
J. Cryptology (1990) 3:27-41
Journal of Cryptology
�9 1990 International Association for
Cryptologic Research

The Structured Design of
Cryptographically Good S-Boxes 1

Carlisle Adams and Stafford Tavares
Department of Electrical Engineering, Queen's University at Kingston,

Kingston, Ontario, Canada K7L 3N6

Abstract. We describe a design procedure for the s-boxes of private key crypto-
systems constructed as substitution-permutation networks (DES-like crypto-
systems). Our procedure is proven to construct s-boxes which are bijective, are
highly nonlinear, possess the strict avalanche criterion, and have output bits which
act (vitually) independently when any single input bit is complemented. Further-
more, our procedure is very efficient: we have generated approximately 60 such
4 • 4 s-boxes in a few seconds of CPU time on a SUN workstation.

Key words. Cryptography, s-boxes, Boolean functions, Nonlinearity, Strict ava-
lanche criterion.

1. Introduction

In the development of symmetric, or private-key, cryptosystems which are con-
structed as substitution-permutation (S-P) networks (i.e., "DES-like" systems), a
significant portion of the time spent on design or on analysis is centered around the
substitution boxes (s-boxes) of the algorithm. This is because the remainder of the
algorithm is linear; severe weaknesses in the s-boxes can therefore lead to a crypto-
system which is easily broken.

In this work we select four properties which we feel any cryptographically good
s-box should possess and describe a design procedure which is guaranteed to
produce s-boxes possessing all four of these properties. This gives us new insight
into the design of good s-boxes, a topic of considerable interest in the cryptographic
community, especially since the middle to late 1970s when DES first gained wide-
spread attention. Furthermore, it also allows us to generate quickly and easily
s-boxes which can be used in the development of new private-key cryptosystems,
an area of renewed importance since the increasing power and speed of super-
computers, mainframes, and workstations make early fears about the relatively
small keysize of DES increasingly relevant.

1 Date received: September 12, 1989. Date revised: February 28, 1990. This work was partially
supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

27

28 C. Adams and S. Tavares

2. Background

S-boxes, first introduced by Shannon in [23] and described more explicitly in [8]
and [9], provide the cryptograhic strength of S -P networks: weak s-boxes can lead
to weak cryptosystems (see [11] and [6], for example). This has made the s-box an
important object of study in the design and analysis of certain types of crypto-
systems. Of particular interest are the s-boxes of the Data Encryption Standard
(DES) [16] since some of the design and evaluation criteria regarding these s-boxes
have never been published. As a result, the cryptographic community has long
speculated on how the DES s-boxes were chosen and has spent considerable effort
in analyzing their properties [12], [22], [3], [26]. In this paper we describe a
structured, methodical design procedure which will provably construct s-boxes with
cryptographically desirable properties.

Note that, in general, s-boxes are a substitution (mapping) from m-bit vectors to
n-bit vectors; m and n need not be equal. The s-boxes in DES, for example, are 6 x 4
bit mappings. In our work we deal with the case m = n (i.e., we construct n • n bit
s-boxes). This is not the restriction it initially appears since it is well known that
two of the six "external" inputs in a DES s-box serve only to select one of the four
"internal" 4 • 4 bit s-boxes (in other words, it may be important to know how to
design n x n bit s-boxes in order to design m • n bit s-boxes). The general problem
of combining 2 --n good n x n bit s-boxes into a single m x n bit s-box with similar
properties is nontrivial but can be solved using an extension of the work reported
in this paper. The details of this aspect of s-box design will be given in an upcoming
paper.

3. S-Box Design and Evaluation

The design and evaluation of an s-box are conceptually linked because the ways in
which an s-box will eventually be evaluated influence or constrain the ways it can
be designed. For example, one obvious design constraint is that the output bits of
an s-box not be simply a permutation of its input bits; this follows from the
evaluation criterion that an s-box be nonlinear. In this work we follow this process
of finding design procedures which lead to s-boxes which satisfy certain evaluation
criteria. Our interest, however, is primarily in design rules which can be proven to
yield such s-boxes. The aim of this approach is clear: by integrating as many
evaluation criteria and their corresponding design rules as possible into one overall
procedure, we may be able to design quickly and easily cryptographically good
s-boxes for private-key algorithms.

4. Evaluation Criteria

There are several properties which we feel to be cryptographically desirable in
an s-box. We can regard these as our evaluation criteria, then, and use them to guide
our s-box design. They are:

(1) bijection;
(2) nonlinearity;

The Structured Design of Cryptographically Good S-Boxes 29

(3) strict avalanche;
(4) independence of output bits.

