation  can be te sted  by  com parison w ith  th e  

results of num erical in teg ra tion . This has been done only for case (II), b u t  the re  is 

no reason to  suppose th a t  th e  results would be an y  less accura te  in  o ther cases; th e  

physical justification  for th e  m ethod  o f approx im ation  is th e  sam e for all. The 

error seems to  depend chiefly on A / E T m; for values near 8 , th e  ra te  of bu rn ing  was 

found to  be too low by ab o u t 6 % , this vary ing  b y  2 to  3 %  from  case to  case. F o r  

A /R T m nea r 5, the  ra te  was too low by  an  error o f 10 to  15 % .

F or cases (I) and  (III)  the re  is an  obvious rela tion  be tw een e and  T  in  th e  second 

app rox im ation . In  case (II) the  resu lt is

(1 + n ) 2

( f X ? ! -
exp ( A A )

\R T m R T ]a
(41)

F o r any  se t of values o f A ,  T rn, Q, C, n ,  equa tion  (39) gives ijr, which cap be used in  

(41) to  find th e  T  corresponding to  any  given e. The error in th e  (e, T )  curve  is sm all; 

com parison w ith a num erical in teg ra tion  carried o u t w ith  the  accu ra te M  showed 

th a t  e was too large by  3 % a t  e =  0-5, and  th e  error was everyw here of th e  sam e 

am oun t excep t a t  low tem pe ratures.

This (e, T )  rela tion  can be used to  find a value of M  which is several per cen t b e tte r  

th a n  th a t  o f the  second app roxim ation . F o r th is  we choose elt e2c^0-4, 0*6 respec

tively , and  such th a t  i/r/( 1 — ex) and  

sponding Tx, T2 and  hence d e jd T  a t  \ { T X +  T2). S u b stitu tion  in th e  accu ra te equa tion  

of the  zone gives M .
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The structure of the reaction zone in a flame 101

T a b l e  1. F u n c t i o n s  f o r  t h e  s o l u t i o n  o f  t h e  c a s e  (II) e q u a t i o n

9 i 9% 9*

4 -5 0 -840 0-397 0 -258

3-9 0 -822 0 -386 0 -250

3-3 0 -800 0 -372 0 -240

2-7 0-771 0 -355 0 -228

2 1 0-731 0 -332 0-211

1-5 0 -672 0 -298 0 -188

1-4 0 -660 0-291 0 -183

1-3 0 -646 0 -283 0 -178

1-2 0-631 0 -274 0 -172

1 1 0 -615 0 -265 0 -165

1 0 0 -596 0 -255 0 -159

0 -95 0 -586 0 -249 0 -155

0-9 0 -576 0 -244 0-151

0 -85 0 -565 0 -238 0-147

0-8 0 -553 0-231 0 -143

0 -75 0-541 0 -224 0 -138

0-7 0-527 0-217 0 -133

0 -65 0-512 0 -210 0 -128

0-6 0-497 0-202 0 -123

0 -55 0 -480 0 -193 0-117

0-5 0-461 0 -183 0-111

0 -45 0 -442 0-173 0 -104

0 -4 0 -419 0-162 0-097

0 -38 0 -410 0-158 0 -094

0-36 0 -400 0 -153 0-091

0 -34 0 -389 0 -148 0 -088

0-32 0 -378 0 -142 0 -085

0-30 0-367 0-137 0-081

0-28 0 -355 0-131 0-077

0-26 0-342 0 -125 0 -074

0 -24 0-328 0 -119 0 -070

0-22 0 -314 0 -112 0-066

0 -20 0-299 0 -106 0-061

0-18 0-282 0 -098 0-057

0 1 6 0-265 0-091 0-052

0 1 4 0 -245 0 -082 0-047

0 1 2 0 -224 0 -074 0-042

0 -10 0-201 0 -064 0-036

0-08 0-176 0 -054 0 -030

0-06 0 -146 0 -043 0 -024

W hen the (e, T )  relation has been found, it can be used in the equation for the heat- 

conduction (9), to  find the values of x  corresponding to var

the condition, necessary for a physically possible reaction zone, th a t  T  — Tm and 

e = 1 together. I t  is immaterial whether this point has a finite or an infinite value 

of x, though usually the la tter is the case. The flame is then theoretically infinite, 

though most of the reaction takes place within a very small distance of the surface. 

