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Abstract. We study the global behavior of weakly stable constant mean curvature hy-
persurfaces in a Riemannian manifold by using harmonic function theory. In particular, a
complete oriented weakly stable minimal hypersurface in the Euclidean space must have only
one end. Any complete noncompact weakly stable hypersurface with constant mean curvature
H in the 4 and 5 dimensional hyperbolic spaces has only one end under some restrictions on
H .

Introduction. The classical Bernstein theorem states that a minimal entire graph in the
Euclidean 3-space R3 must be planar. This theorem was later generalized to higher dimen-
sions (dimension of the ambient Euclidean space Rn+1 is no more than 8) by Fleming [Fl],
Almgren [A], De Giorgi [Dg] and Simons [S]. In Rn+1, n ≥ 8, the examples of nonlinear
entire graphs are given by Bombieri, de Giorgi and Giusti [BdGG]. Because of the stability
of minimal entire graphs, one is naturally led to the generalization of the classical Bernstein
theorem to the question of asking whether all stable minimal hypersurfaces in Rn+1 are hy-
perplanes when n ≤ 7. In the case when n = 2, this problem was solved independently by
do Carmo and Peng [dCP]; and Fischer-Colbrie and Schoen [FS]. For higher dimensions, this
problem is still open. On the other hand, there are some results about the structure of stable
minimal hypersurfaces in all Rn+1. For instance, Cao, Shen and Zhu [CSZ] proved that a
complete stable minimal hypersurface in Rn+1, n ≥ 3, must have only one end.

If the ambient manifold is not the Euclidean space, Fischer-Colbrie and Schoen [FS]
gave a classification for complete oriented stable minimal surfaces in a complete oriented
3-manifold of nonnegative scalar curvature. Recently, Li and Wang [LW1] showed that a
complete noncompact properly immersed stable minimal hypersurface in a complete manifold
of nonnegative sectional curvature must either have only one end or be totally geodesic and a
product of a compact manifold with nonnegative sectional curvature and R.

In this paper we study hypersurfaces with constant mean curvature H . Instead of the
usual stability, we will consider a weakened form of stability, which is the natural one for
CMC hypersurfaces in the case H �= 0. Most of our results really need to use this weak
stability directly both for the case H �= 0 and the case H = 0.
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Let us now fix terminologies and notation so as to state our theorems. In the sequel we
will abbreviate constant mean curvature hypersurfaces by calling them CMCH -hypersurfaces
and will allow H to vanish. Intuitively, a CMC hypersurface is weakly stable if the second
variations are nonnegative for all compactly supported enclosed-volume-preserving variations
(see Definition 1.1 and Remark 1.1). This concept of weakly stable CMC hypersurfaces was
introduced by Barbosa, do Carmo and Eschenburg [BdCE], to account for the fact that spheres
are stable (see [BdCE]). This weak stability comes naturally from the phenomenon of soap
bubbles and is related to isoperimetric problems. In [dS], da Silveira studied complete non-
compact weakly stable CMC surfaces in R3 or the hyperbolic space H 3. He proved that
complete noncompact weakly stable CMC surfaces in R3 are planes and hence generalized
the corresponding result of do Carmo and Peng [dCP], Fischer-Colbrie and Schoen [FS]. For
H 3 he showed that only horospheres can occur when the constant mean curvature satisfies
|H | ≥ 1. For higher dimensions, very little is known about complete noncompact weakly
stable CMC hypersurfaces.

In some recent works, the structure of stable (i.e., strongly stable) minimal hypersur-
faces was studied by means of harmonic function theory (see [CSZ, LW, LW1]). The same
approach can be used in the study of weakly stable CMC hypersurfaces. However, a sig-
nificant difference between weakly stable and strongly stable cases lies in the choice of test
functions. When one deals with weak stability, the test functions f must satisfy

∫
M f = 0.

In this paper, we successfully construct the required test functions by using the properties of
harmonic functions (Theorem 3.1 and Proposition 4.1). Combining our construction and the
approach in [LW, LW1], we are able to discuss the global behavior of weakly stable CMC hy-
persurfaces. In Theorem 3.1, we obtain the nonexistence of nonconstant bounded harmonic
functions with finite Dirichlet integral on weakly stable CMC hypersurfaces. This theorem
enables us to study the uniqueness of ends. In Proposition 4.1, we discuss a property of
Schrödinger operators on parabolic manifolds which can be applied to study weakly stable
CMC parabolic hypersurfaces. Also, different from minimal hypersurfaces, CMC hypersur-
faces with H �= 0 have the curvature estimate depending on H , which causes dimension
restriction in the results. In some sense Theorem 3.1 may be considered as the heart of where
the weak stability is used. Here we give main result of this paper.

THEOREM 0.1 (Theorem 3.4). Let Nn+1, n ≥ 5, be a complete Riemannian manifold
andM a complete noncompact weakly stable immersed CMC H -hypersurface in N . If one of
the following cases occurs,

(1) when n = 5, the sectional curvature of N is nonnegative and H �= 0;
(2) when n ≥ 6, the sectional curvature K̃ ofN and the mean curvatureH ofM satisfy

K̃ ≥ τ > 0 and H 2 ≤ [4(2n− 1)/n2(n− 5)]τ, for some number τ > 0;
(3) when n ≥ 6, the sectional curvature and the Ricci curvature of N satisfy K̃ ≥ 0,

R̃ic ≥ τ > 0 for some number τ > 0, and H = 0,
then M has only one end.
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The reason for the restriction on dimensions of CMC hypersurfaces in the above theorem
is that there are some nonexistence results (see the proof of this theorem for details). Theorem
0.1 has the following examples: complete noncompact weakly stable CMC H -hypersurfaces
in the standard sphere S6 with H �= 0; or in the standard sphere Sn+1, n ≥ 6 with H 2 ≤
4(2n− 1)/n2(n− 5).

Actually, Theorem 0.1 is a special case of a more general Theorem 3.3, which also
implies that

THEOREM 0.2 (Corollary 3.3). Any complete noncompact weakly stable CMC H -
hypersurface in the hyperbolic space H n+1, n = 3, 4, with H 2 ≥ 10/9, 7/4, respectively,
has only one end.

Next we consider complete weakly stable minimal hypersurfaces in Rn+1, n ≥ 3, and
generalize results of Cao, Shen and Zhu as follows:

THEOREM 0.3 (Theorem 3.2). A complete oriented weakly stable minimal hypersur-
face in Rn+1, n ≥ 3, must have only one end.

