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Abstract

This paper describes Studierstube, an augmented reality
system developed over the past four years at Vienna
University of Technology, Austria, in extensive
collaboration with Fraunhofer CRCG, Inc. in Providence,
Rhode Island, U.S. Our starting point for developing the
Studierstube system was the belief that augmented
reality, the less obtrusive cousin of virtual reality, has a
better chance of becoming a viable user interface for
applications requiring manipulation of complex three-
dimensional information as a daily routine. In essence, we
are searching for a 3D user interface metaphor as
powerful as the desktop metaphor for 2D. At the heart of
the Studierstube system, collaborative augmented reality
is used to embed computer-generated images into the
real work environment. In the first part of this paper, we
review the user interface of the initial Studierstube
system, in particular the implementation of collaborative
augmented reality, and the Personal Interaction Panel, a
two-handed interface for interaction with the system. In
the second part, an extended Studierstube system based
on a heterogeneous distributed architecture is presented.
This system allows the user to combine multiple
approaches--augmented reality, projection displays,
ubiquitous computing--to the interface as needed. The
environment is controlled by the Personal Interaction
Panel, a two-handed pen-and-pad interface, which has
versatile uses for interacting with the virtual environment.
Studierstube also borrows elements from the desktop,
such as multi-tasking and multi-windowing. The resulting
software architecture resembles in some ways what could
be called an “augmented reality operating system.” The
presentation is complemented by selected application
examples.



1. Introduction

Studierstube is the German term for the

“study room” where Goethe’s famous character,

Faust, tries to acquire knowledge and

enlightenment (Goethe, 1808). We chose this

term as the working title for our efforts to

develop 3D user interfaces for future work

environments. Most virtual reality systems of

today are tailored to the needs of a single, very

specific application that is highly specialized for

that purpose. In contrast, the Studierstube project

tries to address the question of how to use three-

dimensional interactive media in a general work

environment, where a variety of tasks are carried

out simultaneously. In essence, we are searching

for a 3D user interface metaphor as powerful as

the desktop metaphor for 2D.

Our starting point for developing

Studierstube was the belief that augmented reality

(AR), the less obtrusive cousin of virtual reality

(VR), has a better chance than VR of becoming a

viable user interface for applications requiring

information manipulation as a daily routine.

Today’s information workers are required to

carry out a large variety of tasks, but

communication between human co-workers has

an equally significant role. Consequently,

Studierstube tries to support productivity,

typically associated with the desktop metaphor,

as well as collaboration, typically associated with

computer supported cooperative work

applications. To fulfill these needs, the

framework therefore has taken on many functions

of a conventional operating system in addition to

being a graphical application.

At the heart of the Studierstube system,

collaborative AR is used to embed computer-

generated images into the real work environment.

AR uses display technologies such as see-through

head-mounted displays (HMDs) or projection

screens to combine computer graphics with a

user’s view of the real world. By allowing

multiple users to share the same virtual

environment, computer supported cooperative

work in three dimensions is enabled.

This paper gives an overview of the various

avenues of research that were investigated in the

course of the last four years, and how they relate

to each other. The intent of this paper is to

provide a summary of this rather extensive

project as well as an introduction to the approach

of blending augmented reality with elements from

other user interface paradigms to create a new

design for a convincing 3D work environment.

In the first part of this paper, we review the core

user interface technologies of the initial

Studierstube work, in particular the

implementation of collaborative augmented

reality, and the Personal Interaction Panel, a two

handed-interface for interaction with the system.

In the second part, we present an extended

collaborative 3D interface that unites aspects of

multiple user interface paradigms: augmented

reality, ubiquitous computing, and the desktop

metaphor. In the third part, we illustrate our work

by reviewing some selected experimental

applications that were built using Studierstube.

Finally, we discuss how Studierstube is related to

previous work, and draw conclusions.

2. Interaction in augmented reality

The initial Studierstube system as described

in (Schmalstieg et al., 1996) and (Szalavári et al.,

1998a) was among the first collaborative

augmented reality systems to allow multiple users

to gather in a room and experience a shared

virtual space that can be populated with three-

dimensional data. Head-tracked HMDs allow

each user to choose an individual viewpoint while

retaining full stereoscopic graphics. This is

achieved by rendering the same virtual scene for

every user’s viewpoint (or more precisely, for

every user’s eyes), while taking the users’ tracked

head positions into account.



Collaborators may have different preferences

concerning the chosen visual representation of the

data, or they may be interested in different

aspects. It is also possible to render customized

views of the virtual scene for every user that

differ in aspects other than the viewpoint (for

example, individual highlighting or annotations).

At the same time, co-presence of users in the

same room allows natural interaction (talking,

gesturing etc.) during a discussion. The

combination of real world experience with the

visualization of virtual scenes yields a powerful

tool for collaboration (Figure 1).

Figure 1: Two collaborators wearing see-through
displays are examining a flow visualization data set

2.1 The Personal Interaction Panel

The Personal Interaction Panel (PIP) is a

two-handed interface used to control Studierstube

applications (Szalavári & Gervautz, 1997). It is

composed of two lightweight hand-held props, a

pen and a panel, both equipped with magnetic

trackers. Via the see-through HMD, the props are

augmented with computer generated images, thus

instantly turning them into application-defined

interaction tools similar in spirit to the virtual

tricorder of Wloka & Greenfield (1995), only

using two hands rather than one. The pen and

panel are the primary interaction devices.

The props’ familiar shapes, the fact that a

user can still see his or her own hands, and the

passive tactile feedback experienced when the

pen touches the panel make the device convenient

and easy to use. Proprioception (Mine et al.,

1997) is readily exploited by the fact that users

quickly learn how to handle the props and can

remember their positions and shapes. A further

advantage is that users rarely complain about

fatigue as they can easily lower their arms and

look down on the props.

Figure 2: The Personal Interaction Panel allows two-
handed interaction with 2D and 3D widgets in

augmented reality

The asymmetric two-handed interaction

exploits Guiard’s observations (1987) that

humans often use the non-dominant hand

(holding the panel) to provide a frame of

reference for the fine-grained manipulations

carried out with the dominant hand (holding the

pen). Many of the interaction styles we have

designed take advantage of this fact.

