OE FORA 6050, $2{ }^{\circ} 9$

ERIC ACC. *o. ED 035782	
$\begin{aligned} & C H \text { ACC. No. } \\ & \text { AA } 000485 \end{aligned}$	$\begin{array}{r} \text { P.A. } \\ 08 \end{array}$

DESARTMENT CF HEALTH, EDESAKICN, AWU W JFARE
ERIC REPORT RESUME

Kiesling, Herbert J.
TITLE
The Study of Cost and Quality of New York School Districts. Final Report.

FINAL REPORT
Project No. 2-C264

A STUUY GF COST AND QUALITY OF NEW YORK SCHOOL DISTRIGTS

Fcbruary, 1970
U.S. DEPARTMENT OF

HEALTH, EDUCATION, AND WELFARE
Office of Education
Burcau of Research

Final Repost
Project \%e. 8-02st

\triangle STuDY CF COST Ane cuality
OE HEM YOEX SCHOOL DISTRICTS

Herbert J. Xiesing
Indiana University
Bloomington, Indiana
Februarj; 1970

The research reported herein was performed pursuant to a contract with the Office of Education, U.S. Department of Health, Education and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgnent in the condrint of the project. Points of view or opiaions stated do not, therefore, necessarily represent official Office of Education position or policy.
E.S. DEpirtiment of

HETLLTH, EDUCATION, ARD hEIFARE
Oifice of Education
Burear: of Research
Page
Table of Contents ii
List of Tables iii
Acknospledgrents v
sLumary 1
I. INTRODECTION 2
Schoois Considered As Firms 2
Some Frevious पork: Are Schools Important? 4
Erpirical Aralysis Directly Precursive to the
Present Study: The First Quality Heasurement Project 5
Educational Models Used 6
Findings From the 1958 Data 12
II. AMALYSIS OF THE 1965 DATA 17
The 1965 School Sample 17
Explanatory Hodeis Used bith the 1965 Data 19
Findings: Principal Model 21
Aiternate Explanatory Models 36

1. Adding Yariables for Value and lumber of Supervisory Personnel 36
2. Adding zumber of Students per Classroom and Deleting Teacher Certification Level 40
Geographical Differences in the Relationships 46
Relationships by School building 51
Regression Findings by School Building 57
III. SUMPARY AND COHCLUSION 61
Central Findings of the Study Sumarized 61
Practical Implications to Policy Makers 61

AGEXGTWDGESTIS

 gator usually conld net have succença mithour considerable help finn a number of other פeople and this study is no excention. The ?rixmary debt of giatitude is orad to personnel in the Feg Fork zducation Be币_rtment, espacially DE. John Stiglemeieミ, head of Statistical Services, and $D=$. Cerald Johlferd, a member of the original Cuality Yeasurament Project, who has been the author's consistent friend and consultant since he was a graduzte student beginning rovic on his dissertation in 1954. Also most helpful was James Cartfr, Eto performed the necessazy progyarming feats in Albany when the going became complicated, to insuze that the 3 JDS data were properiy acquire3.

At Indiana University the most valuaisle helper and consultant in economics; esonometrics, and computers has been H. Firle Rowerts. There were times when the data sumazizaticn chores seemed impossible that rizik Rojezts solved the problem and got the project runcing again.

Thariks also go to the assistants who soriced on the project.
 talented programing efforts shouid specifically be mentioned since without them the project could not have bean completed on time.

My extremeity capable secretary through the project was Miss Bobbi Hessalgiave, who also typed the final. report.

Bloomington. Indians
February, 1970

This is a stidy of the relationskip of a namioer of school and comrunity characte=istics to achievement pezformance levels of fifth and aights geada pupils in a 1965 sampie of 99 school districts (35 usable) in Nev Yois state.

A simple model of the educational process was constructed and the relative impoztance of a maber cis school inputs compared. Units of observation used were both schools and schooi districts. Results were compared to a similar study of an earilier (1956) sample of Hev York school districts.

The key findings of the investigation are the follouing:

1. The school inpur most consistently related to pupil achievement levils nas resources devoted to centzal administration and superyision.
2. $\dot{\mathbf{A}}$ second school attribute often related to pupil performance, especially in grade 5, was level of teacher certification. Teacher experience level was also related to performance, but only for pupils from good socio-economic backgiounds.
3. Several sckocl inpats noimally considered important vere not ralated to achievement performance outcomes. These include teacher degree level, teacher salaity level, value of school district ormed plant and equipment, and principals and supervisors to pupil zatio. The findings for the salary and value vasiables conflict with findings in the earlie: Men York study.
4. Mumber of students per classizoom was found to be positively related to pupil peifcrmance, a finding which suggests tinat the number of classzooms available in these schools was not a meaningful constzaint.
5. Differences in performance outcomes were found to be mich more significant between school dist:icts than within school distiricts, although wíthin-district relationships were not completely ranciom, even when pupil socio-economic differences were controiled.

IETRODUCTIGA

Schools Considezed as Firms
In recent years considerable attention has been given by economists to the possibility of studying pubiic schools as if they were firms. This has required some mearure of educational output similar to those usually availaile for studying private industry.

In analyzing firms, economists usually deal only with the quantity of output. Frr exaneple, when speaiking of tons of a certain grade of steel, production levels can be compared by analysts secure in the knoviedge that quality differences ara by definition of the product non-existent. In studying puilic education, horever, it is fropossible (at least in practice) to define quality differences atay. Ferely comparing the number of pupils moved through the educational system does not give the researcher enough information about the character of the "manufacturing" process. In public education, as in most public services, there is also an important quality dimension.

In recent years it has become apparent that objective test scores may be adequate enough measures for output quality in the public schools (and especially at the elsmentary level) suck that economists might be able to tuin their expestise in studying the firm to rook in the study of public schools. The first full-scale study to shos the possibilities of this was the author's doctoral dissertation, completed at Harvard University in 1955. The most extensiva effort zas homever the izqual Opportunities Survey of 1966. Other work has been done by Ratzman using 3oston data, by Peaker using British data, Burichead for two city school systems, and by several authors using data generated in the Equal Opportunities Survey.

Hericct J. Riesling, "IMasuxing a Iocal Government Service: A Study of Efficiency of School Districts in Hew York State, " (unpublished Ph.D. dissertation, Harvard University, 1965).
--------, "Measuring a Iocal Government Service: A Stedy of School Districts in Hev York State, "Reviev of Economics and Statistics, (August, 1967), pp. 356-367.

Martin T. Katzman, "Distribution and Production in a Big City Ilementary School System," (unpublished Ph.D. dissertation, Yale Unive:sity, 1967).

James S. Coleman, et.al., Equality of Educational Opportunity (Uashington, D.C.: U.S. Government P:inting Office, Washington D.C., 1965). (Commonly known as the Coleman Report.)

Eric A. Hanuslelk, "The Education of Hegroes and Whites," (unpublishec Ph.D. dissertation, M.I.T., 1958).

Jesse Burkhead with Thomas G. Fox and John W. Holland, Input and Output in Large Gity High Schools (Syracuse: Syracuse University Press 1957).
G. F. Peaker, "The Regression Analyses of the National Survey," Children and Their Primaiy Schools (Iondon: Her Majesty's Stationery Office, 1957).

Notes: Continued next page.

This lind of inozir proceeds at teo levals. 治at econcmists ultimately sould hopa to accomplisin is the construction of accurate prodaction functions for schools. To the economist a production function of an industry repzesents a listing of optimun levels of output associated sieth vazious cominnations of (plysical) inputs into the production process. Production functions per se in the private sector would not be provided by economists but by engineers. The task of the economist is tu add cost considerations and to compute which combinations of inputs are (most) efficient.

Crucial to the formslation of production functions is for the analyst to be aware of what the firm is attempting to maximize and to reduce this maximand to a single dimension. If this can be assumed, it is merely necessary to observe which firms are operating most efficiently with respect to the single output (or output index) and then to study the input configurations used by those firms.* Another important consideration for the construction of production functions is that it is possible to experimant concerning the degree of cemplementarity and substitutability of yarious inputs to the production process.**

It is unlikely that economists can reach the goal of obtaining formal production functions for education as defined above, for several reasons. It is not possible to knosy for certain exactly what schoolmen wish to optimize or to discover how complementary various inputs are. Also, it is difficult to reduce educational output to a uni-dimensional index. Of these probiems, it will become apparent belos that the complementarity problem is probabiy the most intractable, at least at the elementary school level. Schoolmen probably strive to instill knowledge in basic subjects in the lower grades and this competence probably occupies a preponderant percentage of the total output at that level.

The second level at winich this investigative work proceeds is in the more mundane area of describing school performance and discovering crude (but imporiant) policy implications which might be forthcoming from such description. A further goal is to discover in general which types of educational inputs are associated with high performing schools when pupil socio-economic Bifferences are controlled.

Also an interesting study is presently being conducted by Eric Hanushek and the RAND Corporation vhere pupil performance is being related to teacher characteristics and other variables for a large sample of pupilis in the Norwalk-El Mirada School District, California.
*In practice, assuming rational firm behavior, it is difficult to obtain more than one such configuration since only one combination of inputs is most efficient at any one combination of prices. Additional information is available over time if there are more fluctuations in factor prices than in production technology.
$* *$ Factors are complements when they must be increased together to provide increased outfut and substitutes when one can be used in 1ieu of another.

Such information may also have impotant susgestions for policy. It is at this second (lower) leval tinat the present study should be placed.* Eurtinex comments concerning hosi this type of analysis might be useful to poificy makers and other students of edueation sill be included in the final section below.

Some Previous प्रoze: Are Schools Repoztant?

Of the woik which has been done relating school and community characteristics to objective test scozes, muck has yielded findings shich seem to demonstrate that the formal schonl process is relatively unimportant to educational success. The most noteworthy example of this is the Equal Cppoztunity Survey (Coleman Repoit) which has popularly been intexpreted to shov that nonschool environment is of far greater importance to educational success than is anything done by the schools. While this interpretation of the Coleman findings is somenthat erroneous, and wile the statistical analysis bhich provided it is suspact, nevertheless the Coleman study has still been widely considered to be a real challenge to the efficiency of Amezican school perfozmance. Other studies have yieíded fairly similar results. One jy Juiknead, Fox, and Hollandkanalyzed a number of perfoimance measures for 39 chicago high schools, 22 Atianta hige schools, and 174 small commity high schools used in the Project Talent stridy. Fes school chasacteristics vere significantly related to outputs when allosance zas made for differences in median family income. A study of 3oston schools by Matzman showed socioeconomic status as the only variable consistent ${ }^{I} y$ related to all the measures of output.

There exist grounds for believing that the negative findings of the three studies just mentioned ase overstated however. Dther inves-tigators--notably Zric Hanushek and Hen:y Levin--have shomp that, uhen used in jetter educational models, the Coleman data yields findings which show teacher characteristics to be strongly reiated to pupil performance. Similai findings vere obtained by Peaker for a 500 student sample taken from 3xitish primary schools and are being obtained by Hanusheir in a presently ongoing study of pupil performance in Horwalk-El Mirada California being sponsored by the RAND Corporation. All three of the studies giving negative conclusions had statisticail designs mich left something to be desired. Finally, some earlier uozk by the author shovs some school characteristics-especially administrative effort, teacher salary paid the top teacher, and value of schiool plant and equipment--to be strongly related to pupil performance fairly consistently. Some unpuilished work by the author done for 647 public high schools in the Project ralent sample
*Although the author hopes that in the course of the analysis some light might have been shed on the problems associated vith the development of formal production functions as well.

$$
* * 0 p \text {.cit. }
$$

Empirical Analysis Directly Paecursiye to the Present Study: The First Quality ijeasurenent Project

The growp of people nhich collected the data which makes the present study possible also gathered a set of high quality data for performance of a sample of Neg Yoser schools in 1958, 1959, and 1960. Since this group eas formerly called the "Quality heasurcment Project," I refar to the earlier study as the First Quality Measuremant Project and the 1955 study, that winich this report is based upon, is coirespondingly termed the Sccond Quality sheasurement Project. For brevity the two studies sill be referred to belos as the 1958 and 1965 studies respectively. The author has over the past several years carefully analyzed the 1958 data, and since the teon samples are relatively similar ones f tiom the same state, the earlier findings comprise highly relevant bacleground material for tize present study. It can certainly be said that the earlier findings constitute a realy-made set of hypotheses to be tested with the 1965 data. It is proper therefore to relate the earlier analysis and rindings in some detail. To do this it wili first be necessary to discuss the characteristics of the earlier sample.

The first Quality Measurement Project was a three-year study at three grade levels for 97 of the approximately 1400 school districts in Hew York state in 1958. The fact that the study teas maintained for three years gives it an important longitudinal aspect; students tested the beginning year were "followed" the succeeding two years. The three beginning grade levels tested were grades 4, 7, and 10, although most of the author's analysis has been concentrated at the losest grade level. The test instrument used for grades 4, 5, and 5 was the Iowa Basic Skills battery. Memisers of the Quality Meastirement Project, as exell as the author, collected a mumber of other important school and comminity charactaristic variables for each of the 97 participating school districts. The most important of these are included in the following list,
(1) Teacher-Pupil Ratio
(2) Principals/Supervisors to Pupil Ratio
(3) Special Staff Personnel to Pupil Ratio
(4) Expenditure per Pupil on Books and Suppifes
(5) Median Teacher Salary
(6) Average Salary of Teachers in the Top Salary Decile in Grades Kirlergarten Through Six
(7) Average Socio-Economic Index of Occupation of Family Breadrinner of Pupils in Grade Five
(8) Amount of School District Deit per Pupil
(9) School District Average Yearly frocth Rate, 1950-1958
(10) School District Size in Average Daily Attendanca
(11) School Property Value pes ?upil
(12) The Salazy of the Superintendent of Schools
(13) Kedian Salazy of Principals
(14) Expenditures Der Pup $£ 1$ on Principals, Assistant Principals, and Supeivisors
(15) Sctool Districe Value of juil (dings per Classroom
(16) School District Value of Fuzniture and Zquipment per Classmom
(17) Hedian Years of Teacher Experience in the School Distinict

A fey comunity characteristics such as tax rate, tax base per pupil, and geographical seiting (village, urban, etc.) were gathered. Other community characteristics was difficult to obtain because school district boundaries are seldam cotezinous vith jurisdictions used by the U.S. Census, Also found useful meze the variables for size of school district, grouth of school distzict, and figures on expenditure per pupil.

Educational Ifodels Used

The researcher, in ordar to construct a useful model of the formal education process, most proceed in teo steps. First it is neceasary to provide a framerfork which meaningfully places the formal school process in prover perspective and secondly, wich is much more difficult, he rust construct a model for studying the production function of the process itself. For the fiest step a basic zepresentation of the educational process was assumed vherein the quality of a child's education is causally related to four variates-the formal school education process; the informal home and envirommental educational process, motivation torsards leaving; and native ability. In order to examine the formal school process the other three influences must be properly talen into account. This is difficult to do in a single equation model because of the many interdependencies in the educational process. For example, pupil motivation is a function (at least) of home environment, infiuence of peers, school environment, and past success or lack of it on the part of the individual pupil. All these influences are most difficult to capture. The assumption made in the single equation model used in this analysis is that the motivation caused by socio-economic environment (including influence of pears) is captured by isolating family and school socio-economic factors shile that caused in the school (again including peer influence, but also that imparted by teachers etc., and by the pupils ${ }^{2}$ past success) is captured in the level of achievement test

Sost econcoists sho have investigated school input-cutput relationships seem to feel that no separate accounting is necessary for dififerances in native ability either, pazadoxical as that may seem. The reason for tinis is that it is assumed that native ability is either randonly distributed or associated with socio-economic bacirground of the pupils. Ho vaziable is readed of course if che distribution of native abiiity is random. If associated vith socio-acononic status, it is proper to account for it with a socio-economic status variable. The aution concurs in this conseption of the educational sorld, although he is at the same time asare that the formulation is by no means unassailaile. Thus, there may be some non-random variation in native ability not associated with socio-economir factors. This is a point which will stand consideraisle further investigation.