As a corollary of this, we have

COROLLARY 0.1 (Corollary 3.1). A complete oriented weakly stable immersed mini-
mal hypersurface in Rn+1, n ≥ 3, with finite total curvature (i.e.,

∫
M

|A|n < ∞) is a hyper-
plane.

Finally, we have some classification theorems for weakly stable CMC hypersurfaces via
its parabolicity or nonparabolicity.

THEOREM 0.4 (Theorem 5.2). Let N be a complete manifold of bounded geometry
and M a complete noncompact weakly stable CMC H -hypersurface immersed in N . If the
sectional curvature ofN is bounded from below by −H 2 andM is parabolic, then it is totally
umbilic and has nonnegative sectional curvature. Furthermore, either

(1) M has only one end; or
(2) M = R×P with the product metric, where P is a compact manifold of nonnegative

sectional curvature.

THEOREM 0.5 (Theorem 5.3). Let N be a complete Riemannian manifold and M a
complete noncompact weakly stable CMC H -hypersurface immersed in N . If M is non-
parabolic, and

R̃ic(ν)+ R̃ic(X)− K̃(X, ν) ≥ n2(n− 5)

4
H 2 , for all X ∈ TpM , |X| = 1 , p ∈ M ,

then it has only one nonparabolic end, where K̃ and R̃ic denote the sectional and Ricci cur-
vatures of N , respectively and ν denotes the unit normal vector field ofM .

The rest of this paper is organized as follows. In Section 1 we give some definitions
and facts as preliminaries. In Section 2, we first discuss the volume growth of the ends of
complete noncompact hypersurfaces with mean curvature vector field bounded in norm, and
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then study nonparabolicity of the ends of CMC hypersurfaces with stability. In Section 3, we
use harmonic functions to study the uniqueness of ends of complete noncompact weakly stable
CMC hypersurfaces. In Section 4, we give a property of Schrödinger operators on parabolic
manifolds. In the last section (Section 5), we discuss the structure of complete noncompact
weakly stable CMC hypersurfaces.

The results on the minimal case in this paper have been announced in [CCZ].
One part of this work was done while the third author was visiting the Department of

Mathematics, University of California, Irvine. He wishes to thank the department for its hos-
pitality. The authors would like to thank Peter Li for helpful conversations. Finally we want
to thank the referee for suggestions for the revision of this paper.

1. Preliminaries. We recall some relevant definitions and facts in this section. Let
Nn+1 be an oriented (n+ 1)-dimensional Riemannian manifold, and let i : Mn → Nn+1 be
an isometric immersion of a connected n-dimensional manifold M with constant mean cur-
vature H . We assume that M is orientable. When H is nonzero, the orientation is automatic.
Throughout this paper, K̃, R̃ic, K and Ric denote the sectional, Ricci curvatures of N , and the
sectional, Ricci curvature ofM , respectively. ν denotes the unit normal vector field ofM . |A|
is the norm of the second fundamental form A of i. Bp(R) will denote the intrinsic geodesic
ball in M of radius R centered at p.

DEFINITION 1.1. There are two cases. In the case H �= 0, the immersion i is called
stable or weakly stable if ∫

M

{|∇f |2 − (R̃ic(ν, ν)+ |A|2)f 2} ≥ 0(1.1)

for all compactly supported piecewise smooth functions f : M → R satisfying∫
M

f = 0 ,

where ∇f is the gradient of f in the induced metric of M .
The immersion i is called strongly stable if (1.1) holds for all compactly supported piece-

wise smooth functions f : M → R.
In the minimal case H = 0, the immersion i is called weakly stable if (1.1) holds for all

compactly supported piecewise smooth functions f : M → R satisfying∫
M

f = 0 .

The immersion i is called stable if (1.1) holds for all compactly supported piecewise
smooth functions f : M → R.

It is known, from the definition, that a weakly stable minimal hypersurface has the index
0 or 1 (see [dS]). Obviously, a strongly stable CMC hypersurface is weakly stable. But the
converse may not be true. For example, S2 ⊂ S3 as a totally geodesic embedding in the
ordinary 3-sphere is not stable but weakly stable.
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REMARK 1.1. In the current literature, the definitions of stability for minimal and
constant mean curvature hypersurfaces are different (hence perhaps a little confusing). A
hypersurface with nonzero constant mean curvature is called stable if it is weakly stable;
while a minimal hypersurface is called stable if it is strongly stable in the above sense. In this
paper, we deal with weak stability for both hypersurfaces. In order to avoid confusion and
conform to the notation of others, the notation of weak stability is used without omission in
this paper.

For CMC H -hypersurfaces, it is convenient to introduce the (traceless) tensorΦ := A−
HI , where I denotes the identity. A straightforward computation gives |Φ|2 = |A|2 − nH 2

and the stability inequality (1.1) becomes

∫
M

{|∇f |2 − (R̃ic(ν, ν)+ |Φ|2 + nH 2)f 2} ≥ 0 .(1.2)

In this paper, we will discuss the number of ends of hypersurfaces. Now we give some
related definitions.

DEFINITION 1.2 (cf. [LT, LW]). A manifold is said to be parabolic if it does not ad-
mit a positive Green’s function. Conversely, a nonparabolic manifold is one which admits a
positive Green’s function.

An end E of Σ is said to be nonparabolic if it admits a positive Green’s function with
Neumann boundary condition on ∂E. Otherwise, it is said to be parabolic.

In order to estimate the number of ends of a weakly stable CMC hypersurface, we need
the following theorem by Li and Tam.

THEOREM 1.1 ([LT], see also [LW, Theorem 1]). Let M be a complete Riemannian
manifold. Let H0

D(M) be the space of bounded harmonic functions with finite Dirichlet inte-
gral. Then the number of nonparabolic ends ofM is bounded from above by dimH0

D(M).

From Theorem 1.1, we know that if every end of M is nonparabolic, then the number of
its ends is no more than dimH0

D(M).

2. Nonparabolicity of ends. In this section, we first discuss the volume growth of
ends of complete noncompact submanifolds in a Riemannian manifold N of bounded geom-
etry (a manifold N is of bounded geometry if its sectional curvatures K̃ ≤ σ 2, σ > 0 and its
injectivity radius iN (p) ≥ i0, i0 > 0 for all p ∈ N) and use it to study the property of the
nonparabolic ends of submanifolds.

