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The local configurations of three-dimensional magnetic neutral points are investigated by a linear
analysis about the null. It is found that the number of free parameters determining the arrangement
of field lines is four. The configurations are first classified as either potential or non-potential. Then
the non-potential cases are subdivided into three cases depending on whether the component of
current parallel to the spine is less than, equal to or greater than a threshold current; therefore there
are three types of linear non-potential null configurations~a radial null, a critical spiral and a spiral!.
The effect of the four free parameters on the system is examined and it is found that only one
parameter categorizes the potential configurations, whilst two parameters are required if current is
parallel to the spine. However, all four parameters are needed if there is current both parallel and
perpendicular to the spine axis. The magnitude of the current parallel to the spine determines
whether the null has spiral, critical spiral or radial field lines whilst the current perpendicular to the
spine affects the inclination of the fan plane to the spine. A simple method is given to determine the
basic structure of a null givenM the matrix which describes the local linear structure about a null
point. © 1996 American Institute of Physics.@S1070-6634X~96!03803-4#

I. INTRODUCTION

Magnetic reconnection plays a central role in many phe-
nomena that occur in plasmas. For example, in space, in the
formation of X-ray bright points and solar flares on the Sun
and in the interaction between the Earth’s magnetosphere
and the solar wind and, in the laboratory, in spheromaks.
Over the last 20 years many aspects of two-dimensional re-
connection have been extensively studied. In two dimensions
the magnetic field vanishes at a neutral point which may be
either the ‘‘X’’ type or ‘‘O’’ type. In three dimensions Refs. 1
and 2 have considered some aspects of magnetic reconnec-
tion at three-dimensional neutral points. We, in this paper,
study such neutral points in detail by considering the local
magnetic configurations that can occur around them.

To find the local magnetic structure about a neutral point
we must consider the magnetic field in the neighbourhood of
a point where the field vanishes~B50!. If, without loss of
generality, we take the neutral point to be situated at the
origin and, in addition, assume that the magnetic field ap-
proaches zero linearly, the magnetic fieldB near a neutral
point may be expressed to lowest order as

B5M–r , ~1!

whereM is a matrix with elementsMi j 5 ]Bi /]xj and r is
the position vector (x,y,z)T. In this paper we systematically
study the matrixM , first in two dimensions~Sec. II! as a
preliminary to the three-dimensional work of Sec. III where
the matrixM is reduced to its simplest three-dimensional
form and the theory used in calculating the magnetic con-
figurations is discussed. In Secs. IV and V we discuss the
potential and non-potential configurations, respectively. Fi-
nally in Sec. VI this work is concluded.

II. REVIEW OF TWO-DIMENSIONAL NEUTRAL
POINTS

In two dimensions the matrixM is simply

M5Fa11 a12

a21 a22
G ,

where ai j are real constants. The solenoidal constraint
¹•B50 givesa1152a22: thus the trace ofM is zero. The
diagonal entries in the matrix are associated with the poten-
tial part of the field so we leta115p, and since the current
associated with the neutral point is

J5
1

m0
~0,0,a212a12!,

we define

a125
1

2
~q2 j z! and a215

1

2
~q1 j z!.

Clearly, for a current-free neutral pointa215a125q/2, and
the parameterq is therefore also associated with the potential
field whilst j z is the magnitude of the current perpendicular
to the plane of the null point. The matrixM may now finally
be written as

M5F p
1

2
~q2 j z!

1

2
~q1 j z! 2p

G .
We will find it useful to define a threshold current,

j thresh5A4p21q2, ~2!

which only depends on the parameters associated with the
potential part of the field, becausej thresh5A24c, wherea!Electronic mail: clare@dcs.st-and.ac.uk
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l21c5ulI2Su50 andS is the symmetric part ofM . We
now calculate the flux functionA, which satisfies

BX5
]A

]Y
and BY52

]A

]X
,

so that

A5
1

4
@~q2 j z!Y

22~q1 j z!X
2#1pXY. ~3!

If we rotate theXY-axes through an angleu to give
xy-axes using the relations

X5x cosu2y sin u,
~4!

Y5x sin u1y cosu,

and substitute~4! into ~3! with

tan 2u522
p

q
,

with j thresh as in ~2!, thenA becomes

A5
1

4
„~ j thresh2 j z!y

22~ j thresh1 j z!x
2
…. ~5!

We thus see that in two dimensions the two parameters
j thresh and j z govern the magnetic configuration.

The eigenvalues of the matrixM are given by

l56
1

2
Aj thresh2 2 j z

2; ~6!

hence, depending on whether the currentj z is greater or less
than the threshold valuej thresh the eigenvalues will be real
or imaginary and the field will have a different structure.

In the following sections a general two-dimensional null
is studied first depending on whether it is potential~Sec.
II A ! or not ~Sec. II B! and then whether the current is
greater or less thanj thresh ~Fig. 1!.

A. Potential two-dimensional neutral points

In the case of a current-free two-dimensional null
j z50,M is symmetric, and the eigenvalues are given by

l56
j thresh
2

;

therefore we have two real non-zero eigenvalues, and conse-
quently Eq.~5! becomes

A5
j thresh
4

~y22x2!.

The field lines are therefore rectangular hyperbola and the
separatrices intersect at an angle ofp/2. This is a potential
X-type neutral point, as shown in Fig. 2~a!, and is the only
possible configuration for a current-free two-dimensional
neutral point.

