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THE STRUCTURE OF THE SET OF IDEMPOTENTS
IN A BANACH ALGEBRA

BY

J.P. HOLMES

Abstract

We study here the algebraic, geometric, and analytic structure of the set of
idempotent elements in a real or complex Banach algebra. A neighborhood
of each idempotent in the set of idempotents forms the set of idempotents in
a Rees product subsemigroup of the Banach algebra. Each nontrivial con-
nected component of the set of idempotents is shown to be a generalized
saddle, a type of analytic manifold. Each component is also shown to be the
quotient of a (possibly infinite dimensional) Lie group by a Lie subgroup.

Introduction

By a Banach algebra we mean a real or complex Banach space X together
with an associative continuous bilinear multiplication function X X X.
For example, X could be the algebra of continuous linear transformations on
some Banach space Y and could be composition. Denote by E the set to
which e belongs if and only if e.e e. This is the set of idempotent
elements of X. If e E we denote by C(e) the connected component of E
which contains e.

Zemfinek in [8] showed that each component C(e) is arcwise connected in
the case of a complex Banach algebra and showed how to connect any two
members of C(e) by an analytic arc in C(e). He did this by showing that the
component of the identity element in the group of invertible elements in X
acts transitively on C(e), if X has an identity element, via the action

-1g’g "e’g.

This implies via standard results in the finite dimensional case that C(e) is
homeomorphic with the manifold G/H where G is the group of invertible
elements and H is the isotrophy subgroup of e. This is not a theorem in the
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infinite dimensional case, but we show here that in our particular situation
G/H has a natural manifold structure and that the natural map of G/H
onto C(e) is a homeomorphism.
Zemnek also notes that C(e) is a singleton if and only if e is in the center

of X. This could also be inferred from results in [3] concerning the more
general setting of a semigroup with differentiable operation.

Aupetit [1] transfered Zemnek’s results to the setting of a real Banach
algebra. Esterle [2] showed that each pair in C(e) can be connected by a
polynomial arc in C(e). Tremon [7] examined the degree of these polynomial
paths and showed how to construct one of degree 3 between e and f if e f
is invertible. He also showed that in the case of the algebra of n n real or
complex matrices any two members of C(e) can be connected by a degree 3
polynomial arc in C(e).

In [3], [4], [5] the set of idempotent elements in a semigroup with differen-
tiable multiplication function is examined and it is shown that each C(e) is a
differentiable submanifold of the semigroup. This of course implies that each
component is arcwise connected. Here, we specialize these results to the
Banach algebra setting. We identify the tangent space to C(e) at e with a
splitting closed subspace of X and provide, for each such tangent space, a
degree 3 polynomial map from the space into C(e)which is a local homeo-
morphism from a neighborhood of 0 onto a neighborhood of e. Using these
charts, we show that C(e) is a generalized saddle in the sense that it is locally
the union over an affine subspace of smoothly varying disjoint affine sub-
spaces. Tremon [7] points this out in the case of the algebra of 2 2
matrices.

Algebraic description of C(e)

Suppose X is a Banach algebra and E is the set of idempotent elements of
X. For each element e of E denote by C(e) the connected component of E
which contains e. We will now show that the members of C(e) live locally in
subparagroups of X and we will see how C(e) interacts algebraically with
nearby members of X. Define projections Pe and Qe on X by

Pe( X) xe exe

and

Qe(x) ex exe.

THEOREM 1. The aflfine subspaces e + im(Pe) and e + im(Qe) are subsets
of C(e). Moreover,

Le =- e + im(Pe) {l:el e and le l}
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and

R e =- e + im(ae) {r:er r and re e}.

Finally, Pe Qe Qe Pe 0 SO Pe + Qe is a projection ofX onto a closed
linear subspace ofX.

Proof. It is clear since e Pe(x) Qe(x) e O, Pe(X) e Pe(X), and
e ae(x) ae(x) that each of Pe and ae is a projection of x onto a closed
linear subspace of X. Moreover each of im(Pe) and im(Qe) is a subalgebra of
X with trivial multiplication. These remarks show that the members of
e + im(Pe) and e + im(Qe) are idempotents. But since these are connected
sets of idempotent elements containing e they must be contained in C(e).
Moreover, they show that if l e + Pe(x) then le and el e and if
r e + Qe(x) then re e and er r.