However, the panel not only provides a

frame of reference, but also a natural embedding

of 2D in 3D (Figure 2). Many of the artifacts we

encounter in real life, such as TV remote controls

or button panels on household items such as

microwave ovens, are essentially two-



dimensional. The PIP approach with its tactile

feedback on the panel’s surface resembles those

real world artifacts better than naïve VR

approaches such as flying menus. Consequently,

the PIP provides a way to transpose many useful

widgets and interaction styles from the desktop

metaphor into augmented reality. Such “2.5D”

widgets such as buttons, sliders or dials provide

the bread-and-butter of interaction.

Figure 3: A gesture is used to create a torus in CADesk

However, the PIP’s direct and expressive

interaction language has much more to offer:

- Object manipulation: The pen is used as a

six-degree-of-freedom pointer for object

manipulation in three dimensions. Objects can

either be manipulated directly in the virtual

space, on the panel, or in any combination of

the two. A user can instantly establish such

combinations by overlaying the fixed-world

frame of reference with the frame of reference

defined by the panel, for example, by

dragging and dropping objects from a palette

to the virtual scene.

- Gestural interaction: Perhaps the most

fundamental function of a pen and panel is

gesturing, i.e., writing and drawing. As noted

by (Poupyrev et al., 1998), using the panel as

a surface for the gestures is an efficient mode

of input in virtual environments, and even

more so in AR where a user can see his or her

hands while gesturing. Delimiting the area for

gestures on the panel’s surface allows

simultaneous symbolic input and direct object

manipulation. Figure 3 shows CADesk

(Encarnação et al., 1999a), a solid modeling

tool that has been enhanced with gesture-

based interaction using the Studierstube

framework (Encarnação et al., 1999b).

   

Figure 4: The panel is used to position a clipping plane
that cuts away a portion from the volumetric scan of a

human skull

Figure 5: The panel is swept through an aggregation of
particle data. During the sweep, a filter is applied to the

underlying raw data, which produces aural feedback
that can assist the user in detecting structures in the

data sets that are not visible to the human eye.

- Surface tool: The panel, a two-dimensional

physical shape that extends in three-

dimensional space, can be interpreted as a

hand-held plane or planar artifact. It can be

used as a screen showing still images,

animations, flat user interfaces (compare

Angus & Sowizral, 1995), or live images

taken from the real or virtual environment

(like the screen of a digital camcorder). For

example, in the MediDesk application

(Wohlfahrter et al., 2000), the panel can be

used to slice a volumetric model to obtain “X-

ray plates” (Figure 4). Map-type tools such as

worlds-in-miniature (Pausch et al., 1995) can

use the panel as a ground plane. The panel



can also be used to apply filters to the data

samples penetrated when sweeping the panel

through a data set (Encarnação et al., 2000).

Such filters can produce new visual

representations of the underlying data sets or

other kinds of feedback, such as sonification

(Figure 5).

2.2 Privacy in Augmented Reality

The personal in Personal Interaction Panel

was chosen to emphasize how its use allows users

to leverage the advantages of collaborative

augmented reality: Holding and manipulating the

PIP puts a user in control of the application. If

only one PIP is used, contention for control is

resolved using social protocols such as passing on

the PIP. In contrast, giving each user a separate

PIP allows concurrent work. Although using

multiple PIPs requires the system software to

resolve the resulting consistency issues, users can

freely interact with one or multiple data sets,

because every user gets a separate set of controls

on his or her PIP. Fuhrmann & Schmalstieg

(1999) describe how interface elements can, but

need not be shared by users or application

instances.

The concept of personal interaction in

collaborative environments is tied to the issue of

privacy – users do not necessarily desire all their

data to be public (Butz et al., 1998). Fortunately,

a display architecture that supports independent

per-user displays such as ours can be configured

to use subjective views (Smith & Mariani, 1997)

with per-user variations to a common scene

graph. One user may display additional

information that is not visible for the user’s

collaborators, for example if the additional

information is confusing or distracting for other

users, or if privacy is desired (consider

highlighting or private annotations). We found

the PIP to be a natural tool for guarding such

private information: For privacy, a user can make

information on the panel invisible to others. This

idea was explored in (Szalavári et al., 1998b) for

collaborative games to prevent users from

cheating (Figure 6).

 

Figure 6: Personal displays secure privacy when
playing Mahjongg – the left player (top view) cannot see
his opponent’s tile labels and vice versa (bottom view)

2.3 Augmented Reality for the Virtual Table

platform

Normally, AR is associated with see-through

or video-based HMDs. Unlike HMDs, large

stereo back-projection screens viewed with

shutter glasses, such as used in CAVE (Cruz-

Neira et al., 1993), wall, or workbench (Krüger et

al., 1995) setups, offer significantly better

viewing quality, but cannot produce

augmentation, as opaque physical objects will

always occlude the back projection
1
. To

overcome this restriction, we developed a setup

that achieves a kind of inverse augmented reality,

                                                          
1 Note that this discussion does not consider front projection,

which is capable of producing so-called spatially augmented

reality, but suffers from a different set of technical complexities.



or augmented VR, for the Virtual Table (VT), a

workbench-like device, through the use of

transparent pen and panel props made from

Plexiglas (Schmalstieg et al., 1999).

Figure 7: The Personal Interaction Panel combines
tactile feedback from physical props with overlaid
graphics to form a two-handed general-purpose

interaction tool for the Virtual Table.

Using the information from the trackers

mounted to shutter glasses and props, the

workstation computes stereoscopic off-axis

projection images that are perspectively correct

for the user’s head position. This property is

essential for the use of AR as well as augmented

VR, since the physical props and their virtual

counterparts have to appear aligned in 3D (Figure

7). Additional users with shutter glasses can share

the view with the leading user, but they

experience some level of perspective distortion.

Also the virtual panel will not coincide with its

physical counterpart.

The material for the pen and pad was

selected for minimal reflectivity, so that with

dimmed lights – the usual setup for working with

the VT – the props become almost invisible.

While they retain their tactile property, in the

user’s perception they are replaced by the

graphics from the VT (Figure 8).