B. Non-potential two-dimensional neutral points

Two-dimensional neutral points with current are classi-
fied with respect to the magnitudes ofj z and j thresh.

1. z j zz< j thresh

When u j zu, j thresh the eigenvalues are real, equal in
magnitude, but opposite in sign~detM,0!. From the flux
function we see that the field lines are hyperbolae with sepa-
ratrices that intersect at an angle of

tan21S ~ j thresh
2 2 j z

2!1/2

j z
D .

The null point formed is therefore an X-type neutral point as
shown in Fig. 2~b!. As j z→0 the hyperbolae tend to rect-

FIG. 1. A categorization of the different types of two-dimensional null and
the respective limits ofj z ~the z-component of current! and j thresh ~the
threshold current! at which they occur.

FIG. 2. Two-dimensional magnetic field plots of neutral points in the
xy-plane showing~a! a potential X-point (j z50), ~b! a non-potential
X-point (u j zu, j thresh), ~c! anti-parallel field lines (u j zu5 j thresh) and ~d! an
elliptical null (u j zu. j thresh).
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angular hyperbolae, thus reducing to the potential case. As
the current increases, the angle between the separatrices in-
creases as they close up along they-axis.

2. z j zz5 j thresh
The eigenvalues in this case are equal~detM50!, and

so from Eq.~6! they must be equal to zero. The flux function
depends on either justx2 if j thresh5 j z or just y2 if
j thresh52 j z ; thus the configuration contains anti-parallel
field lines with a null line along they-axis @Fig. 2~c!# or
x-axis, respectively.

3. z j zz> j thresh
If u j zu. j thresh the eigenvalues become complex conju-

gates~detM.0!. When j thresh50, p5q50 and the field
configuration has circular field lines centered around the ori-
gin, whereas ifj threshÞ 0 then the field contains concentric
ellipses@Fig. 2~d!#.

III. THEORY OF THREE-DIMENSIONAL NEUTRAL
POINTS

Figure 3~a! shows a three-dimensional neutral point
formed by a field due to four point sources, two positive and

two negative.3 If we look closely at the local structure near
this null @Fig. 3~b!# we find that there is a set of field lines
extending into the null point and forming a surface~the thin
lines! which we call thefan, following the nomenclature of
Priest and Titov.2 However, only two field lines leave the null
point ~the thick lines! and they are called thespine. These are
the two basic components that make up the skeleton of any
neutral point in three dimensions. Thefan is a surface made
up of field lines which radiate out, or into the null point~this
is the same as the( surface referred to by Cowley,4 Greene5

and Lau and Finn1!. Thespineis made up of two special field
lines that are directed away from the null if the field lines in
the fan are directed towards the null and vice-versa~these are
equivalent to theg line4,5,1!. Field lines that lie near the null
point, but do not pass through it, form bundles around the
spine which spread out either side of the fan surface.

Mathematically, the linearised field about a three-
dimensional neutral point may be described using Eq.~1! in
terms of a 333 matrix of the form

M5F a11 a12 a13

a21 a22 a23

a31 a32 a33
G , ~7!

whereai j are real constants. The constraint¹•B50 implies
that the trace ofM must be zero, giving

a111a221a3350 .

This condition also implies that the eigenvaluesl1 ,l2 and
l3 associated with the matrix sum to zero. The eigenvectors
associated with these eigenvalues arex1 , x2 andx3 .

If a magnetic field line near the null is written in terms of
a position vectorr5(x,y,z)T which is dependent on an ar-
bitrary parameterk then we may write

dr ~k!

dk
5M•r ~k!5B, ~8!

using the substitutionr (k)5Pu(k), whereP is the matrix of
the eigenvectors ofM , Eq. ~8! becomes

du

dk
5P21MPu. ~9!

There are now two cases we must consider depending on
whether the matrixM can or can not be diagonalized. First,
if M is diagonalizable to a matrixL, say, which may have
real or complex elements, then the above equation may be
simply solved to give

u5A exp~Lk!,

whereA is also a diagonal matrix with entriesA,B andC
which are constant along a field line, and implies

r ~k!5Ael1kx11Bel2kx21Cel3kx3 . ~10!

Thus, each field line may be written in terms of the eigen-
values and eigenvectors of the matrixM .

We initially consider the situation where all the eigen-
values are real. Since they sum to zero there is always one
eigenvalue of opposite sign to the other two, say for example

FIG. 3. ~a! A three-dimensional potential configuration showing the global
magnetic field structure due to four point sources~depicted by asterisks!
containing two neutral points on thez50-plane.~b! A schematic enlarge-
ment of one of the nulls showing the local structure about a three-
dimensional negative neutral point with a fan~thin lines! and a spine~thick
lines!.
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l1 ,l2.0 ,l3,0 . If we trace a field line backwards away
from the neutral point, that is letk→2` in Eq. ~10!, we find

r ~k!→Cel3kx3 ,

so all the field lines that head in towards the null are parallel
to the single eigenvectorx3 . However, if we trace forward
along field lines away from the null, thenk→` and

r ~k!→Ael1kx11Bel2kx2 .

This implies that the field lines that are directed away from
the null lie parallel to the plane defined by the eigenvectors
x1 and x2 . If we compare this with our geometrical under-
standing of a three-dimensional null then we find that the
eigenvectorx3 with negative eigenvaluel3 defines the path
of the spine, whilst the plane of the fan is defined by the
eigenvectorsx1 andx2 .