Frensel [Fr] showed that if M is a complete noncompact immersed submanifold in a
manifold of bounded geometry with mean curvature vector field bounded in norm, then M
has infinite volume. Here, we prove that even each end of M has infinite volume.

LEMMA 2.1 ([FR, Theorem 3]). Let N be an m-dimensional manifold and let M be
an n-dimensional complete noncompact manifold. Let x : Mn → Nm be an isometric im-
mersion with mean curvature vector field bounded in norm. Assume that N has sectional
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curvature K̃ ≤ σ 2, where constant σ > 0. Then

Vol(Bp(R)) ≥ σ−nωn(sinRσ)ne−H0R ,

where R ≤ min{π/2σ, iN (p)} and |H | ≤ H0.

We obtain

PROPOSITION 2.1. LetN be anm-dimensional manifold of bounded geometry andM
an n-dimensional complete noncompact manifold. Let x : M → N be an isometric immersion
with mean curvature vector field bounded in norm. Then each endE ofM has infinite volume.
More exactly, the rate of volume growth of E is at least linear, i.e., for any p ∈ E,

lim inf
R→∞

Vol(Bp(R) ∩ E)
R

> 0 ,(2.1)

where the limit is independent of the choice of p.

PROOF. Assume that E is an end of M with respect to a compact set D ⊂ M with
smooth boundary ∂D.

We claim that there exist some x ∈ E and a ray γ in E emanating from x, i.e., γ :
[0,∞) → E is a minimizing geodesic satisfying γ (0) = x, and d(γ (s), γ (t)) = |s − t| for
all s, t ≥ 0, where γ has the arc length parameter.

Now we prove the claim. Since E is unbounded, there exists a sequence of points qi ∈ E
such that d(qi,D) → ∞ when i → ∞. Since D is compact, there exist a sequence of points
pi ∈ ∂D and a sequence of minimizing normalized geodesic segments γi |[0,si] in M joining
pi = γi(0) to qi = γ (si) respectively, such that d(qi, pi) = d(qi,D).

Each γi has the following properties: 1)pi is the only intersection ofD and γi (otherwise,
d(qi, pi) �= d(qi,D)), 2) γi\{pi} ⊂ E (since E is a connected component ofM\D), 3) γ ′

i (0)
is orthogonal to D at pi (since γi realizes the distance d(qi,D)).

Since the unit normal bundle of D is compact, there exists a subsequence of (pi, γ ′
i (0)),

which is still denoted by (pi, γ ′
i (0)), converging to a point (p0, ν) in the unit normal bundle,

where p0 ∈ D, ν ∈ Tp0M . Let γ̃ |[0,+∞) be the normalized geodesic in M emanating from
p0 with initial unit tangent vector ν. By ODE theory, γi converges to γ̃ uniformly on any
compact subset of [0,+∞). Moreover, for any s ∈ [0,+∞), the segment γ̃ |[0,s] realizes the
distance from γ̃ (s) to D. By the same reason, γ̃ also has the properties 1)–3) like γi .

Choose x = γ̃ (a) ∈ γ̃ \{p0} and take γ (s) = γ̃ (a + s), s ≥ 0. We obtain a ray γ in E
emanating from x ∈ E as claimed.

Note for any z ∈ γ , d(z,D) ≥ a > 0. So we may choose small R0 (R0 < a) such that
Bz(R0) ⊂ E, z ∈ γ . Take R0 satisfying R0 < min{π/2σ, i0, a}. By Lemma 2.1, for any
z ∈ γ ⊂ M ,

Vol(Bz(R0)) ≥ σ−nωn(sinR0σ)
ne−H0R0 = β > 0 .(2.2)

Consider a sequence of points zj = γ (2jR0), j = 0, . . . , k − 1,where k = [R/2R0],
R ≥ 2R0. Observe that any two balls Bzj (R0) are disjoint and Bx(R) ⊃ ⋃k−1

j=0 Bzj (R0).
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Then, Bx(R) ∩ E ⊃ ⋃k−1
j=0 Bzj (R0), and by (2.2),

Vol(Bx(R) ∩E) ≥ Vol

( k−1⋃
0

Bzj (R0)

)
≥ kβ ≥ (R/2R0 − 1)β , R ≥ 2R0 .

Hence

lim inf
R→∞

Vol(Bx(R) ∩ E)
R

> 0 .

It is direct, from the definition of lim inf, that the limit is independent of the choice of p
and hence constant for any point of E. �

COROLLARY 2.1. Let N be a complete simply connected manifold of nonpositive sec-
tional curvature and M a complete noncompact immersed submanifold in Nm with norm-
bounded mean curvature vector fieldH . Then each end ofM has infinite volume.

Li and Wang ([LW, Corollary 4]) showed that if an end of a manifold is of infinite volume
and satisfies a Sobolev type inequality, then this end must be nonparabolic. With this property,
we obtain Proposition 2.2 and Proposition 2.3 as follows.

PROPOSITION 2.2. Let Nn+1 be a complete Riemannian manifold of bounded geom-
etry and Mn a complete noncompact immersed CMC hypersurface in N with finite Morse
index. If inf R̃ic > −nH 2, then each end of M must be nonparabolic.

PROOF. It is well known that a CMC hypersurface with finite Morse index is strongly
stable outside a compact domain (by the same argument as in [Fc]). Hence we assume thatM
is stable outside a compact domain Ω ⊂ M . Clearly, each end of M is also stable outsideΩ .

Since nonparabolicity of an end depends only on its behavior at infinity, it is sufficient to
show that each end E of M with respect to any compact set D (Ω ⊃ D) is nonparabolic.

By stability, for any compactly supported function f ∈ H1,2(E), we have∫
E

|∇f |2 ≥
∫
E

(R̃ic(ν, ν)+ |Φ|2 + nH 2)f 2 ≥ (inf R̃ic + nH 2)

∫
E

f 2 ,

that is, the end E satisfies a Sobolev type inequality:∫
E

f 2 ≤ C

∫
E

|∇f |2 .

By Corollary 4 in [LW] and Proposition 2.1, E must be nonparabolic. �

PROPOSITION 2.3. LetNm be a complete simply connected manifold with nonpositive
sectional curvature andMn a complete immersed minimal submanifold in Nm. If n ≥ 3, then
each end of M must be nonparabolic.