Property (1) simply ensures that all possible 2 n n-bit input vectors will map to
distinct output vectors (i.e., that the s-box is a permutation of the integers from 0
to 2 n - 1); this is a necessary condition for invertibility of the s-box (which may or
may not be important, depending on the structure of the surrounding network) and
ensures that all output vectors appear once (which guarantees that all possible input
vectors are available to the next stage in the network). Property (2) ensures that the
s-box is not a linear mapping from input vectors to output vectors (since this would
render the entire cryptosystem easily breakable). Property (3), the strict avalanche
criterion (SAC) [25], requires that for every input bit i, inverting bit i causes output
bit j to be inverted 50% of the time (over all possible input vectors), for all j. Such
s-boxes exhibit what is generally referred to as 'good avalanche," where inverting
any input bit i causes approximately half of the output bits to be inverted; this is
equivalent to good "diffusion" [8] and extends the property of "completeness"
defined in [13]. To avoid any confusion on the part of the reader, perhaps we should
recall that the SAC, as originally defined in [24] and [25,1, applies to s-boxes or to
full cryptosystems. It is a quantitative measure of "good avalanche effect" and it is
this property that we desire to design into our s-boxes. Recently, Forre [10] has
applied the definition of SAC to binary Boolean functions, which are then referred
to as SAC-fulfilling functions. We make use of these functions to construct SAC-
fulfilling n x n bit s-boxes. Property (4), independence of output bits (see [25]),
ensures that any two output bits i and j act "independently" of each other; that is,
bit i and j are not equal to each other significantly more, or significantly less, than
half the time (over all possible input vectors). This is necessary since [24] has shown
how the search space can be reduced in certain attacks if the correlation between
two output bits is significantly other than zero.

Note that the property of s-box strict avalanche satisfies most of the "s-box design
principles" released by IBM and NSA regarding DES [2], [3] most of the time
(since strict avalanche deals with expected results over all inputs). One "design
principle" not dealt with by SAC is that if the two middle input bits to an s-box are
flipped simultaneously, two or more output bits will change (SAC deals specifically
with flipping single input bits). The other design principle not dealt with by property
(3) has to do with the combining of four 4 x 4 bit s-boxes into one 6 x 4 bit s-box.
As we have stated, this is not of concern to us at this point; we address this issue in
an upcoming paper.

We therefore restrict our attention to designing s-boxes which will satisfy the four
properties listed above.

5. S-Box Design

Most of the published work on s-box design has attempted to find good s-boxes by
generating them randomly, checking them against chosen evaluation criteria, and
throwing away those which fail to meet these criteria [25-1, [4] (see also [21,1 for an
interesting approach to the random generation process). In [3], s-boxes were

30 C. Adams and S. Tavares

generated one entry at a time, with each new entry randomly chosen among those
possible entries which could satisfy the criteria being studied. Another notable
approach to s-box design is described in recent work by Pieprzyk and Finkelstein
[18]. Here the authors build n x n bit s-boxes by constructing a Boolean function
of the input bits and using this as one of the output bits. This Boolean function must
have certain special properties (a given "weight" and "nonlinearity"), but the authors
give an equation for constructing a function which is guaranteed to satisfy these
conditions. The remaining n - 1 output bits are also formed from Boolean func-
tions, but these functions are simple variations of the initial function.

Pieprzyk and Finkelstein then go on to define the nonlinearity of an s-box S as
the sum of the nonlinearities of its n Boolean functions plus the sum of the non-
linearities of the n Boolean functions which make up its inverse S -1. Alternatively
(for a cryptographic context), they define it as the minimum nonlinearity over all
2n Boolean functions. Given their method of s-box construction, either definition
seems to be an intuitive and convenient way of measuring s-box nonlinearity
(see also [20]). However, s-boxes created by their procedure suffer from several
limitations:

(a) by their own measures of nonlinearity these s-boxes are weak since an inverse
s-box S -1 has only one nonlinear component; other n - 1 components are
linear;

(b) there is no proof that property (3) holds when s-boxes are constructed with
this method;

(c) these s-boxes fail property (4); in fact, it is easy to show that e v e r y pair of
output bits has a correlation of either + 1 or - 1.

In their work, Pieprzyk and Finkelstein concentrated only on the nonlinearity
property of s-boxes. Here we are interested in simultaneously achieving all four
properties outlined above with a single design process. We have been successful in
meeting this goal. The main conceptual difference between our method and that of
Pieprzyk and Finkelstein is that the n Boolean functions which make up the s-box
output bits are independently chosen, rather than simple variations of each other.
If these functions are chosen carefully (i.e., chosen to fulfill certain requirements),
then the resulting s-box can be proven to possess our four evaluation criteria.

