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THE STRUCTURE OF THE REVERSE HOLDER CLASSES

DAVID CRUZ-URIBE, SFO AND C. J. NEUGEBAUER

Abstract. In this paper we study the structure of the class of functions (RHS)
which satisfy the reverse Holder inequality with exponent s > I . To do so
we introduce a new operator, the minimal operator, which is analogous to the
Hardy-Littlewood maximal operator, and a new class of functions, {RHcc),
which plays the same role for (RHS) that the class (Ax) does for the (Ap)
classes.

1.  INTRODUCTION

A non-negative, locally integrable function on R" satisfies the reverse Holder
inequality with exponent s > 1 if there exists a constant C such that, for every
cube / in R" with sides parallel to the co-ordinate axes,

(^p<dxYS<£jwdx,

where |/| denotes the Lebesgue measure of /. We say that such functions
belong to the reverse Holder class (RHS). Functions in these classes were first
studied by Gehring [11] and by Coifman and C. Fefferman [7].

The (RHS) classes are closely related to the (Ap) classes. A non-negative
function w is an (Ap) weight, p > 1, if

^(w\Lwdx)(w\Lwl~p'dxY~< oo.

where the supremum is taken over all cubes / in R" with sides parallel to the
co-ordinate axes and p' is the conjugate exponent of p . A function w is in
(Ax) if for some constant C, Mw < Cw , where M is the Hardy-Littlewood
maximal operator. The connection between the two classes is given by the
following theorem [7]: a function w is in (Ap) for some p > 1 if and only if
it is in (RHS) for some 5 > 1.

Much more is known about the (Ap) classes than the (RHS) classes, and
the purpose of this paper is to study the structure of the latter. Our main tool
is a class of weights which play the same role for (RHS) weights that (Ax)
weights do for (Ap) weights. To define this class we introduce a new operator,
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the minimal operator, so named since it is analogous to the Hardy-Littlewood
maximal operator.

Definition 1.1. If / is a locally integrable function, define the minimal function
of f,   mf,by '

mf(x)-M±-J\f\dy,
where the infimum is taken over all cubes / with sides parallel to the co-ordinate
axes which contain x .

It is immediate that 171 f is a locally bounded function, and by the Lebesgue
differentiation theorem   171 f(x) < \f(x)\ almost everywhere.

Using the minimal operator we define the class (RH^).

Definition 1.2. A non-negative function w is an (RH^) weight if there exists
a constant C such that w(x) < C 171 w(x) for almost every x .

This class was first defined by Franchi [9]; however, he defined it to be those
functions w such that for every cube /, w(x) < CI(w) for almost every
x in /. An argument identical to that for (Ax) weights (see [10, p. 389])
shows that these two definitions are equivalent. In [4], the first author gave a
characterization of increasing (^oo) weights on R+ which shows that they are
all in (jR//oo) . Earlier, the (RH^) condition appeared in works of Andersen
and Young [1] and Muckenhoupt [18]. (For further details on their work, see
the appendix.)

The paper is organized as follows: we begin in Section 2 by stating some
known results which relate the (Ap) and (RHS) classes. They are included for
completeness and ease of reference. As applications we examine the geometry
of log (Ap) and log (RHS) as subsets of BMO, and we prove a two-weight
version of the reverse Holder inequality.

In Section 3 we digress slightly to prove two weighted norm inequalities for
the minimal operator. These are included to develop the analogy between the
minimal and maximal operators.

In Section 4 we examine (RH^) weights and show how they are related to
(Ax) weights. We conclude by determining the multipliers of (RH^); as a
corollary we give a new proof of a characterization of the multipliers of (Ax)
discovered by Johnson and Neugebauer [15]. In Section 5 we apply these results
to study the reverse Holder classes. We extend the Jones' factorization theorem
to (RHS) weights, and we examine the action of the maximal and minimal
operators on the (Ap) and (RHS) classes.

In Section 6 we further examine the nature of (RH^) weights. We extend
a result of Coifman and Rochberg (see Theorem 6.1 below) by characterizing
those functions w such that Mw is in (Ax). From this we derive a charac-
terization of those w such that 171 w is in (RH^). We end this section by
discussing the relationship between our results and the so-called higher integra-
bility theorems of Gehring and others.

The final section is an application: in Section 7 we give a new proof that the
maximal operator is bounded on BMO, a result originally proved by Bennett,
DeVore, and Sharpley [2]. The proof is based on a lemma which shows that for
(Ap) weights the maximal operator and the logarithm essentially commute.
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The appendix is an erratum to a paper of the first author [5]. The error
was discovered while preparing this paper; in the correction we give another
application of the class (/?//«, ).

2. Notation and preliminary results

Throughout this paper all notation is standard or will be defined as needed.
All cubes in R" have their edges parallel to the co-ordinate axes. All functions
are locally integrable. For a cube / and a function w , let |/| be the Lebesgue
measure of / and define w(I) = JjW dx and I(w) = w(I)/\I\. Given a cube
/ and k > 0, let kl be the cube with the same center whose edges are k times
as long. (Then \kl\ = kn\I\.)

Given two functions / and g, they are equivalent if f/g is bounded and
bounded away from zero. This equivalence relation is denoted by / ~ g .

Finally, given p > 1, p' = p/(p - 1) is the conjugate exponent of p . The
letter C denotes a non-negative constant whose value may be different at each
appearance.

Since (RHS) weights are in (A^) > below we will use many of the properties
of (/loo) weights. We will refer frequently to the treatment given by Garcia-
Cuerva and Rubio de Francia in [10]. The union of all the (Ap) classes is
denoted by (Aoo). In addition, we define (A») to be intersection of all the
(Ap) classes, p > 1, and (RH,) to be the intersection of all the (RHS) classes,

5> 1.
Our first result was discovered by Strömberg and Wheeden [22]. (A different

proof is given in [15].) It is an invaluable tool in studying the reverse Holder
classes.

Theorem 2.1. A function w is in   (RHS) ,  1 < 5 < oo, if and only if ws is in
(Aoo).

This theorem is quantified by the following two results. The first follows by
applying Holder's inequality and then the reverse Holder inequality in succes-
sion; a proof is found in [16]. A proof of the second is found in [15].

Theorem 2.2. A function w is in (Ap) n (RHS) if and only if ws is in (Aq),
where q = s(p - 1) + 1.
Theorem 2.3. If w is in (Aoo) and wr is in (Ax) for some r > 0, then w is
in (Ax).