I f  e = 1 and T  — Tm a t a finite value of x, the form of the equations ensures th a t 

e and T  remain constant for all larger values of x . A t distances from the surface 

which are large compared with the effective thickness of the flame, the gas may be
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1 0 2 S. F. Boys and J . Comer

subjec ted to  cooling and  subsequen t change of com position , b u t  these canno t affect 

th e  ra te  of burning , no m a tte r  w he ther th e  flame thickness is finite or no t. The only 

influences which can have any  effect on th e  ra te  of bu rning are those which can a c t 

in  th e  region where all b u t  a sm all fraction  of th e  chem ical change takes place.

F irs t approxim ations to  the  (x, T )  rela tion  can be found from  the  first approxim a

tion  to  the  (e, T )  law.

Cases ( I )  a nd  { I I I ) .  The first approxim ation  is (21 ) or (27), and  using th is in (9)

A  d

M  d x
D (Tm - T ) ,

w ith D  — D xor D z in  th e  tw o cases.

H ence Tm — T  and  1 — ebehave a t  large distances like m ultiples of ex

The thickness o f the  reac tion  zone is, stric tly  speaking, infinite.

Case { I I ) .  F rom  (31) and  (9),

dt\dx  =  — iY Z > 2£ 2/A ,

w ith th e  solution (1 —e)-1 =  £-1 =  M D ^ x jA  4- constan t,

and  an  infinite flame thickness.

To ge t a second app rox im ation  in these cases, i t  is easiest to  tab u la te  e as a  func

tion  of T ,  given by  th e  appropria te  second approxim ation , and  th en  carry  o u t 

a  num erical in tegration  of
CT A

X ~  ) T, M { Q ( \ - e )  + C ( T - T m )} ’

where Tx is the  tem p era tu re  a t  th e  a rb itra rily  chosen origin of x .

In  all these cases th e  ‘th ickness o f the  flam e’ is in  th e  first approxim ation  p ro 

portional to  A /M D .

In  case (II), =  R T m{\ +  n) [A f /C

Using (23) and  (19) for case (III),

W  O  + n)ICB3exV{-A ,R Tm) ((i±£) (^r) (
In  case (I),

A /M D 1= [ARTm(. + n)IBl P Wexp (-A ,R T rn) {(1 ^ )  (^) (Jr) - 1)]‘ •

4 . S e p a r a t i o n  o f  c e r t a i n  p a r a m e t e r s

I t  is possible to  ob ta in  explicit form ulae for th e  effect o f certain  o f the  param eters 

o f th e  problem  by a m ethod which is simple and  exact. W e tak e  th e  equations of 

case (I) as an exam ple:

de
- -  = B 1{ l - e ) P W e x V { - A /R T ) I M R T { l + n e ) ,  (43)

^  = M { Q ( l - e )  +  C ( T - T m) } l \ , (44)
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103T h e  s tr u c tu r e  o f  th e  r e a c t io n  zo n e  i n  a  f la m e

which can be w ritten  as

dp
(A B xPW IM * ) i f ( e ,

(A B 1P W /M 2) - i  T ,

(45)

(46)

w h e re /a n d  g are functions of their argum en ts which are obvious from (43) and (44), 

and  whose precise form will not be needed hereafter. This pair of equations connects 

e and T  w ith x ( B 1PW/A)4 and the only param e ter left in them  is (M 2/X B 1P W ) i

The boundary conditions fix the values of e and T  a t  two points, where x ( B 1 P  W /A)* 

has fixed values (0 and oo).