It should be most apparent hos very crucial it is to properly account for socio-economic enviromental influences upon sełool children ix̂ ue aze to leainn anything aíout school quality. Hot only is educational interest and motivation stiongly affected by the educational attituces of the pupils ${ }^{1}$ pazents, friends, and classtates, but also a great deal of actual leazning takes place in the home with the amount depending veiy =iosely upon the educational levels and interests of parents, brothers, and sisters. In the educationall modelis wifh heve been used by the antior for these taso sets of Wery York data, the eifects of socio-econcmic differences are accounted for in tro ways. First, pupils are stratified into fairly homogencous groups according to either father occupation or father education. This, it is hoped, isolates the influence of home environment upon motivation and leazning of basic subject matter in the home. Secondly, a continuous vaziable is introduced into the estimating equation to account for the overall socio-economic "clinate" of the sciool itself, including the influence upon motivation of the attitudes of peess. For the 1958 data set the variable used was average level of father occupation for all the pupils in the school district and for the 1965 data a similar variable vas used ieflecting average education of the pupils ${ }^{1}$ mothers.

The second step, that of constructing a meaningful model of the formal school process itself, is much more difficut given the type of information generally available to researchers. As already discussed, required is to isolate the leey inputs considered in physical terms and to compute the marginal product of each assuming all the others are held constant (i.e., in the sense of a partial derivative) and also to discover which sets of inputs are complements to each
*The latter assumption is certainly operationally valid for the investigator sho is more interested in the end results than in the processes thrsugh which the results are obtained. Unfortunately, if researchers are ever to obtain precise school production functions for schools, these processes vill have to be understood.
other.* All this is inpossiole nitio dara linitations such as thosa
 to not. In practice the idea is rather to find the sehool characteristics which seem to be important in successful schools "suciessful" in the sense of having thriougiify accounted for socio-econonic influences) and also perhaps, to wake computations concerning the efficiency of the successful inputs. This can be done although the researcher still cannot be certain that his model is conpletely meaningful because of the absense of an adequate underlying theoretical stricture and because in practice many school (and comunity) inputs are iitehly colinear. This last problem causee severe estimating problems in practice oecause colineaz vaifibles in miltiple regzession analysis tend to have overstated standard eriozs of regression coefinicients wich tends to understate their tiue value. Given this situation the investigator is faced with the difficult choice of accepting tive indifferent (and understated) significance leyels of his veriables or to discard variables from the ac visgis which may qell be important.

The author, in dealing with this problem in both iker York studies, used tao prosedures to help in model specification. The first of these is factor anclysis, shich is a helpful technique for exploring relationships betmeen groups of colireaz vailables.** Second, considerable experimentation was done in introducing different conbinations of variabies in miltiple regression equations in order of contribution to the coefficient of multiple determination. This procedure, bhile highly heuristic, nevertheless yields important statistical insights which allor the researcher at least to discard variables wicin never contribute explanatory poser to the nodel. If there are also reasons for the rescarcher to thin that such variables are theoretically unimportant, he may eliminate them fiom the investigating model with a minimum of danger.

Abstract

*A theoretical basis for suci an exercise, assuming data availability is provided by a somerrhat modern updating of the old factors of production of land, labor, and capital. A more accurate concept of factor inputs has tuo basic, oi "rass" factors of production and tio additional factors which are merely improvements upon the starting raw materials. The two starting factors are human and non-iuman resources in unimpraved form with the fmprovements on each being human and non-human capital. For puiposes of an analysis of schools unimproved human resources would not necessarily be completely uneducated persons. Instead some starting point comon to all human inputs, such as high school or even college graduation, can be used as the beuchmark for "unimproved:" human inputs with improvements on this--training torsard advanced degrees, in-service training, job experience, etc., being considered as components of human capital inputs. The distinctions for non-human capital should be obvious. Acres of land is unimproved sapital wile builifings and slide projectors are improved non-human capital, or "capital" in the traditional sense.

**For examples sce: Hassy, ijilliam F., "Principal Components Regression in Explozatory Statistical Research, " Journal of the American Statistical Association, (ilarch , 1905).

John Meyer, and Gerald Irraft, "The Zvaluztion of Statistical Costing Techniques as Applied to the Transpo:tation Industry," American Ecoriomic Reviets, Vo1. 51, Ho. 2, (May, 1961).

John T. Scott, Jr. ${ }^{\text {"Factor Analysis and Regression," Econometrica, }}$ Vo1. 34, Ho. 3, (July, 1955).

Fo: the 1958 data, tỉe factor analysis for the school inputs is given in Taile 1. A three-factor rotation was obtained which was disappointing in that many of the innozitant school variables were closely associated together in the first factor, which of course merely refapresses the researcher uitio the essential colinearity of the data. The othar two factors ye=e more identifiable howeyer. One consisted of vasiajles indicating rescurces going toward school admin-istration-supervision, thile the othe= included variables denoting amounts of physical plant and equifpent (in dollar terms) per pupil used by the school distifict.

Using these two techniques, the follozing multiple regression estimating model tas obtained for analysis of the 1958 data:

$$
\Psi=b_{1} \div b_{2} 2 \div b_{3} T+b_{4} Z_{0} \div b_{5} S_{10} \div b_{5} V \div \vec{J}_{7} E_{8} \div U
$$

йеге:

> Y = Average achievsment scoze of pupils in the relevant grade and occupational grouping
> $0=$ Inder of average occupation of beeadsinners of pupils in grade 5
> T = ifumber of teachers per 1950 pupils
> $\mathrm{E}_{\mathrm{b}}=$ Z. Zxpenciture per pupil on books and supplies
> $\mathbf{S}_{10}=$ Average salary of teachers in the top salary decile
> V = Value of school district oned pzoperty per pupil
> $z_{s}=$ Expenditure per pupil on principals and supervisors
> U $=$ Unexplained variation

The last tro variables were suggested by the factor analysis but were also found to be important in general. In the starting list of variables, there vere three each for salary and value. As might be expected these two sets of variables vere found to have high withinset correlations and therefore only one from each set was used. The salary variable correlations were pasticularly interesting. It would seem that "salary policy" is a school chatacteristic which suffers from being divided much further.

Before proceding to a discussion of the findings obtained vinen this uodel tras fitted to the 1958 data, it is necessary to discuss one more pioblem in estimating school input-output relationships from these data. In constructing production functions for some production process it is necessary that the investigator be dealing sith the proper sized units of production. Thus with a steel mamufacturer, the proper production unit is probably the individual plant, not the entire company. With schools this is a paiticularly perplexing difficulty since theze are a number of levels of production involved, with the proper level for investigation dependent upon the individual

.55
.79
.92
.74
.4 .6 . 32
.05
.42 Valuo of school Facilities
7.4

Hotes: Teacher experience information ras missing from 29 of the \mathcal{G} school districts used for tinis rotation. The information given for that variable comes from a rotation of 57 school districts and must ise regarded as an appzomimation from the standpoint of all 36 scinool districts.

Z3igity-six school districts rere used in this rotation instead of the $\hat{0}$ used in Table 4 because there uere three school district for wioicin tine salaiy of top 13% of $t_{\text {. ciners pas not availajle. }}$

CnIly factor loadings in excess of .30 are included in the taiole.

Humber
of
Factors: Using a test developed by 3a=tlett the three-factor breaiciosm is cleazly correct. The applicable ratio for the last factor is $2.33 / 1.23$, or 1.89 ehicil is significant at the 1% level. The applicable =atio for the next factor is $1.23 / 1.00$, or 1.23 unich is insignificant. (See M. S. Bartlett, "Internal and Zxteenal Facto: Analysis,: 3-itish Jouznal of Psychology (Statistical Section), 1, (June, 1948).
factor input being studied. Thus, for the central administration this would be the school district, efile for administration by building principals it is the individual school building and for teachers it is probably the individual classroom. Thus far it has not been possible for most investigators to obtain very good data for factor inputs by school building and in tive 195t data especially, most of the data are aggiegated on the basis of the school district. There is a serious potential criticism of using school district aggregates for many ixportant factozs, especially teacher characteristics, if there is any reason to believe (and it seems highly plausible) that such characteristics vary by school beilding within the same system. In order to control in part for this danger, school districts were examined for heterogeneity. Thile information was not available by school building for factoz inputs, it \quad as so available for pupil occupational backgrounds. Since differences in socio-economic characteristics with school districts provide the mest apparent motive for teaching (and scmetimes administrative) personnel to transfer within the same school distriet, such differences should be relevant. Then this was done it was found that seven of the 89 usable districts ware excessively heterogencous and those districts were discarded from the acalysis. This procedure is not a completely satisfactory one for dealing rith the problem of course and the assumed existence of vitinin-district heterogeneity becomes an important hypothesis which was tested in this study of the 1955 data where some information on input vaziables was available by school building.

Findings F=om the 1958 Data

The principle findings from the fizst Hem York study are uell reprasented by the fitted multiple regression equations shown in Table 2. The findings given there pestain only to the 46 urban school districts in the study as it was found that there was no meaningful relationshids between the school variables and pupil performance in the rural and village school districts in the sample. Only the socioeconomic occupation index was found to be significantly related to pupil performance in those districts. One task of the present study, therefore, is to examine shy the behavior of the smaller distilicts should be so much more random than that for the urban districts.*

> A further woid of explanation is necessary concerning the regression equations presented in the table. Tvo fitted regressions are given for each socio-economic popularion. The explained, or dependent, variable in both equations is average sixth grade score (compcsite score, Iova Test of Basic Skills) for pupils also present in grade four. The

[^0]| Socio-iconomic Group (Occupation of Family Breadvinner) | Intercept | Index of Occupation | Teacher
 Pupil
 Ratio | Per zupil
 Expenditure on Books and Supplics | Teacher
 Salary Iop Decile | Value of School property Per Pupdi | Par Pupll Expanditura on princi" pala and Supaxyluon: | Fourth Grade Score | N | m | \cdots | R^{2} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Professional Persons | $\begin{gathered} 2.26 \\ (0.21) \end{gathered}$ | $\begin{array}{r} 0.127 \\ (1.30) \end{array}$ | $\begin{aligned} & -0.012 \\ & (1.42) \end{aligned}$ | $\begin{aligned} & -0.0065 \\ & (0.70) \end{aligned}$ | $\begin{aligned} & 0.0013 \\ & (0.29) \end{aligned}$ | $\begin{aligned} & -0.00065 \\ & (0.10) \end{aligned}$ | $\begin{gathered} 0.0017 \\ (8.76) * * \end{gathered}$ | | 44 | 2.64 | 0.36 | . 700 |
| | $\begin{gathered} 3.00 \\ (0.13) \end{gathered}$ | $\begin{gathered} 0.179 \\ (2.07) * \end{gathered}$ | $\begin{aligned} & -0.011 \\ & (1.47) \end{aligned}$ | $\begin{aligned} & -0.0030 \\ & (0.37) \end{aligned}$ | $\begin{aligned} & 0.0018 \\ & (0.46) \end{aligned}$ | $\begin{aligned} & -0.0014 \\ & (0.25) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.34) \star * \end{aligned}$ | $\begin{gathered} 0.701 \\ (0.37) * * \end{gathered}$ | 44 | 0.19 | 0.36 | . 792 |
| 2. Proprietors, Managers, Officials | $\begin{gathered} 1.06 \\ (0.15) \end{gathered}$ | $\begin{aligned} & 0.241 \\ & (2.91) * * \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (1.45) \end{aligned}$ | $\begin{aligned} & -0.016 \\ & (2.19) * \end{aligned}$ | $\begin{aligned} & 0.0053 \\ & (1.61) \end{aligned}$ | $\begin{aligned} & 0.0092 \\ & (2.21) * \end{aligned}$ | $\begin{aligned} & 0.0044 \\ & (3.02) \end{aligned}$ | | 44 | 2.45 | 0.23 | . 637 |
| ω | $\begin{gathered} 2.21 \\ (0.15) \end{gathered}$ | $\begin{gathered} 0.251 \\ (2.97) * * \end{gathered}$ | $\begin{aligned} & -0.0093 \\ & (1.29) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (1.02) \div \end{aligned}$ | $\begin{aligned} & 0.0040 \\ & (1.41) \end{aligned}$ | $\begin{array}{r} 0.0097 \\ (2.28) * \end{array}$ | $\begin{gathered} 0.0044 \\ (3.00) * * \end{gathered}$ | $\begin{gathered} 0.921 \\ (0.50) * * \end{gathered}$ | 44 | 7.62 | 0.40 | . 079 |
| 3. Clerlcs and Kindred Voricess | $\begin{gathered} 2.11 \\ (0.17) \end{gathered}$ | $\begin{gathered} 0.244 \\ (2.52) * \end{gathered}$ | $\begin{aligned} & -0.010 \\ & (2.13) * \end{aligned}$ | $\begin{aligned} & -0.020 \\ & (2.60) * \end{aligned}$ | $\begin{gathered} 0.0067 \\ (1.93) \cdots \end{gathered}$ | $\begin{gathered} 0.0099 \\ (2.07) * \end{gathered}$ | $\begin{gathered} 0.0036 \\ (2.19) 44 \end{gathered}$ | | 44 | 2.34 | 0.21 | . 444 |
| | $\begin{gathered} 2.13 \\ (0.17) \end{gathered}$ | $\begin{gathered} 0.245 \\ (2.32) * \end{gathered}$ | $\begin{aligned} & -0.010 \\ & (2,06) * \end{aligned}$ | $\begin{aligned} & -0.020 \\ & (2.56) * \end{aligned}$ | $\begin{gathered} 0.0067 \\ (1.90) \div \end{gathered}$ | $\begin{gathered} 0.0099 \\ (2.1 .6) * \end{gathered}$ | $\begin{array}{r} 0.0036 \\ (2.03) * \end{array}$ | $\begin{aligned} & 1.00 \\ & (0.03) * * \end{aligned}$ | 44 | 7.32 | 0.37 | . 822 |
| 4 and 5 slcilled and SemiSicilled liorkers | $\begin{gathered} 2.29 \\ (0.10) \end{gathered}$ | $\begin{gathered} 0.104 \\ (0.88) \end{gathered}$ | $\begin{aligned} & -0.024 \\ & (2.62) * \end{aligned}$ | $\begin{aligned} & 0.0020 \\ & (0.23) \end{aligned}$ | $\begin{gathered} 0.0087 \\ (2.36) * \end{gathered}$ | $\begin{aligned} & 0.0067 \\ & (1.19) \end{aligned}$ | $\begin{aligned} & 0.0015 \\ & (0.77) \end{aligned}$ | | 43 | 2.25 | 0.20 | . 296 |
| | $\begin{gathered} 0.40 \\ (0.17) \end{gathered}$ | $\begin{aligned} & -0.045 \\ & (0.37) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (1.45) \end{aligned}$ | $\begin{aligned} & -0.0027 \\ & (0.35) \end{aligned}$ | $\begin{gathered} 0.0089 \\ (2.59) * \end{gathered}$ | $\begin{aligned} & 0.0001 \\ & (1.53) \end{aligned}$ | $\begin{aligned} & 0.00047 \\ & (0.24) \end{aligned}$ | $\begin{gathered} 1.341 \\ (9.04) * * \end{gathered}$ | 43 | 6.90 | 0.37 | . 029 |

Table 2. (Continued)

[^1]$$
(0-5)
$$
10
difference in the $t=0$ regressions is that in the second one for each grouping fourth grade average achievement performance is entered as one of the explanatory variajles. This latter procedure is meant to deal uith the possibility of pupil mojility. It restricts the analysis to tyo years of school effects. If there is little pupil mobility batween sciools the first equation is the better model, since it admits six years of school effects, not just tro. In the findings results from both variations ye=e quite similar.