We will use all three of these results repeatedly below. As an immediate
application we will use Theorem 2.1 to examine the geometry of the reverse
Holder classes. (Additional results are given in Corollary 4.7 below.)

Theorem 2.4. The sets

log (RHS) ={<t>£ BMO : e* £ (RHS)},        1 < s < oo,

are open and convex in BMO. The set log (A,) is neither open nor closed in
BMO; however, the set log (/?//*)   is closed.
Proof. By Theorem 2.1 the set log (RHS) is just the contraction of the set
log (Aoo) by a factor of s. This latter set is open [17] and convex [15] in
BMO, so log (RHS)   is as well.
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To see that log (A*) is not closed in BMO, note that in R" the function
w(x) = \x\~rn , 0 < r < 1, is in (Ax) and so in (A*) [10, p. 160], but the limit
function w(x) — \x\~n is not even locally integrable around the origin. Hence
-n log \x\ is a limit point of log (A*)  but is not contained in it.

To show that log (A*) is not open, suppose to the contrary that it is. Since
w(x) = 1 is in (A»), there exists an oO such that if ||0||» < e then 0 is
in log (At) . Fix the dimension as n, and let <f>(x) = (p - l)nlog\x\. Then
for some p sufficiently close to one, <j> is in log (At) ; in particular it is in
log (Ap) . Hence, by the duality of (Ap) weights, \x\~n = e^ï~p"> is in (Apl),
a contradiction.

Finally, that log (RHt) is closed follows from the fact that functions in
(RHt) are exactly the multipliers of (Aoo) [15]. Let <j> be a limit point of

log (RHt) ; it will suffice to show that </> + y/ is in log (A^) whenever y/ is.
Since log (A^) is open, for each such yi there exists e > 0 such that the ball,
B, of radius e around y/ is contained in log (Aoo) • Since 0 is a limit point
of log (RHt) , there exists 4>o in log (/?//*) such that \\4> - </>o|| < e • Since
e^° is a multiplier of (A^) > B + (f>o is contained in log (A^) . But </> + y/ is
in B + 4>o, so we are done.   D

We end this section with a two-weight version of the reverse Holder inequal-
ity. Originally we derived it as a lemma for the proof of Theorem 2.4; even
though that proof was simplified, we retain this result since it is of independent
interest. (Also, an application of it is given in Theorem 4.8 below.)
Lemma 2.5. Fix p>2. If w is in (Ap) and v is in (Ap>), then wx/pvx/p' is
in (Ap) and there exists a constant C such that for every cube I

(1) I(w)xlpI(v)xlp' < CI(wxlpvxlp').

Proof. Since p > 2, p' < p.  Therefore both v and w are in (Ap ) ; since
log (Ap)  is convex [15], wxlpvxlp' is also in (Ap).

To establish inequality (1), fix a cube /. Then there is a constant C such
that

I(w)I(wx-p')p-x < C,        I(v)I(vx-p)p'-x < C.
Raise the first equation to the power l/p and the second to the power  l/p'
and multiply them together. Then after re-arranging terms we get

I(w)xlpI(v)xlp' < CI(wx-p')-x/p'l(vx-p)-x'p.

Since p/p' = p - 1 and p'/p = p' - 1, by Holder's inequality
I(w-Vpv-W) < l(wx-p')x'p'l(vx-p)x'p.

Therefore, by combining these two inequalities we see that
I(w)xlpI(v)xlp' < ci(w-xlpv-xlp'yx.

Now apply Holder's inequality twice (it is possible the second time since p > 2):
I(w-x/pv-x/p')-x < I((w-xlpv-xlp')x-p')p-x

= I((wxlpvxlp')p'-x)p-x

<I(wVpvVp').

Therefore inequality ( 1 ) holds.   D
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The desired version of this result is stated without reference to (Ap) classes.

Theorem 2.6. Fix p > 1. If w is in (RHP) and v  is in (RHpi), then there
exists a constant C such that for every cube I

(2) ( fwpdx){'P( ivp'dxy/P <C fwvdx.

Proof. By Theorems 2.1 and 2.2, there exists s < 1 such that wsp is in  (Ap) n
(RHX/S)  and vsp' is in  (Ap>) n (RHX¡S) . Therefore, by Lemma 2.5,

I(wpylpI(vp')slp' < CI(wsp)x/pI(vsp')x/p'

< C/(W)
< CI(wv)s.

If we raise both sides to the power l/s and multiply by |/| we get inequality
(2).   D

It is an open question to characterize pairs of weights w and v which satisfy
this inequality. Here we give one partial result.

Theorem 2.7. Suppose w and v satisfy inequality (2) for some p > 1 and w
is in (RHP). Then v is in (RHpl).

Proof. By Theorem 2.1, wp is in (Aoo) and so in (RHr/p) for some r > p.
Now apply Holder's inequality to inequality (2):

I(w»)xlpI(vp')xlp' < CI(wv)
< CI(wr)x'rI(vr')xlr'

<CI(wp)x'pI(vr)1/r.

Since r > p, r' < p'. Therefore, vr'  is in (RHp,/ri), so, again by Theorem
2.1, v is in (RHpi).   a

3. The minimal operator

In this section we prove two weighted norm inequalities for the minimal
operator. To do so, we need to identify the "natural domain" of the minimal
operator. For the maximal operator, the natural domains are the LP spaces,
p > 1, since, intuitively, the maximal operator "controls" the behavior of a
function where it is large. But if / is in any LP space, p < oo, then 171 f = 0.

The minimal operator controls the behavior of a function / where it is small,
and any norm inequality needs to reflect this fact. We do this in Theorems 3.1
and 3.4 by replacing /by l/f and log/, which are large where / is small.
Thus the natural domains of the minimal operator consist of those functions /
for which 1 // or log / are integrable.
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Theorem 3.1. Given a function w , a necessary and sufficient condition for the
weighted norm inequality

(3) /    ,„„ ~   dx < C       —: dxy ' 7r» (mf)p    -   V \f\p
to hold for all p > 0 and all f such that l/f is in Lp (w) is for w to be in
(Aoo). The constant C depends only on w and is independent of p.