Suppose le and el e. Note Pe(l e) Pe(l) le ele e. A
similar argument justifies the rest of the second assertion.
Applying Pe to ae(x) involves multiplying on the right by e. This anni-

alates Qe(x) and hence Pe Qe 0. Similarly, Qe ee O.
Define the function F on im(Pe + Qe) by

F(x) e + Qe(x) + ee+Qe(x)(ee(x)),

Using the fact that if x im(Pe + Qe) then Pe(X)= xe, Qe(x)= ex, and
exe 0 we see that

F(x) e + x + xex ex 2e ex2ex.

By Theorem 1, F maps into the set of idempotents. Its image is connected
and contains e and hence is contained in C(e). The next few results are
aimed at showing that F is a local homeomorphism onto a neighborhood of e
in C(e). Since the restriction of F to each of im(Pe) and im(Qe) is an affine
homeomorphism we will thus arrive at a justification of our assertion that
C(e) is a generalized saddle.
We first derive results from [5] which are needed here. The arguments here

are special to the present setting and are more accessible than those in [5].

THEOREM 2. Let the functions Ge and Go onX im(Pe) andX im(Qe)
respectively be defined by

Gp( X, y) Py +e( X )
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and

GQ( x, y) Qy+e( X).

Then Ge and Go map into im(Pe) and im(Qe) respectively. There are
neighborhoods U of e in X and V and W of 0 in im(Pe) and im(Qe)
respectively so that the equations

Ge(x, y) Go(x, z) 0

have unique solutions (x, y) U V and (x, z) U W. Finally, let and
d be the functions defined implicitly by these equation respectively. The func-
tions x O(x) + e and dp x d(x) + e are analytic retractions onto
neighborhoods of e in Le and R e respectively.

Proof First, since the condition l" e and e e is symmetric in e
and l, by Theorem 1 it is clear that

im(Pe) im(Py+e )

if y im(Pe). Similarly we have

im(Qe) im(Q,+e)

if y im(Qe) so indeed, ap maps into im(Pe) and GQ maps into im(Qe).
Since

D2Ge( x, y)( z) xz zx( y + e) ( y + e)xz

we have

D2Gp( e, O)( z) ez ze ez -z ifz im(Pe).

Thus, since G,(e, O) Pe(e) 0, the assertion about the existence of U, V,
and is simply an application of the implicit function theorem. In fact, the
iteration scheme

Yo 0 and Yn+ Yn -Jr Gp( X, Yn)

converges to q,(x) if x is sufficiently close to e. The argument for the
existence of is similar.
That the functions q and are analytic follows from the implicit function

theorem. On the other hand, it is clear that if y dom($) im(Pe) then,
since y + e Le we have Gp(y + e, y) ey+e(Y + e) 0, we must have
qt(y + e)+ e =y + e by the uniqueness part of the conclusion of the im-
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plicit function theorem. Thus, is a retraction. The argument for is
similar.

If e E denote by H(e) the largest multiplicative subgroup of X which
contains e. This is exactly the group of invertible elements in eXe, the
subalgebra of X consisting of those elements for which e acts as an identity
element.

NOTE 3. The function which sends g in H(e) to Ig for Le is an
isomorphism of H(e) onto H(l), and the one which sends g in H(e) to gr for
r R e is an isomorphism of H(e) onto H(r).

Proof. Suppose gi H(e) for 1, 2 and L e. Note that

lgxg2 lgl(eg2) lg(el)g2 lgllg2

so g: lg is a homomorphism. But clearly g: eg for g H(l) is the
inverse of this homomorphism so the function in question is an isomorphism.
The rest is similar.
Again let and be defined on the common domain of b and q by
(x) b(x) + e and (x) q(x) + e.