Briefly, some of the relevant concepts and definitions are as follows. A Boolean
function of n inputs, f (x l , x 2 x ,) , can be regarded as a binary vector f of length
2 n, where f is the rightmost column of the truth table describing this function.
The Hamming weight of this vector and the Hamming distance between two
such vectors are defined in the usual sense. Linear vectors are defined to be
(alxi + a2x 2 + " ' " + anx, + a~+ 11) where the sum is taken modulo 2, a~ is in {0, 1},
1 is the all-one vector, and the x i are the truth table vectors of length 2 n for the n
inputs o f f (i.e., xl = 00.- .011.- . 1, xn = 0101." .01). Viewed in this way, for any
given n, there are 2 n+~ linear vectors of length 2~; we note that this set of linear
vectors comprise exactly the set of codewords for a binary first-order Reed-Muller
code with parameters (2 ", n + 1, 2n-1)--see [14], for example. The nonlinearity of
a vector is defined as the minimum Hamming distance between that vector and the
2 n+l linear vectors. S-box design then consists of choosing n nonlinear Boolean

The Structured Design of Cryptographically Good S-Boxes 31

functions which possess certain properties (for example, the spectral property de-
scribed in [10]) and setting these as the output bits. The next section gives details
regarding the necessary properties of the Boolean functions and proofs mapping
these properties to our overall design criteria.

6. Se lec t ion o f Boo lean Funct ions

In this section we describe the selection process for the Boolean functions which
will serve as the n output bits of the s-box. We find that there are no conflicting
requirements on these functions for our four evaluation criteria; consequently, these
can all be met simultaneously.

The arrangement of Boolean functions into output bits is as follows. Let the n
functions be f l , f2 f~, where each function f~ corresponds to a binary vector fi
of length 2 n. Then the s-box S = [f~, t"2 in] is a 2" • n bit matrix with the f~ as
column vectors. Any given input vector x = Xa, x2, . . . , x, maps to an output vector
Y = Yx, Y2 y, by the assignment Yi = f~(xl, x2 x,). As a simple example, let
n = 3 and fl = (00001111), t"2 = (00110011), fa = (01010101). Then

S = S - I = 0 1 1 0 0 1 1

1 0 1 0 1 0 1

In this case, the s-box is a nonpermuted mapping of the integers 0 -7 onto
themselves. Our purpose is to find a set of functions f~, . . . , f , such that the
corresponding s-box is bijective and nonlinear and fulfills the SAC and the (output)
bit independence criterion (BIC). Note that it may be desirable in some applications
to have the inverse s-box S -1 possess these four properties as well.

6.1. Bijection

We require that an n x n bit s-box be a bijection; that is, that every possible input
vector x maps to a unique output vector y. The most obvious example of such an
s-box is the nonpermuting s-box (we could also think of it as the "identity" s-box)
S~, where y = x:

=

- f l "'"

0 0 . '- 0 0

0 0 ... 0 1

0 0 "" 1 0

1 1 - ' . 1 0

1 1 . " 1 1

Pieprzyk and Finkelstein give two properties of such an s-box: the Hamming
weight of any column of S is 2 n-1 (i.e., wt(f~) = 2 n-l) and the Hamming distance
between any two columns of S is also 2 "-1 (i.e., d(f/, f~) = 2 "-1, for i # j). These two

32 c. Adams and S. Tavares

properties are not sufficient to prove bijection, however; a counterexample is

S = 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 0 1 0 1 0 0

1 0 0 1 1 1 1 0 1 0 1 0 1 0

wt(f,) = 8, i = 1 4,

d(f,, fj) = 8, i # j.

Here we prove that a necessary and sufficient condition for S to be bijective is
that any linear combination of the columns of S has Hamming weight 2 "-1 (i.e.,
wt(alf l G a2f2 �9 "'" �9 a . f .) = 2 "-1, where the ai ~ {0, 1} and the ai are not all
simultaneously zero). We begin by showing that S; has this property (the proof is
by induction).

The notation is as follows. Let (a l f I ~ azf2 $) " " �9 a.f.) = ~7=1 afli, (i.e., we
take ~ to be the sum modulo 2 for convenience). Furthermore, let top(V) be the
top half of a vector of any (even) length and let bot(V) be the bottom half of the
same vector V.