Proof. Suppose first that w is in (Aoo) • Then w is in (Aq) for some q > 1 ,
and the maximal function is a bounded operator on Lq(w) [10, p. 400]. Fix
p > 0 and take r > 1 such that (r — l)p = q. Let / be any function such
that l/f is in LP(w). By Holder's inequality, 171 f(x)~x < M(fx-r')(x)r-x .
Hence there exists a constant C depending only on the (Aq) constant of w
such that

/,«í'í/,i'^)""*"^c/,.Wt
which is exactly inequality (3).

Conversely, suppose w is such that inequality (3) holds for all p > 0. Fix
a cube / and define the function f(x) = w(x)a/xi(x), where a = 1/(1 + p).
For all x in /,   171 f(x) < I(wa) ; so inequality (3) implies that

(4) p!L<c ¡wx-°pdx.I(wa)p -     Jj

Since a = 1 - ap , inequality (4) becomes

I(w)<c(^ I'wxl(p+xUx)VKI Ji '
p+i

The constant C is independent of /. Hence wxll>p+X) is in (RHP+X), and so
by Theorem 2.1 w is in (Aoo).   □

Theorem 3.1 has the following corollary, which we give for comparison with
Theorem 3.4 below.

Corollary 3.2. Let the function f be such that f(x) > 1. Then for w in (Aoo)

(5) /   -,—zzn-dx<C\   -.—-rdx,)w io%mf    -   Jw log/
where the constant C depends only on w .
Proof. Since w is in (/loo), inequality (3) holds for all p > 0 with a constant
independent of p. Integrate both sides of this inequality with respect to p.
Then

n    T^-rräxdp<Cr7    ̂ dxdp.Jo  JR"(mf)p     y~   Jo 7r-/p
Apply Fubini's theorem, and inequality (5) follows at once.   D

Question 3.3. Does inequality (5) imply that w is in (Aoo) ?
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Theorem 3.4. Given a function w , a necessary and sufficient condition for the
weighted-norm inequality

(6) /   \logl7lf\pwdx< C [   \log f\pwdx,
JR" Ju"

to hold for p > 1 and all f such that 0 < f(x) < 1 and log/ is in Lp (w),
is for w to be in (Ap). The constant C depends only on the (Ap) constant of
w.

Proof. Suppose first that w is in (Ap). Let / be as in the hypotheses. Then
by Jensen's inequality, at each point x

log(inf/(/)) = inf(log/(/)) > inf/(log/),

where each infimum is taken over all cubes / which contain x . Since / is less
than one,   171 f(x) < 1. Therefore,

| log 17lf(x)\ < |inf/(log/)| = sup/(| log/|) = M(logf)(x).

Inequality (6) follows immediately from this: since w is in (Ap), the maximal
operator is bounded on Lp(w), so

/    | log m f\pw dx < [    M (log f)pw dx<C f    | log f\pw dx
JR" JR" JR"

The constant C depends only on the (Ap) constant of w .
To prove the converse, suppose w is such that (6) holds for all /. Fix a ,

0 < a < 1 . On (0, 1) define the function <Da(/) = log(l/r)a. Then a simple
calculation shows that <Pa is monotonie and concave on (ea~x, 1). Now let
/ be any function such that e < f(x) < I for some e > 0. Then there exists
k > 0 such that f(x)k > ea~x . Therefore, by Jensen's inequality, for any cube
/, I(®a(fk)) < <&a(I(fk)), or equivalent^, ■

/(iiog(/*)n1/a<iiog/(/*)i.

Fix x and take the supremum over all / containing x . Then

M(\log(fk)\a)1/a<\logl7l(fk)\.

Therefore, by inequality (6) we see that

(7) /  M(\logf\a)plawdx<C [  |logf\pwdx;
JR" JR"

we could eliminate the k's since the maximal operator is positive homogeneous.
Since bounded functions are dense in LPla(w), it follows from inequality (7)

that the maximal operator is bounded on Lpla(w). Therefore w is in (Ap/a)
[10, p. 400]. However, the constant in (7) is independent of a, so the (Ap/a)
constant of w is as well. Hence w is in (Ap).   o

As a corollary to Theorem 3.4 we get the following commutation result. It
should be compared with Theorem 7.1 below.
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Corollary 3.5. Let w be in (Ap), p > 1. Then, for every function f such that
0 < f(x) < 1 and log/ is in Lp (w),

[    M(\logf\)pwdx~ f    |log 171 f\pwdx.
JR" JR"

Though we will not discuss them here, the minimal operator has other ap-
plications to weighted norm inequalities and to differentiation theory. These
results will appear in [6].

4. The class (RHoo)

In this section we examine the properties of (RHoo) weights. We begin by
showing that they have a number of properties similar to those of (Ax) weights.

It follows at once from Definition 1.2 that just as (Ax) weights are locally
bounded away from zero, (RHoo) weights are locally bounded.

The class (Ax) is a proper subset of (At); similarly, (RHoo) is a proper
subset of (RHt). We show inclusion in Theorem 4.1 and give an example
afterward to show that the inclusion is proper.

Theorem 4.1. If w is in (RHoo), then w is in (RHt) and for each s > 1 the
(RHS) constant of w is bounded by the (RHoo) constant of w . Conversely, if
w is in (RHt) and for each s > 1 its (RHS) constant is independent of s, then
w is in (RHoo) ■
Proof. Suppose that w is in (RHoo) ■ Fix a cube / ; then for almost every x
in /, CoI(w) > w(x), where Co is the (RHoo) constant of w. Fix s > 1,
raise both sides of this inequality to the 5-th power and integrate with respect
to x over /. Then C^I(w)s > I(ws). Hence w is in (RHS) and its (RHS)
constant is bounded by its (RHoo) constant.

Conversely, suppose that w is in (RHt) and there is a constant Ci such
that for each s > 1, I(ws)x/S < CxI(w) for every cube /. Take the limit as 5
tends to infinity. The left-hand side tends to the essential supremum of w on
/, so w(x) < CxI(w) for almost every x in /. Hence w is (RHoo) ■   □

To see that the inclusion of (RHoo) in (RH,) is proper, consider the function
w(x) = max{log(l/|x|), 1}. A calculation shows that it is in (RHS), s > 1 ;
however, it is unbounded in any neighborhood of the origin and so cannot be
in (RHoo) ■

The analogue of the second half of Theorem 4.1 for (Ax) weights does not
appear to be stated explicitly in the literature, but it is implicit in any description
of the (Ax) condition as the limit of the (Ap) condition as p tends to one.
For example, see [10, p. 391].