The values of e and T  a t these points are independen t of B x, P ,  W , and A; i t  follows 

th a t  the solution of (45) and (46) which satisfies such boundary conditions has

(X ^ P  JFj* =  function of (A  >n > Q> C> Tm)> (47)

and any particu lar value of T or e occurs a t a value of x (B 1PW /X ) i w

only on A ,  n,Q, C, Tm.

In  other words, the ra te  of burning M  = (A x function of (A , n, Q, C, Tm),

and any dimension (of the reaction zone) which is defined by values of e and T ,  will 

be proportional to

x function of (A > n > Q>C ’ Tm)- (48)

The thickness of the complete zone of burning is infinite, b u t it is convenient to  

speak of a  ‘flame th ickness’, which in this case is proportional to  the quantity  (48). 

In  particular, the pressure variation of the ra te  of burning is

M  oc P i . (49)

The same process can be applied to cases (II) and (III), and the results are

M  =  P lT (A 5)i x function of (A , n, Q, C} ), (50)

‘flame thickness’ =  —!= (A/jB)* x  function of n, Q, C, Tm), (51)

with B  — B 2or B 3.

I t  will be noticed th a t the ra te  of burning is proportional to  A* for all three chemical 

mechanisms. This suggests th a t the result may be true under more general assump

tions. We shall now show th a t our fundam ental equations, w ithout any assumption 

other than  th a t the conductivity is constant, lead to the results th a t the rate of 

burning and the ‘ flame thickness ’ are both proportional to  A*.

Equation (4) is
h  d T

M  dx  m’
(52)

and (5) is VM~ =  ^ (e , V, T ) ,
dx

(53)
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104 S. F. Boys and J . Comer

which can be w ritten  as

M  , u  zj  \ ^ de  A*& (e ,V ,T )

^ * d x  = ’

an d  i t  follows th a t  th e  ra te  of burn ing  and  flame thickness are p roportional to  A*.

5 . T h e  m e t h o d  o f  n u m e r i c a l  i n t e g r a t i o n

In  § 3 we gave app rox im ate  solutions for th e  equa tions of th e  reaction  zone. These 

solutions are easily  handled , b u t  th e  m e thod  would fail if  th e  equa tions were su b 

s tan tia lly  m ore com plicated, as, for exam ple, if  th e  th e rm al conductiv ity  were 

a  function  o f th e  tem pe ra tu re. In  such a  case i t  w ould be necessary to  solve th e  

equa tions num erically.

The reaction  zone equation  is ve ry  easily in teg ra ted  num erically. Consider, for 

exam ple, case (II), whose equation  is (30) of § 2 :

de \ B 2 P 2W 2( l  — e)2 e x ^ (  — A /

d T  =  W W T 2(1 +  we)2 

This can be in teg ra ted  by  a  step-by-step  process, for an y  assum ed value of M .  

S ta rtin g  from  one of th e  b ounda ry  conditions, th e  solution can be carried sufficiently 

nea r to  th e  o th e r extrem e tem p e ra tu re  o f th e  reaction  zone, to  see w he the r th e  

solution satisfies th e  o the r boundary  condition. F o r exam ple, suppose th a t  th e  

in teg ra tion  has been s ta r ted  a t  th e  cool side of th e  flame, w here e is p rac tica lly  zero 

an d  T  — T0.I f  M  is less th a n  a  certa in  critical value, d T /d x  becomes negative a f

a  ce rta in  value o f T  has been reached in  th e  in teg ra tion , is still positive, so

th a t  beyond th e  po in t w here d T /d x  =  0 , e continues to  increase b u t T  decreases 

an d  never a tta in s  Tm. This is no t a  physically  sa tisfac to ry  form  for th e  reaction  zone, 

for i t  does n o t have th e  essential fea ture  o f th e  ac tu a l zone, th a t  th e  tem p e ra tu re  

rises to  th e  value corresponding to  com plete reaction . F o r large M  th e  solu tion  has 

th e  p ro p e rty  th a t  d e /d T  is so sm all th a t  w hen th e  solution has reached  T  — 

e has n o t a tta in ed  th e  lim it value 1. This solution , too , is n o t physically  satisfac to ry . 