PROOF. From the theorem of Cartan-Hadamard, the exponential map at any point of N
must be diffeomorphic to Rm and hence N has bounded geometry. Assume that E is an end
of M . By the hypotheses of the proposition, we have the following Sobolev inequality ([HS,
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Theorem 2.1]): ( ∫
E

|f |2n/(n−2)
)(n−2)/n

≤ C

∫
E

|∇f |2 , f ∈ H1,2(E) .(2.3)

By Corollary 4 in [LW] and Proposition 2.1, E must be nonparabolic. �

REMARK 2.1. The special cases of Corollary 2.1 and Proposition 2.3 when E is an
end of a minimal submanifold in Rm were proved in [CSZ].

3. Uniqueness of ends. In this section we discuss the uniqueness of ends of weakly
stable CMC hypersurfaces. We initially prove an algebra inequality.

LEMMA 3.1. Let A = (aij ) be an n×n real symmetric matrix with trace tr(A) = nH .
Then

nHa11 −
n∑
i=1

a2
1i ≥ (n− 1)H 2 − (n− 2)|H ||B|

√
n− 1

n
− n− 1

n
|B|2 ,(3.1)

where B = (bij ) = A−HI, |B|2 = ∑n
i,j=1 b

2
ij , and I is the identity matrix.

PROOF. Note that
∑n
i=1 bii = 0. We have

b2
11 =

( n∑
i=2

bii

)2

≤ (n− 1)
n∑
i=2

b2
ii .

Then

|B|2 =
n∑

i,j=1

b2
ij ≥ b2

11 +
n∑
i=2

b2
ii + 2

n∑
i=2

b2
1i ≥ b2

11 + 1

n− 1

( n∑
i=2

bii

)2

+ 2
n∑
i=2

b2
1i

≥ n

n− 1

(
b2

11 +
n∑
i=2

b2
1i

)
.

Since bii = aii −H, i = 1, . . . , n and bij = aij , i �= j, i, j = 1, . . . , n, we have

nHa11 −
n∑
i=1

a2
1i = (n− 1)H 2 + (n− 2)Hb11 −

(
b2

11 +
n∑
i=2

b2
1i

)

≥ (n− 1)H 2 − (n− 2)|H ||B|
√
n− 1

n
− n− 1

n
|B|2 . �

(3.2)

As a consequence, we obtain the following inequality, which was proved in [Ch] (Lemma
2.1 in [Ch]) by a different proof.

PROPOSITION 3.1. LetA = (aij ) be an n×n real symmetric matrix with trace tr(A) =
nH . Then

|A|2 + nHa11 −
n∑
i=1

a2
1i ≥ n2(5 − n)

4
H 2 ,(3.3)
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where |A|2 = ∑n
i,j=1 a

2
ij . Moreover, equality holds if and only if one of the following cases

occurs:
(1) n = 2, A = HI , where I is the identity matrix.
(2) n ≥ 3, A is a diagonal matrix with a11 = −(n(n− 1)/2)H , aii = (n/2)H, i =

2, . . . , n, and aij = 0, i �= j, i, j = 1, . . . , n.

PROOF. We use the same notation as in Lemma 3.1. By |B|2 = |A|2 − nH 2,

|A|2+nHa11 −
n∑
i=1

a2
1i

≥ |B|2 + (2n− 1)H 2 − (n− 2)|H ||B|
√
n− 1

n
− n− 1

n
|B|2

=
( |B|√

n
− (n− 2)

√
n− 1

2
|H |

)2

+ n2(5 − n)H 2

4

≥ n2(5 − n)H 2

4
.

Thus, we obtain (3.3). If the equality in (3.3) holds, then the followings hold.
(1) In the case n = 2, |B|/√n − ((n− 2)

√
n− 1/2)|H | = 0, so B = 0, that is,

A = HI .
(2) In the case n ≥ 3, by the proof of (3.3), we have

∑n
i=1 bii = 0; bii = bjj , i, j =

2, . . . , n; bij = 0, i �= j, i, j = 1, . . . , n; |B|/√n− ((n− 2)
√
n− 1/2)|H | = 0. Moreover,

b11 and H have different signs.
Thus, b11 = −(n − 1)b22, and |b11| = (

√
n− 1/

√
n)|B| = ((n− 1)(n− 2)/2)|H |.

Since b11 and H have different signs, b11 = −((n− 1)(n− 2)/2)H . Hence a11 =
−(n(n− 1)/2)H , aii = (n/2)H, i = 2, . . . , n, and aij = 0, i �= j, i, j = 1, . . . , n, that is,
A is a diagonal matrix with aii given above.

Conversely, A in (1) and (2) satisfy the equality in (3.3). The proof is complete. �

Applying Proposition 3.1 to hypersurfaces, we obtain the following Proposition 3.2,
which can be used to prove Theorem 3.1 and may have independent interest.

PROPOSITION 3.2. Let N be an (n+ 1)-dimensional manifold andM a hypersurface
in N with mean curvature H (not necessarily constant). Then, for any local orthonormal
frame {ei}, i = 1, . . . , n, of M ,

|A|2 + nHh11 −
n∑
i=1

h2
1i ≥ n2(5 − n)H 2

4
,(3.4)

where the second fundamental form A = (hij ), hij = 〈Aei, ej 〉, i, j = 1, . . . , n. Further-
more, the equality in (3.4) holds for some {ei} at a point p ∈ M if and only if one of the
following cases occurs at p:

(1) n = 2, A = HI , where I is the identity map, that is, M is umbilic at p.
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(2) n ≥ 3, A is a diagonal matrix with a11 = −(n(n− 1)/2)H , aii = (n/2)H, i =
2, . . . , n, and aij = 0, i �= j, i, j = 1, . . . , n, that is, M has n− 1 equal principal curvatures
and only one is different when H �= 0 at p, orM is totally geodesic when H = 0 at p.

Schoen and Yau ([SY], cf. [LW]) proved an inequality on harmonic functions for stable
minimal hypersurfaces, we generalize their inequality to CMC H -hypersurfaces.

LEMMA 3.2. Let M be a complete hypersurface with constant mean curvature H in
Nn+1. Suppose that u is a harmonic function defined on M . If ϕ is a compactly supported
function ϕ ∈ H1,2(M) such that ϕ|∇u| satisfies the stability inequality (1.1), then∫

M

ϕ2|∇u|2
{

1

n
|Φ|2 −

√
n− 1√
n

(n− 2)H |Φ| + (2n− 1)H 2

+ R̃ic

( ∇u
|∇u| ,

∇u
|∇u|

)
+ R̃ic(ν, ν)− K̃

( ∇u
|∇u| , ν

)}

+
∫
M

1

n− 1
ϕ2|∇|∇u||2 ≤

∫
M

|∇ϕ|2|∇u|2 .