In the situation where we have two complex and one real
eigenvalue, sayh6 in and22h, with corresponding eigen-
vectors x15(x181 ix28)/2, x25(x182 ix28)/2 and x3 , respec-
tively, then

r ~k!5
1

2
~A1 iB!e~h1 in!k~x181 ix28!1

1

2
~A2 iB!

3e~h2 in!k~x182 ix28!1Ce22hkx3 ,

whereA, B andC are constant along a field line. This may
be rewritten as

r ~k!5ehkRcos~Qk1nk!x182ehkRsin~Qk1nk!x28

1Ce22hkx3 , ~11!

whereA andB have been rewritten in terms of the constants
R andQ. So, if for example, we takeh.0, then ask→`
this equation reduces to

r ~k!→Rehkcos~Qk1nk!x182Rehksin~Qk1nk!x28 .

Thus the fan plane is defined by the vectorsx18 andx28 and
field lines in this plane will be spirals. The spine lies in the
direction of the eigenvectorx3, since, ask→2`,

r ~k!→Ce22hkx3 .

The second case we must consider is when the matrixM
is not diagonalizable. This occurs when two of the eigenval-
ues are repeated and the matrix can only reduce to a Jordan
normal form (Jn) which looks like

Jn5F l 1 0

0 l 0

0 0 22l
G .

The equation for the field lines may then be written using the
substitution r (k)5Pu(k), where this timeP5(x1 ,x2* ,x3)
andx1 , x2* andx3 satisfy

Mx15lx1 , Mx2*5x11lx2* , Mx3522lx3, ~12!

such that

du

dk
5Jnu.

The equation for a field line is therefore

r ~k!5~A1Bk!elkx11Belkx2*1Ce22lkx3 , ~13!

whereA,B andC are all constant along a field line. Hence, if
we assumel.0 then running forwards along a field line so
that k→` we find

r ~k!→~A1Bk!elkx11Belkx2* ;

thus the field lines lie in planes parallel tox1 andx2* whereas
if we trace backwards along a field line thenk→2` and

r ~k!→Ce22lkx3 ,

so that the field lines become parallel to the vectorx3 . We
therefore find that the spine is defined by the eigenvector
relating to the single eigenvalue whereas the fan plane is
defined by the remaining eigenvector and the Jordan basis
vector which are related to the repeated eigenvalue.

In general, therefore, the spine lies along the eigenvector
of M that relates to the single eigenvalue whose sign is op-
posite to that of the real parts of the remaining eigenvalues.
These remaining eigenvalues have vectors associated with
them which define the fan plane and which depend on the
nature of the eigenvalues, as shown in Table I.

It may easily be proved that if the real parts of two of the
three eigenvalues are positive, sayl1 ,l2.0, then the neutral
point will have field lines in the fan directed away from the
null and a spine pointing into the null alongx3 . This type of
null is called apositive neutral point.2 The determinant of the
matrixM will always be negative for this type of null. How-
ever, if the real parts of two of the eigenvalues are negative,
sayl1 ,l2,0, then the fan plane will have field lines point-
ing into the null with the spine again lying along the eigen-
vector x3 , but this time directed away from the null. Not
surprisingly, this type of neutral point is called anegative
neutral pointand has determinantM greater than zero.

A. Reduction of M to its simplest form

In order to examine all possible configurations of the
localised field about the neutral point we reduceM to the

TABLE I. Relation between the character of the eigenvalues and the associated vectors spanning the spine axis and fan plane.

Eigenvalues Associated vectors

Three real and distinct The associated eigenvectors (x1 ,x2 ,x3).
Two repeated, one distinct The three eigenvectors if they exist, or the vectors (x1 ,x2* ,x3) which

satisfyMx15lx1 , Mx2*5lx2*1x1 andMx3522lx3 .
Two complex conjugate, one real If the eigenvectors arex1 , x2 and x3 then the vectors are

x185(x11x2)/2, x2852 i(x12x2)/2, andx3 .
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least number of free parameters. In doing so, it is important
to remember that the matrixM determines all the physical
characteristics of the field including its structure, current and
associated Lorentz force. Thus, we do not consider the sim-
plest mathematical form ofM but derive a form for the ma-
trix that gives the simplest topological form for the null with-
out loss of generality. First we note that the field always has
at least one real eigenvalue whose sign will always be oppo-
site to the real parts of the other two. We therefore choose the
local orthogonal coordinate system such that the eigenvector
corresponding to this eigenvalue is in thez-direction, so that
the spine is directed along thez-axis. Additionally, the matrix
may be further reduced by rotating thexy-plane so that the
newx-axis lies in the direction of the resultant current in the
xy-plane. Finally, by dividing by a scaling factor the matrix
reduces to

M5F 1
1

2
~q2 j i! 0

1

2
~q1 j i! p 0

0 j' 2~p11!

G , ~14!

where p>21 and q2< j i
214p. The potential part of the

configuration is defined by the parametersp andq with the
current given by

J5
1

m0
~ j',0,j i!, ~15!

wherej i is the component of current parallel to the spine and
j' is the component of current perpendicular to the spine.
Another way of producing the form~14! is by first splitting
the matrix~7! into symmetric (S) and asymmetric (A) parts.
Next diagonalizeS so that the axes are along the eigenvec-
tors then rotate about thez-axis to make thex-axis along
j' . Finally, rotate about they-axis so that the upper half
y2z terms inS andA cancel. Note that the usual reduction
of an arbitrary matrix to block diagonal form@i.e., ~14! with
q5 j'50] does not allow all the possible field configura-
tions.