THEOREM 4. There is an open set U ofX containing e so that ifx U then
alp(x) (x) H(e) and the function 0 defined by

o(x)

is an analytic retraction onto a neighborhood of e in C(e) and xO(x)=
O(x)x H(O(x)) ifx U.

Proof Since H(e) is open in eXe, (x)(x) R e L e c eXe, and each
of and is continuous and sends e to e there is a neighborhood U of e in
X so that if x U then (x) (x) H(e).

If f E and x fXf is within 1 of f then x H(f) since the geometric
series

f+ (f-x) + (f-x) +

converges to the inverse of x relative to f. By making the set U chosen above
smaller we can insure that the distances from x(x) to (x) and from
(x)x to (x) are both less than 1 and hence that x(x) H((x)) and

d(x)x H(d(x)) if x U. If we also require that U be connected we have
a set which suffices for the conclusion.
To see this, suppose x U and let r (x) and (x). By Theorem

2, r R e and L e. By choice of U we have rl H(e). It is clear from
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arithmetic that O(x)= l(r/)-lr E. Since 0 is a combination of analytic
functions it is analytic. Thus, the image of 0 is contained in C(e).

Let f O(x). Then l.f f and f. so by Theorem 1, Rf R 1.
Similarly, L Lf
By construction we have xl lxl H(l) and rx rxr H(r) so by note 3,

xf x(If) (xl)f is in H(f) and similarly, fx H(f). Hence xf fxf fx
is in H(f).
Now consider the situation in which x is in the domain of 0 and is in E

and is within 1 of O(x). Since x commutes with O(x)we have x. O(x) is an
idempotent in both H(x) and H(0(x)). Thus, x x0(x) 0(x) and the
image of 0 fills a neighborhood of e in C(e). It follows from this that 0 is a
retraction.

Remark. Esterle in [1] showed how to use Kovarik’s construction from [6]
to construct from r and 1, arbitrary idempotents within 1 of each other, an
idempotent e so that r R e and 1 Le. The construction is based on
functional calculus and spectral theory.

In this connection we also note that under suitable circumstances the
idempotent 0(x) is exactly the one obtained by integrating the resolvant of x
around a small circle in the complex plane which encloses the number 1 but
not the number 0.

One way to construct a semigroup with differentiable multiplication is the
following. Suppose that G is a Lie group, each of L and R is a differentiable
manifold, and s is a differentiable function from R L into G. Then the
multiplication

(l,g,r) (,,) =- (l, gs(r,b,)

is associative and differentiable on the differentiable manifold L G R.
The semigroup constructed this way is called a paragroup or Rees product
semigroup. The construction naturally occurs in the present situation.
The group H(e) is an open subset of eXe. It is clear that R e .Le is

contained in eXe so the set Le(eXe)R e is closed under multiplication. Since
multiplication is continuous, there are open sets UR and UL of Re and Le

respectively containing e so that UR UL H(e).

THEOREM 5. If UL and UR are as above then S UL H(e) UR forms a
subsemigroup ofX. There is a neighborhood U of e in X so that U. e U c S.
The subsemigroup S has the structure of a paragroup. The idempotents of S are
exactly those of the form f l(rl)-lr for UL and r UR. These idempo-
tents cover a neighborhood of e in C(e).
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Proof
that

The fact that S is a subsemigroup follows from the observation

remains in S if each of 1, UL, g, , H(e), and r, UR.
TO see the next part of the assertion, suppose each of x and y is in X and

is sufficiently close to e to insure that each of exe and eye is in H(e). Then

xey lgr

where xey(exeye) -1, g exeye, and r (exeye)-lxey. The fact that Le

and r R e follows from the obvious le=l, el=e, re=e, er=r, and
Theorem 1.

Since e(lgr)e g, lgrg- 1, and g- algr r it is clear that (1, g, r)
l.g.r is a homeomorphism of UL H(e) UR onto UL H(e)’UR. If
s:Ug UL -) H(e) via s(r, l) r/ this homeomorphism is an isomorphism
with the paragroup determined by s.
To see that the idempotents of S are of the form f =/(r/)-lr for Le

and r R e note that if f lgr for g H(e) and and r as before then
lgrlgr lgr implies grlg g and hence g (r/) -1. By Theorem 4 all mem-
bers of C(e)near e are of this form for and r near e.