Our observations and informal user studies

indicate that virtual objects can even appear

floating above the Plexiglas surface, and that

conflicting depth cues resulting from such

scenarios are not perceived as disturbing. Minor

conflicts occur only if virtual objects protrude

from the outline of the prop as seen by the user

because of the depth discontinuity. The most

severe problem is occlusion from the user’s

hands. Graphical elements on the pad are placed

in a way so that such occlusions are minimized,

but they can never be completely avoided.

Figure 8: Transparent pen and pad for the Virtual Table
are almost invisible and replaced by computer graphics

in the user’s perception (Stork & de Amicis, 2000)

Using the transparent props, the Studierstube

software was ported to the VT platform.

Applications could now be authored once and

displayed on different platforms. One lesson we

learned in the process was that the format and

properties of the display strongly influence

application design, much like a movie converted

from Cinemascope to TV must be edited for

content.

It was only after a working prototype of the

VT setup was finished that we realized that a

transparent panel affords new interaction styles

because the user can see through it:

- Through-the-plane tools: The panel is

interpreted as a two-dimensional frame

defining a frustum-shaped volume. A single

object or set of objects contained in that

volume instantly becomes subject to further



manipulation – either by offering context

sensitive tools such as widgets placed at the

panel’s border, or by 2D gestural interaction

on the panel’s surface. For example, Figure 9

shows the application of a „lasso“ tool for

object selection.

   

Figure 9: The lasso tool allows users to select objects
in 3D by sweeping an outline in 2D on the pad. All

objects whose 2D projection from the current viewpoint
is contained in the outline are selected.

- Through-the-window tools: The transparent

panel is interpreted as a window into a

different or modified virtual environment.

This idea includes 3D magic lenses (Viega et

al., 1996) such as X-ray lenses (Figure 10),

that are essentially modified versions of the

main scene, but also SEAMS (Schmalstieg &

Schaufler, 1998), which are portals to

different scenes or different portions of the

same scene. A recent extension to the window

tools is proposed in (Stoev et al., 2000): The

panel acts as a lens into a separate locale of

the virtual environment, the pen is used to

move the scene underneath.

Figure 10: Different applications of through-the-window
tools: (top) X-ray lens, (middle) focus lens that locally

increases density of streamlines in a flow visualization,
(bottom) portal to a different version of a scene

3. Convergence of user interface
metaphors

During the work on the original Studierstube

architecture, we rapidly discovered new



promising avenues of research, which could not

be investigated using the initial limited design.

From about 1998 on, we therefore concentrated

our efforts at re-engineering and extending the

initial solutions to construct a second-generation

platform building on what we had learned. The

support for the VT platform, as detailed in the last

section, was the first outcome of this work.

It gradually became clear that augmented

reality – even in a collaborative flavor – was not

sufficient to address all the user interface

requirements for the next generation 3D work

environment we had in mind. We needed to mix

and match elements from different user interface

metaphors. A vision of converging different user

interface paradigms evolved (Figure 11). In

particular, we wanted to converge AR with

elements from ubiquitious computing and the

desktop metaphor.

Ubiquitious Computing

Many different devices

Multiple locations

Augmented Reality

Users bring their computers

Multiple users share a virtual space

Desktop Metaphor

Convenient & established

Multi-tasking of applications

Multi-windowing system

? Convergence?

Figure 11: The latest Studierstube platform combines
the best elements from augmented reality, ubiquitous

computing, and the desktop metaphor

In contrast to AR, which is characterized by

users carrying computing and display tools to

augment their environment, ubiquitous

computing (Weiser, 1990) denotes the idea of

embedding many commodity computing devices

into the environment, thus making continuous

access to networked resources a reality. The VT

platform, although hardly a commodity, is an

instance of such a situated device. Yet there are

other devices such as personal digital assistants

(PDAs) that blur the boundaries between AR and

ubiquitous computing. We are interested in

exploring possible combinations of a multitude of

simultaneously or alternatively employed

displays, input, and computing infrastructures.

While new paradigms such as AR and

ubiquitous computing enable radical redesign of

human-computer interaction, it is also very useful

to transpose knowledge from established

paradigms, in particular from the desktop, into

new interaction environments. Two-dimentional

widgets are not the only element of the desktop

metaphor that we consider useful in a 3D work

environment. Desktop users have long grown

accustomed to multi-tasking of applications that

complement each other in function. In contrast,

many VR software toolkits allow the

development of multiple applications for the

same execution environment using an abstract

application programmer’s interface (API);

however, the execution environment usually

cannot run multiple applications concurrently.

Another convenient feature of desktop

applications is that many of them support a

multiple document interface (MDI), i.e. working

with multiple documents or data sets

simultaneously, allowing comparison and

exchange of data among documents. The use of

2D windows associated with documents allows

convenient arrangement of multiple documents

according to a user’s preferences. While these

properties are established in the desktop world,

they are not exclusive to it and indeed useful to

enhance productivity in a 3D work environment

as well.

The latest version of the Studierstube

software framework explores how to transpose

these properties into a virtual environment

(Schmalstieg et al., 2000). The design is built on

three key elements: users, contexts, and locales.



3.1 Users

Support for multiple collaborating users is a

fundamental property of the Studierstube

architecture. While we are most interested in

computer-supported face-to-face collaboration,

this definition also encompasses remote

collaboration. Collaboration of multiple users

implies that the system will typically incorporate

multiple host computers – one per user. However,

Studierstube also allows multiple users to interact

with a single host (e.g. via a large screen or a

multi-headed display), and a single user to

interact with multiple computers at once (by

simultaneous use of multiple displays). This

design is realized as a distributed system

composed of different computing, input (PIP) and

output (display) devices that can be operated

simultaneously.

3.2 Contexts

The building blocks for organizing

information in Studierstube are called contexts. A

context encloses the data itself, the data’s

representation and an application that operates on

the data. It therefore roughly corresponds to an

object-oriented implementation of a document in

a conventional desktop system. Users only

interact within those contexts, so the notion of an

application is completely hidden from the user. In

particular, users never have to “start” an

application; they simply open a context of a

specific type. Conceptually, applications are

always “on” (Kato et al., 2000).

In a desktop system, the data representation

of a document is typically a single 2D window.