Finally, we shall define a threshold currentj threshwhich
depends purely onp and q the potential field parameters
such that

j thresh5A~p21!21q2. ~16!

Again, similar to the two-dimensional case,
j thresh5Ab3/271c2/4, wherel31bl1c5ulI2Su50. This
implies that the three eigenvalues (l1 ,l2 ,l3) associated
with M may be written as

l15
p111Aj thresh2 2 j i

2

2
,

l25
p112Aj thresh2 2 j i

2

2
, l352~p11!. ~17!

We see, similar to the two-dimensional case, that it is the
relative sizes ofj thresh and j i which determine the nature of
the eigenvalues and consequently the local magnetic con-
figuration about the null point.

Note that in situations wherej' equals zero the perpen-
dicular component of current does not exist; therefore we
have one further degree of freedom and can rotate the matrix
about the spine (z-axis! such that it reduces to the form

M5F 1 2
1

2
j i 0

1

2
j i p 0

0 0 2~p11!

G ;
thus, throughout this paper in studying configurations where
j'50 we assumeq50 without loss of generality. Also note
that having taken a scaling factor from our matrix we are
excluding the possibility of all the elements of the trace
equaling zero. This is of course a special situation and in
general does not arise; however, for completeness we do
mention such situations when they arise. Further, it is worth
mentioning that sincep>21 the eigenvalue relating to the
spine is always negative; hence all the three-dimensional
configurations we consider in Secs. IV and V of this paper
are positive neutral points. This means that all the field lines
in the fan planes are emanating outwards and the spines are
composed of pairs of field lines directed towards the origin.

We now briefly mention some of the previous work on
three-dimensional neutral points. Cowley4 studied a current-
free neutral point of the form

B5„ax,by,2~a1b!z…,

wherea andb are of the same sign, with eigenvaluesa,b
and2(a1b). Cowley referred to the casea,b.0 as Type
A, which we call apositive radial null. Similarly, the case
a,b,0 was referred to as Type B and is anegative radial
null point. Fora5b field lines from the neutral point radiate
with equal spacing from the null; thus we call this aproper
radial null, whereas fora Þ b the field lines of the null are
unevenly spaced and are orientated in one preferential direc-
tion, known here as themajor axis of the fan; thus the null is
called animproper radial null.

Fukao et al.6 studied more general neutral points than
Cowley.4 They considered a 333 matrix containing six pa-
rameters and found that when all three eigenvalues are real
the null point is radial, but one real and two complex conju-
gate give field lines that spiral logarithmically in the fan
plane—this type of null is known as aproper spiral null.
They found that if there is no fan current the spine and fan
are perpendicular. Two-dimensional neutral points were also
found in special circumstances containing either a line of
X-points or O-points, depending on whether the eigenvalues
are real or imaginary.

In this paper we extend the previous work undertaken on
three-dimensional magnetic neutral point structure by study-
ing comprehensively the most general form for the matrixM
which defines the local magnetic field about the null. With
our matrix all linear magnetic field configurations that can
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arise are studied and at most two rotations and a multiplica-
tion by a scalar are needed simply to transform our set of
linear null points into any other. Through our study, which
follows a similar procedure to that undertaken in studying
the two-dimensional neutral point in Sec. II, we note that
there are in fact extra configurations to those previously dis-
covered. For instance, we find that logarithmically spiraling
nulls are only one special case of the family of spiraling
nulls, and, in general, field lines in the fan of a spiral form a
more complex spiraling pattern; these nulls are known as
improper spiral nulls. Also, we can explain how the current
of a neutral point determines its structure. Figure 4 illustrates
how the three-dimensional null point structures may be di-
vided with respect to the magnitudes of the components of
current and indicates what types of null are studied in the
following sections.

In the next two sections all the three-dimensional figures
are illustrated as follows. The spine is plotted as a solid thick
line in thez-direction. The fan plane is shown by the square
region enclosed by dashed lines with the fan field lines them-
selves depicted by continuous lines. A bundle of field lines
around the spine is illustrated by dashed lines and are drawn
only below the fan plane for clarity.

IV. THREE-DIMENSIONAL POTENTIAL NULLS

The matrixM representing the linear field about a po-
tential three-dimensional null is symmetric and may be writ-
ten as

M5F 1 0 0

0 p 0

0 0 2~p11!
G .

The eigenvalues relating to this matrix are

l151, l25p, l352~p11!.

By our choice of the matrixM we find we must havep>0
such that the eigenvalue2(p11) which corresponds to the

eigenvector that lies along thez-axis forms the spine of the
neutral point, as required. The eigenvectorsx1 , x2 andx3 are

x15S 10
0
D , x25S 01

0
D , x35S 00

1
D ,

thus, as found by Fukaoet al.,6 the fan plane is perpendicular
to the spine in a potential situation.

The threshold currentj thresh5up21u in this situation.
Depending on its value we have three cases to consider.
First, whenj thresh50 andp.0 all the eigenvalues are non-
zero, but two are equal~Sec. IV A!. Second, in Sec. IV B we
examine the situation where all the eigenvalues are non-zero
and unequal (p.0, j thresh.0), and finally we have the
case where one eigenvalue is zero,p50 ~Sec. IV C!.