Proof

(I) For n = 2,

(II)
(III)

and wt(fl) = wt(f2) = wt(fa E3 f2) = 2"-1 = 2.
Assume that for n = k, wt (~L1 afll) = 2 k-1 = 2 "-1.
Let n = k + 1. Relabel the columns of S~ such that the leftmost column is
labeled fk+l and the remaining columns are labeled f l" '" fk (left to right).
Now, wt (~=a a, x top(f~)) = wt(]L~=l a, x bot(f~)) = 2 k-1 (from Step II). This
implies that wt(~=+~ a~ x top(fi)) = 2 k-1 since top(fk+l) consists of all zeros
and wt(~_-+~ a i x bot(fi)) = 2 k-1 since bot(fk+l) consists of all ones. There-
fore wt(~_-+~ a,fi) = 2 k-1 + 2 k-1 = 2 k = 2 "-1

We now prove that any 2" x n matrix S with the property that wt(~7=l aifi) = 2 "-1
is a bijective mapping. The idea of the proof is to permute the rows of S to $1. The
proof is given as a reeursive procedure which accepts as parameters a counter m
(indicating the depth of recursion) and column vectors V.,, V,.+I V. (the length
of V~ will vary according to the depth of recursion).

If S~ is the ith column of S, then we note that wt(Sl) = 2"-x; we can therefore
rearrange the rows of S so that $1 has 2 "-1 zeros followed by 2 n-1 o n e s . We then
call procedure Permute (1, S~, $2, . . . , S.) to reorder the rows of S into $I. Note
that it is always assumed that the binary coefficients al are not all simultaneously
zero because this would imply that wt(0) = 2 "-1.

The Structured Design of Cryptographically Good S-Boxes 33

a" = O

i.e.,

Logic used in procedure Permute. Note that

(=~ V ~) 2 " - " (~ " p (V 3) (= ~ t(V3) wt as = = wt a s- to + wt as" bo ,
s i i

=:" wt(i=m~+l aiVi) = wt(,=~+x as' t~ wt(i=m~+l as'b~

a m =] =:>

2"-" = ~ + fl

wt(V" +
S=m+l

(for convenience),

a,V~) = wt (top(V')~9 ,=~+x as" t~

+ wt(bot(V")E) s=.,+l ~ a/'bot(V/)),

i .e.~

2"-" = 0t + [2"-" - fl]

(since top(V') = 0 and bot(V') = 1).

(1)

(2)

i.e.,
(1)and(2) =~ 3 = 2 " - ' - 3 =~ f l=2"-('+1)=~,

t(=m~ + p(V~)) t (~+ b t(V3) W a t" to = W a s" o
i 1 i= 1

= 2n-(m+l).

Therefore, in particular,

wt(top(F=+l)) = wt(bot(V=+l)) = 2,-(-+1).

Permute (m, V., V=+t, . . . , V.)
Begin
Rearrange the rows of S so that V'+I has 2 "-t'+l) zeros followed by 2 "-('+1) ones
(this is top(V'+0), followed by 2 "-('§ zeros followed by 2 "-(-+~) ones (this is
bot(Vm+x)); this can be done because of the pevious logic.
If m + 1 = n Return. Otherwise,
Permute (m + 1, top(V,+0, top(F=+2), . . . , top(V,)).
Permute (m + 1, bot(V,+I), bot(V,+2), . . . , bot(V,)).
End. []

We conclude then that if we choose our Boolean functions fx, -.., f~ such that
wt(~7=l a~fs) = 2 "-1, where a s �9 {0, 1} and the as are not all simultaneously zero, the
corresponding s-box is guaranteed to be bijective.

34 C. Adams and S. Tavares

6.2. Nonl inear i ty

There are two ways in which the output of an s-box can be considered to be a linear
function of the input (note that here we are including affinity in the term linearity):
at the bit level (i.e., modulo 2) and at the integer level (i.e., modulo 2n). Let x be the
n-bit input and let y be the n-bit output of an n • n bit s-box. At the bit level,

y = A x + b Eill Iall al aln]Iil] Elll a2n X2 b2 Y2 a21 a22 "'"
�9 ,

n Lanl an2 "'" a n n n

mod 2.

In terms of the s-box with columns fl f,, the equation above is equivalent to
fl = (~ = 1 cgxj) + 0~,+11, where ~j e {0, 1} and the xj are the standard truth table
column vectors (i.e., fl is linear). Therefore, for the output to be a linear function of
the input at the bit level, it follows that every component Boolean function of the
s-box must be linear. We can guarantee nonlinearity, then, simply by forcing at least
one of these functions to be nonlinear.

At the integer level, x, y �9 {0, 2" - 1} and linearity requires that y = (ax +

b) mod 2". As an example, let y = (3x + 7) rood 16 for a 4 x 4 s-box. Then

S = [7 10 13 0 3 6 9 12 15 2 5 8 11 14 1 4] t

l
fl" 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 011t
f2: 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0

f 4 : 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SO that

[4 = X 4 ~ 1,

f3 = x 3 ~ l ,

f2 = x2 0 x 4 0) 1,

f l = ['X-2(X3 (~ X4) "Jr- X2X3"] ~ X 1.