Analogously, in our three-dimensional user

interface, a context’s representation is defined as

a three-dimensional structure contained in a box-

shaped volume – a 3D-window (Figure 12). Note

that unlike its 2D counterpart, a context can be

shared by any group of users.

Figure 12: Multiple document interface in 3D – the right
window has the user’s focus – indicated by the dark

window frame – and can be manipulated with the
control elements on the PIP.

Every context is an instance of a particular

application type. Contexts of different types can

exist concurrently, which results in multi-tasking

of multiple applications. Moreover, Studierstube

also allows multiple contexts of the same type,

thereby implementing an MDI. Multiple contexts

of the same type are aware of each other and can

share features and data. For example, consider the

miniature stages of the Storyboarding application

(section 8), which share the “slide sorter” view.

3.3 Locales

Locales correspond to coordinate systems in

the virtual environment. They usually coincide

with physical places, such as a lab or conference

room or part of a room, but they can also be

portable and linked to a user’s position or used

arbitrarily—even overlapping locales in the same

physical space are allowed and used. By

convention, every display used in a Studierstube

environment shows the content of exactly one

locale, but one locale can be assigned to multiple

displays. Every context can—but need not—be

replicated in every locale, i.e. it can appear, at

most, once in every locale. All replicas of a

particular context are kept synchronized by



Studierstube’s distribution mechanism (section

6).

3.4 Context vs. locale

At first glance, it may not be obvious why a

separation of contexts and locales is necessary.

For example, the EMMIE system (Butz et al.,

1999) envelops users and computers in a single

environment called “ether,” which is populated

by graphical data items. An item’s locale also

defines its context and vice versa. All displays

share the same physical locale. While this

approach is simple to understand and easy to

implement, the interaction design does not scale

well with the number of data items and users: As

the number of data items increases, it becomes

increasingly difficult to arrange them so that all

users have convenient access to all data items that

they are interested in. Data items may be

occluded or out of reach for convenient

interaction. Even a fully untethered setup of

displays and devices may be inconvenient if the

environment is structured in a way that forces

users to walk around in order to access frequently

required data. The larger the user group is, the

more likely it becomes that two users that are not

in close proximity will compete for a particular

data item, making optimal placement difficult or

impossible. Moreover, remote collaboration is

ruled out by the single locale approach, as the

position of a particular data item will often be

inaccessible to a remote user.

In contrast, Studierstube separates contexts

and locales for increased flexibility. Every

display uses a separate locale, i.e., a scene with

an independent coordinate system. A context is

placed in a locale by assigning to the context‘s

3D-windows a particular position within the

locale. This approach allows for several strategies

regarding the arrangement of contexts in the

relevant locales.

A strategy of making a context available

exclusively in one locale is equivalent to the

single locale approach, with the exception that the

locale is broken up into disjointed parts. Again,

users may not be able to access desired contexts

(Figure 13, top). In contrast, a strategy of

replicating every context in every locale

guarantees convenient access to a context, but

quickly leads to display clutter (Figure 13,

middle).

A
B

C

Locale 1
Locale 2

A, C?
B?, C

A B
C

C

Locale 1
Locale 2

A, C
B, C

A
AB

B
C

C

Locale 1
Locale 2

A, C
B, C

Figure 13: (top) A global arrangement of items cannot
fulfill all needs. (middle) Full replication of all items

leads to display clutter. (bottom) On-demand replication
of items allows convenient customization of locales.



Therefore replication of a context in a given

locale is optional: There may be at most one

replica of a given context in a given locale. This

strategy allows a user to arrange a convenient

working set of contexts in his or her preferred

display (Figure 13, bottom). If the displays are

connected to separate hosts in a distributed

system, only those hosts that replicate a context

need to synchronize the context’s data. If it can

be assumed that working sets typically do not

exceed a particular size, the system will scale

well.

Yet in many situations it is desirable to share

position and configuration over display

boundaries. Studierstube thus allows locales to be

shared over displays. More precisely, multiple

displays can have independent points of view, but

show images of an identical scene graph.

LAN

Host 2

Host 3

Host 1

virtual
table

Locale B

Locale A

Figure 14: Multiple locales can simultaneously exist in
Studierstube. They can be used to configure different
output devices and to support remote collaboration.

This allows for collaborative augmented

reality settings as introduced in section 2, but

even for more complex setups such as a large

projection screen display augmented by graphics

from a see-through HMD. Figure 14 shows a

non-trivial example involving one context, two

locales, three displays, and four users.

4. Implementation of the user
interface

4.1 Software architecture

Studierstube’s software development

environment is realized as a collection of C++

classes built on top of the Open Inventor (OIV)

toolkit (Strauss & Carey, 1992). The rich

graphical environment of OIV allows rapid

prototyping of new interaction styles. The file

format of OIV enables convenient scripting,

overcoming many of the shortcomings of

compiled languages without compromising

performance. At the core of OIV is an object-

oriented scene graph storing both geometric

information and active interaction objects. Our

implementation approach has been to extend OIV

as needed, while staying within OIV’s strong

design philosophy (Wernecke, 1994).

This has led to the development of two

intertwined components: A toolkit of extensions

of the OIV class hierarchy—mostly interaction

widgets capable of responding to 3D events—and

a runtime framework which provides the

necessary environment for Studierstube

applications to execute (Figure 15). Together

these components form a well-defined application

programmer’s interface (API), which extends the

OIV API, and also offers a convenient

programming model to the application

programmer (section 7).
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Figure 15: The Studierstube software is composed of an
interaction toolkit and runtime system. The latter is
responsible for managing context and distribution.

Applications are written and compiled as

separate shared objects, and dynamically loaded

into the runtime framework. A safeguard

mechanism makes sure that only one instance of

each application’s code is loaded into the system

at any time. Besides decoupling application

development from system development, dynamic

loading of objects also simplifies distribution, as

application components can be loaded by each

host whenever needed. All these features are not

unique to Studierstube, but they are rarely found

in virtual environment software.

By using this dynamic loading mechanism,

Studierstube supports multi-tasking of different

applications (e.g. a medical visualization and a

3D modeler) and also an MDI.