A careful study of Table 2 shows the school input variables divided into two distinct groups. In the first are teacher-pupil ratio and expendituze per pupil on jooks and supplies, and these variables are negatively related to pupil performance, often at advanced levels of statistical significance. The second group includes the school inputs which appear to be the impoztant inputs to quality aducation, at least judging from the uzion school districts in the first Qualits ifeasurement Project sample. The consistently most important positive school input in the sample is expenditure per pupil on principals and supervisors, with the teacher salary variable second in importance. These relationships emphasize the importance of resources spent on supervision. This finding is similar to one made by Turner vho found in an intensive study of teachers in Indiana that only districts with well-developed supervisory staffs were a'jle to effect teaches behavior in desi=ed tays.*

The findings in Table 2 most in need of explaration are those for the two negative variables. Un tiese the books variable-- with an avarage expenditure of only about three percent of current expenditures ($\$ 14$ per pupil)--is relatively insignificant in terms of resouzce use. The books relationship is puzzeling none-the-less. Perhaps the figure would more properly have been averaged over a period of years ratien than taken from just one year. A possible explanation might aliso be that school districts without the wherewithal to maintain high quality otherrise, ccmpensate somermat by spending more on books and supplies.

Perhaps the most interasting finding from the 1958 data is that with respect to the consistent and significant negative relationship of teacher-pupil ratio to performance. Perhaps the most logical explanation for such a finding is provided by some research done by Vircent, et.al. several years ago.** In a study of 132 school districts, these authors conclude that in all but the poorest and richest school districts teacher-pupil ratio and salary policy are competing resouices and that, when confronted with the hard choice between them, school administrators opt for salary at the expense

[^2]of teacher-pupil ratio. These findings are consistent with this explanation. It fould sean that mithin linits paying higher salaries buys more quality than lovering pupil-teacher ratios.

A fer other generalizations aie possijle fion the regressions in Table 2. Since both the index of occupation and school variables are consistontly related to pupil perfonmance, it mould seem that both school and commnity ¥actozs are impoziant to the educational process. severai genaralizations are possible, $21 ; 0$, concerning the differential impact of scirool vaiciables on pupils fincm differing socio-economic levels. isost striling is the fact that the supervision variaile is yery highly related to the performance of pupils from the highest and lorest occupetional backgrounds, especially the former. The other fto important school inputs are nowever more consistently related to the middle of the socio-economic spectium. Thas, except for supervision, the sample schools peemed to seive best the needs of middle class children. Finally, the index of occupation iecoses consistentiy mota significant as cccupation level goes from high to low. The implication of this is plain; peer group and other socfo-economic school influences are most important $\overline{\text { Ioz }}$ children fieois poor sorioeconomic baclcgzound.

The findings fran the first Fev Yozir study just discussed can be sumarized into the following points, bhich serve as starting points for hypotheses to test in the second set of New York schools being examined here.

1. The multiple-regression model lacks explanatory porrer for the rural and village school disticicts in the study.
2. Teacher-pupil ratio is consistently related to pupil performance negatively. One explanation fow this is that educators within limits sacrifice class size for salazy level.
3. ine most consistently important school variable is expenditure on supervision, although the salary variable is as important for the middle-class socio-economic groups.
4. Both school inputs and socio-economic factors were found to be highly related to pupil performance.
5. Bxpenditure on supervisior personnel is most highly related to pupils from the inighest and lovest occupational backgiounds-especially the highest. Salary and value of school district property are more highly related to the peeformance of children from middleclass homes.
6. The socio-economic index was most related to the performance of children from lower socio-economic homes.

ABALYSIS OE THE 1965 DATA

The 1965 School S3anple

In 1955, persomel of the Division of Evaluation (blich had obsoried thr oxiginal Quality Heasuzement Froject persomnel) gathered test score data for a second sample representing somenat more than 10% of the 201 school districts vinich operated schools in the 19641905 school year. This time pupil performance and socio-economic data nere gathezed for grades 5 and 3 foz the 1964 - 1965 school year only; there is no longitudinal aspect to the performance data in the sample. A number of other school district characteristic variables vere also gathered by pioject staff, although the number of sucin iters gathered zas much less than foz the first study. It was possible to circumvent this deficiency uitin the use of data gathered by the Basic Iducational thata System (BZnS) which began collecting detailed data on सer Yort schools in 1957.

Criteria zere someshat different for the design of the two samples, although in neither case can it ive claimed that the sample vas selected using purely random pzoceduzes, although ex post checks have revealed each to be reasonably representative of Hes York state (neglecting tive city of New York.) The 1958 sample vas shown to anderrepresent small school districts somenhat, boseyer, and in designing the 1954 sample, some attention zas given io including a greater percentage of school districts with average daily attendance in the 500 to 2500 range.* It is to be recalled that it was precisely the small districts in the 1958 sample shich displayed highly random behavior patterns.

In the 1958 sample the priority consideration in sample design was whether the school district seamed willing to cooperate with the state over the three year period of the study. This criterion could have imparted sample bias, obviously, although the spinit of cooperation seems to exist in most Nes Yorir state districts. In the 1964 sample the pricrity consideration zas whether the school distinct used the Iota Tests of Basic Stills in frades 5 and 8. A large number of school districts (about 15\%) were found to use the test and i.t was fiom this list that the sample was picked. It is to be emphasjzed that both samplez sere hand chosen and therefore not random, but the criterion used in selection was that they be as representative of the state as possible. While such a procedure admits the possibility of slight sauple bias, both samples were a large enough percentage of the population to insure that they are quite representative of the state.
*In 1958, 717 of Her Yozle school districts had an average daily attendance of less than 2000 pupils and the 1958 sample had a corresponding percentage of 52\%. In 196\% the percentage of school distinicts with less than 2000 pupils was about 54 and in the 1965 sample the figure is about 62%, almost exactly the same.

To be more specific asout the 195k data set, information gathered by project persomel included individual prpil racords for pupils in grades 5 and 3 in tae 196\% school year with included scores on the Iona tests and data concerning fathan's occepation and father ${ }^{2}$ s and mother's education. Intelligence test sco:es mere also gathered although rith many aissing observations. iko other data were specifically gathered by project persomel although considerable infomation is available from regular puolished reports, variables such as average daily attendance and expendituse per punil for various purposes rere obtained in this gay. It should be noted that a record ras made of the individual school building attended by each pupil in the district, an inportant feature for our purpeses, sirce one goal of the study has to examine scme school input-output relationships by school building.

The remainder of the data used in this investigation was ontained from the $3 E D S$ data, thick includes detailed information concerning characteristics of scinools, teachers, and administrators shich can be identified by school buildiag as uell as by school district. Unfortunately from the standpoint of the present study the system did not begin to operate until the 1957 school year, which means there is a threc-year lag in variables taker from BEDS. Since the 1957-1968 data came from the first yeat of a major ner undertaling, there were undoubtedly some lapses in quality of data compared to that of subsequent years. This manifested itself in relatively large numbers of missing and incorrectly entered data for sorse variables, especially those having to do oith school physical facilities of the large nomber of items collected is BEDS, the following were sumarized by sckool beilding and sciool district for use in the study:

Variables Fram 3zins

Teacher salazy for regular duties
Number years teacher axperience
Teacher degree level
Teacher certification status
Relationship of number of pupils to various school facilities of nifich number of classrooms, number laboratories, and numer of academic classrooms were most important

Value of school district onmed property per pupi. 1
Salary of non-classroom professionals
fimber of yeairs experience, princioals
Degrae level of principals.
From these data we constructed variables for teacher-pupil ratio and ratio of teachers and pupils to classroom facilities. Finally, a few other variables, such as population density, vere available from
other sources. It skould be noted that teacher data seared wich more complete than that for nori-classroom professionals and the latter information sas little used in the study.

ExpIanatory Models Used With the 1905 Data

Model construction for the later data set proceded in the fashion similar to that in the earlier study and the rodels used are subject to essentially the same limitations as those described above for the earlier model. Three models were usec for the analysis for school districts and one--much simpler--for school buildings. It will be convenient to give the findings for the school district analysis first and therefore only the three wodels for that analysis vill be discussed in this section.

One of the primary criteria used for model construction in the present study has been the desire to test for replicability of the earlier findings. The first model constructed was therefore one which closely resembled the model used with the 1958 data. Doing this imediately conjured up serious data problems however, since a valua variable was only availabie for 68 of the 86 usabie schooi districts. Instead of limiting the entire analysis to 68 districts, it was decided to discard the value variable and to substitute teacher variables which seemed to be either theoretically important or often related to pupil performance in preliminary multiple regression analysis. The following explanatory modei was obtained as the central vehicle for the school district analysis:

$$
Y=b_{1}+b_{2} \mathcal{E}_{m}+b_{3} T_{c} \div b_{4} T_{d}+b_{5} T_{e}+b_{6} T_{s}+b_{7} R+b_{\varepsilon} E_{x_{a}} \div U
$$

where:

$\mathbf{Y}=$	Achievement score in basic subjects sumarized in stra-
	tified form according to 7 occupation and educational ievels
	of the pupils

Together the school variables in this model acceunt for a large percentage of the resources used by most school districts, the obvicus exception being the value vaziable. The mother-education variable is meant to capture effects upon educational quality forthcowing because of the educational ${ }^{11} c l i n a t e^{31}$ present in the sciool disteict, in analagous fashion to the index of father occupation variable used in the earlier model. Any of the three socio-economic background variables could have been used to constiuct this "climate" variable of course. Hother education was selected because of the assumed closer contact with the day-to-day reazing of children. The education and occupation levels for fathers sere used for the stratification purfoses, horever, on the grounds that overall socio-economic status is more related to the position of the family principal oreadrinner.

Of the remaining six variables in the model, three are basically descriptions of the quantity of resources used for various objects. These include average teacher salary, pupil-teacher ratio, and expenditure per pupil on central administration.* The remaining chree variables are meant to be proxies for aspects of teacher quality, or perhaps more accurately, for outwazd manifestations of teacher quality as often perceived by leaders in the public education establishment. The first of these is teacher certification level, of which there are four possible in \#ev York state: Hone, five-year provisional, tenyear provisional, and fully certified. Certification has to do with the preparation possessed by the teacher in the subject areas she teaches. A fully-certified teacher has adequate preparation (according to state standards) in all subjects she is teaching chile the provisional certification means that she is deficient in varying degrees from having the number of course hours of preparation in one or more of her subjects.** The second quality proxy is teacher degree status, of which there are four levels: no 3.A., B.A., M.A., and Ph.D., of which only the second and third are meaningiul in most instances. As constructed in this way the variable lacks precision. Often the distinction is not only made by degree level but also by number of hours past a given degree Ievel as "3achelors plus 30 hours" etc. With this information this variaile mould have bet 1 far better. Ziven so, however, educators often feel that the percentage of teachers体o have the masters degree is often a meaningful figure. A more immediate reason was available for including the degree variable in the model however; the variable was found to be related to pupil performance more than any other teacher variable in a study of the 1958 data made by Quality Measurement personnel.*** The third teacher
*Actually this description of the teacher salary variable is far too simple since salary is very closely related to teacher experience, certification and degree levels. But average teacher salary does represent a most important school resource dimension.
$\star *$ As I understand it, a five-year probationary certification was issued when a teacher needed further work in her major field and a 10 -year probationary certificate issued when she needed further woric in a secondary field.
***State Education Department Division of Evaluation, Bureau of School Programs Zyaluation, Teaches Characteristics Study, mimeo, Albany, 1962.
quality proxy used is leval of teaches experience. Little needs be said about the theoretical foundations of this variable. To some extent "practice makes perfect" in all lines of endeavor. Kany school administrators seem to consider experiance as being quite inportant. It is the biggest single determinant of teacher salary levels. Some researchers have found in recent yeais torrever that beyond a certain level, (perhaps coming fairyy early in the career), additional teacher experience is not associated with increased pupil performance.* This oecomes an important hypothesis to test in the present study.

It must be exphasized that these "quality" variables are only rather indirect proxies for true teacher attributes. They give no direct information concerning teacier ability inside the classroom, or even of teacher intelligence. Any mumber of better variables suggest themselves for measuring teacher (and also, incidently, administrator) quality but these are the best possible with availaile data. Obviously the investigator will 7ot construct precise edceational production functions with variables such as these. As variables which have policy relevance, horever, the three quality proxies are iess bad, since these are charactezistics to be important by educational decision maters. As the model stands important policy hypotheses can be tested. To sumarize then in question form: Are these teacher preparation characteristics which seem to be highly valued by most educationa leaders in fact related to pupil performance if socio-economic factors are controlled?

Findings: Principal Model

The model just described was fitted to the achievement performance of pupils in seven occupational and aducational groupings for grades 5 and 8 for tex of the individual Iowa Test Scores (language and arithmetic) plus composite score. The fitted regressions are shown in Tables 3-14. Relationships in the 1964, data are reasonably similar to those in the earlier data, although more are some rather remarkable exceptions to this. For example, in the 1965 regressions average teacher salary is consistently unrelated to pupil performance. Two variables shov importance similar to corresponding variables in the earlier study: The socio-economic school variables and administrative exponditure per pupil. Eiven here there are some differences however. The SE variable is genezally more related to the progress of children fromiingher socio-economic levels and the admin?strative rasource variable moze related to the performarce of children from the middle of che socio-economic spectrum, whereas in the earlier study administrative resource inputs were more highly related to the progress of children from the highest and lowest socio-economic levels. These differences are horever more marked when the stratification criterion is education as opposed to occupation. This is to be expected, since occupation was the stratification criterion in the earlier study.