Note that while f2, f3, and f4 are linear, fx is a nonlinear Boolean function. This
means that to avoid linearity at the bit level it is not sufficient to make any arbitrary

column of S nonlinear, because this may still allow linearity at the integer level. To
see a necessary condition for integer linearity we can look at the least significant
bit of y (lsb(y)):

lsb(y) = lsb(a).lsb(x) + lsb(b)

0, if lsb(a) = 0 and lsb(b) = 0,

1, if l s b (a) = 0 and lsb(b)= 1,

lsb(x), if lsb(a) = 1 and lsb(b) = 0,

l sb (x)~ 1, if lsb(a)= 1 and lsb(b) = 1.

The Structured Design of Cryptographically Good S-Boxes 35

Therefore, in terms of the s-box S, if y is an (integer) linear function of x, then fn is
a linear function. Forcing f~ to be nonlinear, then, guarantees that S is nonlinear at
both the integer level and at the bit level.

Of course, we may extend the idea of nonlinearity at the bit level by requiring
that every output bit be a (highly) nonlinear function of the n input bits (i.e., that S
not even be close to linear [20]). This is the idea behind Pieprzyk and Finkelstein's
definition of s-box nonlinearity: it is the minimum nonlinearity over all 2n Boolean
functions in S and S -1. Clearly, for this it is necessary (but, it turns out, not sufficient)
that we choose fl, . . . , f~ to be nonlinear.

An issue that arises at this point is that of amount of nonlinearity (at the bit level):
how much nonlinearity is "enough" and are there limits to what can be achieved?
Recall that the nonlinearity of a function is defined as the minimum Hamming
distance between that function and every linear function. Pieprzyk and Finkelstein
give an equation in [18] to calculate the maximum achievable nonlinearity for a
function of n input bits (see [17] for details):

for

N: =

/ ~ a 2 '§ for n = 3,5,7
(. i=(1/2){n-3)

It can be shown that N: above is equal to 2 n-1 - 2 ~/2-1 when n is even; functions of
this nonlinearity are known in combinatorial theory as bent functions (see, for
example, [19], [15], and [l]). Bent functions have ideal nonlinearity, but are not
0-1 balanced. If f is constrained to have Hamming weight equal to 2 ~-t (see Section
6.1) Pieprzyk and Finkelstein [18] claim that N: is modified to

f n~3 2'+~ for n = 3 , 5 , 7
N: = .~ i=(1/2)(n-3)

/ ~4 2 .+2 for n = 4 , 6 , 8
L i=(1/2)(n-4)

We refer to this modified N: as "maximum" nonlinearity since it is the highest
nonlinearity achievable with 0-1 balanced functions. It turns out that there are
many functions of this maximum nonlinearity (many more than n), so that we can
easily construct s-boxes for which all n functions are maximally nonlinear.

We can therefore state that if the n Boolean functions of an s-box S are nonlinear,
then S is guaranteed to be nonlinear at the bit level and at the integer level.
Furthermore, if these functions are maximally nonlinear, then Rueppel's "closest
linear approximation" to the s-box [20] will be a bad approximation. We have also
noticed that if these n functions are not simple variations of each other, as in [18],
the inverse S -1 is also nonlinear at the bit and integer level and is composed of
highly nonlinear functions, although at present we have no proof that this is always
true.

6.3. Strict Avalanche Criterion

Intuitively, it seems clear that choosing functions of Hamming weight 2 n-1 for all
n output bits would lead to s-boxes with good avalanche. This is because within

36 C. Adams and S. Tavares

every vector f~, inverting input bit xb corresponds to a change in location from
position f~j to f~k, for somej and k. Iff~ contains an equal number of zeros and ones,
then over all possible inputs x, inverting bit Xb should cause y~ to be inverted 50%
of the time. If this characteristic is shared by all vectors fl In, then inverting xb
should cause half of the Yl yn to be inverted, on average.

To prove that an s-box will fulfill the SAC, however, we must go a step further.
We do this by incorporating the work of Forr6 1-10] into this context and use
SAC-fulfilling Boolean functions. Let f(x) = (- 1)s~xl and let if(w) denote the Walsh-
Hadamard transform of f(x). It has been proven that a necessary and sufficient
condition on the Walsh-Hadamard transform of a Boolean function f(x) for this
function to fulfill the SAC is that

(- - 1) wi" F2(W) = 0 for i = 1 n,
w~Z~

where Z~ is the n-dimensional vector space over GF(2). Furthermore,

p2(w)=P2(~) forall w~Z~, where ~ = w @ (l l l . . . 1)

is shown to be a sufficient condition for f(x) to be an SAC-fulfilling function (see
[10] for further details). The terminology "50% dependence" introduced by Forr6
is very suggestive:

A function f : Z~ ~ {0, 1} is said to be 50% dependent on its ith input bit x~ if and
only if any two vectors ul and u2 that differ only in bit i are mapped

�9 onto two different values with probability 1/2,
�9 onto the same value with probability 1/2,

and
a function f : Z~ ~ {0, 1} fulfills the SAC if and only i f f is 50% dependent on

each of its n input bits.