Geometric structure of C(e)

We will now show that C(e) is a manifold, the tangent space to C(e) at e is
im(Pe 4- Qe), and the functions Fe defined by

Fe(x ) e + Qe(x) + ee+Qe(x)(ee(x)) e + x + xex ex2e ex2ex

form an analytically compatible collection of charts for C(e). As stated
before this shows that C(e) is a generalized saddle.
We need the following tool which we include for completeness.

LEMMA 6. Suppose Y is a Banach space and X L(Y) is the Banach
algebra of continuous linear operators on Y with the operator norm. If e, f E
and lie- fll < 1 then (flim(e)) is a linear homeomorphism of im(e) onto
im(f).

Proof Since lie -fll < 1 we have I + (e -f) invertible and hence

X= (I + e f)(X) (I- f)(X) + e(X).
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Thus,

f(X) f(I- f)(X) + f(e(X)) f(e(X)),

and (film(e)) is onto. If x im(e) then Ilxll IIf(x)ll lie(x)- f(x)ll
lie- fll Ilxll so

IIf(x)ll >- (1 lie -fll)llxll

and f is one to one on im(e).

We are now prepared to show that the Fe’S are local homeomorphisms. We
use the obvious fact that e Pe and e Qe are continuous into L(X).

THEOREM 7. For each e E the function Fe is a homeomorphism from a
neighborhood of 0 in Te =- im(Pe + Qe) onto a neighborhood of e in C(e).

Proof We have already observed that Te is a splitting subspace of X and
that Fe maps Te into C(e). Thus, it remains to show that Fe is a local
homeomorphism at 0 and that a neighborhood of e in C(e) is covered by a
neighborhood of 0 under Fe.

Since Fe is a degree three polynomial, it is analytic. Moreover,

F(x)( y) y + yex + xey exye eyxe ex2ey eyxex exyex

and hence

F(O) (y) =y.

Choose the open set U of Te containing 0 so that if each of x and y is in U
then

liFe(x) Fe( Y) ( x y)II 1/21Ix yll.

It follows that for each of x and y in U we have

1/21Ix y II IIFe(x) Fe( y)ll llx y II.

Thus, Fe is one to one on U and (Fel U)-1 is continuous on its domain.
We know from Theorem 5 that for each f near e in C(e) there is an
Le near e and an r R e near e so that f= l(rl)-lr. Thus, from

Theorem 1, since f L we have f r + Pr(X) for some x in im(Pr). But,
r Qe(r e) + e and if r is close to e then Pr maps the image of Pe onto
im(P). Thus, f= r + Pr(Z) for some z near 0 in im(Pe). That is to say,
f im(Fe).
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This shows that as r ranges along the affine subspace R near e the affine
spaces L are mutually disjoint and sweep out a neighborhood of e in C(e).
This is our justification for the terminology generalized saddle in describing
C(e).
We will now show that local homeomorphisms Fe are analytically compati-

ble and hence serve as an atlas of charts for C(e).

THEOREM 8. If e C(e) there is a neighborhood U of e in C(e) so that if
f U then there are neighborhoods A and B of 0 in Te and Tf respectively so
that F-1 Fe is an analytic homeomorphism ofA onto B.

Proof. Suppose e E and f C(e). Consider the function H defined on
Te Tf intoT by

H(x, y) (Pe + Qe)(e + Fe(x) Ff( y)).

It is clear that H is analytic and

D2H(x, y)(z) (Pe + Qe)(-F:(Y)(Z))

If y 0 we have

D2H( x, O)( z) -( Pe + Qe)( Z).

Thus, if f is sufficiently close to e to insure that Pe + Qe is a homeomor-
phism of Tf onto Te, we have the existence of an implicitly defined analytic
function u with domain an open set of Te containing x into Tr so that
u(x) 0 and H(z, u(z)) H(x, 0) for all z dom(u).