[^3]

Father's Education Level	$\begin{aligned} & \text { Inter" } \\ & \text { cept } \end{aligned}$	$\begin{gathered} \text { Mothers ' } \\ \text { Education } \\ \text { Level } \end{gathered}$	Teacher Certification Leval	Tascher Degree Status	Teacher Experlance	Average Teacher Salary	Pup11~ Tenchax Rat10	Adminis trativa Expendilure Par Pupil	N	m	5
1. 4 or More Years of College	$\begin{gathered} 6.541 \\ (0.339) \end{gathered}$	$\begin{aligned} & -0.295 \\ & (2.75) * * \end{aligned}$	$\begin{array}{r} 0.537 \\ (1.53) \end{array}$	$\begin{aligned} & -0.316 \\ & (0.96) \end{aligned}$	$\begin{gathered} 0.036 \\ (2.16) * \end{gathered}$	$\begin{aligned} & -0.013 \\ & (1.45) \end{aligned}$	$\begin{aligned} & -0.018 \\ & (1.17) \end{aligned}$	$\begin{array}{r} 0.055 \\ (1.14) \end{array}$	85	6.37	0.30
2. 1-3 Years of College	$\begin{gathered} 4.992 \\ (0.300) \end{gathered}$	$\begin{aligned} & -0.335 \\ & (2.52) * \end{aligned}$	$\begin{gathered} 0.764 \\ (1.91)+ \end{gathered}$	$\begin{aligned} & -0.803 \\ & (2.12) * \end{aligned}$	$\begin{aligned} & 0.0096 \\ & (0.50) \end{aligned}$	$\begin{aligned} & 0.0016 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 0.0010 \\ & (0.06) \end{aligned}$	$\begin{gathered} 0.112 \\ (1.80) \div \end{gathered}$	05	5.88	0.44
3. High School Graduate N	$\begin{gathered} 3.884 \\ (0.292) \end{gathered}$	$\begin{aligned} & -0.077 \\ & (0.74) \end{aligned}$	$\begin{aligned} & 0.046 \\ & (3.06) * * \end{aligned}$	$\begin{aligned} & 0.400 \\ & (1.49) \end{aligned}$	$\begin{aligned} & 0.0050 \\ & (0.36) \end{aligned}$	$\begin{aligned} & 0.0061 \\ & (0.77) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (1.01) \end{aligned}$	$\begin{gathered} 0.106 \\ (2.54) * \end{gathered}$	86	5.53	0.33
4. Completed at Least Grade 10; No High School Diploma	$\begin{gathered} 3.523 \\ (0.342) \end{gathered}$	$\begin{aligned} & -0.182 \\ & (1.45) \end{aligned}$	$\begin{gathered} 0.662 \\ (2.20) * \end{gathered}$	$\begin{aligned} & .0 .505 \\ & (1.61) \end{aligned}$	$\begin{aligned} & 0.0050 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 0.0026 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 0.0059 \\ & (0.42) \end{aligned}$	$\begin{gathered} 0.149 \\ (2,76) * * \end{gathered}$	86	5.15	0.37
5. 7-9 Years of Schooling	$\begin{gathered} 4.007 \\ (0.365) \end{gathered}$	$\begin{aligned} & \because 0.263 \\ & (1.92)+ \end{aligned}$	$\begin{gathered} 0.272 \\ (0.94) \end{gathered}$	$\begin{aligned} & 0.182 \\ & (0.50) \end{aligned}$	$\begin{gathered} 0.017 \\ (1.11) \end{gathered}$	$\begin{aligned} & 0.0035 \\ & (0.35) \end{aligned}$	$\begin{aligned} & 0.0048 \\ & (0.33) \end{aligned}$	$\begin{gathered} 0.108 \\ (2.09) * \end{gathered}$	86	4.81	0.37
6. 1-6 Years of Schooling	$\begin{gathered} 3.605 \\ (0.495) \end{gathered}$	$\begin{aligned} & -0.187 \\ & (0.91) \end{aligned}$	$\begin{gathered} 1.187 \\ (2.25) * \end{gathered}$	$\begin{aligned} & -0.417 \\ & (0.79) \end{aligned}$	$\begin{aligned} & -0.042 \\ & (1.71)+4 \end{aligned}$	$\begin{aligned} & -0.015 \\ & (0.92) \end{aligned}$	$\begin{aligned} & 0.027 \\ & (0.95) \end{aligned}$	$\begin{array}{r} 0.079 \\ (0.97) \end{array}$	74	4.45	0.19
7. No Formal Schooling	Not Comp	ted.									

Titted Multipla Regression Equations
Composite Performance, Grade 5, Inwa Teste of Baulc Skilis

Father's Education Level	Intercept	Nother Education Level	Teacher Certification Level	Teacher Degree Status	Teacher Experience	Avexage Teacher Salary	Pupil... Teacher Ratio	Adminia- trative Expendi- ture Par Pupil	N	m	8
1. 4 or hiore Years of College	$\begin{gathered} 5.840 \\ (0.327) \end{gathered}$	$\begin{aligned} & -0.468 \\ & (4.54) * * \end{aligned}$	$\begin{aligned} & 0.594 \\ & (1.75)+ \end{aligned}$	$\begin{gathered} 0.144 \\ (0.45) \end{gathered}$	$\begin{gathered} 0.034 \\ (2.10) * \end{gathered}$	$\begin{aligned} & -0.022 \\ & (2.50) * \end{aligned}$	$\begin{aligned} & -0.0038 \\ & (0.26) \end{aligned}$	$\begin{aligned} & 0.078 \\ & (1.69)+ \end{aligned}$	85	6.08	0.40
2. 1-3 Years of College	$\begin{gathered} 5.144 \\ (0.327) \end{gathered}$	$\begin{aligned} & -0.533 \\ & (4.67) * * \end{aligned}$	$\begin{gathered} 0.833 \\ (2.43) * \end{gathered}$	$\begin{aligned} & -0.366 \\ & (1.13) \end{aligned}$	$\begin{gathered} 0.024 \\ (1.47) \end{gathered}$	$\begin{aligned} & \sim 0.012 \\ & (1.36) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.79) \end{aligned}$	$\begin{gathered} 0.117 \\ (2.19) * \end{gathered}$	85	5.59	0.43
3. High School Graduate	$\begin{gathered} 3.811 \\ (0.287) \end{gathered}$	$\begin{aligned} & -0.202 \\ & (1.99) * \end{aligned}$	$\begin{aligned} & 0.972 \\ & (3.58) * * \end{aligned}$	$\begin{aligned} & -0.340 \\ & (1.28) \end{aligned}$	$\begin{aligned} & 0.0015 \\ & (0.11) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (1.67)+ \end{aligned}$	$\begin{aligned} & -0.0095 \\ & (0.84) \end{aligned}$	$\begin{aligned} & 0.138 \\ & (3.36) * * \end{aligned}$	86	5.28	0.34
4. 10-11+ Years of Schooling	$\begin{gathered} 3,827 \\ (0.329) \end{gathered}$	$\begin{aligned} & -0.409 \\ & (3.37) * * \end{aligned}$	$\begin{aligned} & 0.850 \\ & (2.93) * * \end{aligned}$	$\begin{gathered} 0.223 \\ (0.74) \end{gathered}$	$\begin{gathered} 0: 012 \\ (0.80) \end{gathered}$	$\begin{aligned} & -0.014 \\ & (1.61) \end{aligned}$	$\begin{aligned} & 0.0044 \\ & (0.32) \end{aligned}$	$\begin{aligned} & 0.1 \% 5 \\ & (3.38) * * \end{aligned}$	86	4.93	0.39
5. 7-9 Years of Schooling	$\begin{gathered} 4.264 \\ (0.336) \end{gathered}$	$\begin{aligned} & -0.424 \\ & (3.36) * * \end{aligned}$	$\begin{array}{r} 0.339 \\ (1.28) \end{array}$	$\begin{aligned} & 0.00014 \\ & (0.00) \end{aligned}$	$\begin{gathered} 0.024 \\ (1.71)+ \end{gathered}$	$\begin{aligned} & -0.0068 \\ & (0.74) \end{aligned}$	$\begin{aligned} & 0,0038 \\ & (0.29) \end{aligned}$	$\begin{aligned} & 0.148 \\ & (3.13) * * \end{aligned}$	86	4.66	0.37
6. 1-6 Years of Schooling	$\begin{gathered} 3.621 \\ (0.462) \end{gathered}$	$\begin{aligned} & -0.344 \\ & (1.79)+ \end{aligned}$	$\begin{gathered} 1.037 \\ (2.09) * \end{gathered}$	$\begin{aligned} & -0.428 \\ & (0.86) \end{aligned}$	$\begin{aligned} & -0.040 \\ & (1.75)+ \end{aligned}$	$\begin{aligned} & -0.020 \\ & (1.29) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.80) \end{gathered}$	$\begin{gathered} 0.134 \\ (1.75)+ \end{gathered}$. 4.26	0.47
7. No Formal Schooling	Not Comp	ted.									

Notes: See page 34.

Fathers' Education Lovel	Intercept	$\begin{gathered} \text { Mothers }{ }^{\prime} \\ \text { Education } \\ \text { Level } \end{gathered}$	Teacher Cextification Level	Toacher Dagree Status	Tacher ExperIence	Average Tracher Salary	Pupil: Teacher Ratio	Administrativa Expenditure per Pupil	N	m	8
1. 4 or More Years of College	$\begin{aligned} & 10.081 \\ & (0.417) \end{aligned}$	$\begin{aligned} & -0.367 \\ & (2.74) * * \end{aligned}$	$\begin{aligned} & -0.066 \\ & (0.15) \end{aligned}$	$\begin{array}{r} 0.494 \\ (1.17) \end{array}$	$\begin{gathered} 0.057 \\ (2.67) * * \end{gathered}$	$\begin{aligned} & -0.016 \\ & (1.42) \end{aligned}$	$\begin{gathered} 0.0055 \\ (0.29) \end{gathered}$	$\begin{aligned} & -0.085 \\ & (1.40) \end{aligned}$	82	9.47	0.45
2. 1-3 Years of College	$\begin{aligned} & 11.059 \\ & (0.404) \end{aligned}$	$\begin{aligned} & -0.530 \\ & (3.14) * * \end{aligned}$	$\begin{aligned} & -0.414 \\ & (0.03) \end{aligned}$	$\begin{array}{r} 0.412 \\ (0.86) \end{array}$	$\begin{aligned} & 0.052 \\ & (2.02) * \end{aligned}$	$\begin{aligned} & -0.016 \\ & (1.22) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.57) \end{aligned}$	$\begin{gathered} 0.127 \\ (1.70)+ \end{gathered}$	84	8.65	0.51
3. High School Graduate	$\begin{gathered} 9.724 \\ (0.405) \end{gathered}$	$\begin{aligned} & -0.218 \\ & (1.49) \end{aligned}$	$\begin{aligned} & -0.169 \\ & (0.45) \end{aligned}$	$\begin{aligned} & -0.612 \\ & (1.61) \end{aligned}$	$\begin{gathered} 0.037 \\ (1.92) \div \end{gathered}$	$\begin{aligned} & 0.0051 \\ & (0.49) \end{aligned}$	$\begin{aligned} & -0.00084 \\ & (0.05) \end{aligned}$	$\begin{array}{r} 0.055 \\ (0.92) \end{array}$	06	8.32	0.42
4. Completed at Least Grade 10: No High School Diploma	$\begin{gathered} 6.670 \\ (0.406) \end{gathered}$	$\begin{aligned} & -0.124 \\ & (0.71) \end{aligned}$	$\begin{array}{r} 0.190 \\ (0.45) \end{array}$	$\begin{aligned} & -0.464 \\ & (1.02) \end{aligned}$	$\begin{aligned} & 0.0046 \\ & (0.21) \end{aligned}$	$\begin{array}{r} 0.017 \\ (1.31) \end{array}$	$\begin{aligned} & 0.0004 \\ & (0.43) \end{aligned}$	$\begin{array}{r} 0.020 \\ (0.35) \end{array}$	06	7.77	0.48
5. 7-9 Years of Schooling	$\begin{gathered} 6.006 \\ (0.563) \end{gathered}$	$\begin{aligned} & -0.215 \\ & (1.01) \end{aligned}$	$\begin{aligned} & -0.179 \\ & (0.39) \end{aligned}$	$\begin{aligned} & -0.247 \\ & (0.51) \end{aligned}$	$\begin{array}{r} 0.010 \\ (0.77) \end{array}$	$\begin{array}{r} 0.017 \\ (1.01) \end{array}$	$\begin{array}{r} 0.024 \\ (1.16) \end{array}$	$\begin{array}{r} 0.090 \\ (1.14) \end{array}$	86	7.35	0.55
5. 1-6 Years of Schooling	$\begin{gathered} 7.025 \\ (0.350) \end{gathered}$	$\begin{aligned} & -0.660 \\ & (1.92)+ \end{aligned}$	$\begin{array}{r} 0.654 \\ (0.66) \end{array}$	$\begin{array}{r} 0.609 \\ (0.69) \end{array}$	$\begin{aligned} & -0.0058 \\ & (0.12) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.45) \end{aligned}$	$\begin{aligned} & -0.064 \\ & (1.45) \end{aligned}$	$\begin{gathered} 0.098 \\ (0.61) \end{gathered}$	68	7.04	0.86
7. No Formal Schooling	$\begin{gathered} 7.993 \\ (0.900) \end{gathered}$	$\begin{aligned} & -1.563 \\ & (1.72) \end{aligned}$	$\begin{aligned} & -4.666 \\ & (1.64) \end{aligned}$	$\begin{gathered} 5.242 \\ (2.48) * \end{gathered}$	$\begin{array}{r} 0.213 \\ (1.50) \end{array}$	$\begin{array}{r} 0.099 \\ (1.02) \end{array}$	$\begin{aligned} & -0.077 \\ & (0.77) \end{aligned}$	$\begin{aligned} & -0.209 \\ & (0.54) \end{aligned}$	18	6.93	1.08