By Theorem 2.3, if w is in (Ax) n (RHS) , then wr is in (Ax) for every
r, 0 < r < s . A much stronger result holds for functions in (RHoo) '■

Theorem 4.2. Suppose w  is in (RHoo).   Then for any r > 0,  wr is also in
(RHoo).

Proof. We treat two cases. If r > I , then by Holder's inequality I(wr) > I(w)r
for every cube /, so wr in (RHoo) follows at once from the fact that w is in
(RHoo) ■
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If r < 1, then by Theorem 2.1 wr is in (RHx/r). So given a cube /, for
almost every x in /, w(x)r < I(w)r < CI(wr). Hence wr is in (RHoo) ■   □

These similarities between the classes (Ax) and (RHoo) are due to a duality
between them which can be roughly described as: a function w is in (Ax)
if and only if l/w is in (RHoo) ■ This statement is not completely accurate,
since the relationship is not completely symmetric. Before we can describe the
relationship exactly, we need to prove the following lemma.

Lemma 4.3. // w is in (Ap), p > 1, then there exists a constant C such that

(8) 1 < mwM(wx-p')p-x < C

and

(9) l<Mwtn(wx-p'f'x <C.\ i — \ i      —

Proof. We will prove inequality (8); the proof of inequality (9) is identical.
Fix x and let / be any cube containing x . Since w is in (Ap), there exists

a constant C such that

I(w)~x < I(wx-p')p-x < CI(w)~x.

Take the supremum over all cubes / containing x. Since s\xp I(w)~x =
(infl(w))~x, we get

171 w(x)~x < M(wx-p')(x)p-x <C17l w(x)-[,

which is inequality (8).   □

Theorem 4.4. Fix p > 1. If w is in (Ax), then wx~p is in   (RHoo) n (Ap) .
Conversely, if w is in  (RHoo) n (Ap) , then wx~p' is in (Ax).
Proof. If w is in (Ax) it is in (Ap>); hence, by the duality of (Ap) weights,
wx~p is in (Ap). To see that it is in (RHoo), note that by inequality (9)

1 < Mw(x) m (w{-p)(x)p'-x < Cw(x) 171 (w]-p)(x)p'-x ;

the last inequality holds almost everywhere since w is in (Ax). Byre-arranging
this inequality we see that w(x)l~p <CYYl (wl~p)(x), so wl~p is in (RHoo) ■

Now suppose that w is in   (RHoo) n (Ap) . Then by inequality (8),

M(wx-p')(x) <Ct7lw(x)x-p' < Cw(x)x-p'

holds almost everywhere since w is in (RHoo). Hence wx~p' is in (Ax).   o

To see the lack of complete symmetry between (Ax) and (RH^), note that
by Theorem 4.4 if w is in (Ax), then l/w is in (RHoo), but the converse
is not true. A simple example of this in R is w(t) = \t\. Furthermore, even
when w ' ~p' is in (A x ), we have no control over its reverse Holder class: Given
any p > 1 and 5 > 1, there exists a function w in (RHoo) n (Ap) such that
wx~p' is not in (RHS). For example, take w(t) = \t\(P-V/s.

Corollary 4.5 is more symmetric, but at the expense of unwanted complexity.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2950 DAVID CRUZ-URIBE AND C. J. NEUGEBAUER

Corollary 4.5. If w is in (Ax) n (RHS) for all s < so, then for all p > 1,
wx~p is in (RHoo) n (Aq) for all q > (p - l)/so + 1. Conversely, if w is
in (RHoo) n (Ap) for all p > Po, then wx~p' is in (Ax) n (RHS) for all
s<(p-l)/(p0-l).
Proof. Suppose first that w is in (Ax) n (RHS) for 5 < So . Then by Theorems
2.3 and 4.4, (ws)x~p is in (RHoo) n (/4P) ; therefore, by Theorems 2.2 and
4.2, wx~p is in (RHoo) n (^(p-i)/i+i) • Since this is true for all i < So, we
obtain the desired bound.

Similarly, suppose w is in (RHoo) n (^fp) for all p > po. Fix p and /?i,
p > px > po ■ Then, again by Theorem 4.4, wx~p> = w^x~p">s is in  (Ax) , where

i-P'   Pi-r
Thus by Theorem 2.1, u;1_i'' is in (RHS). Since this is true for any px > Po,
the desired bound on s follows at once.   D

To see the full symmetry, note that if 5n = (p - l)/(Po — 1), then p0 =
(p-l)/s0+l.

We give two more corollaries to Theorem 4.1. The first further characterizes
(RHoo) weights.

Corollary 4.6. A function w is in (RHoo) if and only if log(l/K;) is in BLO,
the space of functions of bounded lower oscillation. In particular, if w is in
(Ax) n (RHoo) , then w is bounded and bounded away from zero.

Proof. The first asssertion follows at once from Theorems 4.2 and 4.4 and the
fact that the logarithm of an (Ax) weight is in BLO [10, p. 409]. The second
follows from the fact that if <f> and -4> are both in BLO, then </> is a bounded
function [10, p. 158].   D

The second corollary continues the description of the geometry of the sets
log (Ap)  and log (RHS)  begun in Theorem 2.4.
Corollary 4.7. The sets log (Ax) and log (RHoo) we convex in BMO but are
neither open nor closed.
Proof. That log (Ax) is convex follows immediately from Holder's inequality.
(See also [15].) By Theorem 4.4, log (RHoo) n log (Ap) = (1 -p)log (Ax) and
so is convex. Since this is true for all p > 1, log (/?//») is the union of nested
convex sets and so convex.

The proof in Theorem 2.4 that log (At) is neither open nor closed also shows
that log (Ax) is neither open nor closed. It follows from this that log (RHoo)
cannot be open: for if it were, then log (RHoo) H log (Ap) = (1 -p)log (Ax)
would also be open since log (Ap) is open [17], a contradiction. Finally, to
see that log (RHoo) is not closed, take any positive function 4> in the BMO
closure of L °° which is not bounded at the origin. Then 0 is a limit point of
log (RHoo) , since this set contains L°° , but is not contained in it.   D

We close this section by characterizing the multipliers of (RHoo), that is,
those functions <f> such that 4>w is in (RHoo) whenever w is.