Let 0 be the retraction of a neighborhood of e in X onto a neighborhood
of e in C(e) constructed in Theorem 4. Choose A open in Te so that Fe is a
homeomorphism from A onto a neighborhood of e in C(e)which is con-
tained in the image of 0 and so that if f Fe(A) then Pe + Qe is a
homeomorphism of Tf onto Te. Suppose x0 A and let f-- Fe(xo). Consider
the function H based on this choice of x and f. We have

H(xo,O) (Pe + Qe)( e + Fe(xo) Ff(O)) (Pe + Qe)( e +f-f) 0

so our implicitly defined function u satisfies

(Pe + Qe)(Fe(x)) Ff(u(x)) 0

for each x dom(u).
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Now, since 0 is a retraction and 0(e)= e, 0’(e) is an idempotent linear
operator on X. Since the image of 0 is a neighborhood of e in C(e),
for l Le and near e we have O(l)= I. Similarly, for r R e and near
e we have O(r) r. It follows that O’(e)(l e) e for each Le and
0’(e)(r e) r e for each r Re since

II0(/) 0(e) (1- e)ll-- 0

for l near e in L and

II0(r) 0(e) (r e)ll-- 0

for r near e in R e. On the other hand, if ex xe and x is near e then
(x) (x) e by Theorem 2. Thus, 0(x) 0(e) e and hence

II0(x) 0(e) 0(x e)ll 0.

It follows that O’(e)(x e) 0 for such x. Thus, if xe ex then O’(e)(x) O.
Thus the kernel of 0’(e) contains the set of x such that xe ex. Hence, we
see that 0’(e) leaves the image of Pe + Qe fixed and maps ker(Pe + Qe) to 0.
Hence, 0’(e) Pe + ae.
Choose the open set V of X containing e so that if x, y V and x y

then

II0(x) o(y) O’(e)(x y)ll < IIx yll.

For x dom(u)we have

liFe(X>
liFe(X) F (u(

Thus, recalling that O(Fe(x)) Fe(x) and O(F(u(x))) F(u(x)), we have

ee() e(u(x)) =o

if each of Fe(x) and Fy(u(x)) is in V. By making A smaller, we can guarantee
this happens for all x in a neighborhood of x 0. Thus, there is an open set A
containing 0 in Te so that for each x A there is an analytic function u from
a neighborhood of x in Te into a neighborhood of 0 in Te,( so that

F-Fe(Z) FFe((U(Z)) on the domain of u. That is to say, so that u Fe(x Fe
is analytic on dom(u).
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C(e) as a homogenous space

Suppose X contains an identity element 1. We now turn to an examination
of Zeminek’s result that G, the component of 1 in H(1), acts transitively on
C(e) via x g-lxg. The isotropy subgroup of an idempotent e is the
subgroup H defined by

H {g G’g-leg e}.

This is exactly the set of elements of G which commute with e. The function
which sends gH g-leg is a natural one to one correspondence between
the members of G/H and C(e). The space G/H of left cosets of H in G
with the quotient topology is naturally topologically homogeneous since the
left translations by members of G move the cosets among themselves and are
homeomorphisms. We will show that the correspondence between G/H and
C(e) is a local homeomorphism from a neighborhood of H onto a neighbor-
hood of e.

If we regard X in the usual way as a Lie algebra under the commutator
product [x, y] =xy -yx then X is the Lie algebra of G. The exponential
map is a local homeomorphism from a neighborhood of 0 in X onto a
neighborhood of 1 in G. The tangent set to H at 1 is exactly the set h of
members of X which commute with e since H is the intersection of this
subspace h with G. It is clear that exp(h) c H since exp(x) commutes with e
if x does. Moreover, h is a sub Lie algebra of X.
The Lie subalgebra h splits in X because it is exactly the kernel of the

projection Pe + ae. The complementary subspace Te in turn splits into the
linear but not Lie algebraic direct sum of the two subalgebras Pe(X) and
Qe(X). On these subalgebras the multiplication function of X is the trivial

LEMMA 9. The function M defined by the equation

M(x) exp(Pe(-X))exp(Qe(x))exp((I- Pe Qe)(X))

has domain containing a neighborhood of 0 in X on which M is a homeomor-
phism onto a neighborhood of 1 in G.