In our context (in particular, if the s-box S is bijective and has independent output
bits) it is clear that if f~ fulfills the SAC for i = 1 n, then S is guaranteed to

�9 possess the SAC.
Note that the Walsh-Hadamard transform, like several other transform algo-

rithms (the well-known Fourier transform, for example), has a "fast" version which
reduces the running time from O(m 2) to O(m log2 m), where m is the size of the input
vector (2 ~ bits, in our case). For modest m, checking the Walsh transform for a given
function f is computationally intensive, but is not prohibitive on a reasonably
powerful machine (a SUN workstation, for example). Since we are dealing with
binary vectors, however, this computation can be reduced significantly simply by
examining the definition of the SAC. The SAC for a Boolean function of n variables
states that inverting a single input variable must cause the output to change one
half the time, for all input variables. Consider the truth table for a Boolean function
f (xl x,). From the construction of the truth table it is clear that inverting input
x~ will cause a change in output from location i in the top half of f to location i in
the bottom half of f (or vice versa). The modulo 2 sum of these two locations, then,
will be one if and only if the output has changed (it will be zero otherwise). Therefore,

The Structured Design of Cryptographically Good S-Boxes 37

if the weight of the bitwise sum of these halves of f is 2 n-2, then f is 50% dependent
on xl. A similar check can be made on the other input variables. For example, let
f be a function of four variables, so that f is 16 bits long. In a programming
language such as "C," we can treat fas an unsigned integer and perform the rightshift
operation (>>), bitwise exclusive-or (^) and bitwise and (&) on it. If

(1) {wt((f & 00FF) ^((f >> 8) & 00FF)) = 4} and
(2) {wt((f & 0FOF) ^((f >> 4) & 0FOF)) = 4} and
(3) {wt((f & 3333) ^((f >> 2) & 3333)) = 4} and
(4) {wt((f& 5555)^((f >> 1) & 5555)) = 4},

then f is an SAC-fulfilling function. Verifying that a function of length 2" satisfies
the SAC thus requires only 4n logical operations and n computations of Hamming
weight and can be done extremely efficiently. Our notation is as follows: let f") be
the result of the ith set of logical operations on f (as defined above) for i = 1 n.
Then wt(f (~ = 2 "-1 for all i if and only i f f is an SAC-fulfilling function.

We therefore require that the n Boolean functions of an s-box each be SAC-
fulfilling functions.

! 6.4. (Output) Bit Independence Criterion
I

Here we show ~hat if the (mod 2) sum of any two Boolean functions in an s-box is
a linear function (i.e., fi ~ fj = (~ = ~ anxa)~ a,+ll), then for any input bit Xk,
flipping Xk will show a correlation of ___ 1 between output bits y~ and Yr"

Proof. A general Boolean function f can be written as having two components N
and L; we write f = N(xl , x,) <~ L(xl , xn), where N is a nonlinear function
of the inputs (N may or may not be present) and L is a linear function of the inputs
(L may or may not be the zero vector). Therefore f / = Ni ~ L~ and f~ = Nj ~ L~.

But

so that f~ = N ~ L i and fj = N ~ Lj.
Now (without loss of generality),

ak = 1 =~

Li ~ Lj = aax a ~ an+ 11
d=l

f fi = N ~ L ' i~ lXk,

f j = N ~ L j ,

where L'i <~ Lj = (~]=l,a,k aaxd) ~ an+l 1. Therefore flipping Xk shows a correlation
of -- 1 between f~ and fj (i.e., between output bits y~ and yj). Furthermore,

ak=O :=~ { ~ = N t ~ L ' I ~ O x k = N ~ L " ,
= N @ L j ,

where L'i t~ Lj = (~]=l.a#k aaxa) @ an+l 1. Therefore flipping Xk shows a correlation
of + 1 between f~ and fi (i.e., between output bits Yi and yj). []

38 C. Adams and S. Tavares

Therefore, if f~ ~ fs is a linear function, then flipping input xk either causes Yi and
yj always to flip together or never to flip together. Put another way, inverting input
bit Xk either causes the sum (y~ t~ yj) always to remain the same (i.e., over all possible
inputs) or always to be inverted. This undesirable situation can be avoided simply
by ensuring that fi ~) fs = f, where f is a (maximally or near-maximally) nonlinear
function of all n input bits. As with the strict avalanche section above, however, we
can go one step further and guarantee that output bits y: and yj have a correlation
as low as possible by requiring that f be close to an SAC-fulfilling function (i.e., that
wt(f ~ ~ 2 "-2 for all i). This will ensure that f~ ~ fj is ~ 50~ dependent on input Xk
for all k (i.e., that y~ and yj will flip independently). It turns out that forcing f to be

an SAC-fulfilling function overconstrains f and conflicts with some of our other
criteria. Therefore, for example, with 16-bit functions we can require that wt(f ~~
{3, 4, 5} rather than that wt(f ~ = 4 for all i.