Theorem 4.8. A function 4> is a multiplier of (RHoo)   if and only if it is in
(RHoo).
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Proof If 0 is a multiplier, then cp must be in (RHoo) since the function
w(x) = 1 is.

Conversely, suppose that 4> and w are in (RHoo). Fix a cube /; then for
almost every x in /

4>(x)w(x) < CI((j))I(w) < CI(<f>2)x/2I(w2)x/2.

By Theorem 4.1 4> and w are in (RH2). Therefore, by Theorem 2.6,
I((j)2)xl2I(w2)xl2 < CI(4>w).

Since the constant is independent of /, (j>w is in (RHoo) ■   □

As a corollary to Theorem 4.8 we give a new proof of a characterization of
the multipliers of (Ax) discovered by Johnson and Neugebauer [15]. To do so
we must first characterize the multipliers of (RHoo) n (Ap) .

Lemma 4.9. Fix p > 1. Then a function <f> is a multiplier of (/?//») n (Ap)
if and only if <f> is in  (RHoo) n (At) ■
Proof. If 0 is a multiplier, then, arguing as in Theorem 4.8, we see that <pn is
in (Ap) for every positive integer n. Therefore, by Theorem 2.2, 4> is in (At).

Conversely, suppose that <p is in (/?//») n (At) , and let w be in (RHoo) n
(Ap) . Then by Theorem 4.8 <f>w is in (RHoo), so we only need to show that
it is in (Ap). By Theorem 4.4 and the reverse Holder inequality, wx~p' is in
(RHS) n (Ax)  for some 5 > 1. Hence, for every cube /,

I(qjw)I((<pw)x-p')p-x <I((ps')xls'I(ws)xl$I(4>{X-p')s'){p-X)ls'I(w(x-p')s)(p-x)ls

<CI(ct>)I((j){x-p')s'){p-X)ls'l(w)I(wx-p')p~x.

Since 4> is in (A*), it is in (Aq), where q = (p - l)/s' + 1 . Therefore the last
term in this inequality is bounded for all /, so 4>w is in (Ap).   D

Theorem 4.10. A function <f> is a multiplier of (Ax) if and only if 0_1 is in
(RHoo) n (A.) .

Proof. By Theorem 4.4, a function w is in (Ax) if and only if w~x is in
(RHoo) n (A2) . Hence 0 is a multiplier of (Ax) if and only if </>"' is a mul-

tiplier of (RHoo) n (Ai) . Our conclusion then follows at once from Lemma
4.9.   D

5. Applications to the (RHs) classes

In this section we use our results on (RHoo) weights to prove two theorems
about the reverse Holder classes, in particular about the class (RHS) n (Ap) .
The first extends the Jones' factorization theorem for (Ap) weights [10, p. 436]
to include information about the reverse Holder classes.

Theorem 5.1. A weight w is in (RHS) n (Ap) , I < p < 00, l<s<oo, if and
only if there exist weights wq and wx such that wq is in (RHS) n (Ax) , wx
is in  (RHoo) n (Ap) , and w = WoWX.
Proof. First consider the case when p = 1 or s = 00 . If w is in (Ap) n (RHS) ,
then set either tun or wx equal to one and the other equal to w . Conversely,
given Wq and wx , one of them will be in  (Ax) n (RHoo)  and so by Corollary
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4.6 will be equivalent to one. It is obvious that multiplying by such a function
preserves both (Ap) and (RHS) classes, so wqwx is in   (RHS) n (Ap) .

Now suppose that p > 1 and 5 < oo. If we are given wo and wx, then by
Theorem 4.4 there exists a function v in (Ax) such that wx = vx~p . So by the
Jones' factorization theorem, w = WoWX = wqvx~p is in (Ap). To see that w
is in (RHS), fix a cube /. Since wo is in (RHoo), there is a constant C such
that Wq(x) < C/(iun) for almost every x in /. Hence

(10) I(ws0w{) < CI(ws0)I(w¡) < CI(wo)sI(wxy ;

the last inequality holds since Wo is in (RHoo) and so in (RHS), and since
wx is in (RHS). Finally, since wx is in (Ax), there is a constant C such that
I(wx) < Cwx(x) for almost every x in /. Therefore inequality (10) becomes
I(ws) < CI(woW\)s. Since the constant is independent of /, w is in (RHS).

Conversely, if w is in (RHS) n (/4P) , then by Theorem 2.2, ws is in (Aq),
where q = s(p - I) + I . Therefore, again by the Jones' factorization theorem,
there exist Vo, vx in (Ax) such that ws = vov\~9 , or equivalently, w =
Vq'sv\~p . Let Wo = VqS and wx = v\~p . Since vo is in (Ax), by Theorems
2.1 and 2.3 tuo is in (RHS) n (/li) ; since Vi is in (vi]), by Theorem 4.4 wx
is in   (RHoo) n (y4p) .   D

Theorem 5.1 ties together two central results about (Ap) weights—the reverse
Holder inequality and the Jones' factorization theorem. However, neither of
the proofs of these theorems hints at the existence of the other. It would be of
interest to have a proof of the latter which contained the additional information
about reverse Holder classes as an integral part of the proof. (Strömberg and
Torchinsky [21 ] include the reverse Holder class as a hypothesis in their version
of the factorization theorem. However, their conclusion is much weaker than
ours.)

In our second result we determine the action of the minimal and maximal
operators on the class (RHS) n (Ap) . Roughly speaking, we show that the
(RHS) class of a function is determined by its behavior on the set where its

values are large and its (Ap) class by its behavior on the set where its values
are small. This interpretation cannot be taken too literally since it is possible
to construct bounded (Aoo) which are not in (RHoo) and (Aoo) weights which
are bounded away from zero which are not in (Ax). (By Corollary 4.6 and the
preceding remarks, it suffices to construct a non-positive function 0 in BMO
such that ~4> is not in BLO. Also, see Example 5.3 below.) Part of this result,
that Mw is in (Ax) whenever w is in (Aoo), was first discovered by Johnson
and Neugebauer [14].