Fathers' Education Level	Inter~ cept	Mothers ${ }^{\prime}$ Eduation Level	Certification Level	Teacher Dagree Status	Teacher ExperItance	Avarage Teachex Salary	Pupil- Teacher Ratio	Adminis trative Expenditure par pupil	N	\bar{m}	-	R^{2}
1. 4 o: More Years of College	$\begin{aligned} & 11.640 \\ & (0.392) \end{aligned}$	$\begin{aligned} & -0.294 \\ & (2.33) * \end{aligned}$	$\begin{aligned} & -0.402 \\ & (0.90) \end{aligned}$	$\begin{aligned} & -0.511 \\ & (1.29) \end{aligned}$	$\begin{gathered} 0.035 \\ (1.75)+4 \end{gathered}$	$\begin{aligned} & 0.0048 \\ & (0.45) \end{aligned}$	$\begin{aligned} & -0.0011 \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (1.47) \end{aligned}$	82	9.13	0.40	. 149
2. 1-3 Years of College	$\begin{gathered} 7.544 \\ (0.420) \end{gathered}$	$\begin{aligned} & -0.091 \\ & (0.62) \end{aligned}$	$\begin{array}{r} 0.234 \\ (0.54) \end{array}$	$\begin{array}{r} 0.037 \\ (0.09) \end{array}$	$\begin{gathered} 0.012 \\ (0.55) \end{gathered}$	$\begin{aligned} & 0.0050 \\ & (0.44) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.66) \end{aligned}$	$\begin{gathered} 0.015 \\ (0.29) \end{gathered}$	34	0.63	0.41	0.03
3. High School Graduate	$\begin{gathered} 9.314 \\ (0.407) \end{gathered}$	$\begin{aligned} & -0.113 \\ & (0.77) \end{aligned}$	$\begin{aligned} & -0.262 \\ & (0.70) \end{aligned}$	$\begin{aligned} & -0.525 \\ & (1.37) \end{aligned}$	$\begin{array}{r} 0.027 \\ (1.42) \end{array}$	$\begin{aligned} & 0.0094 \\ & (0.89) \end{aligned}$	$\begin{aligned} & 0.0022 \\ & (0.13) \end{aligned}$	$\begin{array}{r} 0.095 \\ (1.50) \end{array}$	06	8.33	0.41	. 215
4. Completad at Least Grade 10: No High School Diplema	$\begin{gathered} 0.123 \\ (0.413) \end{gathered}$	$\begin{aligned} & -0.154 \\ & (1.04) \end{aligned}$	$\begin{gathered} 0.212 \\ (0.50) \end{gathered}$	$\begin{aligned} & -0.359 \\ & (0.93) \end{aligned}$	$\begin{aligned} & 0.0011 \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.0014 \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.00001 \\ & (0.05) \end{aligned}$	$\begin{gathered} 0.129 \\ (2.00) * \end{gathered}$	36	7.94	0.41	. 080
5. 7-9 Years of Schooling	$\begin{gathered} 7.929 \\ (0.400) \end{gathered}$	$\begin{aligned} & -0.219 \\ & (1.18) \end{aligned}$	$\begin{aligned} & -0.261 \\ & (Q .65) \end{aligned}$	$\begin{aligned} & -C .155 \\ & (0.37) \end{aligned}$	$\begin{gathered} 0.039 \\ (1.87) \div \end{gathered}$	$\begin{aligned} & 0.0044 \\ & (0.30) \end{aligned}$	$\begin{gathered} 0.016 \\ (0.89) \end{gathered}$	$\begin{gathered} 0.154 \\ (2.25) * \end{gathered}$	06	7.62	0.50	. 135
6. 1-6 Years of Schooling	$\begin{gathered} 5.046 \\ (0.759) \end{gathered}$	$\begin{aligned} & -0.557 \\ & (1.83) * \end{aligned}$	$\begin{gathered} 1.203 \\ (1.33) \end{gathered}$	$\begin{aligned} & -0.557 \\ & (0.75) \end{aligned}$	$\begin{aligned} & -0.030 \\ & (0.88) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.65) \end{gathered}$	$\begin{aligned} & -0.021 \\ & (0.54) \end{aligned}$	$\begin{array}{r} 0.077 \\ 60.547 \end{array}$	60	7.40	0.78	. 132
7. No Formal Scheoling	$\begin{aligned} & -7.669 \\ & (0.700) \end{aligned}$	$\begin{aligned} & -1.431 \\ & (1.83)+ \end{aligned}$	$\begin{gathered} 1.544 \\ (0.63) \end{gathered}$	$\begin{aligned} & 5.224 \\ & (2.08) * * \end{aligned}$	$\begin{gathered} 0.050 \\ (0.41) \end{gathered}$	$\begin{array}{r} 0.026 \\ (0.31) \end{array}$	$\begin{aligned} & -0.093 \\ & (1.09) \end{aligned}$	$\begin{gathered} 0.404 \\ (1.22) \end{gathered}$	18	6.96	0.92	. 602

[^4]Table 8
Fitted Multiple Regression Equations,

Fathers' Education Level	Inter. cept	Mothers ${ }^{\prime}$ Education Level	Teacher Certification Level	Teacher Degree Status	Teacher Exper" lence	Avarage 'reachor Salayy	Pup11Teachax Ratio	```Adminis- trative Dxpendi= tura per Pupil```	N	m	5
1. 4 or More Years of College	$\begin{gathered} 9.876 \\ (0.424) \end{gathered}$	$\begin{aligned} & -0.623 \\ & (4.59) * * \end{aligned}$	$\begin{aligned} & -0.169 \\ & (0.30) \end{aligned}$	$\begin{gathered} 0.443 \\ (1.04) \end{gathered}$	$\begin{aligned} & 0.057 \\ & (2.65) * * \end{aligned}$	$\begin{aligned} & -0.0091 \\ & (0.70) \end{aligned}$	$\begin{gathered} 0.023 \\ (1.20) \end{gathered}$	$\begin{aligned} & -0.055 \\ & (0.09) \end{aligned}$	82	9.26	0.49
2. 1-3 Years of College	$\begin{gathered} 0.390 \\ (0.433) \end{gathered}$	$\begin{aligned} & -0.501 \\ & (3.32) * * \end{aligned}$	$\begin{gathered} 0.297 \\ (0.67) \end{gathered}$	$\begin{array}{r} 0.345 \\ (0.80) \end{array}$	$\begin{array}{r} 0.010 \\ (0.80) \end{array}$	$\begin{aligned} & -0.019 \\ & (1.64) \end{aligned}$	$\begin{array}{r} 0.01 .8 \\ (0.89) \end{array}$	$\begin{aligned} & 0.177 \\ & (2.67) \mathrm{kst} \end{aligned}$	04	0.53	0.48
3. High School Graduate N	$\begin{gathered} 0.310 \\ (0.420) \end{gathered}$	$\begin{aligned} & -0.292 \\ & (1.92)+ \end{aligned}$	$\begin{aligned} & -0.039 \\ & (0.23) \end{aligned}$	$\begin{aligned} & -0.143 \\ & (0.36) \end{aligned}$	$\begin{gathered} 0.039 \\ (1.96) \end{gathered}$	$\begin{aligned} & -0.0045 \\ & (0.41) \end{aligned}$	$\begin{gathered} 0.038 \\ (2.26) * \end{gathered}$	$\begin{gathered} 0.130 \\ (2.10) * \end{gathered}$	36	8.17	0.44
4. Completed at Least Grade 10: No High School Diploma	$\begin{gathered} 4.899 \\ (0.507) \end{gathered}$	$\begin{aligned} & -0.283 \\ & (1.56) \end{aligned}$	$\begin{array}{r} 0.620 \\ (1.39) \end{array}$	$\begin{aligned} & -0.302 \\ & (0.81) \end{aligned}$	$\begin{aligned} & 0.0040 \\ & (0.17) \end{aligned}$	$\begin{aligned} & 0.0095 \\ & (0.69) \end{aligned}$	$\begin{gathered} 0.036 \\ (1.77) \end{gathered}$	$\begin{aligned} & 0.210 \\ & (2.64) * * \end{aligned}$	86	7.64	0.54
5. 7-9 Years of Schooling	$\begin{gathered} 5.094 \\ (0.696) \end{gathered}$	$\begin{aligned} & -0.216 \\ & (0.81! \end{aligned}$	$\begin{aligned} & -0.124 \\ & (0.22) \end{aligned}$	$\begin{array}{r} 0.180 \\ (0.30) \end{array}$	$\begin{array}{r} 0.025 \\ (0.04) \end{array}$	$\begin{aligned} & 0.0088 \\ & (0.41) \end{aligned}$	$\begin{gathered} 0.059 \\ (2.30) * \end{gathered}$	$\begin{aligned} & 0.274 \\ & (2.01) * * \end{aligned}$	86	7.21	0.71
G. 1-6 Years of Schooling	$\begin{gathered} 3.440 \\ (0.856) \end{gathered}$	$\begin{aligned} & -0.555 \\ & (1.62) \end{aligned}$	$\begin{array}{r} 1.095 \\ (1.11) \end{array}$	$\begin{aligned} & 0.396 \\ & (0.40) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.67) \end{aligned}$	$\begin{array}{r} 0.024 \\ (0.00) \end{array}$	$\begin{aligned} & -0.015 \\ & (0.35) \end{aligned}$	$\begin{gathered} 0.229 \\ (1.43) \end{gathered}$	60	6.97	0.86
7. No Formal Schooling	$\begin{aligned} & -10.407 \\ & (0.914) \end{aligned}$	$\begin{aligned} & -1.574 \\ & (1.72) \end{aligned}$	$\begin{array}{r} 1.639 \\ (0.57) \end{array}$	$\begin{gathered} 5.429 \\ (2.55) * \end{gathered}$	$\begin{gathered} 0.021 \\ (0.15) \end{gathered}$	$\begin{gathered} 0.052 \\ (0.54) \end{gathered}$	$\begin{aligned} & -0.052 \\ & (0.52) \end{aligned}$	$\begin{gathered} 0.214 \\ (0.55) \end{gathered}$	10	6.82	1.02

[^5]| ${ }_{\sim}^{*}$ | $\stackrel{\text { ¢ }}{ }$ | 9 | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | د่̣ | $\stackrel{\text { gr }}{\square}$ | ¢़̆ | ¢ٌ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | $\stackrel{9}{0}$ | \％ | 㫛 | \％ | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\text { ¢ }}{0}$ |
| IE | \％ | $\stackrel{\square}{\square}$ | $\stackrel{\square}{6}$ | $\stackrel{\square}{\circ}$ | ¢ّ | $\stackrel{\rightharpoonup}{5}$ | \％ |
| z | \％ | 』 | $\stackrel{1}{2}$ | \％ | ： | ： | $\stackrel{1}{0}$ |
| | 品莅荷 | | | | | シャ＊ | |
| | | 품
 ： | 詅 | 跔和 | | 遃 | 絧 |
| | | | 高丽 | | | \％ | ¢̊® |
| | | | | \％ | | 苟 | |
| | $$ | 㐌号 | Făa | | | sta | |
| | $\begin{aligned} & \text { šåg } \\ & \text { iede } \end{aligned}$ | 骨弇 | －${ }_{\text {¢ }}^{\text {－}}$ | 产彥 | | | 유ำ |
| | | 缶哥 | 劀 | ซึ̣̆ ie | | | $\xrightarrow{\text { ande }}$ |
| | | | 号歌 | | | ¢\％ | $\begin{aligned} & \text { 㬏 } \\ & \text { in } \end{aligned}$ |
| | | | | | | | |

Father's Occupation Level	Inter: capt	Mother's Education Level	Tacher Cortification heval	Teacher Dogree Status	Teacher Exper: ience	Average Teacher Salary	pupil- Teacher Ratio	Adminte trative Expenditux pax Pupil	N	m'	"	R^{2}
1. Professional Persons	$\begin{gathered} 5.350 \\ (0.343) \end{gathered}$	$\begin{aligned} & -0.321 . \\ & (2.83) * * \end{aligned}$	$\begin{array}{r} 0.310 \\ (0.70) \end{array}$	$\begin{array}{r} 0.228 \\ (0.63) \end{array}$	$\begin{gathered} 0.042 \\ (2.20) * \end{gathered}$	$\begin{aligned} & -0.029 \\ & (2.84) * * \end{aligned}$	$\begin{aligned} & 0.0067 \\ & (0.41) \end{aligned}$	$\begin{gathered} 0.124 \\ (2.29) * \end{gathered}$	70	5.89	0.39	+ 29
2. Proprietors, Managers, Officials	$\begin{gathered} 6.064 \\ (0.3644) \end{gathered}$	$\begin{aligned} & -0.314 \\ & (2.75) * * \end{aligned}$	$\begin{array}{r} 0.370 \\ (1.15) \end{array}$	$\begin{array}{r} 0.210 \\ (0.66) \end{array}$	$\begin{gathered} 0.034 \\ (2.20)^{*} \end{gathered}$	$\begin{aligned} & -0.021 \\ & (2.29) * \end{aligned}$	$\begin{aligned} & -0.022 \\ & (1.39) \end{aligned}$	$\begin{array}{r} 0.056 \\ (1.25) \end{array}$	82	5.66	0.37	. 22
3. Clearks and KIndred N Workers	$\begin{gathered} 3.176 \\ (0.307) \end{gathered}$	$\begin{aligned} & -0.122 \\ & (1.14) \end{aligned}$	$\begin{gathered} 1.045 \\ (2.99) * * \end{gathered}$	$\begin{gathered} 0.314 \\ (1.01) \end{gathered}$	$\begin{array}{r} 0.019 \\ (1.12) \end{array}$	$\begin{aligned} & \text { ~0.021 } \\ & (2.55) * \end{aligned}$	$\begin{aligned} & -0.028 \\ & (2.04) \end{aligned}$	$\begin{array}{r} 0.033 \\ (0.60) \end{array}$	79	5.46	0.35	. 32
4. Skilled Workars and Foramen	$\begin{gathered} 3.597 \\ (0.343) \end{gathered}$	$\begin{aligned} & -0.165 \\ & (1.42) \end{aligned}$	$\begin{gathered} 0.607 \\ (1.75)+ \end{gathered}$	$\begin{aligned} & 0.155 \\ & (0.44) \end{aligned}$	$\begin{array}{r} 0.019 \\ (1.10) \end{array}$	$\begin{aligned} & -0.0031 \\ & (0.35) \end{aligned}$	$\begin{aligned} & -0.0087 \\ & (0.56) \end{aligned}$	$\begin{gathered} 0.000 \\ (1.75) \div \end{gathered}$	85	5.23	0.37	. 21
5. Semi-Skilled Workers	$\begin{gathered} 4.669 \\ (0.230) \end{gathered}$	$\begin{aligned} & -0.165 \\ & (2.05) * \end{aligned}$	$\begin{gathered} 0.714 \\ (3.42) * * \end{gathered}$	$\begin{aligned} & .0 .455 \\ & (2.11) * \end{aligned}$	$\begin{aligned} & -0.0012 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.0002 \\ & (1.32) \end{aligned}$	$\begin{aligned} & =0.014 \\ & (1.54) \end{aligned}$	$\begin{gathered} 0.065 \\ (1.90) \div \end{gathered}$	06	5.14	0.27	. 331
6. Other Laborers	$\begin{gathered} 4.263 \\ (1.062) \end{gathered}$	$\begin{aligned} & -0.327 \\ & (0.71) \end{aligned}$	$\begin{array}{r} 0.345 \\ (0.34) \end{array}$	$\begin{aligned} & 1.14 n \\ & (1.013) \end{aligned}$	$\begin{array}{r} 0.059 \\ (1.14) \end{array}$	$\begin{aligned} & -0.030 \\ & (1.14) \end{aligned}$	$\begin{aligned} & -0.031 \\ & (0.62) \end{aligned}$	$\begin{gathered} 0.330 \\ (1.07)+4 \end{gathered}$	77	4.87	1.05	. 003
7. Servant Classes	$\begin{aligned} & 19.180 \\ & (5.945) \end{aligned}$	$\begin{aligned} & -5.951 \\ & (1.72) \cdot 4 \end{aligned}$	$\begin{gathered} 5.161 \\ (0.51) \end{gathered}$	$\begin{aligned} & -0.850 \\ & (0.12) \end{aligned}$	$\begin{array}{r} 0.510 \\ (1.13) \end{array}$	$\begin{aligned} & 00.233 \\ & (1.07) \end{aligned}$	$\begin{aligned} & -0.415 \\ & (1.23) \end{aligned}$	$\begin{gathered} 2.442 \\ (2.14) \end{gathered}$	52	6.59	6.44	. 279