We say that if f is maximally (or near-maximally) nonlinear and f is close to an
SAC-fulfilling function, then f is a BIC-fulfilling function.

7. Results

We now have a procedure for generating what appear to be cryptographically good
s-boxes. It consists of searching through the Boolean functions until we find n
functions with the properties outlined in the previous section and setting these as
the output bits.

For n input bits there are 22n Boolean functions. Of these, all but 2 "+1 are
nonlinear. However, fewer of these are maximally (or near-maximally) nonlinear

and only 2._ 1 are of weight 2 "-1. Thus the search space is considerably reduced

by these relatively simple checks before it becomes necessary to do the more
computationally intensive checks such as testing for SAC and BIC.

The algorithm for generating s-boxes is as follows:

begin
setj = 1
set cand = 1

while, j _< n do
for each candidate Boolean function fcand

begin
setf j = feand
set cand = c a n d + 1

{Biject} if wt aifi = 2 "-1 and

{Nonlin} ifNs J = .~ i=~1/2~.-3~

I i=(i/2)(n-4)

2i+1

2i+2

7
for n = 3 , 5 , 7

for n = 4,6,8
and

The Structured Design of Cryptographically Good S-Boxes 39

{SAC}
{BIC}

end
end.

if wt(fj (k)) = 2 n-2 for k = 1 n and
if(for i = 1 j - l) Nfj~f, is as above, and wt ((f i (~fi) tk)) ~ 2 "-2
f o r k = l , . . . , n

then set yj = f j and set j = j + 1

It has been proven that following this algorithm will construct an s-box which
possesses our four cryptographically desirable criteria. Furthermore, a small modifi-
cation can be made which will additionally guarantee that the s-boxes constructed
will perform well with respect to multiple input bit complementation and will be
free of linear structures [5], 1-7]. However, an interesting area for further research
is to investigate the s-boxes generated by this algorithm for other features not
included in the design procedure, such as cross-correlations of the avalanche vari-
ables or statistical dependencies between three or more output bits.

We have used the procedure above to generate approximately 60 4 • 4 s-boxes
(this is not an exhaustive list) in a few seconds of CPU time on a SUN workstation
and have found no deficiencies in any of the resulting s-boxes. Furthermore, most
of the s-boxes generated have inverses which also satisfy our four properties, making
them potential candidates for general S - P network cryptosystem design. We have
also found that if some criteria are relaxed slightly, it is easy to generate hundreds
or even thousands of "fairly good' s-boxes (note that all of the DES s-boxes fall into
this category). Some example s-boxes generated by this procedure are

$ 1 = [0 f 3 1 c d 4 8 9 b 2 6 a 5 e 7] t,

$ 2 = [1 e 7 9 b a 3 0 8 c d 4 f 5 2 6] t,

$ 3 = [3 c d e 1 5 9 0 a 8 7 b 2 f 4 6] t,

~ = [c d e 0 5 8 1 2 3 9 7 6 f b 4 a] t,

S s = [e f 0 6 a 9 b 3 1 7 4 d 8 5 c 2] t,

~ = [f 3 c d 1 0 6 9 a 8 e 4 b 5 2 7] t.

8. Conclusion

We have succeeded in setting o u t a methodical procedure for s-box design which
allows us to prove that any s-box so designed will possess our complete set of desir-
able properties. The method consists of performing a constrained search through
a subset of the nonlinear Boolean functions and assigning n chosen functions as the
s-box outputs. Our results indicate that even for relatively small dimensions (4 x 4
bits), many different s-boxes can be designed using this procedure.

This work aids our understanding of the s-box design process and allows us to
create what we feel to be cryptographically good s-boxes quickly and easily; this,
in turn, can lead to much reduced time and effort in the design of new private-key
cryptosystems.

40 C. Adams and S. Tavares

Acknowledgments

The authors are grateful to the anonymous referee(s) for insightful comments and
suggestions.

References

[1] C. M. Adams and S. E. Tavares, A Note on the Generation and Counting of Bent Sequences, Tech.
Pep. TR 89-07, Department of Electrical Engineering, Queen's University, July 1989. Also in IEEE
Transactions on Information Theory, 36 (1990), 1170-1173.