There is one value o f M  for w hich th e  corresponding solution e =  1 a t  Tm. 

This solution is th e  tru e  reaction  zone which w ould be set up  in  s tead y  burn ing  (if our 

equations were exac t descriptions of th e  phenom ena).

S teps of 100° C have been found convenien t for th e  in teg ra tio n  o f th e  differential 

equation . I f  th e  solution is s ta r ted  from  th e  h o t side of th e  flame, th e  first ap p ro x i

m ation  is used  u n til a  stage has been  reached a t  which i t  is possible to  use th e  differ

en tia l equation . T here are poin ts in favour o f each end as th e  com m encem en t o f 

in teg ra tion , b u t for case (II), for w hich ou r num erical com putations were carried 

out, i t  has been found b e tte r  to  s ta r t  a t  th e  low tem p e ra tu re  side.

The advan tage  of num erical in teg ra tion , finding M  by  tr ia l an d  error, is th a t  i t  

can be used w ha teve r th e  form  of de/dT . The only p rac tica l

is th a t  i t  is essential to  w ork th e  calcula tion  w ith  T  as th e  independen t variab le; 

if  e were used as th e  independen t variab le sligh t errors in  guessing T  for th e  n  a rc  

w ould lead to  large errors in  d T /d e  (because of th e  presence o f e~A/RT), an d  th e  a rc  

would have to  be rew orked a  large num be r o f tim es.
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6 . Ch o i c e  o f  t h e r m a l  c o n d u c t i v i t y

In  the theo ry  of § 2, A has been taken  as a  constant. In  num erical integ rations 

on the  bu rning of n itra te  esters i t  has been found th a t  a  simple m ean value gives 

p ractically  the  same ra te  of burning as the  ac tual conductivity which varies th rough 

the  reaction zone.

The therm al conductivity is a  function of e and T .  For low pressures it  is in 

dependent of the pressure. I t  is usual to  represent the tem perature dependence by

A(T)/A(273°K) =
(273 + C')

( T + C ' ) (273)’
(54)

where C ' depends only on the na tu re of the gas, and for nitrogen and gases of similar 

molecular weight is about 100. The agreem ent w ith the observations is be tte r a t 

high tem peratures th an  a t  low. Tests w ith a A depending on tem perature in this 

m anner ( C ' =  100) showed th a t  this was equivalent to a constant conductivity 

whose value was th a t  appropriate to  a tem perature somewhat above the middle of 

the tem perature range encountered in the flame zone.

The conduc tivity a t  any  point depends on the composition of the gas a t th a t  point, 

th a t  is, on e. The reac tan t has a higher molecular weight th an  the final products, 

and  its conductivity is less. For organic vapours such as benzene, A a t 0° C is 

about 2-5 x 10~5 cal./sq.cm./sec. per (° C/cm .), which is about half  th a t  of the final 

products a t  the  same tem perature. Assuming C' =  100 this would make their A 

(at 2000° K) =  0-92 x 10~4. Numerical solutions have shown th a t  i t  is sufficiently 

accurate to take an average of the initial and final conductivities, when calculating 

rates of burning by  using a theo ry  w ith constant A. Of course the (e, T ,  x)  relations 

are not reproduced by  a constant conductivity , b u t this is usually no t of any great 

im portance, and the error is not large.