Fathers' Occupation Level	Inter. cept:	$\left\lvert\, \begin{gathered} \text { Mother's } \\ \text { Education } \\ \text { Tave1 } \end{gathered}\right.$	Yoachas Cextification Leval	Teacher Degree Status	Teacher Exper: lanca	Avarage Taachar Salazy	PupilToacher Rutio	Adminis. trative Expondituro Fer Pupil	N	m	8
1. Professional Persons	$\begin{gathered} 6.520 \\ (0.4: 03) \end{gathered}$	$\begin{aligned} & -0.457 \\ & (3.44)+x+1 \end{aligned}$	$\begin{aligned} & 0.309 \\ & (0.04) \end{aligned}$	$\begin{aligned} & -0.067 \\ & (0.16) \end{aligned}$	$\begin{array}{r} 0.035 \\ (1.59) \end{array}$	$\begin{aligned} & -0.020 \\ & (1.70) \div \end{aligned}$	$\begin{gathered} 0.014 \\ (0.76) \end{gathered}$	$\begin{gathered} 0.117 \\ (1.86) \div \end{gathered}$	70	6.21	0.46
2. Proprietors, Managers Officials	$\begin{gathered} 5.286 \\ (0.370) \end{gathered}$	$\begin{aligned} & -0.262 \\ & (2.09) * \end{aligned}$	$\begin{aligned} & 0.4 .35 \\ & (1.21) \end{aligned}$	$\begin{array}{r} 0.325 \\ (0.94) \end{array}$	$\begin{gathered} 0.010 \\ (1.00) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (1.45) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.95) \end{aligned}$	$\begin{gathered} 0.072 \\ (1.455) \end{gathered}$	02	5.90	0.40
3. Clerks and Kindrad Workers	$\begin{gathered} 2.4 .97 \\ (0.399) \end{gathered}$	$\begin{aligned} & -0.290 \\ & (2.10) * \end{aligned}$	$\begin{gathered} 1,52 \\ (3.45) \text { yer } \end{gathered}$	$\begin{array}{r} 0.002 \\ (0.20) \end{array}$	$\begin{gathered} 0.0019 \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.023 \\ & (2.10) * \end{aligned}$	$\begin{aligned} & -0.00034 \\ & (0.46) \end{aligned}$	$\begin{aligned} & 0.004 .8 \\ & (0.07) \end{aligned}$	79	5.60	0.46
4. Skilled Workers and Foremen	$\begin{gathered} 3.007 \\ (0.371) \end{gathered}$	$\begin{aligned} & -0.330 \\ & (2.63) * \end{aligned}$	$\begin{aligned} & 1.014 \\ & (2.70) * * \end{aligned}$	$\begin{aligned} & -0.106 \\ & (0.49) \end{aligned}$	$\begin{array}{r} 0.014 \\ (0.76 j) \end{array}$	$\begin{aligned} & =0.011 \\ & (1.12) \end{aligned}$	$\begin{aligned} & 0.0033 \\ & (0.20) \end{aligned}$	$\begin{gathered} 0.1 .39 \\ (2.57) * \end{gathered}$	85	5.34	0.43
5. Semi-Skilled Workers	$\begin{gathered} 4.290 \\ (0.253) \end{gathered}$	$\begin{aligned} & 0.354 \\ & (3.85)+* * \end{aligned}$	$\begin{aligned} & 0.066 \\ & (3.63) * \cdot k \end{aligned}$	$\begin{aligned} & -0.303 \\ & (1.55) \end{aligned}$	$\begin{aligned} & -0.00001 \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (1.45) \end{aligned}$	$\begin{aligned} & -0.0053 \\ & (0.51) \end{aligned}$	$\begin{gathered} 0.1 .25 \\ (3.23) * * \end{gathered}$	06	5.17	0.33
6. Other Laborers	$\begin{gathered} 4.220 \\ (1.024) \end{gathered}$	$\begin{aligned} & -0.457 \\ & (1.02) \end{aligned}$	$\begin{array}{r} 0.547 \\ (0.56) \end{array}$	$\begin{aligned} & 1.056 \\ & (1.03) \end{aligned}$	$\begin{array}{r} 0.055 \\ (1.10) \end{array}$	$\begin{aligned} & -0.041 \\ & (1.27) \end{aligned}$	$\begin{aligned} & -0.034 \\ & (0.70) \end{aligned}$	$\begin{gathered} 0.309 \\ (2.22) * \end{gathered}$	77	4.02	1.03
7. Servant Classes	$\begin{aligned} & 15.791 \\ & (5.999) \end{aligned}$	$\begin{aligned} & -6.341 \\ & (1.82)+\cdots \end{aligned}$	$\begin{array}{r} 5.678 \\ (0.56) \end{array}$	$\begin{aligned} & -0.740 \\ & (0.10) \end{aligned}$	$\begin{gathered} 0.510 \\ (0.12) \end{gathered}$	$\begin{aligned} & -0.227 \\ & (1.03) \end{aligned}$	$\begin{aligned} & -0.347 \\ & (1.02) \end{aligned}$	$\begin{gathered} 2.564 \\ (2.23)^{*} \end{gathered}$	52	6.40	6.50

Fitted Multiple Regression Equations,

[^6]Language Performance, Grade 8, Lowa Teste of Basic Sleilis

Fathers' Occupation Lavial - •"	Intercapt	Mothers' Education Laval	Teacher Certification Level	$\left\lvert\, \begin{array}{r} \text { Taacher } \\ \text { Degraa } \\ \text { Statue } \end{array}\right.$	Teacher Expariance	Avarage Tameher Salazy	PupilTeachor Katio	Adminiotrative Expenditure pex Pup11:	N	m	3
1. Professional persons	$\begin{gathered} 9.813 \\ (0.506) \end{gathered}$	$\begin{aligned} & -0.465 \\ & (2.74) * * \end{aligned}$	$\begin{aligned} & -0.245 \\ & (0.42) \end{aligned}$	$\begin{aligned} & 0.615 \\ & (1.08) \end{aligned}$	$\begin{gathered} 0.073 \\ (2.46) * \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.69) \end{aligned}$	$\begin{aligned} & 0.0049 \\ & (0.20) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.28) \end{gathered}$	75	9.51	0.54
2. Propriatora, Managers, Oixicials	$\begin{aligned} & 10.203 \\ & (0.508) \end{aligned}$	$\begin{aligned} & -0.181 \\ & (1.10) \end{aligned}$	$\begin{aligned} & -0.090 \\ & (0.19) \end{aligned}$	$\begin{gathered} 0.00089 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.057 \\ (2.32) * \end{gathered}$	$\begin{aligned} & -0.020 \\ & (1.55) \end{aligned}$	$\begin{gathered} 0.025 \\ (1.16) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.30) \end{gathered}$	85	9.12	0.53
3. Clarles and Kindred Vorlcerss	$\begin{aligned} & 1.1 .603 \\ & (0.450) \end{aligned}$	$\begin{aligned} & -0.695 \\ & (4.17) * * \end{aligned}$	$\begin{aligned} & -0.851 \\ & (1.76) \% \end{aligned}$	$\begin{array}{r} 0.137 \\ (0.28) \end{array}$	$\begin{aligned} & 0.087 \\ & (3.34) * * \end{aligned}$	$\begin{aligned} & 0.014 \\ & (1.06) \end{aligned}$	$\begin{aligned} & -0.044 \\ & (1.97)+4 \end{aligned}$	$\begin{aligned} & =0.024 \\ & (0.32) \end{aligned}$	74	0.70	0.54
4. Stcillad Worlcars and Fowemen	$\begin{gathered} 9.605 \\ (0.605) \end{gathered}$	$\begin{aligned} & -0.362 \\ & (1.42) \end{aligned}$	$\begin{aligned} & -0.415 \\ & (0.64) \end{aligned}$	$\begin{aligned} & 0.456 \\ & (0.67) \end{aligned}$	$\begin{gathered} 0.064 \\ (1.90) \div \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.56) \end{aligned}$	$\begin{aligned} & -0.0031 \\ & (0.097) \end{aligned}$	$\begin{gathered} 0.009 \\ (0.03) \end{gathered}$	03	10.33	0.67
5. Semi-Skilled Worleers	$\begin{gathered} 9.002 \\ (0.406) \end{gathered}$	$\begin{aligned} & 0.285 \\ & (2.04) * \end{aligned}$	$\begin{aligned} & \sim 0.240 \\ & (0.70) \end{aligned}$	$\begin{aligned} & -0.496 \\ & (1.30) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.90) \end{gathered}$	$\begin{aligned} & 0.0059 \\ & (0.54) \end{aligned}$	$\begin{aligned} & 0.0078 \\ & (0.49) \end{aligned}$	$\begin{aligned} & -0.029 \\ & (0.46) \end{aligned}$	06	8.06	0.42
8. Othar Lajorers	$\begin{gathered} 0.051 \\ (1.297) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.504 \\ (0.46) \end{gathered}$	$\begin{gathered} 0.360 \\ (0.27) \end{gathered}$	$\begin{array}{r} 0.070 \\ (1.06) \end{array}$	$\begin{array}{r} 0.053 \\ (1.19) \end{array}$	$\begin{aligned} & -0.066 \\ & (1.10) \end{aligned}$	$\begin{gathered} 0.501 \\ (2.24) * \end{gathered}$	73	7.69	1.32
7. Servant Classas	$\begin{array}{r} -19.291 \\ (4.13) \end{array}$	$\begin{aligned} & -1.310 \\ & (0.57) \end{aligned}$	$\begin{aligned} & 10.649 \\ & (1.13) \end{aligned}$	$\begin{aligned} & -3.352 \\ & (0.50) \end{aligned}$	$\begin{array}{r} -0.034 \\ (0.09) \end{array}$	$\begin{array}{r} 0.075 \\ (0.32) \end{array}$	$\begin{aligned} & -(1.446 \\ & (1.93) \div \end{aligned}$	$\begin{aligned} & 1.150 \\ & (1.27) \end{aligned}$	36	7.93	4.22

[^7]

Fathers' Occupation Level	$\begin{aligned} & \text { Intor- } \\ & \text { cept } \end{aligned}$	Mothers' Education Level	Tencher Caxtification Level	Teacher Degree Sratus	reachex Fxpax* Lenca	Avasage Tasohor Salazy	Pup11Teacher Ratio	Adminis. trativo bxpandi= tura Par Pupil	N	m	8
1. Professional Pexsons	$\begin{aligned} & 11.299 \\ & (0.454) \end{aligned}$	$\begin{aligned} & -0.229 \\ & (1.50) \end{aligned}$	$\begin{aligned} & =0.760 \\ & (1.44) \end{aligned}$	$\begin{aligned} & \because 0.050 \\ & (0.10) \end{aligned}$	$\begin{array}{r} 0.026 \\ (0.99) \end{array}$	$\begin{aligned} & 0.0094 \\ & (0.72) \end{aligned}$	$\begin{aligned} & 0.012 \\ & (0.54) \end{aligned}$	$\begin{aligned} & =0.010 \\ & (0.56) \end{aligned}$	75	9.10	0.44
2. Proprietors, Managexs, OEELCLa1.	$\begin{aligned} & 10.401 \\ & (0.432) \end{aligned}$	$\begin{aligned} & -0.163 \\ & (1.16) \end{aligned}$	$\begin{array}{r} 0.012 \\ (0.03) \end{array}$	$\begin{aligned} & -0.668 \\ & (1.61) \end{aligned}$	$\begin{array}{r} 0.031 \\ (1.45) \end{array}$	$\begin{aligned} & -0.00003 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.00053 \\ & (0.03) \end{aligned}$	$\begin{aligned} & =0.044 \\ & (0.02) \end{aligned}$	85	0.93	0.41
3. Clerles and IVIndred Voxlcers	$\begin{aligned} & 10.312 \\ & (0.434) \end{aligned}$	$\begin{aligned} & -0.345 \\ & (2.19) * \end{aligned}$	$\begin{aligned} & -0.540 \\ & (1.17) \end{aligned}$	$\begin{aligned} & -0.115 \\ & (0.25) \end{aligned}$	$\begin{gathered} 0.049 .1 \\ (2.01) * \end{gathered}$	$\begin{gathered} 0.016 \\ (1.31) \end{gathered}$	$\begin{aligned} & -0.051 \\ & (2.41) * \end{aligned}$	$\begin{aligned} & (1.089 \\ & (1.26) \end{aligned}$	74	0.64	0.47
4. Sicilled Vorlcers and roremen	$\begin{gathered} 0.950 \\ (0.536) \end{gathered}$	$\begin{aligned} & -0.269 \\ & (? .35) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.04) \end{aligned}$	$\begin{aligned} & -0.203 \\ & (0.30) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.71) \end{gathered}$	$\begin{aligned} & -0.00091 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & (0.43) \end{aligned}$	$\begin{array}{r} 0.030 \\ (0.46) \end{array}$	83	0.314	0.52
5. Somi-SleylIad Yowkers	$\begin{gathered} 0.335 \\ (0.377) \end{gathered}$	$\begin{aligned} & -0.101 \\ & (1.39) \end{aligned}$	$\begin{array}{r} -0.155 \\ (0.40) \end{array}$	$\begin{aligned} & -0.194 \\ & (0.55) \end{aligned}$	$\begin{gathered} 0.019 \\ (1.08) \end{gathered}$	$\begin{aligned} & 0.0079 \\ & (0.70) \end{aligned}$	$\begin{aligned} & 0.00733 \\ & (0.57) \end{aligned}$	$\begin{array}{r} 0.082 \\ (1.39) \end{array}$	06	13, 25	0.37
6. Other Laborers	$\begin{gathered} 0.228 \\ (1.645) \end{gathered}$	$\begin{aligned} & -0.030 \\ & (0.05) \end{aligned}$	$\begin{array}{r} 0.569 \\ (0.35) \end{array}$	$\begin{gathered} 0.321 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.115 \\ (1.30) \end{gathered}$	$\begin{array}{r} 0.040 \\ (0.05) \end{array}$	$\begin{gathered} 0.072 \\ (0.94) \end{gathered}$	$\begin{gathered} 0.651 \\ (2.29) * \end{gathered}$	73	7.90	1. 67
7. Servant Classes	$\begin{array}{r} -19.390 \\ (4.440) \end{array}$	$\begin{array}{r} -1.377 \\ (0.56) \end{array}$	$\begin{aligned} & 11.097 \\ & (1.17) \end{aligned}$	$\begin{aligned} & -2.553 \\ & (0.35) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.03) \end{gathered}$	$\begin{aligned} & 0.0066 \\ & (0.03) \end{aligned}$	$\begin{aligned} & =0.501 \\ & (2.02)+ \end{aligned}$	$\begin{array}{r} 1.390 \\ (1.31) \end{array}$	36	0.29	4.50