Depending on the semantics of the

associated application, ownership of a context

may or may not privilege a user to perform

certain operations on the information (such as

object deletion). Per default, users present in the

same locale will share a context. Per default, a

context is visible to all users and can be

manipulated by any user in the locale.

4.2 Three-dimentional windows

The use of windows as an abstraction and

interaction metaphor is an established convention

in 2D GUIs. Its extension to three dimensions can

be achieved in a straightforward manner (Tsao &

Lumsden, 1997): Using a box instead of a

rectangle seems to be the easiest way of

preserving the well-known properties of desktop

windows when migrating into a virtual

environment. It supplies the user with the same

means of positioning and resizing the display

volume and also defines its exact boundaries.

A context is normally represented in the

scene by a 3D window, although a context is

allowed to span multiple windows. The 3D-

window class is a container associated with a

user-specified scene graph. This scene graph is

normally rendered with clipping planes set to the

faces of the containing box so that the content of

the window does not protrude from the window’s

volume. Nested windows are possible, although

we have found little use for them. The window is

normally rendered with an associated

“decoration” that visually defines the window’s

boundaries and allows it to be manipulated with

the pen (move, resize etc). The color of the

decoration also indicates whether a window is

active (and hence receives 3D events from that

user). Like their 2D counterparts, 3D-windows

can be minimized (replaced by a three-

dimensional icon on the PIP to save space in a

cluttered display), and maximized (scaled to fill

the whole work area). Typically, multiple

contexts of the same type will maintain

structurally similar windows, but this decision is

at the discretion of the application programmer.

4.3 PIP sheets

Studierstube applications are controlled

either via direct manipulation of the data

presented in 3D-windows, or via a mixture of 2D

and 3D widgets on the PIP. A set of controls on

the PIP— a PIP sheet—is implemented as an



OIV scene graph composed primarily of

Studierstube interaction widgets (such as buttons,

etc.). However, the scene graph may also contain

geometries (e. g., 2D and 3D icons) that convey

the user interface state or can be used merely as

decoration.

Every type of context defines a PIP sheet

template, a kind of application resource. For

every context and user, a separate PIP sheet is

instantiated. Each interaction widget on the PIP

sheet can therefore have a separate state. For

example, the current paint color in an artistic

spraying application can be set individually by

every user for every context. However, widgets

can also be shared by all users and/or all contexts.

Consequently, Studierstube’s 3D event routing

involves a kind of multiplexer between windows

and users’ PIP sheets.

5. Hardware support

5.1 Displays

Studierstube is intended as an application

framework that allows the use of a variety of

displays, including projection based devices and

HMDs. There are several ways of determining

camera position, creating stereo images, setting a

video mode etc. After some consideration, we

implemented an OIV compatible viewer with a

plug-in architecture for camera control and

display mode.

The following display modes are supported:

- Field sequential stereo: Images for left/right

eye output in consecutive frames

- Line interleaved stereo: Images for left/right

eye occupy odd/even lines in a single frame

- Dual screen: Images for left/right eye are

output on two different channels

- Mono: The same image is presented to both

eyes

The following camera control modes are

supported:

- Tracked display: Viewpoint and display

surface are moving together and are tracked

(usually HMD)

- Tracker head: A user’s viewpoint (head) is

tracked, but the display surface is fixed (such

as a workbench or wall)

- Desktop: The viewpoint is either assumed

stationary, or can be manipulated with a

mouse

This approach, together with a general off-

axis camera implementation, allows runtime

configuration of almost any available display

hardware. Table 1 shows an overview of some

devices that have evaluated so far.

Tracked

display

Tracked

head

Desktop

Field

sequential

Sony

Glasstron

Virtual Table Fishtank VR

with shutter

glasses

Line

interleaved

i-glasses VREX

VR2210

projector

i-glasses w/o

head tracking

Dual screen i-glasses

Protec

Single user

dual-projector

passive stereo

w/head track.

Multi-user

dual-projector

passive stereo

Mono i-glasses

(mono)

Virtual Table

(mono)

Desktop

viewer

Table 1: All combinations of camera control and display
modes have distinct uses.

5.2 Tracking

A software system like Studierstube that

works in a heterogeneous distributed

infrastructure and is used in several research labs

with a variety of tracking devices requires an

abstract tracking interface. The approach taken by

most commercial software toolkits is to

implement a device driver model, thereby

providing an abstract interface to the tracking

devices, while hiding hardware dependent code

inside the supplied device drivers. While such a

model is certainly superior to hard-coded device



support, we found it insufficient for our needs in

various aspects:

- Configurability: Typical setups for tracking

in virtual environments are very similar in the

basic components, but differ in essential

details such as the placement of tracker

sources or the number and arrangement of

sensors. The architecture allows the

configuration of all of those parameters

through simple scripting mechanisms.

- Filtering: There are many necessary

configuration options that can be

characterized as filters, i.e., modifications of

the original data. Examples include geometric

transformations of filter data, prediction,

distortion compensation, and sensor fusion

from different sources.

- Distributed execution and decoupled

simulation: Processing of tracker data can

become computationally intensive, and it

should therefore be possible to distribute this

work over multiple CPUs. Moreover, tracker

data should be simultaneously available to

multiple users in a network. This can be

achieved by implementing the tracking

system as a loose ensemble of communicating

processes, some running as service processes

on dedicated hosts that share the

computational load and distribute the

available data via unicast and multicast

mechanisms, thereby implementing a

decoupled simulation scheme (Shaw et al.,

1993).

- Extensibility: As a research system,

Studierstube is frequently extended with new

experimental features. A modular, object-

oriented architecture allows the rapid

development of new features and uses them

together with existing ones.

The latest version of tracking support in

Studierstube is implemented as an object-oriented

framework called OpenTracker (Reitmayr &

Schmalstieg, 2000), which is available as open

source. It is based on a graph structure composed

of linked nodes: source nodes deliver tracker

data, sink nodes consume data for further

processing (e. g. to set a viewpoint), while

intermediate nodes act as filters. By adding new

types of nodes, the system can easily be extended.

Nodes can reside on different hosts and propagate

data over a network for decoupled simulation. By

using an XML (Bray et al., 2000) description of

the graph, standard XML tools can be applied to

author, compile, document, and script the

OpenTracker architecture.