A. p>0, j thresh 50

Assumingp.0 and j thresh50, the only value that the
parameterp can take isp51 so that

M5F 1 0 0

0 1 0

0 0 22
G .

We find now that two of the eigenvalues are repeated; how-
ever, three eigenvectors may still be found and are the same
as in the previous case. The field associated with this matrix
is a positive proper radial null, as depicted in Fig. 5~a!. Here,
since this is the first three-dimensional null illustrated in this
paper, we also draw the field lines in the fan plane
(xy-plane! @Fig. 5~b!# and the field lines in thexz-plane
which is perpendicular to the surface of the fan@Fig. 5~c!#.

B. p>0, j thresh >0

If p.0 and j thresh.0 then improper radial nulls are
formed with the field aligned predominantly in the direction
of the eigenvector corresponding to the greatest eigenvalue
of the two associated with the fan plane. The field lines rap-
idly curve such that they run parallel to thex-axis if
0,p,1 and parallel to they-axis if p.1 @see Figs. 5~d!
and 5~e!, respectively#. This is as predicted, for if we con-
sider Eq.~10! for a field line in this particular case, we find
that ask→`,

r ~k!→Aekx11Bepkx2 .

So if 0,p,1 thenr (k`)'Aekx1 and the field lines lie in
thexy-plane, but are inclined along the major fan axisy50,
whereas ifp.1 thenr (k`)'Bepkx2 and the major fan axis
of the improper null is thex50 line.

C. p50

Whenp50, the matrixM reduces to

M5F 1 0 0

0 0 0

0 0 21
G ,

FIG. 4. A categorization of the various types of three-dimensional neutral
points with respect to the relative sizes ofj i ~the component of current
parallel to the spine of the null! and j thresh ~the threshold current!.
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thus the field lines become two-dimensional potential
X-points lying in planes parallel to thexz-plane and form a
null-line along they-axis @Fig. 5~f!#. Note that if a scaling
factor had not been taken from the matrix the only extra
possible field line configuration is the trivial situation of
B50.

V. THREE-DIMENSIONAL NON-POTENTIAL NULLS

Here the matrixM is asymmetric and has an associated
currentJ5( j',0,j i). The eigenvalues of the matrixM are

l1,25
1

2
~p11!6

1

2
Aj thresh2 2 j i

2 , l352~p11!, ~18!

where p>21, (p11)2> j thresh
2 2 j i

2 and j thresh
2

5 (p21)21q2, as previously defined. These constraints are
necessary to ensure that the eigenvaluel3 always corre-
sponds to the eigenvector that defines the spine of the null.

A. z j iz< j thresh

First, let us consider the situation where the magnitude
of the component of current parallel to the spine is less than

that of the threshold current. This implies that all three ei-
genvalues are real and distinct and all three eigenvectors ex-
ist.

1. j'50 and j i Þ 0

The perpendicular component of current is zero here so
we may assumeq50 and if p.2 j i

2/4 the eigenvectors are
found to be

x1,25S 12p6Aj thresh2 2 j i
2

j i

1

0

D , x35S 00
1
D ,

so the fan and spine are perpendicular@Fig. 6~a!#. Substitut-
ing l i and xi into Eq. ~10! we find that ask→` the field
lines in the plane of the fan become parallel to the line,

y5
12p2Aj thresh2 2 j i

2

j i
x.

The field lines in the fan do not form the same sort of
improper null as found in the potential situation but in-
stead form a skewed improper null since the eigenvectors
x1 and x2 are not perpendicular. Whenp52 j i

2/4 the field
reduces to a two-dimensional configuration@Fig. 6~b!# con-
taining X-points in planes parallel to the plane,

j ix22y50,

and a null line~dot-dashed! along

y5
2x

j i
.

2. j' Þ 0 and j i50

If the current is purely perpendicular to the spine then
j' Þ 0 andj i50, and the eigenvalues forM simply become

l1,25
1

2
~p116 j thresh!, l352~p11!,

where p> j thresh21. If p. j thresh21 the eigenvectors are
given by

x1,25S 23p2131 j thresh
2 62~p12! j thresh

2 j'Aj thresh2 2~p21!2

313p6 j thresh
2 j'

1

D ,

x35S 00
1
D .

The plane of the fan is therefore not perpendicular to the
spine@Fig. 6~c!# and is defined by the equation

2 j'Aj thresh2 2~p21!2x24 j'~p12!y1„9~p11!2

2 j thresh
2

…z50 .

FIG. 5. The magnetic field configurations of three-dimensional potential
fields. ~a! The complete three-dimensional structure of a radial null
(p51), showing the field lines in~b! the fan plane (xy-plane! and ~c! the
xz-plane. An improper radial null with field lines aligned along~d! the
x-axis and~e! the y-axis. ~f! When p50 the null point reduces to a two-
dimensional potential X-point field with they-axis a null line~dot-dashed!.
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Note that, asj' increases, the angle between the fan and
spine reduces so that ultimately (j'→`) the spine lies in the
fan plane. Also note that the fan does not necessarily tilt
about thex-axis ~the direction of the current! and so the
perpendicular component of current does not in general lie in
the plane of the fan. The field lines in the fan are positive
improper nulls which orientate themselves predominantly
along the line

l~g!5S 23p2131 j thresh
2 12~p12! j thresh

2 j'Aj thresh2 2~p21!2
g,

3
313p1 j thresh

2 j'
g,g D ,

whereg is real. This line is associated with the eigenvalue
l1 sincel1.l2 . Whenp5 j thresh21 the field reduces to a
two-dimensional situation@Fig. 6~d!# where successive
X-points form inxz-planes with a null line along

l~g!5S 2~p11!Ap
j'

g,
p11

j'
g,g D .