(3.5)

PROOF. Recall the Bochner formula
1

2
|∇u|2 = Ric(∇u,∇u)+ |∇2u|2 ,(3.6)

the equality

1

2
|∇u|2 = |∇u||∇u| + |∇|∇u||2 ,(3.7)

and the inequality (see [LW]): when u is a harmonic function,

|∇2u|2 ≥ n

n− 1
|∇|∇u||2 .(3.8)

By (3.6), (3.7) and (3.8), we have

|∇u||∇u| ≥ Ric(∇u,∇u)+ 1

n− 1
|∇|∇u||2 .

Let ϕ be a locally Lipschitz function with compact support onM . Choose f = ϕ|∇u| in
the stability inequality (1.1). Then∫

M

(|Φ|2 + R̃ic(ν, ν)+ nH 2)ϕ2|∇u|2

≤
∫
M

|∇(ϕ|∇u|)|2

=
∫
M

|∇ϕ|2|∇u|2 − 2〈ϕ(∇|∇u|), |∇u|∇ϕ〉 +
∫
ϕ2|∇|∇u||2

=
∫
M

|∇ϕ|2|∇u|2 −
∫
ϕ2|∇u||∇u|

≤
∫
M

|∇ϕ|2|∇u|2 − 1

n− 1

∫
M

ϕ2|∇|∇u||2 −
∫
M

ϕ2Ric(∇u,∇u) .

(3.9)
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For any point p ∈ M and any unit vector η ∈ TpM , we choose a local orthonormal frame
field {e1, e2, . . . , en} at p such that e1 = η. We have, from Gauss equation:

K(ei, ej )− K̃(ei, ej ) = hiihjj − h2
ij , for i, j = 1, 2, . . . , n ,(3.10)

Ric(η, η) =
n∑
i=2

K̃(η, ei)+ h11

n∑
i=2

hii −
n∑
i=2

h2
1j

= R̃ic(η, η)− K̃(ν, η)+ nHh11 −
n∑
i=1

h2
1j .

(3.11)

Substituting η = ∇u/|∇u| into (3.11) and then substituting (3.11) into (3.9), we obtain∫
M

(|Φ|2 + R̃ic (ν, ν)+ nH 2)ϕ2|∇u|2

≤
∫
M

|∇ϕ|2|∇u|2 −
∫
M

1

n− 1
ϕ2|∇|∇u||2

−
∫
M

ϕ2
{

R̃ic

( ∇u
|∇u| ,

∇u
|∇u|

)
− K̃

(
ν,

∇u
|∇u|

)
+ nHh11 −

n∑
i=1

h2
1i

}
.

(3.12)

By Lemma 3.1,∫
M

(|Φ|2 + R̃ic (ν, ν)+ nH 2)ϕ2|∇u|2

≤
∫
M

|∇ϕ|2|∇u|2 −
∫
M

1

n− 1
ϕ2|∇|∇u||2

+
∫
M

ϕ2|∇u|2
{
(n− 2)H |Φ|

√
n− 1√
n

+ n− 1

n
|Φ|2 − (n− 1)H 2

− R̃ic

( ∇u
|∇u| ,

∇u
|∇u|

)
+ K̃

(
ν,

∇u
|∇u|

)}
.

Thus (3.5) holds. �

As mentioned in Section 1, in order to estimate the number of the ends of a hypersurface
M , we need to discuss the nonexistence of nonconstant bounded harmonic functions on M
with finite Dirichlet integral. We obtain that

THEOREM 3.1. LetM be a complete noncompact weakly stable CMCH -hypersurface
in Nn+1 in a manifold N . If, for any p ∈ M ,

R̃ic(X,X)+ R̃ic(ν, ν)− K̃(X, ν) ≥ n2(n− 5)

4
H 2 , X ∈ TpM , |X| = 1 ,

thenM does not admit nonconstant bounded harmonic functions with finite Dirichlet integral.

PROOF. We prove the conclusion by contradiction. Suppose there exists a nonconstant
bounded harmonic function uwith finite Dirichlet integral onM . Then there exists some point
p ∈ M such that |∇u|(p) �= 0. Hence,

∫
Bp(a)

|∇u| > 0, for all a > 0.
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We claim that u must satisfy
∫
M

|∇u| = ∞. By the boundedness of u,
∫
Bp(R)

|∇u|2 =∫
∂Bp(R)

u∂u/∂r ≤ C
∫
∂Bp(R)

|∇u|, where C is a constant. Hence when R > 1,

0 < C0 =
∫
Bp(1)

|∇u|2 ≤
∫
Bp(R)

|∇u|2 ≤ C

∫
∂Bp(R)

|∇u| ,

that is
∫
∂Bp(R)

|∇u| ≥ C1 > 0. By the co-area formula,

∫
Bp(R)

|∇u| =
∫ R

1
dr

∫
∂Bp(r)

|∇u| ≥ C1(R − 1) .(3.13)

Letting R → ∞, we have
∫
M |∇u| = ∞ as claimed.

Take, for R > a,

ϕ1(a, R) =




1 on B̄p(a) ,

(a + R − x)/R on Bp(a + R)\Bp(a) ,
0 on M\Bp(a + R) ,

(3.14)

and

ϕ2(a, R) =




0 on Bp(a + R) ,

(a + R − x)/R on Bp(a + 2R)\Bp(a + R) ,

−1 on Bp(a + 2R + b)\Bp(a + 2R) ,

(x − (a + 3R + b))/R on Bp(a + 3R + b)\Bp(a + 2R + b) ,

0 on M\Bp(a + 3R + b) ,

(3.15)

where the constant b > 0 will be determined later.
For any ε > 0 given, we may choose large R such that (1/R2)

∫
M

|∇u|2 < ε. Define
ψ(t, a, R) = ϕ1(a, R)+ tϕ2(a, R), t ∈ [0, 1]. We have∫

M

ψ(0, a, R)|∇u| ≥
∫
Bp(a)

|∇u| > 0 ,

and ∫
M

ψ(1, a, R)|∇u| =
∫
M

(ϕ1(a, R)+ ϕ2(a, R))|∇u|

≤
∫
Bp(a+R)

|∇u| −
∫
Bp(a+2R+b)\Bp(a+2R)

|∇u| .
(3.16)

By the claim, for a and R fixed, we may find b sufficiently large, depending on a and R
such that ∫

M

ψ(1, a, R)|∇u| < 0 .