Theorem 5.2. Let w be in (RHS) n (Ap) , l<s<oo, l<p<oo. Then
Mw is in  (RHS) n (Ax)  and  171 w is in  (RHoo) n (Ap) .
Proof. First suppose that w is in (RHS) n (Ap) , s < oo and p > 1 . We first
consider Mw . Since w is in (RHS), there is a constant C such that for every
cube /, I(w) < I(ws)xls < CI(w). Fix a point x and take the supremum
over all cubes / containing x. Then

Mw(x) < M(ws)(x)x/S < CMw(x).
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Since l/s < 1, by Theorem 6.1 below M(ws)xls is in (Ax), so Mw is as well.
To see that Mw is in (RHS), note that since w is in (RHS), by Theorem 2.1
ws is in (Aoo) and so in some reverse Holder class. Then by the same argument
as before we see that M(ws) is in (Ax). Hence (Mw)s is in (Ax), so, again
by Theorem 2.1, Mw is in (RHS).

Now consider 171 w. Since w is in (Ap), wx~p' is in (Apl), so by the
above argument M(wx~p') is in (Ax). Hence by Theorem 4.4, M(wx~p')x~p
is in (RHoo) n (Ap) . But then by inequality (8) of Lemma 4.3, 171 w is also
in the same class.

Now suppose that w is in (RHoo) n (^4P) . Then 171 w ~ it;, so it is
immediate that 171 w is in this class as well. Since w is in (RHoo), by The-
orem 4.1 it is in (RHS) for all s > 1 , so by the previous argument Mw is in
(Ax) n (/?//s) . Furthermore, a close examination of the proof shows that the
(RHS) constant of Mw depends only on the reverse Holder constant of ws,

and this constant is independent of s since w is in (RHoo) ■ Therefore, again
by Theorem 4.1, Mw is in  (RHoo) n (Ax) .

Finally, suppose that w is in (Ax) n (RHS) . Then Mw ~ w , so Afiu is in
the same class. By Theorem 4.4 w~x is in (RHoo) n (/Í2) . Therefore, by the
previous argument, M(w~x) is in (RHoo) n (/4i) and so, by Corollary 4.6, is
equivalent to one. Hence by inequality (8) of Lemma 4.3, 171 w ~ 1 and so is
in  (¿0 n (RHoo) .   a

The conclusion of Theorem 5.2 is sharp: The function w(t) = \t\~x¡2 is in
(RHS) n (A\) for all s <2 but not in (RH2), and Mw has the same property.
Similarly, let w(t) = \t\xl2. Then w and 171 w are in (RHoo) n (yip) for all
/? > 2 but are not in (A2).

Theorem 5.2 has only a very weak converse: If w is in (Ax) and Mw is in
(RHS), then so is w ; and if w is in (RHoo) and W w is in (/4P), then so
is w . No stronger converse is possible, as the next example shows. (We would
like to thank Don Sarason for showing us an illuminating construction which
led to this example.)

Example 5.3. There exists a function w in (Aoo) such that Mw is in (RHoo)
but w is not in (RH2). Similarly, there exists a function v in (Aoo) such that
ITlv is in (Ax) but v is not in (A2).

Proof. Both examples will be on R+ . We will construct a function w which is
bounded, less than or equal to one on [0, 1] and equal to one on (1, 00), and
in (Aoo) but not in (RH2). But Mw will be identically equal to one and so
in (RHoo).

For each n > 0, define f„ to be the truncation of |i|~1/2 at height 2"I1 :■Cir>/2  if2-"<|i|<i,
M2"/2        if 0< |r|<2-".

Then
.1

/.
fn(t)dt<4.
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Now by scaling and translating f„(t), define the function g„(t) with domain
/„ = [2-("+1>, 2~n]. Then

/   gn
Jin

(t)dt<A\In\.

Lastly, let wn(t) = 2-"l2gn(t) and define
oo

w(t) = J2^n(t)Xl„(t),      0<t<l.
n=Q

Notice that w(t) < 1 on [0, 1]. Extend w to a function on R+ by setting
it equal to one on (1, oo). We claim that w is in (Aoo) ■ Since w is piecewise
monotonie, it will suffice to show that w is in (Ap) for some p on small
subintervals of [0, 1] either contained in one of the /„ or adjacent to the
origin. (See [4] for details.) If / is contained in some /„ , then w behaves like
t"xl2, which is in (Ax). If / is adjacent to the origin, then w behaves like
t1'2, which is in (Ap) for p>3/2.

To see that w is not in (RH2) : For any n > 0 we have the estimate

In(w)2 = In(wn)2<(4.2-»/2)2 = 2*-».

However, In(w2) = 2~n(n log2 + 2). Therefore, as n tends to infinity the ratio
In(w)2/I„(w2) tends to zero, so w cannot be in (RH2).

Finally, we construct the function v from w . The above construction actu-
ally showed that w is in (Ap) for p > 3/2 but is not in (Ai/2) (since txl2 is
not). Therefore, by the duality of (Ap) weights, v = w~2 is in (Ap) for p > 2
but is not in (A2). But it follows from the definition of w that 171 v = 1 and
so lies in (Ax).   o

We conclude this section with a curious corollary to Theorems 5.1 and 5.2:

Corollary 5.4. If w is in  (RHS) n (Ap) , then so is Mw 171 w .

Though w and Mw 171 w both lie in the same (Ap) and (RHS) classes,
they are not generally equivalent. This naturally raises the following question:

Question 5.5. Given a function w in (RHS) n (Ap) , when is w ~ Mw 171 wl

Though we have not made any progress on this question, it is clear that a
solution will cast additional light onto the decomposition of a BMO function
into the difference of two BLO functions.

6. The STRUCTURE of (Ax) AND (RHoo) weights

Because of the close relationship between (RHoo) weights and (Ax) weights,
it seemed reasonable to ask if there is a characterization of (RHoo) weights
similar to the one for (Ax) weights given by Coifman and Rochberg [8]:

Theorem 6.1. Given a measure p on R" , then for all r, 0 < r < I, the function
(Mp)r is in (Ax). Conversely, if w is in (Ax) there exists a function v, and
r, 0 < r < 1, such that w ~ (Mv)r.
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An analogous result for (RHoo) would involve functions of the form
(171 w)r, 0 < r < 1. But by Theorem 4.2, if ( 171 w)r is in (RHoo), then
so is 171 w . Therefore the problem becomes to characterize those functions w
such that 171 w is in (RHoo) ', the analogous question for (Ax) weights is not
answered by Theorem 6.1. These two problems are related, which is not sur-
prising considering the close relation between (Ax) and (RHoo) shown above.
We give solutions to both problems in the next two theorems. Theorem 6.2 first
appeared in [4]; we include the proof here for completeness.