3. j' Þ 0 and j i Þ 0

When p.21 and (p11)2. j thresh
2 2 j i

2 and there are
both parallel and perpendicular components of current, the
eigenvalues are as in Eq.~18! and have corresponding eigen-
vectors,

x1,25S 23p2131 j thresh
2 2 j i

262~p12!Aj thresh2 2 j i
2

2 j'~Aj thresh2 2~p21!21 j i!

3~p11!6Aj thresh2 2 j i
2

2 j'

1

D ,

x35S 00
1
D .

The fan is therefore tilted towards the spine and lies in the
plane

2 j'~Aj thresh2 2~p21!21 j i!x24 j'~p12!y1„9~p11!2

2 j thresh
2 1 j i

2
…z5 0;

thus the current perpendicular to the spine does not lie in the
plane of the fan. The field lines lying in the fan plane form a
positive skewed improper null@Fig. 6~e!# whose major fan
axis is in the direction of the vectorx1 sincel1.l2 , and
thus the termAel1kx1 dominates in the equation for a field
line in the fan. The field reduces to a two-dimensional
X-point when (p11)25 j thresh

2 2 j i
2 @Fig. 6~f!#. The plane of

the X-point is

2px2~A4p1 j i
22 j i!y50,

and the null line lies along

l~g!5S 2~p11!~A4p2 j i
22 j i!

2 j'
g,
p11

j'
g,g D .

B. z j iz5 j thresh

In the case whereu j iu5 j thresh we find that two of the
eigenvalues are repeated so that, withp>21,

l1,25
p11

2
and l352~p11!.

1. j' Þ 0 and j i50

If the component of the current parallel to the spine is
zero (j i5 j thresh50), then we must havep51 and q50
since we require thez-axis to be the spine. The eigenvalues
are therefore 1, 1,22 and the corresponding eigenvectors
are, respectively,

FIG. 6. Non-potential three-dimensional magnetic field configurations
where the magnitude of the current parallel to the spine is less than the
threshold current.~a! and ~b! j'50,j i Þ 0 and eitherp.2 j i

2/4 or
p52 j i

2/4, respectively.~c! and~d! j' Þ 0,j i50 and eitherp. j thresh21 or
p5 j thresh21, respectively.~e! and~f! j' Þ 0,j i Þ 0 and eitherp.21 or
p5Aj thresh2 2 j i

221, respectively.~b!, ~d! and ~f! all have a line of null
points indicated by a dot-dashed line.
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x15S 10
0
D , x25S 0

3

j'

1

D , x35S 00
1
D .

Since the null is non-potential the component of current per-
pendicular to the spine is non-zero. Thus, the fan does not lie
in the xy-plane, but is in fact defined by the equation

j'y23z50 .

The field lines lying in the plane of the fan extend radially
outwards and form what looks like a radial null@Fig. 7~a!#.

2. j'50 and j i Þ 0

Whenp>21 andu j iu5 j threshÞ 0 we find that the two
repeated eigenvalues have only one associated eigenvector,
so to define the plane of the fan an extra vector must be
calculated, known as a Jordan basis vector. This is found by
solving

Mx2*5lx2*1x1 ,

wherel is the repeated eigenvalue andx1 is its associated
eigenvector~see Sec. III!.

If p.21 (p Þ 1) and the perpendicular current is zero
we may assumeq50 so the vectors which define the fan
plane and spine of the null point are found to be

x15S 12p

j i

1

0

D , x2*5S 32p

j i

1

0

D , x35S 00
1
D ;

thus the fan plane is perpendicular to the spine. We find that
the neutral point has a new form. It is neither an improper
null nor, because of the straight lines in the fan, is it a spiral,
and so we call it acritical spiral @Fig. 7~b!#.

The eigenvectorx1 is dominant in Eq.~13! ask→` for
a field line in the fan; therefore field lines will orientate
themselves towards the line of this vector as they move far-
ther from the null.

If p521 then the neutral point merely reduces to a
two-dimensional non-potential null with anti-parallel field
lines such that thex5y:z-plane becomes a null plane@Fig.
7~c!#.

3. j'Þ0 and j iÞ0

Whenp.21, j' Þ 0 and the parallel component of the
current is non-zero, but still equal to the threshold value, we
again have repeated eigenvalues and have to look for a Jor-
dan basis vector. The vectors are found to be

x15S 3~p11!~Aj i
22~p21!22 j i!

2 j'~p21!

3~p11!

2 j'

1

D ,

x2*5S ~3p224p211!~Aj i
22~p21!22 j i!

2 j'~p21!2

3p15

2 j'

1

D ,

x35S 00
1
D .

As in the previous cases we find that a critical spiral@Fig.
7~d!# is created whose major fan axis is in the direction of the
eigenvectorx1 , but this time the fan lies in the plane,

2 j'~Aj i
22~p21!21 j i!x24 j'~p12!y19~p11!2z50 .