[2] D. K. Branstad, J. Gait, and S. Katzke, Report of the Workshop on Cryptography in Support of
Computer Security, Tech. Rep. NBSIR 77-1291, National Bureau of Standards, Sept. 1976.

[3] E. F. Brickell, J. H. Moore, and M. R. Purtill, Structure in the s-boxes of the DES (extended
abstract), in Advances in Cryptolooy: Proc. of CR YPTO '86, Springer-Verlag, New York, 1987, pp.
3-8.

[-4] J. M. Carroll and L. E. Robbins, Using binary derivatives to test an enhancement of DES,
Cryptologia, 12 (1988), 193-208.

[5] D. Chaum and J.-H. Evertse, Cryptanalysis of DES with a reduced number of rounds, in Advances
in Cryptology: Proc. of CR YPTO "85, Springer-Veriag, New York, 1986, pp. 192-211.

[6] B. den Boer, Cryptanalysis of F.E.A.L., in Advances in Cryptology: Proc of EUROCRYPT '88,
Springer-Verlag, Berlin, 1989, pp. 167-173.

[7] J.-H. Evertse• Linear structures in b••ck ciphers•in Advances in Crypt•l•gy: Pr•c. •f EU ROCR YPT
'87, Springer-Vedag, Berlin, 1988, pp. 249-266.

[8] H. Feistel, Cryptography and computer privacy, Scientific American, 228 (1973), 15-23.
[9] H. Feistel, W. Notz, and J. L. Smith, Some cryptographic techniques for machine-to-machine data

communications, Proceedings of the IEEE, 63 (1975), 1545-1554.
[10] R. Forr6, The strict avalanche criterion: spectral properties of boolean functions and an extended

definition, in Advances in Cryptology: Proc. of CR YPTO '88, Springer-Verlag, New York, 1989,
pp. 450-468.

[11] W. Fumy, On the F-function of FEAL, in Advances in Cryptology: Proc. of CRYPTO '87,
Springer-Verlag, New York, 1988, pp. 434-437.

[12] M. E. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig, and P. Schweitzer,
Results of an Initial Attempt to Cryptanalyze the NBS Data Encryption Standard, Tech. Rep. SEL
76-042, Information Systems Laboratory, Stanford University, Nov. 1976.

[13] J. B. Kam and G. I. Davida, Structured design of substitution-permutation encryption networks,
IEEE Transactions on Computers, 28 (1979), 747-753.

[14] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, 1977.

[15] W. Meier and O. Staffelbach, Nonlinearity criteria for cryptographic functions, in Advances in
Cryptology: Proc. of EUROCR YPT '89, to appear.

[16] National Bureau of Standards (U.S.), Data Encryption Standard (DES), Federal Information
Processing Standards Publication 46, 1977.

[17] J. P. Pieprzyk, Nonlinear functions and their application to cryptography, Archiwum Automatyki
i Telemechaniki, 3-4 (1985), 311-323.

[18] J. Pieprzyk and G. Finkelstein, Towards effective nonlinear cryptosystem design, IEE Proceedings,
Part E: Computers and Digital Techniques, 135 (1988), 325-335.

[19] O. S. Rothaus, On "Bent" functions, Journal of Combinatorial Theory, 20(A) (1976), 300-305.
[20] R. A. Rueppei, Analysis and Design of Stream Ciphers, Springer-Verlag, Heidelberg, 1986.
[21] R. S••tt• Wide-•pen encrypti•n design ••ers •exible implementati•ns• Crypt•l•gia• 9 (• 985)• 7 5-9•.
[22] A. Shamir, On the security of DES, in Advances in Cryptology: Proc. of CRYPTO "85, Springer-

Verlag, New York, 1986, pp. 280-281.

The Structured Design of Cryptographically Good S-Boxes 41

[23] C. E. Shannon, Communication theory of secrecy systems, Bell Systems Technical Journal, 28
(1949), 656-715.

[24] A. F. Webster, Plaintext/Ciphertext Bit Dependencies in Cryptographic Systems, Master's thesis,
Department of Electrical Engineering, Queen's University, 1985.

[25] A. F. Webster and S. E. Tavares, On the design of s-boxes, in Advances in Cryptology: Proc. of
CRYPTO '85, Springer-Verlag, New York, 1986, pp. 523-534.

[26] K. C. Zeng, J. H. Yang, and Z. T. Dai, Patterns of entropy drop of the key in an s-box of the DES,
in Advances in Cryptology: Proc, of CR YPTO '87, Springer-Verlag, New York, 1988, pp. 438-444.