[^8]| ， | － | \％ | － | － | $?$ | $?$ | ？ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | $\begin{aligned} & \mathbf{0} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{1}{2} \\ & 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{8} \\ & \dot{0} \end{aligned}$ | ¢ | $\stackrel{+}{\square}$ | 7 |
| IE | $\begin{aligned} & \text { J } \\ & \text { án } \end{aligned}$ | $\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\overrightarrow{\vec{a}}$ | $\begin{aligned} & \mathbf{o}^{2} \\ & ? \end{aligned}$ | $\begin{aligned} & \mathscr{O} \\ & \underset{\sim}{2} \end{aligned}$ |
| z | \cdots | 2 | N | ¢ | ® | ヘ | ¢ |
| | $\begin{aligned} & \text { nㅜㅇ } \\ & 00 \\ & 00 \end{aligned}$ | | $\begin{aligned} & \text { 응 } \\ & \text { © } \\ & \text { io } \end{aligned}$ | | | | |
| | $\begin{aligned} & \text { NO } \\ & \underset{\sim}{0} \\ & \dot{\circ}=\mathbf{i} \end{aligned}$ | | $\begin{aligned} & \text { No } \\ & \text { O- } \\ & \text { ó } \end{aligned}$ | | | $\begin{aligned} & \text { 긍웅 } \\ & \text { io } \end{aligned}$ | $\begin{aligned} & \text { 으N } \\ & 0 \mathbf{N} \\ & i=1 \end{aligned}$ |
| | 9
 80
 0
 0
 0
 0 | | $\begin{aligned} & \text { 옹 } \\ & \text { O } \\ & 0: 0 \end{aligned}$ | $\begin{aligned} & \text { 쿵 } \\ & \text { O. } \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \stackrel{\circ}{8} \% \\ & 0 \% \\ & 00 \end{aligned}$ | | $\begin{aligned} & \text { NO } \\ & 0.0 \\ & 0=0 \end{aligned}$ |
| | $\begin{aligned} & \text { n } \\ & \stackrel{t}{6} \\ & 0 \stackrel{y}{0} \end{aligned}$ | | | | $\begin{aligned} & \text { NO } \\ & 0.0 \\ & \dot{O}=\mathbf{i} \end{aligned}$ | $\begin{aligned} & \text { 오웅 } \\ & 00 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \text { Oion } \\ & 0.0 \\ & i 0 \end{aligned}$ |
| | | $\begin{aligned} & \text { Bİ } \\ & 0 \dot{J} \\ & \dot{\circ} \dot{0} \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { on } \\ & 00 \end{aligned}$ | $\begin{aligned} & \text { W⿳⿵冂𠃍冖口⿱⿵人一口⿴囗十 } \\ & \text { ó } \end{aligned}$ | $\begin{aligned} & \text { Bo } \\ & \text { io } \\ & \text { iov } \end{aligned}$ | $\begin{aligned} & \text { 出出 } \\ & 0 \text { o } \end{aligned}$ | $\underset{\omega}{\infty} \underset{\sim}{\top}$ 9 |
| | $\begin{aligned} & \text { o } \\ & \text { in } \\ & \text { OO } \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{1} \hat{M} \\ & \dot{0} 0 \end{aligned}$ | | $\begin{aligned} & \text { 긍 } \\ & \text { óo } \end{aligned}$ | | $\begin{aligned} & \text { MO } \\ & \text { NO } \\ & \dot{0} \mathbf{0} \end{aligned}$ | |
| | | | | | | $\begin{aligned} & \text { min } \\ & 000 \\ & 000 \end{aligned}$ | |
| | | | $\begin{aligned} & n \underset{n}{n} \\ & 0 \\ & 00 \end{aligned}$ | | $\begin{aligned} & \text { mô } \\ & 0.8 \\ & 0 . \\ & \text { co } \end{aligned}$ | | |
| | $\text { suosxed โruofssefoxd } \cdot \tau$ | | | | 5．Sami－stcilled Worlcers | 6. Other Laborers | |

Exolanatozy Variajles
Used In Tajles 3-14 and in Táles 15, 10, 10-23 Belos.

Variable	Sexple 	Sample Standare Deviation	Heasurement Units	Runijer of School Districts for弱ich Valued Observations Here Available
Eothers ${ }^{\text {3 }}$ Education Level	2.23	0.33	Educational Categozian (7 possible)	85
Teacher Certification Level	3.64	0.18	Categories (4 possible)	86
Teacher Degree Status	2.08	0.14	Categories (4 possible $\begin{aligned} & 3 . A_{-}=2.0 \\ & \text { M.A. } \left.^{2}=3.0\right) \end{aligned}$	35
Teacher Experience	12.24	3.49	Years	86
Teacher Salary	80.00	4.75	Hundreds of Do1lars	85
Pupil-Teacher Ratio	19.21	2.75	Pupfis per Teacher	86
Administrative Expenditure	1.99	0.71	Tens of Dollars per Pupi1	©
Pupils per Classroom	17.79	5.57	Pupils per Classroom	36
School Property Value	27.67	5.51	Hundreds of Dollars	64
Wumber of Administrative and Supervisory Persomel	0.90	c. 24	Number per 1000 Pupils	64:

Table Format

Given in each table are the computed coefficients of partial regression. The figures in parentheses under each coefficient are the values of the t-statistic. The figure under the intercept is the standard error of the estimate. Values given to the right of each set of partial regression coefficients are the number of observations used in that regression, the sample mean and sample standard deviation of the dependent variable, and the coefinicient of multiple dete:mination, correlated for degrees of freedom lost.
(Continued next page.)

Tae scineme used in these tables to denote statistical significance is as follows:

$$
\pm \text { indicates significance at the ten pezcent level. }
$$

* indicates significance at the five pescent level.
*t indicates signixicance at the one pezcent levei.

Heighting
Since the expected semple variance is greater for averages computed for small groups of pupils as opposed to lazge, one of the standard assumptions of the classical least squares multiple regression model, that of homoscedasticity or equal expected variance of error terms, is violated. To corract foz this a ueighting scheme was used in the calculations thich is often termed Aitken's Generalized Least Squares. Heighting schemes of this nature may imprrt some upuard jias to calculated coefficients of multiple determination.

The otier schcol input (iesides administrative expenditure) binich is consistently related to pupil pezionmance is teacher certification level. Tins is not a little susprising in light of the fact that inery Yor's personnel found degree status impontant but certification level unimportant in a study, already mentioned, of the 1958 data. Another curious aspect of the findings for the centification variable is the fant that the variable is only impoztant at the fifth grade level; in grade eight it is eeldom significant and usually has the urong sign. Thy the level of teacher course-sont peeparation should be highly related to performance of fifth graders and unrelated to that of eighth graders is not at all obvious to the authos. The only other teacher variable挽ich seems related to pupil performance is teacher experience, and it is most interesting that this is only true for pupils from good socioeconomic baclegrounds. In point of fact, the sign of the experience variable quite consistently cilanges frion positive and significant to negative and (sometimes) significant as the socio-economic spectium is tiavelled from high to lof. F_{ol} ready explanation for this comes to mind either. It rould seem that teacher experience donsn't have much to do with successfully educating chilldren from disadvantaged social backgiounds.

The remaining three school input variables are consistently unzelated to pupil performance. This is especially true with the degree-status and salary variables rinich seldom have the correct sign. It is note-worthy that teacher-pupil ratio is much less negatively related to pupil performance in the regressions fitted to the 1965 data than the ones fitted to the 1958 data nhere, as the reader will recall, the variable was often statistically significant with the wrong sign. (The expected sign of this variable for the present study is negative.) There are feg significant partial regressicn coafficients with the wrong sign in the grade 8 regressions horever.

Alternate $3 \times p$ lanatory Models

1. Adding variables for value and number of supervisory personnel.

Two other explanatory models veze constructed. The first ulilized a yalue variabie in order to replicate more closely the model used in the earlier study. One further change was also made. For an administrative resources variable the number of principals and supervisors per 100 pupils was substituted for administrative expenditures per pupil. Both of these variables wese only available for 68 school districts. The explanatory variables used for the first alternate model were therefore:

1. Average mother education level
2. Average teacher certification level
3. Average teacher degree status
4. Average number years teacher experience
5. Pupil-teacher ratio
Fitted Regression Equations：
Alternate Modal Using Value of School District Assots．

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 10 \& \(\stackrel{+}{0}\) \& \[
\begin{aligned}
\& \mathbf{3} \\
\& \stackrel{1}{2} \\
\& \hline
\end{aligned}
\] \& \(\stackrel{?}{0}\) \& \(\stackrel{+}{+}\) \& \(\stackrel{\text { ¢ }}{\stackrel{\circ}{0}}\) \& \(\stackrel{\sim}{\square}\) \& \(\stackrel{9}{\text { ¢ }}\) \\
\hline \(1 E\) \& \(\stackrel{\square}{0}\) \& \[
\begin{aligned}
\& \mathbf{n} \\
\& 0 \\
\& n
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { + } \\
\& \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { ث } \\
\& i
\end{aligned}
\] \& \begin{tabular}{c}
N \\
\(\sim\) \\
\hline
\end{tabular} \& \[
\begin{array}{r}
\pm \\
0 \\
\hline
\end{array}
\] \& \[
\] \\
\hline \(z\) \& \(\because\) \& 9 \& \(\underset{ }{5}\) \& N \& 8 \& n \& ๗ \\
\hline \& \& \[
\begin{aligned}
\& \text { NO } \\
\& \text { NO } \\
\& \dot{0} \mathbf{O}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Mô } \\
\& \stackrel{0}{0} \\
\& 0.0
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { He } \\
\& \text { N్ } \\
\& \text { in }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { N⿵人一口今口 } \\
\& \text { 웅 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 응 } \\
\& \text { nio }
\end{aligned}
\] \\
\hline g

$=$ \& \[

\] \& \[

$$
\begin{aligned}
& \text { 킁 } \\
& \text { O- }
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{aligned}
& \text { 웅 } \\
& \text { io }
\end{aligned}
$$
\] \&

\hline \& \& $$
\begin{aligned}
& \dot{\mathbb{N}} \hat{O} \\
& \text { io }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { ON } \\
& \text { B N } \\
& \text { OO }
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { 궁 } \\
& \text { OO }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { 응 } \\
& \text { io }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Nㅗㅇ } \\
& \text { O: }
\end{aligned}
$$
\]

\hline \& \& \& $$
\begin{aligned}
& \text { 긍 } \\
& \text { ó }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \stackrel{\pi}{8} \mathrm{O} \\
& 0 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{0}{\mathrm{~N}} 0 \\
& 0 . \\
& 00 \\
& 00
\end{aligned}
$$
\] \& 0

808
08
00 \&

\hline \& $$
\begin{aligned}
& \text { 픙숭 } \\
& \dot{0} 0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 9 \\
& \mathbf{8} \widehat{0} \widehat{0} \\
& 00
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { m } \\
& \text { 응 } \\
& \dot{\circ} 0 \\
& \hline
\end{aligned}
$$

\] \& \[

\] \& \& \[

$$
\begin{aligned}
& \text { Bo } \\
& \text { - } \\
& 00
\end{aligned}
$$
\]

\hline \& $$
\begin{aligned}
& \text { Fi } \\
& \text { 于i } \\
& \text { io }
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{4} \hat{0} \\
& \underset{\sim}{0} 0
\end{aligned}
$$

\] \& \[

\] \& \[

$$
\begin{aligned}
& \text { in } \\
& \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$
\] \& \&

\hline \& \& $$
\begin{aligned}
& 0 \\
& 70 \\
& 00 \\
& 00
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& \text { ñ } \\
& \underset{\sim}{2} \underset{\sim}{0} \\
& \dot{0} \dot{O}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { 응웅 } \\
& \vdots i o
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { 응 } \\
& 0.0 \\
& \dot{\circ} \mathrm{C}
\end{aligned}
$$
\]

\hline \& \& $$
\begin{aligned}
& \text { Nit } \\
& \text { NO } \\
& \dot{O}=\mathbf{C}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { N్ల్ల } \\
& \text { OiO }
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{aligned}
& \text { ing } \\
& \text { io } \\
& 00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { MO } \\
& \underset{\sim}{\top} \\
& \underset{i}{+}
\end{aligned}
$$
\]

\hline \& $$
\begin{aligned}
& \text { ה్N } \\
& \text { NO }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { 옹 } \\
& 0.7 \\
& 0.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{\sim}{\sim} \\
& \text { in } \\
& \text { mó }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { or } \\
& \text { in } \\
& \text { in } \\
& \text { no }
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \infty \widehat{H} \\
& \hat{H} \\
& \text { in }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \vec{H} \hat{\theta} \\
& \hat{\gamma} \\
& \text { N© }
\end{aligned}
$$
\]

\hline \& \& \& \& \& \& \&

\hline
\end{tabular}

[^9]Fitted Regression Equations:

Fathers' Education	Intercept	Mothers ${ }^{1}$ Education Level	Teacher Certification Leval	Teachar Degree Status	Teacher Exparience	Average Teacher Salary	Pupil- Teacher Ratio	Value	```Adminis= trative parsonnal por }10 Pupils```	N	m	$\overline{7}$	R^{2}
1. 4 or More Years of College	$\begin{gathered} 9.622 \\ (0.432) \end{gathered}$	$\begin{aligned} & -0.213 \\ & (1.20) \end{aligned}$	$\begin{aligned} & -0.669 \\ & (1.22) \end{aligned}$	$\begin{gathered} 1.1 .33 \\ (2.23) * \end{gathered}$	$\begin{gathered} 0.012 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.61) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.45) \end{gathered}$	$\begin{aligned} & -0.027 \\ & (1.51) \end{aligned}$	$\begin{aligned} & -0.239 \\ & (0.71) \end{aligned}$	60	9.14	0.45	. 2
2. 1-3 Years of College'	$\begin{aligned} & 10.885 \\ & (0.456) \end{aligned}$	$\begin{aligned} & -0.634 \\ & (3.69) * * \end{aligned}$	$\begin{array}{r} 0.257 \\ (0.49) \end{array}$	$\begin{array}{r} 0.339 \\ (0.60) \end{array}$	$\begin{aligned} & 0.0063 \\ & (0.23) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (1.17) \end{aligned}$	$\begin{aligned} & -0.049 \\ & (1.87)+ \end{aligned}$	$\begin{aligned} & -0.0035 \\ & (0.22) \end{aligned}$	$\begin{aligned} & 0.034 \\ & (0.10) \end{aligned}$	61.	0.59	0.51	. 3
3. High School Graduate	$\begin{gathered} 9.729 \\ (0.404) \end{gathered}$	$\begin{aligned} & -0.233 \\ & (1.57) \end{aligned}$	$\begin{aligned} & -0.583 \\ & (1.54) \end{aligned}$	$\begin{array}{r} 0.306 \\ (0.70) \end{array}$	$\begin{aligned} & 0.0000 \\ & (1.44) \end{aligned}$	$\begin{array}{r} 0.020 \\ (1.50) \end{array}$	$\begin{aligned} & -0.0066 \\ & (0.34) \end{aligned}$	$\begin{aligned} & -0.022 \\ & (1.73) \div \end{aligned}$	$\begin{aligned} & -0.294 \\ & (1.21) \end{aligned}$	63	0.29	0.40	. 1
4. 10-11+ Years of Schooling	$\begin{gathered} 8.465 \\ (0.491) \end{gathered}$	$\begin{aligned} & 0.0085 \\ & (0.05) \end{aligned}$	$\begin{aligned} & -0.479 \\ & (1.12) \end{aligned}$	$\begin{gathered} 0.282 \\ (0.57) \end{gathered}$	$\begin{aligned} & -0.020 \\ & (0.73) \end{aligned}$	$\begin{array}{r} 0.027 \\ (1.61) \end{array}$	$\begin{aligned} & -0.012 \\ & (0.53) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (1.90)+ \end{aligned}$	$\begin{aligned} & -0.425 \\ & (1.31) \end{aligned}$	63	7.01	0.48	. 0
5. 7-9 Years of Schooling	$\begin{gathered} 8.370 \\ (0.677) \end{gathered}$	$\begin{array}{r} 0.040 \\ (0.1 .5) \end{array}$	$\begin{aligned} & -1.180 \\ & (2.13) * \end{aligned}$	$\begin{array}{r} 0.702 \\ (1.02) \end{array}$	$\begin{gathered} 0.012 \\ (0.35) \end{gathered}$	$\begin{gathered} 0.050 \\ (1.90) \div \end{gathered}$	$\begin{aligned} & -0.025 \\ & (0.00) \end{aligned}$	$\begin{aligned} & -0.043 \\ & (2.29) * \end{aligned}$	$\begin{aligned} & -0.763 \\ & (1.56) \end{aligned}$	63	7.30	0.69	
6. 1-6 Years of Schooling	$\begin{aligned} & 10.685 \\ & (0.782) \end{aligned}$	$\begin{aligned} & -0.451 \\ & (1.32) \end{aligned}$	$\begin{aligned} & -0.569 \\ & (0.67) \end{aligned}$	$\begin{array}{r} 0.157 \\ (0.15) \end{array}$	$\begin{aligned} & -0.067 \\ & (1.18) \end{aligned}$	$\begin{gathered} 0.074 \\ (2.20) * \end{gathered}$	$\begin{aligned} & -0.112 \\ & (2.22) * \end{aligned}$	$\begin{aligned} & -0.006 \\ & (3.27 .) * * \end{aligned}$	$\begin{aligned} & -1.194 \\ & (1.91)+ \end{aligned}$	49	7.06	0.08	. 35
7. No Formal Schooling	Not Com	puted.											