If p521 then all the eigenvalues are zero parabolic
field lines formed lying in parallelx5y1constant:z-planes
@Fig. 7~e!#; close field lines all have their turning points

FIG. 7. Non-potential three-dimensional magnetic field structures for situa-
tions where the magnitude of the current parallel to the spine is equal to the
threshold valueup21u. ~a! j'Þ0, j i50 andp51. ~b! and ~c! j'50, j i
Þ0 and eitherp.21 or p521, respectively.~d! and~e! j'Þ0, j iÞ0 and
either p.21 or p521, respectively. In~c! the planex5y:z is a null
plane and in~e! the z-axis is a null line~shown by dot-dashed lines!.
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along they50 line. The z-axis becomes a null line with
anti-parallel field lines lying in thex5y:z-plane.

C. z j iz> j thresh

When the parallel component of current is greater in
magnitude than the threshold current two of the eigenvalues
of M will be complex conjugates,

l1,25
p11

2
6
i

2
Aj i

22 j thresh
2 , l352~p11!.

Obviously the eigenvectors relating to the complex eigenval-
ues will also be complex conjugates; however, we have al-
ready seen in Sec. III that if the complex vectors are split up
into their real and imaginary parts then these resultant vec-
tors define the plane of the fan.

1. j'50 and j i Þ 0

Zero perpendicular current gives rise to a spine perpen-
dicular to the fan consistent with the previous cases and has
basis vectors,

x185S 12p

j i

1

0
D , x285S Aj i

22 j thresh
2

j i

0

0

D , x35S 00
1
D ,

where it is assumed thatq50 andp.21. The field lines in
the fan plane form spirals of the form

r5
C

A~p21!sin 2f1 j i

3expS ~p11!tan21@~ j itanf1p21!/Aj i
22~p21!2#

Aj i
22~p21!2

D ,
~19!

wherer5Ax21y2, f5tan21y/x andC is an arbitrary con-
stant. Remembering thatj thresh5up21u in this case we find
that no singularities arise as along as the condition
u j iu. j thresh for a spiral holds. These are in general not loga-
rithmic spirals@Figs. 8~a! and 8~c!# contrary to Refs. 6 and 7.
Logarithmic spirals only occur whenp51 @Fig. 8~b!#, such
that Eq.~19! reduces to

r5DexpS 2f

j i
D ,

whereD is an arbitrary constant. Note also that the associ-
ated vectors for the null are perpendicular if and only if
p51. Some of the spirals are so weakly oscillating that they
look more like improper nulls@Fig. 8~a!#, whereas others are
tightly coiled @Fig. 8~b!#. If we look at Eq. ~11! for any
general field line~not necessarily in the plane of the fan! we
can easily see that field lines oscillates in thex18 and x28
directions, and so they spiral around the spine until they
spread spiraling outwards parallel to the fan plane
@Fig. 8~d!#.

When p521 the field reduces to a two-dimensional
null with a null line along thez-axis and elliptical field lines
in successivez5constant-planes@Fig. 8~e!#. These elliptical
field lines would become circular if the matrix had zero en-
tries along the trace, i.e., if we had not taken a scaling factor
from the matrix.

2. j' Þ 0 and j i Þ 0

It is not possible to create a spiral null without a com-
ponent of current parallel to the spine, so we next consider
j' Þ 0 andj i Þ 0. Basis vectors for this situation are found to
be

x185S 23p2131 j thresh
2 2 j i

2

2 j'~Aj thresh2 2~p21!21 j i!

3~p11!

2 j'

1

D ,

FIG. 8. Magnetic field configurations of three-dimensional non-potential
neutral points, where the magnitude of the current parallel to the spine is
greater than the threshold value.~a! and~b! j'50,j i Þ 0.~c! j' Þ 0,j i Þ 0.~d!
j'50,j i Þ 0 (xz-plane!. ~e! j'50,j i Þ 0 andp521. ~f! j' Þ 0,j i Þ 0 and
p521. In ~e! and ~f! the null line is indicated by a dot-dashed line.
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x285S ~p12!Aj i
22 j thresh

2

j'~Aj thresh2 2~p21!21 j i!

Aj i
22 j thresh

2

2 j'

0

D ,

x35S 00
1
D ,

with p.21. So, not surprisingly, the fan is not perpendicu-
lar to the spine@Fig. 8~c!#, but lies in the plane

2 j'„Aj thresh2 2~p21!21 j i…x24 j'~p12!y

1„9~p11!22 j thresh
2 1 j i

2
…z50 .

When p521 the field reduces to a two-dimensional
null with elliptical field lines in successive planes given by

2 j'~Aj thresh2 241 j i!x24 j'y1~ j i
22 j thresh

2 !z50 ,

which are inclined at an angle to the null line along the
z-axis @Fig. 8~f!#.

VI. CONCLUSION

In this paper we have analyzed the local structure about
a linear three-dimensional null. The type of field configura-
tions are found to depend on four parameters. To comprehen-
sively study the localized field about a three-dimensional

null, we reduced the 333 matrixM which determines the
field to its simplest form by considering the physical charac-
ter of the field as opposed to reducing the matrix from a
mathematical view point. This enabled extra cases to be dis-
covered which were overlooked by previous authors who
tackled the problem from the mathematical angle.