6. Distributed execution

The distribution of Studierstube requires that

for each replica of a context, all graphical and

application-specific data is locally available. In

general, applications written with OIV encode all

relevant information in the scene graph, so

replicating the scene graph at each participating

host already solves most of the problem.

6.1 Distributed shared scene graph

Toward that aim, Distributed Open Inventor

(DIV) was developed (Hesina et al., 1999) as an

extension—more a kind of plug-in—to OIV. The

DIV toolkit extends OIV with the concept of a

distributed shared scene graph, similar to

distributed shared memory. From the application

programmer's perspective, multiple workstations

share a common scene graph. Any operation

applied to a part of the shared scene graph will be

reflected by the other participating hosts. All this

happens to the application programmer in an

almost completely transparent manner by

capturing and distributing OIV’s notification

events.

Modifications to a scene graph can either be

updates of a node’s fields, i.e., attribute values, or

changes to the graph’s topology, such as adding

or removing children. All these changes to the

scene graph are picked up by an OIV sensor and

reported to a DIV observer which propagates the



changes via the network to all hosts that have a

replica of the context’s scene graph, where the

modifications are duplicated on the remote scene

graph by a DIV listener (Figure 16).

Figure 16: Example of a field update in a master-slave
configuration. (1) User triggers an action by pressing a

button. (2) Corresponding callback is executed and
modified field1 of node2. (3) Event notification is

propagated upwards in scene graph and observed by
sensor. (4) Sensor transmits message to slave host. (5)

Receiver picks up message and looks up
corresponding node in internal hash table. (6) Slave

node is modified.

On top of this master/slave mechanism for

replication, several network topology schemes

can be built. A simple reliable multicasting

scheme based on time stamps is used to achieve

consistency.

6.2 Distributed context management

A scene graph shared with DIV need not be

replicated in full—only some portions can be

shared, allowing local variations. In particular,

every host will build its own scene graph from

the set of replicated context scene graphs.

These locally varied scene graphs allow for

the management of locales by resolving

distributed consistency on a per-context basis.

There exists exactly one workstation, which owns

a particular context and will be responsible for

processing all relevant interaction concerning the

application. This host’s replica is called the

master context. All other hosts may replicate the

context as a slave context.

The slave contexts’ data and representation

(window, PIP sheet etc.) stay synchronized over

the whole life span of the context for every

replica.

The replication on a per-context basis

provides coarse-grained parallelism. At the same

time the programming model stays simple and the

programmer is relieved of solving difficult

concurrency issues since all relevant computation

can be performed in a single address space.

The roles that contexts may assume (master

or slave) affect the status of the context’s

application part. The application part of a master

context is active and modifies context data

directly according to the users’ input. In contrast,

a slave context’s application is dormant and does

not react to user input. For example, no callbacks

are executed if widgets are triggered. Instead, a

slave context relies on updates to be transmitted

via DIV. When the application part changes the

scene graph of the master context, DIV will pick

up the change and propagate it to all slave

contexts to keep them in sync with the master

context. This process happens transparently

within the application, which uses only the master

context’s scene graph.

Note that context replicas can swap roles (e. g.,

by exchanging master and slave contexts to

achieve load balancing), but at any time there

may only be one master copy per replicated

context.

Because the low-level replication of context

data is taken care of by DIV, the high-level

context management protocol is fairly simple: A

dedicated session manager process serves as a

mediator among hosts as well as a known point of

contact for newcomers. The session manager

does not have a heavy workload compared to the

hosts running the Studierstube user interface, but

it maintains important directory services. It

maintains a list of all active hosts and which

contexts they own or subscribe to, and it

determines policy issues, such as load balancing,

etc.



Finally, input is managed separately by

dedicated device servers (typically PCs running

Linux), which also perform the necessary

filtering and prediction. The tracker data is then

multicast in the LAN, so it is simultaneously

available to all hosts for rendering.

7. Application programmer’s
interface

The Studierstube API imposes a certain

programming model on applications, which is

embedded in a foundation class, from which all

Studierstube applications are derived. By

overloading certain polymorphic methods of the

foundation class, a programmer can customize

the behavior of the application. The structure

imposed by the foundation class supports

multiple contexts.
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Figure 17: A context is implemented as a node in the
scene graph, as are windows and PIP sheets. This

allows for the organization of all relevant data in the
system in a single hierarchical data structure.

Each context can be operated in both master

mode (normal application processing) and slave

mode (same data model, but all changes occur

remotely through DIV). The key to achieving all

of this is to make the context itself a node in the

scene graph. Such context nodes are implemented

as OIV kit classes. Kits are special nodes that can

store both fields, i.e., simple attributes, and child

nodes, both of which will be considered part of

the scene graph and thus implicitly be distributed

by DIV. Default parts of every context are at least

one 3D-window node, which is itself an OIV kit

and contains the context’s “client area” scene

graph, and a set of PIP sheets (one for each

participating user). In other words, data,

representation, and application are all embedded

in a single scene graph (Figure 17), which can be

conveniently managed by the Studierstube

framework.

To create a useful application with all the

properties mentioned above, a programmer need

only create a subclass of the foundation class and

overload the 3D-window and PIP sheet creation

methods to return custom scene graphs.

Typically, most of the remaining application code

will consist of callback methods responding to

certain 3D events such as a button press or a 3D

direct manipulation event. Although the

programmer has the freedom to use anything that

the OIV and Studierstube toolkits offer, any

instance data is required to be stored in the

derived context class as a field or node, or

otherwise it will not be distributed. However, this

is not a restriction in practice, as all basic data

types are available in both scalar and vector

formats as fields, and new types can be created

should the existing ones turn out to be insufficient

(a situation that has not occurred to us yet).

Note that allowing a context to operate in

either master and slave mode has implications on

how contexts can be distributed: It is not

necessary to store all master contexts of a

particular type at one host. Some master contexts

may reside on one host, some on another host—in

that case, there usually will be corresponding

slave contexts at the respective other host, which

are also instances of the same kit class, but



initialized to function as slaves. In essence,

Studierstube’s API provides a distributed

multiple document interface.