By the continuity of ψ(t, a, R) in t , there exists some t0 ∈ (0, 1) depending on a and R such
that

∫
M
ψ(t0, a, R)|∇u| = 0.
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Denote ψ(t0, a, R) by f . Since M is weakly stable, f |∇u| = ψ(t0, a, R)|∇u| satis-
fies the stability inequality (1.2) and hence f satisfies Lemma 3.2. Note that the curvature
condition implies

1

n
|Φ|2 −

√
n− 1

n
(n− 2)H |Φ| + (2n− 1)H 2

+ R̃ic

( ∇u
|∇u| ,

∇u
|∇u|

)
+ R̃ic(ν, ν)− K̃

( ∇u
|∇u| , ν

)

≥ 1

n
|Φ|2 −

√
n− 1

n
(n− 2)H |Φ| + (n− 1)(n− 2)2

4
H 2

≥
[ |Φ|√

n
−

√
n− 1(n− 2)H

2

]2

≥ 0 .

Then by (3.5), we have ∫
M

1

n− 1
f 2|∇|∇u||2 ≤

∫
M

|∇f |2|∇u|2 .(3.17)

Then
1

n− 1

∫
Bp(a)

|∇|∇u||2

≤
∫
M

|∇ϕ1|2|∇u|2 + t20

∫
M

|∇ϕ2|2|∇u|2

=
∫
Bp(a+R)\Bp(a)

|∇ϕ1|2|∇u|2 + t20

∫
Bp(a+3R+b)\Bp(a+R)

|∇ϕ2|2|∇u|2

≤ 1

R2

∫
Bp(a+R)\Bp(a)

|∇u|2 + 1

R2

∫
Bp(a+3R+b)\Bp(a+R)

|∇u|2

≤ 1

R2

∫
M

|∇u|2 < ε .

In the above first inequality, we used 〈∇ϕ1,∇ϕ2〉 = 0. By the arbitrariness of ε and a,
∇|∇u| ≡ 0. So |∇u| ≡ constant.

If |∇u| ≡ constant �= 0, then u is a nonconstant bounded harmonic function. This says
M must be nonparabolic. Thus vol(M) = ∞. Hence

∫
M |∇u|2 = ∞, which is impossible.

Therefore |∇u| ≡ 0, u ≡ constant. Contradiction. The proof is complete. �

REMARK 3.1. IfN is 3-dimensional, the curvature R̃ic(X)+R̃ic(Y )−K̃(X, Y ),X, Y ∈
TpN,X ⊥ Y, |X| = |Y | = 1, p ∈ N, is equal to the scalar curvature S̃. From the definition
we know that the nonnegativity of the sectional curvature implies the nonnegativity of the
above curvature. However, there are some examples showing that the converse may not be
true (see [ShY]). In this paper, we adopt this curvature because it appears naturally in this
context and provides more examples.

Now we are ready to obtain the uniqueness of the ends of weakly stable CMC hypersur-
faces. First, we consider the weakly stable minimal hypersurfaces in Rn+1 and obtain
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THEOREM 3.2 (Theorem 0.3). IfM is a complete oriented weakly stable minimal im-
mersed hypersurface in Rn+1, n ≥ 3, then M must have only one end.

PROOF. First a complete minimal hypersurface in Rn+1 must be noncompact. By The-
orem 3.1, the dimension of the space H0

D(M) is 1. By Proposition 2.3, each end of M must
be nonparabolic. Hence, by Theorem 1.1,M must have only one end. �

Recall that Anderson ([An, Theorem 5.2]) proved that a complete minimal hypersurface
in Rn+1, n ≥ 3, with finite total curvature and one end must be an affine-plane. Hence, by
the result of Anderson and Theorem 3.2, we have

COROLLARY 3.1 (Corollary 0.1). A complete weakly stable immersed minimal hyper-
surface M in Rn+1, n ≥ 3, with finite total curvature (i.e.,

∫
M |A|n < ∞) is a hyperplane.

REMARK 3.2. Shen and Zhu [ShZ] showed that a complete stable immersed minimal
hypersurface in Rn+1 with finite total curvature is a hyperplane. So Corollary 3.1 generalizes
their result.

COROLLARY 3.2. A complete weakly stable CMC hypersurface in Rn+1, n ≥ 3, with
finite total curvature (i.e.,

∫
M |Φ|n < ∞) is either a hyperplane or a geodesic sphere.

PROOF. do Carmo, Cheung and Santos [dCCS] proved that a complete stable CMC
H -hypersurface, H �= 0, in Rn+1, n ≥ 3 with finite total curvature must be compact. By
their result, Theorem 2.1 in [BC] and Corollary 3.1, we obtain that a complete weakly stable
CMC hypersurfaces in Rn+1 with finite total curvature must be a hyperplane or a geodesic
sphere. �

When the Ricci curvature of the ambient manifold has the strict lower bound −nH 2, we
obtain, for CMC H -hypersurfaces, the following

THEOREM 3.3. Let Nn+1 be a complete Riemannian manifold of bounded geome-
try and M a complete noncompact weakly stable immersed CMC H -hypersurface in N . If
inf R̃ic > −nH 2 and for any p ∈ M , X ∈ TpM, |X| = 1,

R̃ic(X,X)+ R̃ic(ν, ν)− K̃(X, ν) ≥ n2(n− 5)

4
H 2 ,(3.18)

then M has only one end.

PROOF. By Proposition 2.2, each end of M is nonparabolic. Hence, by Theorem 3.1
and Theorem 1.1, we get the conclusion. �

REMARK 3.3. The curvature conditions in Theorem 3.3 demand some positivity of
curvature of N or the restriction on the dimension of N . See the evidence in its several con-
sequences. However, it is worth noting that the same result holds without any curvature con-
dition for minimal hypersurfaces in Rn+1, n ≥ 3, as Theorem 3.2 says. The reason is that we
have a global Sobolev inequality (2.3) in this case.

Now we derive some consequences of Theorem 3.3.
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COROLLARY 3.3 (Theorem 0.2). Let M be a complete noncompact weakly stable
CMC H -hypersurface in the hyperbolic space H n+1, n = 3, 4. If H 2 ≥ 10/9 when n = 3;
H 2 ≥ 7/4 when n = 4, respectively, then M has only one end.