Proof. This is just an application of the inverse function theorem, given
the facts that dom(M) X, M is analytic, and

M’(O) -ee + ae 4- 1 ee ae (1 Pe) Pe

is invertible.
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The following maps are also of interest:

r" G G/H via

13"G/H C(e) via

N" Te G/H via

7r(x) xH

[3(xH) x-lex

N(x) exp(-Pe(x))exp(Qe(x))H.

Note that since each of Pe(X) and Qe(S) is a subalgebra with trivial
multiplication we have

exp(x) 1 + x for x Pe(X) k) Qe(X).

Hence exp(im(Pe))= 1 + Pe(X) and exp(im(Qe))= 1 + ae(X) are abelian
subgroups of G, each intersecting the other and H at {1}. Lemma 9 shows
that (1 + Qe(X))(1 / Pe(X))H is a direct product of sorts and that it
contains a neighborhood of 1.

If x Te then there are unique Le and r R e so that Pe(x) (l e)
and ae(x) (r e). The composition/3 N thus is given at x by

(N(x)) (1 (r- e))(1 + (l- e))e(1 (1- e))(1 + (r- e))
(1 (r- e))l(1 + (r- e))
(1- (r-e))lr
lr- rlr + r

Fe(x )

Choose an open set W containing 0 so that (MI W) is a homeomorphism.
Suppose U is an open set in im(Fe) and is ,sufficiently close to e to make
Fe- I(U) + V c W for some open set V of H. The set M(F-I(U) + V) H is
open in G since it is the product of an open set and a set. Thus

N(l:i’-l(v) )

is open in G/H since

7r-l(-l(v)) M(F-I(u) .-t- V) H

is open in G. Thus, /3 is continuous on a neighborhood of H in G/H and
maps this neighborhood onto a neighborhood of e in C(e).

Since N 7r (MI Te) we have N continuous. Because of the above factor-
ization of Fe we have that N is one to one from an open set of Te onto an
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open set of G/H and maps open sets to open sets. Thus, fl itself is a
homeomorphism from an open set of G/H onto a neighborhood of e in
C(e).
These remarks constitute a proof of the following theorem.

THEOREM 10. The homogenous space G/H is locally homeomorphic with
Te and the function fl is a local homeomorphism from a neighborhood ofH in
G/H onto a neighborhood of e in C(e).

We remark that the polynomial paths constructed by Esterle [2] could
be thought of as using the basic idea of parametrizing G/H as
exp(-Qe(x))exp(-Pe(X)). H for x Te then shooting Te into C(e) by
composing with/3. What is missing there is the fact that this parametrizes a
neighborhood of e in C(e).

Final remarks

In the example in which X L(Y) for some Banach space Y it is easy to
see that

L e {l :ker(l) ker(e)} and R e {r :im(r) im(e)}.

As we remarked after the proof of Theorem 4, one can use spectral theory to
construct the retraction 0 on a neighborhood of e in X. The existence of 0
implies that if x is close enough to e then x leaves the kernel and image of
the nearby idempotent O(x)invariant. The construction of and by
successive approximations yields the nearby l (x)with the same kernel
as e and whose image is left invariant by x and the nearby r (x)whose
image is the same as that of e and whose kernel is invariant under x. There
doesn’t seem to be a natural construction based on spectral theory for the
idempotents 1 and r.
The charts Fe arise naturally in the homogeneous space through the

parametrization N of G/H and the natural map of G/H onto C(e). They
also arise through the parametrization of C(e)obtained by following R e to r
then Z to the (it turns out) typical idempotent near e. Of course, another
natural collection of charts arise via first following Ze to 1 then R to the
typical idempotent. Among the parametrizations of C(e) obtainable from
natural homeomorphisms from T into G/H these two seem to have the
lowest degree.
We close with a question. Must the functions Fe be one to one? Must they

be homeomorphisms?
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