In the potential situation one parameterp determines all
the possible configurations which are either proper or im-
proper radial nulls and have their spine perpendicular to the
fan. It is also possible that for particular values ofp the null
may reduce to a two-dimensional configuration containing
successive X-points in parallel planes.

In a non-potential situation up to four parameters are
needed to define all the possible linear structures of a three-
dimensional null. It has been found that the relative size of
the current parallel to the spine with respect to the threshold
current determines whether the null has improper radial,
critical spiral or spiral field lines. The field lines in the fan
may lie predominantly along one line, known as the major
axis of the fan. This axis is parallel to the vector associated
with the eigenvalue whose real part has the greatest magni-
tude out of the two which have real parts of the same sign.
We find that the component of current perpendicular to the
spine determines the inclination of the fan plane to the spine.
The fan does not necessarily tilt about the line of the perpen-
dicular component of current but in general tilts about a dif-
ferent line in thexy-plane.

Obviously the parallel and perpendicular components of
current are very important for determining the structure of
the null, however, to calculate them the eigenvalues and as-

TABLE II. Rules determining the three-dimensional structure of a magnetic null with fieldB5M–r . The characteristic equation ofM is of third order and can
always be written asl31Ql1R50. The discriminant is then defined asQ3/271R2/4 and the determinant as2R.

Discriminant M symmetric ? Determinant Type of null

,0 yes⇒potential Þ0,⇒3-D null Improper radial null
( j thresh

2 2 j i
2.0) ~,0 positive,.0 negative! ~fan' spine!

50,⇒2-D null Continuous potential X-points
~' to null line!

no⇒non-potential Þ0,⇒3-D null Skewed improper null
~,0 positive,.0 negative! ~fan' spine if j'50)

~fan'” spine if j'Þ0)
50,⇒2-D null Continuous X-points

~' to null line if j'50)
~'” to null line if j'Þ0)

50 yes⇒potential Þ0,⇒3-D null Proper radial null
( j thresh

2 2 j i
250) ~,0 positive,.0 negative! ~fan' spine!

no⇒non-potential Þ0,⇒3-D null Critical spiral null
~,0 positive,.0 negative! ~fan' spine if j'50)

~fan'” spine if j'Þ0)
Anti-parallel lines with null plane (j'50)

50,⇒2-D null Planes of parabolae with null line (j'Þ0)

.0 no⇒non-potential Þ0,⇒3-D null Spiral null
( j thresh

2 2 j i
2,0) ~,0 positive,.0 negative! ~fan' spine if j'50)

~fan'” spine if j'Þ0)
50,⇒2-D null Continuous concentric ellipses

~' to null line if j'50)
~'” to null line if j'Þ0)
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sociated vectors must be found. This, in general, is not
simple. On the other hand,j thresh is easy to calculate. It is
equal toAb3/271c2/4 wherel31bl1c5ulI2Su50 and
S is the symmetric part ofM . From all this information the
exact structure of the null can be calculated as can the critical
value of the parallel component of current that will deform
the null from one type to another. There is, however, a rela-
tively quick and easy way of discovering the basic structure
of the null without solving the characteristic equation. That is
by ascertaining whetherM is symmetric or not then by find-
ing out what the sign of the determinant ofM and the sign of
the discriminant of the characteristic equation ofM is. With
these three facts you may determine whether the null is two-
or three-dimensional, whether it is positive or negative, a
spiral or improper radial null and also whether it is potential
or non-potential~see Table II for details!.

Finally, in our analysis we have considered the lineariza-
tion of the three-dimensional neutral point purely from the
point of view of a Cartesian geometry. Instead we could have
linearized with respect to cylindrical or spherical coordi-
nates, however, this approach does not lead to any new forms
for the topology of the null. This is because discontinuities
are introduced alongx5y50 in both cylindrical and spheri-

cal polars in either the magnetic field or the current. These
are unphysical since we have assumed our field and current
are continuous in linearizing about the null.

ACKNOWLEDGMENTS

The authors are grateful to G. W. Inverarity for fruitful
discussions and E. R. Priest is most grateful to T. Bogdan, B.
C. Low and A. Hundhausen for their hospitality during his
stay in Boulder.

J. M. Smith wishes to thank the United Kingdom Engi-
neering and Physical Sciences Research Council and C. E.
Parnell, T. Neukirch and E. R. Priest wish to acknowledge
the United Kingdom Particle Physics and Astronomy Re-
search Council for their financial support.

1Y. T. Lau and J. M. Finn, Astrophys. J.350, 672 ~1990!.
2E. R. Priest and V. S. Titov, ‘‘Magnetic reconnection at three-dimensional
null points,’’ Philos. Trans. R. Soc.~in press!.

3C. E. Parnell, E. R. Priest, and L. Golub, Sol. Phys.151, 57 ~1994!.
4S. W. H. Cowley, Radio Sci.8, 903 ~1973!.
5J. M. Greene, J. Geophys. Res.93, 8583~1988!.
6S. Fukao, M. Ugai, and T. Tsuda, Rep. Ion. Space Res. Jpn.29, 133
~1975!.

7M. S. Chong, A. E. Perry, and B. J. Cantwell, Phys. Fluids A2, 765
~1990!.

770 Phys. Plasmas, Vol. 3, No. 3, March 1996 Parnell et al.

Downloaded¬17¬Mar¬2011¬to¬138.251.201.37.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://pop.aip.org/about/rights_and_permissions