PROOF. Observe that the hypotheses of Theorem 3.3 are satisfied. �

It has been proved that if Nn+1 is an (n + 1)-dimensional manifold and M is a com-
plete CMC H -hypersurface immersed in N with finite index, then M must be compact in the
following two cases:

1) n = 3, 4, 5, H = 0, inf{R̃ic(w)+ R̃ic(ν)− K̃(w, ν) | w ∈ T 1
pM, p ∈ M} > 0 (see

[ShY1]).
2) n = 3, 4, H �= 0, inf{R̃ic(w) + R̃ic(ν) − K̃(w, ν) | w ∈ T 1

pM, p ∈ M} >
(n2(n− 5)/4)H 2 (see [Ch1]).

REMARK 3.4. It is known ([Ch1]) that there is no complete noncompact weakly stable
CMC H -hypersurface in R4,R5 (H �= 0).

By the discussion above, Theorem 3.2 and Theorem 3.3, we obtain

COROLLARY 3.4. If M is a complete noncompact weakly stable immersed CMC H -
hypersurface in R6, then M has only one end.

PROOF. If H �= 0, by Theorem 3.3, we know that when n ≤ 5, M in Rn+1 has only
one end. If H = 0, Theorem 3.2 says that a complete noncompact weakly stable minimal
hypersurface in Rn+1, n ≥ 3, must have only one end. Combining the two cases, we obtain
the conclusion. �

The result in [Ch1] and [ShY1] (mentioned before Corollary 3.4) implies that any com-
plete weakly stable H -hypersurface in a complete manifold Nn+1 (n = 3, 4; or n = 5 and
H = 0) of nonnegative sectional curvature must be compact. Hence, by Theorem 3.3, we
obtain the following

THEOREM 3.4 (Theorem 0.1). Let Nn+1, n ≥ 5, be a complete Riemannian manifold
andM a complete noncompact weakly stable immersed CMC H -hypersurface in N . If one of
the following cases occurs,

(1) when n = 5, the sectional curvature of N is nonnegative and H �= 0,
(2) when n ≥ 6, the sectional curvature K̃ of N satisfies K̃ ≥ τ > 0, and H 2 ≤

[4(2n− 1)/n2(n− 5)]τ for some number τ > 0,
(3) when n ≥ 6, the sectional curvature and the Ricci curvature of N satisfy K̃ ≥ 0,

R̃ic ≥ τ > 0, and H 2 ≤ [4/n2(n− 5)]τ for some number τ > 0,
then M has only one end.

In particular, any complete noncompact stable minimal hypersurface in a manifold
Nn+1, n ≥ 6, of nonnegative sectional curvature and Ricci curvature bounded from below by
a positive number has only one end.

As some special cases, Theorem 3.4 implies
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COROLLARY 3.5. A complete noncompact weakly stable CMC H -hypersurface has
only one end, if it is in either

1) the standard sphere S6 with H �= 0,
2) the standard sphere Sn+1, n ≥ 6, with H 2 ≤ 4(2n− 1)/n2(n− 5), or
3) Sk × Sl , k ≥ 2, l ≥ 2, k + l ≥ 7, with the product metric and H = 0.
In particular, a complete noncompact stable minimal hypersurface in Sn+1, n ≥ 6, and

Sk × Sl , k ≥ 2, l ≥ 2, k + l ≥ 7, has only one end.

4. Property of Schrödinger operators on parabolic manifolds. In this section, we
prove a property of Schrödinger operators for parabolic manifolds (not necessary a submani-
fold). It will be applied to weakly stable CMC hypersurfaces and also may have independent
interest.

PROPOSITION 4.1. Let M be a complete parabolic manifold with infinite volume.
Consider the operator L =  + q(x) on M (here q : M → R is a continuous function
on M). If q(x) ≥ 0 and q(x) is not identically zero, then there exists a compactly supported
piecewise smooth function ψ such that

∫
M ψ(x) = 0 and − ∫

M ψLψ < 0.

PROOF. By hypothesis, we may choose a point p ∈ M such that q(p) > 0. Denote
C := ∫

Bp(1)
q(x)dv > 0. Choose a monotonically increasing sequence {ri} with ri → ∞ and

consider the harmonic functions gi defined by

gi = 0 on Bp(ri)\Bp(1) ,
gi = 1 on ∂Bp(1) ,

gi = 0 on ∂Bp(ri) .

Since M is parabolic, we have that limri→+∞
∫
Bp(ri)\Bp(1) |∇gi |2 = 0.

By this property, we can find some positive numberR1 > 1 and a corresponding function
f1 satisfying 


f1 = 0 on Bp(R1)\Bp(1) ,
f1 = 1 on ∂Bp(1) ,

f1 = 0 on ∂Bp(R1) ,

and
∫
Bp(R1)\Bp(1) |∇f1|2 < C/6. Let

ϕ1 =




1 on B̄p(1) ,

f1 on Bp(R1)\Bp(1) ,
0 on M\Bp(R1) .

(4.1)

Similarly, we can find a positive number R2 > R1 and a function f2 satisfying∫
Bp(R2)\Bp(R1)

|∇f2|2 < C/6 and


f2 = 0 on Bp(R2)\Bp(R1) ,

f2 = 1 on ∂Bp(R1) ,

f2 = 0 on ∂Bp(R2) .
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Let

ϕ2 =




0 on B̄p(R1) ,

f2 − 1 on Bp(R2)\Bp(R1) ,

−1 on M\Bp(R2) .

(4.2)

Again, for any constant b > 0, there exist R3 > R2 + b and a function f3 satisfying∫
Bp(R3)\Bp(R2+b) |∇f3|2 < C/6 and



f3 = 0 on Bp(R3)\Bp(R2 + b) ,

f3 = −1 on ∂Bp(R2 + b) ,

f3 = 0 on ∂Bp(R3) .

Let

ϕ3 =




0 on B̄p(R2 + b) ,

f3 + 1 on Bp(R3)\Bp(R2 + b) ,

1 on M\Bp(R3) .

(4.3)

Thus the sum ϕ2 + ϕ3 satisfies

ϕ2 + ϕ3 =




0 on Bp(R1) ,

ϕ2 on Bp(R2)\Bp(R1) ,

−1 on Bp(R2 + b)\Bp(R2) ,

f3 on Bp(R3)\Bp(R2 + b) ,

0 on M\Bp(R3) .