8. Applications

To evaluate the Studierstube platform, a

number of applications were developed and are

still being developed. They cover a variety of

fields, for example, scientific visualization

(Fuhrmann et al., 1998), CAD (Encarnação et al,

1999a), and landscape design (Schmalstieg et al.,

1999). In this section, three application examples

are chosen to highlight the platform’s strengths:

Section 8.1 discusses storyboard, a multi-user

design system, section 8.2 presents MediDesk, a

medical visualization tool, and section 8.3

describes Construct3D, a geometry education

tool.

8.1 Storyboard design

To demonstrate the possibilities of a

heterogeneous virtual environment, we chose the

application scenario of storyboard design. This

application is a prototype of a cinematic design

tool. It allows multiple users to concurrently work

on a storyboard for a movie or drama. Individual

scenes are represented by their stage sets, which

resemble worlds in miniature (Pausch et al.,

1995).

Every scene is represented by its own

context and embedded in a 3D-window. Users

can manipulate the position of props in the scene

as well as the number and placement of actors

(represented by colored board game figures), and

finally the position of the camera (Figure 18).

All contexts share an additional large slide

show window, which shows a 2D image of the

selected scene from the current camera position.

By flipping through the scenes in the given

sequence, the resulting slide show conveys the

visual composition of the movie.

Alternatively, a user may change the slide

show to a “slide sorter” view inspired by current

presentation graphics tools, where each scene is

represented by a smaller 2D image, and the

sequence can be rearranged by simple drag and

drop operations. The slide sorter comes closest to

the traditional storyboard used in

cinematography. It appears on the PIP for easy

manipulation as well as on the larger projection

screen.

Figure 18: Storyboard application with two users and
two contexts as seen from a third “virtual” user

perspective, used for video documentation. In the
background the video projection is visible.

The test configuration consisted of three

hosts (SGI Indigo2 and O2 running IRIX,

Intergraph TZ1 Wildcat running Windows NT),

two users, and two locales (Figure 19). It was

designed to show the convergence of multiple

users (real ones as well as virtual ones), contexts,

locales, 3D-windows, hosts, displays and

operating systems.

The two users were wearing HMDs, both

connected to the Indigo2’s multi-channel output,

and seeing head-tracked stereoscopic graphics.

They were also fitted with a pen and panel each.

The Intergraph workstation was driving an LCD

video projector to generate a monoscopic image

of the slide show on the projection screen

(without viewpoint tracking), which

complemented the presentation of the HMDs.
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Figure 19: Heterogeneous displays—two users
simultaneously see shared graphics (via their see-

through HMDs) and a large screen projection.

Users were able to perform some private

editing on their local contexts and then update the

slide show/sorter to discuss the results. Typically,

each user would work on his or her own set of

scenes. However, we chose to make all contexts

visible to both users so collaborative work on a

single scene was also possible. The slide sorter

view was shared between both users so global

changes to the order of scenes in the movie were

immediately recognizable.

The third host—the O2—was configured to

combine the graphical output (monoscopic) from

Studierstube with a live video texture obtained

from a video camera pointed at the users and

projection screen. The O2 was configured to

render images for a virtual user whose position

was identical with the physical camera. This

feature was used to document the system on

video.

The configuration demonstrates the use of

overlapping locales: The first locale is shared by

the two users to experience the miniature stages

at the same position. This locale is also shared by

the O2, which behaves like a passive observer of

the same virtual space, while a second separate

locale was used for the Intergraph driving the

projection screen, which could be freely

repositioned without affecting the remainder of

the system.

8.2 Medical visualization

MediDesk is an application for interactive

volume rendering in the Studierstube system

(Wohlfahrter et al., 2000). As the name suggests,

its primary use lies in the field of medical

visualization. Users can load volumetric data sets

(typically CT or MRI scans), which are rendered

using OpenGL Volumizer (Eckel, 1998).

Volumizer allows interactive manipulation of

volume data, although it requires a high-end SGI

workstation for reasonable performance.

 

Figure 20: MediDesk allows interactive manipulation of
volumetric data, such as CT scans.

As with most Studierstube applications, a set

of buttons and sliders on the panel allows a user

to control the application, such as altering transfer

function parameters (Figure 20). The backside of

the panel serves special purposes for volume

manipulation: This allows for the design of an

intuitive interface for volume rendering, a style

inspired by a medical doctor’s X-ray workplace.



Figure 21: The lower half of the image shows the
annotating of a virtual “X-ray” print taken from the

volume on the upper right.

The use of two-handed interaction for

manipulation of medical data has been found

advantageous in the past (Goble et al., 1995). The

PIP allows a similar approach: The volumetric

data set can be positioned with the pen, while the

panel acts as a clipping plane. The user may also

freeze one or multiple clipping planes in space to

inspect isolated regions of interest. Alternatively,

cross-sections can be extracted from the volume

with the panel and subsequently appear (as

textures) on the pad, where they can be annotated

with the pen as if the panel were a notepad. These

virtual “X-ray” prints can be attached to a

physical wall for reference (Figure 21).

8.3 Geometry education

Construct3D is a prototype application for

exploring the use of collaborative augmented

reality in mathematics and geometry education

(Kaufmann et al., 2000). More specifically, we

were interested how constructive geometry

education, which still uses traditional pen-and-

paper drawing methods to teach high school and

college students the basics of three-dimensional

space, could be implemented in Studierstube. It is

important to note that this differs from typical

computer aided design (CAD) tasks. Users

trained in desktop CAD tools may have a

different background and a different set of

expectations than students involved in pen and

paper exercises.

Figure 22: A tutor teaches a student how to
geometrically construct 3D entities with Construct3D.

To assess the usability of a 3D tool like

Studierstube, we found geometry education an

interesting application field because is not so

much concerned with the final result of the

modeling, but rather with the process of

construction itself and its mathematical

foundation. We tried to evaluate the advantages

of actually seeing three-dimensional objects, as

opposed to calculating and constructing them

using two-dimensional views. We speculated that

AR would allow a student to enhance, enrich and

complement the mental pictures of complex

spatial problems and relationships that students

form in their minds when working with three-

dimensional objects. By working directly in 3D

space, it may be possible to comprehend the task

better and faster than with traditional methods.