Theorem 6.2. Given a function w,  Mw  is in (Ax)  if and only if there exist
constants r > 1 and C such that M(wr) < C(Mw)r.
Proof. By Theorem 6.1 the function (Mwr)x/r is in (Ax). But by our hypothesis
Mw ~ (Mwr)xlr, so Mw is also in (Ax).

Conversely, if Mw is in (Ax), then it is (RHr) for some r > 1. Hence there
is a constant C such that for all cubes /, I((Mw)r)xlr < CI(Mw). Taking
the supremum over / shows that

M((Mw)r)xlr < CM(Mw) < CMw.

Therefore M(wr) < M((Mw)r) < C(Mw)r.   D

Using Theorem 6.2 we can answer our original question.

Theorem 6.3. Given a function w,   171 w is in (RHoo) if and only if there exist
constants p,  1 < p < oo, and C such that

(11) l<17lwM(wx-p')p-x <C.

Proof. Suppose first that 171 w is in (RHoo). Then 171 w is in (Ap) for some
p > 1. By Holder's inequality the first inequality in (11) always holds, so it
will suffice to show the second. By inequality (8) of Lemma 4.3, there exists a
constant C such that

m(mw)M((i7iw)x-p')p-x <c.

Since 171 w is in (RHoo), there exists a constant such that 171 w <
C 171 (171 w). Since w>17lw almost everywhere,

M(( 171 w)x-p')p-x > M(wx-p')p-x.

These three inequalities combined show that inequality (11) holds.
Conversely, suppose that inequality (11) holds for some p . Fix q > p . Then

q' < p', so

M(wx-q')q-x < M(wx-p')p-x < -£— < CM(u)1-«')«-1 ,

the first and third inequalities following from Holder's inequality, and the sec-
ond from inequality (11). Let s = (p' - l)/(q' - 1). Then 5 > 1 , so M(wx~q')
satisfies the condition given in Theorem 6.2 and thus is in (Ax). Further,
171 w ~ M(wx-q'y-q , so by Theorem 4.1   171 w is in (RHoo) ■   □

Theorems 6.2 and 6.3 may be summarized as saying that Mw is in (Ax)
when w satisfies a reverse-Hölder-type condition and that  171 w is in (RHoo)
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whenever w satisfies an (Ap)-type condition. Thus these results generalize
Theorem 5.2. (Theorem 5.2 also gives large classes of functions which satisfy
the conditions in these results.)

In fact, the proofs of these two theorems give information about the (RHr)
and (Ap) classes to which Mw and 171 w belong. Clearly, if Mw is in
(RHr), then w satisfies M(wr) < C(Mw)r. Conversely, by Theorem 6.1 if
t < r, then (Mwr)t/r is in (Ax), so by Theorem 2.1 Mw is in (RHt) for all
t < r. Similarly, if 171 w is in (Ap), then w satisfies inequality (11); if w
satisfies (11), then 171 w is in (Aq) for all q > p . This lack of symmetry led
us to the following two conjectures.

Question 6.4. If a function w satisfies M(wr) < C(Mw)r for some r > 1, is
Mw in (RHr)?

Question 6.5. If a function w satisfies 1 < 17lwM(wx~p')p~x < C for some
p > I, is  171 w in (Ap) ?

The proof of Theorem 6.3 can be easily adapted to show that Question 6.4
implies Question 6.5. However, Question 6.4 is extremely difficult and repeated
attempts either to prove it or to construct a counterexample have been unsuc-
cessful. It is easy to see that it is equivalent to the following question.

Question 6.6. If a function w satisfies M(wr) < C(Mw)r for some r > 1, do
there exist constants C and s > r such that M(ws) < C'(Mw)sl

This reformulation of the question shows that this problem is closely re-
lated to a number of so-called higher integrability theorems which are impor-
tant in the study of partial differential equations and quasi-conformal mappings.
Gehring [11] proved that if a function w is supported in a cube / and sat-
isfies the inequality M(wr) < C(Mw)r on /, then there exists s > r such
that I(ws) < CI(w)s. However, the statement of his theorem omitted the cru-
cial hypothesis that w is zero off of /. Were the theorem true as stated, then
Question 6.6 would be a corollary of it. Giaquinta and Módica [13] showed that
this hypothesis cannot be omitted, but their counterexample does not apply to
Question 6.6. Giaquinta [12] and Stredulinsky [20] independently proved a
more general version of Gehring's result which again requires that w be com-
pactly supported. Question 6.6 generalizes Gehring's result in another direction:
It omits the hypothesis of compact support but replaces the integral inequality
in the conclusion with a weaker one involving maximal functions.

We conclude this section with an example of a large class of functions which
satisfy the condition of Theorem 6.2 and for which Question 6.6 is true. We
begin with a definition.

Definition 6.7. A function w satisfies the weak reverse Holder inequality with
exponent r > 1 if there exists a constant C such that for every cube /

(12> (wilw'dx)'"iwiLwdx-
We denote this by saying that w is in weak (RHr ). The union of all the weak
reverse Holder classes is called weak (Aoo) ■
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Functions which are in the weak reverse Holder classes come up naturally
in the study of partial differential equations, quasi-conformal mappings and
weighted norm inequalities. Sawyer [ 19] first called the union of all the weak
(RHr) classes weak (A&) and proved that this class has several equivalent
characterizations similar to the original (Aoo) condition.

If a function w is in weak (RHr), then by an argument essentially the same
as the second half of the proof of Theorem 6.2, M(wr) < C(Mw)r. Hence
Mw is in (A i ). Furthermore, Giaquinta [ 12] has shown that if w is in weak
(RHr), then it is in weak (RHS) for some s > r ,so M(ws) < C(Mw)s.

It is not clear whether functions in weak (Aoo) are examples of functions
which satisfy inequality (11) of Theorem 6.3. The difficulty is that weak (Aoo)
does not appear to have a natural duality—there exist w in weak (Aoo) such
that w~r is not for any r > 0. For example, let w(t) = X[Q,oo)(t) ■

7. The maximal operator and BMO

In this section we apply our results to give a new proof that the maximal
operator is bounded on BMO. This was first proved by Bennett, DeVore, and
Sharpley [2]; another proof with some affinity to ours was given by Chiarenza
and Frasca [3].