(4.4)

Let φt = ϕ1 + t (ϕ2 + ϕ3). We see that φt has compact support in M . Then we define
ξ(t) := ∫

M ϕ1 + t ∫M(ϕ2 + ϕ3). We know that ξ(0) = ∫
M ϕ1 > 0, and since the volume ofM

is infinite, we can choose b large such that

ξ(1) =
∫
M

ϕ1 +
∫
M

(ϕ2 + ϕ3) ≤
∫
M

ϕ1 −
∫
Bp(R2+b)\Bp(R2)

1 < 0 .

So there exists a t0 ∈ (0, 1) such that
∫
M
φt0 = 0 and

−
∫
M

φt0Lφt0 =
∫
M

|∇φt0 |2 − q(x)φ2
t0

≤
∫
M

|∇ϕ1|2 +
∫
M

|∇ϕ2|2 +
∫
M

|∇ϕ3|2 −
∫
Bp(1)

q(x)ϕ2
1

=
∫
Bp(R1)\Bp(1)

|∇f1|2 +
∫
Bp(R2)\Bp(R1)

|∇f2|2

+
∫
Bp(R3)\Bp(R2+b)

|∇f3|2 −
∫
Bp(1)

q(x)

<
C

6
+ C

6
+ C

6
− C = −C

2
< 0 .
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Choosing φt0 as ψ , we obtain the conclusion of the proposition. �

REMARK 4.1. The special case of Proposition 4.1 whenM is a surface was proved by
da Silveira [dS] by using the conformal structure of ends of two-dimensional parabolic mani-
folds. This structure (obtained by using Huber’s theorem) does not exist in higher dimensional
cases.

5. Structure of weakly stable CMC hypersurfaces. In this section, we will study
the structure of a weakly stable CMC hypersurface according to its parabolicity or nonparabol-
icity.

(I) Parabolic case. Applying Proposition 4.1 to the case that M is a weakly stable
CMC hypersurface, we obtain

PROPOSITION 5.1. LetM be a complete weakly stable CMCH -hypersurface inNn+1.
Suppose that the Ricci curvature of N is bounded from below by −nH 2. If M is parabolic
and has infinite volume, then M must be totally umbilic in N. Moreover, the Ricci curva-
ture Ric(ν, ν) in the normal direction is identically equal to −nH 2 along M and the scalar
curvature SM is nonnegative.

PROOF. We consider the operator  + q(x) with q(x) = |Φ|2 + R̃ic(ν, ν) + nH 2.
By assumption, q(x) ≥ 0. We claim that q(x) ≡ 0. Otherwise, by Proposition 4.1, we
can find a compactly supported piecewise smooth function ψ such that

∫
M ψ(x) = 0 and

− ∫
M ψLψ < 0. That is,∫

M

{|∇ψ|2 − (|Φ|2 + R̃ic(ν, ν)+ nH 2)ψ2} < 0 .

This contradicts to (1.1), since |A|2 = |Φ|2 +nH 2 andM is weakly stable. |Φ|2+R̃ic(ν, ν)+
nH 2 ≡ 0. Hence Φ ≡ 0, that is, M is umbilic, and R̃ic(ν, ν)+ nH 2 ≡ 0.

At any point p ∈ M , choose a local orthonormal frame field e1, e2, . . . , en, ν at p such
that e1, e2, . . . , en are tangent fields. Since Φ ≡ 0, Gauss equation (3.10) becomes

K(ei, ej )− K̃(ei , ej ) = H 2 ,(5.1)

when i �= j. Then
n∑

i,j=1

K(ei, ej )−
n∑

i,j=1

K̃(ei , ej )− n(n− 1)H 2 = 0 ,(5.2)

SM =
n∑
i=1

[R̃ic(ei , ei)− K̃(ν, ei)] + n(n− 1)H 2

≥ −n2H 2 − R̃ic(ν, ν)+ n(n− 1)H 2 = 0 . �

THEOREM 5.1. Let M be a complete weakly stable CMC hypersurface immersed in
Nn+1 with constant mean curvature H . Suppose that N has bounded geometry and the Ricci
curvature of N is bounded from below by −nH 2. If M is parabolic, then M must be totally
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umbilic in N. Moreover, the Ricci curvature Ric(ν, ν) in the normal direction is identically
equal to −nH 2 alongM and the scalar curvature SM is nonnegative.

PROOF. From Lemma 2.1 when N has bounded geometry, then the volume of M is
infinite. Thus the conclusion follows directly from Proposition 5.1. �

THEOREM 5.2 (Theorem 0.4). Let N be a complete manifold of bounded geometry
and M a complete noncompact weakly stable CMC H -hypersurface immersed in N . If the
sectional curvature of N is bounded from below by −H 2 and if M is parabolic, then it is
totally umbilic and has nonnegative sectional curvature. Further, either

(1) M has only one end, or
(2) M = R×P with the product metric, where P is a compact manifold of nonnegative

sectional curvature.

PROOF. We have shown Φ ≡ 0 in Theorem 5.1. Since K̃ ≥ −H 2, M has nonnegative
(intrinsic) sectional curvature by Gauss equation (5.1). If M has more than one end, by the
splitting theorem of Cheeger and Gromoll [CG] on manifolds of nonnegative curvature, we
get the conclusion (2). �

(II) Nonparabolic case. In this situation, we apply Theorem 3.1 and obtain the follow-
ing

THEOREM 5.3 (Theorem 0.5). Let N be a complete Riemannian manifold and M a
complete noncompact weakly stable H -hypersurface immersed in N . If M is nonparabolic,
and

R̃ic(ν)+ R̃ic(X)− K̃(X, ν) ≥ n2(n− 5)

4
H 2 for all X ∈ TpM , |X| = 1 , p ∈ M ,

then it has only one nonparabolic end.

PROOF. Since M is nonparabolic, it has at least one nonparabolic end. If M has two
or more nonparabolic ends, then the dimension of H0

D(M) is not less than 2, which is a
contradiction with Theorem 3.1. �

When M is a weakly stable minimal hypersurface, combining Theorem 5.2 in (I) and
Theorem 5.3 in (II), we obtain

THEOREM 5.4. Let N be a complete Riemannian manifold of bounded geometry and
nonnegative sectional curvature and M a complete noncompact oriented weakly stable mini-
mal hypersurface immersed in N . Then

(1) whenM is parabolic, then either it has only one end and nonnegative curvature; or
it is isometric to R×P with the product metric, where P is a compact manifold of nonnegative
curvature. Moreover, M is totally geodesic;

(2) when M is nonparabolic, then it has only one nonparabolic end.
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