We therefore aimed not at creating a

professional 3D modeling package but rather at

developing a simple and intuitive 3D construction

tool in an immersive AR environment for

educational purposes. The main goal was to keep

the user interface as simple as possible to

facilitate learning and efficient use. The main



areas of application of the system in mathematics

and geometry education were vector analysis and

descriptive geometry.

Construct3D uses the PIP to offer a palette of

geometric objects (point, line, plane, box, sphere,

cone and cylinder) that can be input using direct

manipulation for coordinate specification (point

and click). A coordinate skitter (Bier, 1986) aids

accurate positioning. The modeling process is

constructive in the sense that more complex

primitives can be assembled from simpler ones

(e. g., a plane can be defined by indicating a

previously created point and line). Audio

feedback guides the construction process. The use

of transparency for primitives allowed users to

observe necessary details, such as intersections.

With this application, an informal user study

with 14 subjects was conducted. The test session

consists of two parts. The first part required each

participant to solve a construction example from

mathematics education with the help of a tutor in

Construct3D (Figure 22). The example stems

from vector analysis as taught in 10
th

 grade in

Austria. For high school students, calculating the

results would be lengthy and rather complex. In

the second part, all subjects completed a brief

survey. The survey contains an informal section

about VR in general and questions about

Construct3D.

In general, speculations that AR is a useful

tool for geometry education were confirmed. The

subjects were able to perform the task after a few

minutes of initial instruction. The majority of

comments regarding the AR interface were

encouraging. Some questions arose about how

larger groups of students could work together (we

partly relate this comment to the current tethered

setup that has a rather limited working volume).

Some comments addressed the technical quality

(such as tracking or frame rate). Most students

consider AR a useful complement (but not

replacement) to traditional pen and paper

education. Figure 22 also shows how unplanned

uses of the environment can arise—one student

spontaneously placed the printed task description

on the PIP, thus “augmenting” her PIP with a

physical layer of information.

9. Related work

The current architecture of Studierstube has

absorbed many different influences and is

utilizing—partially enhancing—many different

ideas. The most influential areas are augmented

reality, computer supported cooperative work,

ubiquitous computing, and heterogeneous user

interfaces. Here the discussion is limited to some

of the most influential work:

The Shared Space (Billinghurst et al., 1996;

Billinghurst et al., 1998b) project at University of

Washington’s HITLab has—together with

Studierstube—pioneered the use of collaborative

augmented reality. Since then, HITLab has

worked on many innovative applications blending

AR with other components into a heterogeneous

environment: Easily deployable optical tracking

allows to utilize tangible objects for instant

augmentation (Kato et al., 2000), for example, to

build wearable augmented video conferencing

spaces (Billinghurst et al., 1998a) or hybrids of

AR and immersive virtual worlds.

The Computer Graphics and User Interfaces

lab at Columbia University has a long reputation

for augmented reality research (Feiner et al.,

1993). Their EMMIE system (Butz et al., 1999) is

probably the closest relative to Studierstube. It

envelops computers and users in a collaborative

“ether” populated with graphical data items

provided by AR and ubiquitous computing

devices such as HMDs, notebooks, PDAs, and

projection walls. Communication between

stationary and mobile AR users is facilitated as

well (Höllerer et al., 1999). Except for the locale

concept, EMMIE shares many basic intentions

with our research, in particular concurrent use of

heterogeneous media in a collaborative work

environment. Like us, (Butz et al., 1999) believe



that future user interfaces will require a broader

design approach integrating multiple user

interface dimensions before a successor to the

desktop metaphor can emerge.

Rekimoto has developed a number of setups

for multi-computer direct manipulation to bridge

heterogeneous media. In (Rekimoto, 1997), a

stylus is used to drag and drop data across display

boundaries, while Hyperdragging (Rekimoto &

Saitoh, 1999) describes a similar concept that

merges multiple heterogeneous displays to create

a hybrid virtual environment.

The Tangible Media Group at MIT has

developed a number of heterogeneous user

interfaces based on the theme of tangible

(physical) objects (Ishii & Ulmer, 1997). For

example, the metaDESK (Ulmer & Ishii, 1997)

combines tangible objects with multiple displays,

implicitly defining two views into one locale. The

luminous room (Underkoffler, 1999) allows

remote collaboration using embedded displays,

while mediaBLOCKS (Ulmer & Ishii, 1998) are

tangible containers that roughly correspond to

contexts in Studierstube.

The Office of the Future project at UNC

(Raskar et al., 1998a) is concerned with the

seamless embedding of computer controlled

displays into a conventional office environment.

This system uses sophisticated front projection to

implement spatially augmented reality (Raskar,

1998b), an interesting variety of AR.

CRYSTAL (Tsao & Lumsden, 1997) is a

single-user multi-application platform. While it is

agnostic in terms of display media, it pioneers the

use of 3D-windows and multi-tasking of

applications in virtual environments.

Finally, SPLINE (Barrus et al., 1996) is a

distributed multi-user environment. From it the

term “locale” is borrowed, which in SPLINE is

used to describe non-overlapping places. While

SPLINE is neither an AR system nor a 3D work

environment (according to our use of the term), it

allows multiple users to participate in multiple

activities (i.e., applications) simultaneously.

10. Conclusions and future work

Studierstube is a prototype system for

building innovative user interfaces that use

collaborative augmented reality. It is based on a

heterogeneous distributed system based on a

shared scene graph and a 3D interaction toolkit.

This architecture allows for the amalgamation of

multiple approaches to user interfaces as needed:

augmented reality, projection displays, ubiquitous

computing. The environment is controlled by a

two-handed pen-and-pad interface, the Personal

Interaction Panel, which has versatile uses for

interacting with the virtual environment. We also

borrow elements from the desktop, such as multi-

tasking and multi-windowing. The resulting

software architecture resembles in some ways

what could be called an “augmented reality

operating system.”

Research that is currently in its initial phase

will investigate the possibilities of mobile

collaborative augmented reality. The name

Studierstube (“study room”) may be no longer

appropriate for a portable or wearable AR

platform, but a mobile 3D information platform

has exciting new possibilities, such as ad-hoc

networking for instant collaboration of

augmented users. Our goal is to allow users to

take 3D contexts “on the road” and even dock

into a geographically separate environment

without having to shut down live applications.
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