The heart of our proof is the following "commutation" result which we think
is of interest in itself.

Theorem 7.1. Let w = e^ be in (Ap) for some p > 1. Then Mcj> is in BLO
and
(13) M<p-log(max(Mw,l/17lw))

is in L°°, and its norm depends only on the (Ap) constant of w . If w is in
(Ax), then M<f> - logMw is in L°° and its norm depends only on the (Ax)
constant of w . If w is in (RHoo), then Mcj> + log 171 w is in L°° .
Proof. The proof depends on several inequalities satisfied by (Ap) weights. It
has two cases depending on the size of p .

Suppose first that p < 2. Then w is in (A2), so there exists a constant
C, depending only on the (Ap) constant of w , such that for every cube /,
I(e\<t>-im) < c [10, p. 409]. Hence by Jensen's inequality

(14) I(\4>\)<\I(4>)\ + C.
Now again by Jensen's inequality I(</>) < logI(w). Further, w satisfies the
so-called reverse Jensen inequality: There exists a constant C, depending only
on the (Ap) constant of w , such that for every cube /, I(w) < Ce1^ [10, p.
405]. It follows from this that -/(</>) < -log/(u;) + C. Together, these two
inequalities show that for any x in /

\I(4>)\ <max(logI(w), -logI(w)) + C
< max(logMw(x), -login w(x)) + C
= log(max(Mw(x), 1/ÏYI w(x))) + C.

Combining this with inequality (14) we get

/(M) < log(max(Mw(x) ,1/YYl w(x))) + C.
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Therefore, if we fix x and take the supremum over all cubes / which contain
it we see that

(15) M(p(x) < log(max(Mw(x), l/mw(x))) + C.

To show that ( 13) is in L°° we need to establish the reverse of this inequality.
By the reverse Jensen inequality, for every cube / and x in /, I(w) < Ce1^ <
çeM<t>(x) > so jf we again nx x an¿ ia]¿e tne supremum over all / containing it
we get

(16) logMw(x) < M<f>(x) + C.

Similarly, by Jensen's inequality, for every / and x in /, -log/(u;) < /(-</>) <
M(f>(x), so

(17) -loginw(x) < Mcb(x).

Together, inequalities (16) and (17) imply the reverse of (15), so (13) is in
L°° . Furthermore, all of the constants involved in the proof depend only on
the (Ap) constant of w , so its L°° norm does as well.

To see that M<f> is in BLO: Since w is in (A2). by Theorems 4.4 and 5.2
Mw and l/YYlw are both in (Ax). Then a simple calculation shows that
max(Mw , 1/ mw) is also in (Ax). Hence the logarithm of this maximum is
in BLO [10, p. 409]. The sum of a bounded function and a function in BLO is
again in BLO, so M (fr is in BLO.

Now suppose that p > 2. Then by the duality of (Ap) weights, wx~p' =
e(i-p')<t> is in (Ap-)   Since p' < 2, by the previous case M<f> is in BLO and

(/>' - l)M<t> - log(max(M(wx-p'), 1/ m (wx~p')))

is in L°° . By Lemma 4.3 the second term differs from the function

(p' - l)log(max(Mw, l/fflw))

by a bounded function whose L°° norm depends only on the (Ap) constant of
w . Therefore (13) is in L°° ; since the (Ap) constant of w is the same as the
(Api) constant of wx~p' , its L°° norm depends only on the former.

If w is in (Ax) it is in (A2), so by the first case (13) is in L°°. But by
Theorem 5.2 and Corollary 4.6 Wlw is in (RHoo) n (Ax) and thus bounded
and bounded below. Hence M<j> - log Mw is in L°° . Finally, an identical
argument shows that if w is in (RHoo) then Mw is bounded and bounded
below and so M<j> -\-log YYI w is in L°° .   n

Theorem 7.2. The maximal operator is a bounded operator on BMO and maps
BMO into BLO.
Proof. It is a consequence of the John-Nirenberg theorem that if (j> is in BMO
then there exists a constant A, depending only on the norm of <p, such that
w = e^ is in (^2) and the (A2) norm of «) is bounded by an absolute constant
[10, pp. 166, 409]. Since the maximal operator is positive homogeneous, it is
immediate from Theorem 7.1 that the maximal operator maps BMO into BLO.

To see that the maximal operator is a bounded operator, fix a constant K
such that if \\<t>\\t < K, then w = e*  is in  (A2)  and its (A2)  constant is
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independent of <j>. Then by Theorem 7.1

(18) M<p = log(max(Mw,l/mw)) + y/,

where y/ is a bounded function whose L°° norm, and so whose BMO norm,
is independent of 4>. By the proof of Theorem 5.2, the (Ax) constants of Mw
and 1/ mw depend only on the (A2) constant of w, so the (Ax) constant
of their maximum is independent of <f>. But the BMO norm of the logarithm
of an (Ap) function depends only on its (Ap) constant; hence the norm of the
right-hand side of (18) is a constant independent of <f>. Therefore the maximal
operator is bounded.   □

8. Appendix

This section is an erratum to an earlier paper by the first author [5] which
contains two results that are incorrect as stated. The correct theorems are the
following.

Theorem 8.1. // w is in (Ax) and f and |/| log+ |/| are in L x(w) (on the unit
circle), then Mf is in Lx(w). Conversely, if w is in (RHoo) and f and Mf
are in L x(w), then \f\ log+ |/| is in L x(w).

Theorem 8.2. If w is in (Ax) and if f and |/|log+|/| are in Lx(w) (on the
unit circle), then f, the conjugate function of f, is in Lx(w). Conversely, if
w is in (RHoo) ctnd if f > 0 and f, f are in Lx(w), then \f\ log+ |/| is in
Lx(w).

The first halves of Theorems 8.1 and 8.2 are correct in the original paper.
However, the incorrect condition that w is in (Ax) is assumed for the second
half of each theorem. Necessary and sufficient conditions on the weight w for
the second half of Theorem 8.1 to hold were given by Andersen and Young [1]
and Muckenhoupt [18]. They showed that a sufficient condition on w is for it
to be in (RHoo) ■ And, as noted in [5], the proof of the second half of Theorem
8.2 only uses the second half of Theorem 8.1 and the fact that w is in (/loo),
so the the proof still holds for w in (RHoo) ■
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