7 . D i s c u s s i o n

The chief result of the foregoing analysis is th a t we have obtained formulae which 

give the flame velocities in term s of the reaction velocity constants, the specific 

hea t and hea t conductivity for the three simple cases considered. These cases were: 

a unimolecular reaction w ith velocity given by equation (29), a bimolecular reaction 

given by  equation (40), and a quasi-bimolecular reaction given by equation (23), 

the effect of diffusion being neglected compared w ith th a t  of hea t conductivity in  

all cases. The ac tual formulae are only approximations, b u t the approxim ation is 

one in which higher order term s are neglected in a  purely m athem atical m ethod of 

solving the accurate physical equations. The error due to this approxim ation in 

some actual cases solved exactly by numerical integration has been found to  be 

from 5 to 15 %. This is negligible compared with the degree of uncertainty  in any 

initial d a ta  a t the present stage.

The analysis also provides the dependence of the composition and tem perature 

on the co-ordinate perpendicular to the flame front, to a corresponding degree of 

accuracy. This would give any conventional measure of the flame thickness which it
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is desired to  m ake. ‘F lam e th ick n e ss’ alw ays depends on an  a rb itra ry  convention , 

since theo retically  the  va ria tions of com position an d  tem p e ra tu re  ex tend  an  infinite 

distance. The analysis shows th a t  all particu lars o f the flame s tru c tu re  can be found 

to  ab o u t th e  above degree of accuracy. I f  the  sam e models are considered b u t w ith 

m ore detailed  knowledge of certa in  properties the  problem  could still be solved by  

d irec t num erical in teg ra tion  coupled w ith a tr ia l and  error process for th e  velocity . 

H ence for such simple reaction  system s the re  are no uncerta in ties in  th e  theo ry , 

only detailed  difficulties in  th e  num erical work.

The qualita tive  aspect o f th e  results can be sum m ed up  by  s ta tin g  th a t  th e  m ass 

flame velocity is p roportional to  th e  p roduct of th e  square roots o f th e  h ea t con

du c tiv ity , th e  density , th e  reciprocal of th e  specific hea t, an d  th e  reaction  velocity 

n ea r th e  final tem pe ra tu re. H ence if th e  hom ogeneous reaction  velocity  varies as 

(pressure)** th e  m ass flame velocity  will v a ry  as (pressure)*(n+1), giving p*  for a 

unim olecular reaction  or p  for a  bim olecular reaction.

In  conclusion we m ay res ta te  our general view th a t  the re  are no real sub tleties 

in  th e  q u an tita tiv e  theo ry  of flames b u t the re  are very  g rea t m athem a tica l com 

plexities.

This w ork was carried o u t for th e  M inistry  of S upply  during  1941; th e  au th o rs  

wish to  th a n k  P rofessor Sir Jo h n  L enna rd-Jones, F .R .S ., for his helpful advice an d  

encou ragem ent, b o th  a t  th a t  tim e an d  la te r. T hey  are also indeb ted  to  th e  Chief 

Scien tist, M inistry  of Supply , for perm ission to  publish.

A p p e n d i x

V a l id ity  o f  the ‘ local temperature ’ the reaction  zone

W e assum e th a t  th e  molecules are ac tiv a ted  b y  collisions w ith  o th e r molecules, 

an d  th a t  th e  ra te  o f ac tiv a tio n  a t  an y  po in t depends on th e  tem p e ra tu re  a t tha t 

p o in t  only, ju s t as if  th e  gas were in a  large container a t  th a t  uniform  tem pe ra tu re . 

In  o th e r words, we assum e th a t  th e  m ean free p a th  o f th e  m olecules is m uch sm aller 

th a n  th e  thickness o f th e  effective reaction  zone. The M axwell m ean free p a th  is

S. F. Boys and J . Corner

7r2i (diam eter o f m olecule)2 (no. o f molecules pe r cm .3) *

The d iam e te r o f the  molecule is o f order 2 to  3 A. L e t P  atm ospheres be th e  p res

sure. Taking  2000° K  as th e  tem p e ra tu re  in th e  m ost im p o rtan t zone of a  typ ica l 

flame, we find th a t  l  is o f th e  o rder 10~4/ P  cm. H ence, for our assum ption  to  be valid , 

th e  effective b read th  of th e  reaction  zone m u st be g rea te r th a n  10_3/P c m .
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