6. Value per pupil of school district osnad property
7. Kumber of principals and assistant principals per 100 pupils

Neither of the two new variables was positively related to pupil performance and for three socio-economic levels in grade 8 the valua variable was negative and statistically significant. Indeed, the value variable seems more strongly related negatively to pupil performance for the lovier pupil socio-economic levels. The principals variable shows somenhat the same tendency although it is never very significant.

Of these tro findings, that for the value variable is the most difficult to explain in light of past findings. The reader vill recall that the value of school property variable was often positively related to performance cuality in the earlier New York study. This time the conclusion would seem to be that amount of physical plant per pupil (at least considered in value terms) is negatively related to pupil performance, if at all, and that the school districts which possess more value of property to relatively poorer in educating pupils from low SE backgrounds than those with less. While these relationships are not vithout possible explanations,* we must be completely agnostic concerning the value variable because of the conflicting finding in the earlier study.

Abstract

The negative relationship for the principals variable is consistent with unpublished findings for relationships in the first Quality Measurement Project sample. In that study the same relationships were found, i.e., expenditure per pupil on administration was positively related to performance while number of principals, assistant principals, and supervisors per 100 pupils were negatively related to performance. This result is itself quite enigmatic. The tentative hypothesis with wich the author usually explains the finding in that more supervisory personnel are needed when more disciplinary problems exist. The fact that expenditure on such personnel seems to be inversely related to their numbers would suggest that schools with relatively more principals are paying them less, or else they are devoting resources to other (effective) administrative services besides employment of professional personnel. These relationships are obviously in need of much more investigation.

*The hypothesis would be that wealthier school districts display an educational orientation which focuses upon the progress of the majority of their student body and relatively neglects the more poorly motiveted pupils from lous SE backgrounds. It is aupported to some extent by the findings in an earlier paper published by the author where expenditure per pupil ras negatively (although weakly) reiated to the progress of pupils from the lowest socio-economic backgrounds. "Measuring a Local Government Service: A Study of School Districts in New York State," Review of Bconomics and Statistics, VoI. 49, No. 3 (August, 1967), 356-367.

An alternate hypothesis will be explored with the findings from the next enflanatory model, in which number of pupils per classroom is positively related to achievement performance levels. Could it be simply that efficient schools are able to get by with fewer physical facilities merely by virtue of their overall efficiency?
2. Accing inuber of Students pe:- Classroon and Delating Teacher Cemtification Level

The second alternative explanatozy model was suggested by a factor analysis of tize data. A sir factoz rotation Einch seemingly best fitted the data is presented in Tajle 17 for 20 sctrool and commaity vasiables. The factors sean Eelatively easy to intespeet into the foilozing:

Factor 3umore
I.
II.
III.

IT.
v.
VI.

Factor Description

牾eaith: size (direction negative to sealth)
Socio-economic level and pupil pezEormance level.

Intersity of use of physical facinities.
Teaciees chasactexistivs.
Zxpendituza Levels.
Socio-economic attributes associated with pupil density pez square mine.

Tire p p inciple explanato:y model had school and socio-economic vaziables which =epzesented four of the six factors. Only factozs I and III treere un-epresented. Of these, it was decided not to represent the wealth factor on the grounds that socio-aconomic cha:actezistics eeze vell enough zepresentedㄹ by a stratification scheme and a continuous variable for mothe ${ }^{-1}$ s education. The same cannot be said for the vaziables represented by factor III however. A check of the sample coefincients of correlation bet-jeen the variables loading on factor III and the perfoimance measures revealed correlations high enough to suggest that these variables should be taken seriously. An alternate model was therefore constructed bhich contained the variaille shich loaded highest on the factor, number of pupils per classioom.
*in alternativa possibiiity is available here wich would suggest that the factor should have been represented however. This is that the factor in fact represents size. This would suggest a model in which average daily attendance is added to the other variables in these models. This alternative was initially ruled out on the basis that the negative wealth variable (state aid per pupil) had the higher factor loading and also because the size variable is not very meaningful for scirool districts. Thus, the characteristic measured for school districts is not the size of the pioduction process so merch as the size of political jurisdiction, Past worlt by the author has shotm that, when enough school and geog:aphical distinctions are acccunted for, the importance of size of school districts (and even schools) seems to dirindle to nothing. Said differently, it is stiongly suspected that when a significant relationship is fori.i
 other variable vifich is closely associated with size. The correct procedure is to find the other variable and include it in the model. Mevertheless, a model including a size variable projably should have been trifad.

Yariable

2 85 5 6 $-.35$
i. Father Education Level
2. Fiother 3ducation Level
3. Pather Occupation Level
4. Avarage Composite Scoze, A11 Pupils
5. Average Composite Score, Fathers Education Level 152
6. Average Composite Score,
Fathers Iducation Level 4 45
7. Health per Square ifile 51
©. Yumber Fupils per Square ifile 41
9. Teacher Certification Level83$-.33$
-. 27 $-.30$
30
3
3 4 4
10. Teacher Degree Level73
11. Teacher Experience $-.30$ 77
12. Teacher Salary
13. Percentage 价ite Students $-.69$
14. Teacher-Pupil Ratio$.54-.46$5874
15. Administrative Expenditure per Pupil $-.57$
16. Students pei School 36 52
17. Students per Classroom 94
18. Teachers per Classroom 92
19. Students per Academic Classroom 90
20. Average Daily Attendance 71 31
21. State Aid per Pupil $-.80$ $-.32$
22. General Control 3xpenditure per Pupil 65
23. Plant and Maintenance Zxpendi- ture per Pupil $-.20$
2l. Capital Repayment and Debt Service Expenditure per Pupil $-.61$
25. Approved Opesating ixpenditure per Pupil $-.75$41(Continued next page)

Variable

	1	2	3	4	5	5
25. Property Value per Pupil	.52				-.60	
27. Property Tax Revenue per Pupil	.41				-.58	.41
22. School Tax Rate	-.47			-.35	-.37	.55

		Commanity ミconcoic
Sccio-	Charac-	

Cumulative percentage of Total Variance Explained	.25	.39	.50	.50	.65	.70
Eigenvalue	7.11	3.64	3.25	2.25	1.95	1.34_{4}

Hotes: Only factor loadings greater than or equal to 0.3 are given. The Bid 03M Algorithm sas used to obtain orthogonal factors using a varimax rotation.

In waking this change, the occasion presented itself for investigeting another hypothesis. Since the teacher salary variable in the earlier study had been positiveiy related to pupil perforwance quite often, and because the correlation betseen the teacher certification variable and the teacher salary variable in these data was relatively high (0.43), it was hypothesized that the poor showing from the salary variable might be due to the inclusion of the certification variable. Therefore it mas decided to onit the certification variable from this variant of the model to see wat vould happen to the salary variahie.

The fitted regression equations for this third model are presented in Tables 18 and 19 for pupil populations stratified by education in grades 5 and 3. They can be quickly sumsarized. First, remoyal of the certification variaile does not increase the relationship of teacher salary to pupil performance. Shat it does instead is to wake the teacher experionce variajie appear much mose significant than before. Secondly, the varsable for numer of papils per ciassroon is positively relatad to pupif performance. In 7 out of 12 possible instances the relationship is statistically significant at the 10% level or better. Both of these findings are borthy of fuether coment.

Why should teactier salary be so frportant for the earlier data and so unimportant here? The explanation that is most available for this is that the queifty of the second salary variable is much lower than the first one. Averaga teacher salary is basically a function of exper- -. ience in the given school district. As such, average salary level for a given district depends most impoztantly upon the age distribution of the teachers mitain the district and this may not be random. If, to take an extreme example, a school district hai oniy old teachers were on the point of retiring, ayerage salary would be very high but average teacher quality would not be correspondingiy high. In the earlier study the average salary of teachers of the top decile of teachers accorâing to salary was used. Thiss varlable would be much more comparable since for the top decile experience Eevels nould probaily be comparaile and differences would be more directly related to school salary policy. Another salary variable witch might heve been better is starting salary.

A second aspect of the salary variable wich should be maintained is the fact that there may have been some exrors in the BEDS data as summarized by the author, A simple alternative variable for salary could be obtained from salary schedules published by the New York State Teachers Asscciation and the author intends to try such a variable if the opportunity presents itself at some later time.

The finding for mumber of pupils per classion is more intriguing. It suggests the contrary of what is suggested by economic theory and common sense, i.e., that the fewer the physical facilities per pupil (or per teacher, these variables are interchangable) the better is the quality of the production process. Again this finding could be due to faulty variable construction, altiough the sumary algorithm was carefully checked against actual means and found to give correct answers. Also, the information seems quite internally consistent. An alternative explanation is that school districts with are efficient generally are also efficient with respect to using availasle facilities. What this means to the economist is that for these existing sets of plant and equipment (school districts) physical faciiities represent no

, ather Education	Intercept	Mothers' Education Lavel	Teacher Degrae . Status	Taachar Expar: lence.	Avarage Teachar Salaxy	PupilTeacher Ratio	Administrative Expenditure por Pupil	$\begin{gathered} \text { Pupils } \\ \text { Yor } \\ \text { Clesaroom } \end{gathered}$	N	m	-	R^{2}
T. 4 or More Years of College	$\begin{gathered} 7.303 \\ (0.332) \end{gathered}$	$\begin{aligned} & -0.938 \\ & (5.32) * * \end{aligned}$	$\begin{array}{r} 0.211 \\ (0.65) \end{array}$	$\begin{aligned} & 0.050 \\ & (3.37) * * \end{aligned}$	$\begin{aligned} & 0.010 \\ & (2.00) * \end{aligned}$	$\begin{aligned} & -0.0055 \\ & (0.36) \end{aligned}$	$\begin{gathered} 0.087 \\ (1.05) \div \end{gathered}$	$\begin{aligned} & 0.0087 \\ & (0.05) \end{aligned}$	84	6.08	0.40	. 300
2. 1-3 Years of College	$\begin{gathered} 7.104 \\ (0.334) \end{gathered}$	$\begin{aligned} & -0.648 \\ & (0.03) * * \end{aligned}$	$\begin{aligned} & -0.165 \\ & (0.52) \end{aligned}$	$\begin{gathered} 0.052 \\ (3.90) * * \end{gathered}$	$\begin{aligned} & -0.0070 \\ & (0.80) \end{aligned}$	$\begin{aligned} & 0.017 \\ & (1.08) \end{aligned}$	$\begin{gathered} 0.129 \\ (2.35) * \end{gathered}$	$\begin{gathered} 0.012 \\ (1.45) \end{gathered}$	04	5.59	0.43	. 455
3. High School Graduate	$\begin{gathered} 5.997 \\ (0.304) \end{gathered}$	$\begin{aligned} & -0.310 \\ & (3.12) * * \end{aligned}$	$\begin{aligned} & -0.127 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 0.033 \\ & (2.94) * * \end{aligned}$	$\begin{aligned} & -0.0061 \\ & (0.70) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.97) \end{aligned}$	$\begin{aligned} & 0.146 \\ & (3.34) * * \end{aligned}$	$\begin{gathered} 0.014 \\ (1.76) \div \end{gathered}$	85	5.20	0.34	. 274
4. 10-11* Years of Schooling	$\begin{gathered} 5.737 \\ (0.340) \end{gathered}$	$\begin{aligned} & -0.497 \\ & (4.12) * * \end{aligned}$	$\begin{aligned} & -0.041 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 0.040 \\ & (3.50){ }_{k *} \end{aligned}$	$\begin{aligned} & -0.0089 \\ & (1.00) \end{aligned}$	$\begin{aligned} & -0.00021 \\ & (0.01) \end{aligned}$	$\begin{gathered} 0.174 \\ (3.22) * * \end{gathered}$	$\begin{gathered} 0.016 \\ (1.74) \% \end{gathered}$	85	4.93	0.39	. 319
5. 7-9 Years of Schooling	$\begin{gathered} 4.903 \\ (0.329) \end{gathered}$	$\begin{aligned} & -0.437 \\ & (3.57) * * \end{aligned}$	$\begin{array}{r} 0.040 \\ (0.14) \end{array}$	$\begin{aligned} & 0.037 \\ & (3.46) * * \end{aligned}$	$\begin{aligned} & -0.0052 \\ & (0.59) \end{aligned}$	$\begin{aligned} & -0.0034 \\ & (0.25) \end{aligned}$	$\begin{aligned} & 0.161 \\ & (3.44) * * \end{aligned}$	$\begin{gathered} 0.020 \\ (2.31)^{*} \end{gathered}$	05	4.65	0.37	. 291
6. 1-S Years of Schooling	$\begin{gathered} 5.723 \\ (0.475) \end{gathered}$	$\begin{aligned} & -0.394 \\ & (2.02) * \end{aligned}$	$\begin{aligned} & -0.197 \\ & (0.40) \end{aligned}$	$\begin{aligned} & 0.0030 \\ & (0.23) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.92) \end{aligned}$	$\begin{array}{r} 0.027 \\ (0.94) \end{array}$	$\begin{gathered} 0.145 \\ (1.84)+ \end{gathered}$	$\begin{gathered} 0.014 \\ (0.71) \end{gathered}$	73	4.26	Ci.4C	. 117
7. No Formal Schooling	Not Come	uted										

Tittea Rable 19for Aliternation Equations Modal Two, Composite Score, erade 8.												
Father Mducation	Inter:ce:t	$\begin{gathered} \text { Mother" } \\ \text { geducation } \\ \text { Lovel } \end{gathered}$	Toncher Dagree Status	Tonchar expar rance	Avariga Taphar salary	Pupi.1Teacha: Ratio	Adminis trative Expenditura Per Fup11	$\left.\begin{array}{\|c} \text { Pupits } \\ \text { Pos } \\ \text { craessoom } \end{array} \right\rvert\,$	N	m	3	$\mathrm{n}^{\text {? }}$
1. \& or Morc Years of conlege	$\begin{gathered} 9.510 \\ (0.423) \end{gathered}$	$\begin{gathered} -0.594 \\ (4.60) * * \end{gathered}$	$\begin{array}{r} 0.406 \\ (0.95) \end{array}$	$\begin{aligned} & 0.051 \\ & (2.60) * \end{aligned}$	$\begin{aligned} & .0 .0093 \\ & (0.05) \end{aligned}$	$\begin{gathered} 0.024 \\ (1.25) \end{gathered}$	$\begin{gathered} -0.057 \\ (0.94) \end{gathered}$	$\begin{aligned} & -0.0000 \\ & (0.64) \end{aligned}$	01	2.24	n.40	
2. Ins yoaie of college	$\begin{gathered} 0.902 \\ (0.424) \end{gathered}$	$\begin{aligned} & -0.537 \\ & (3.92) * * \end{aligned}$	$\begin{gathered} 0.410 \\ (\% .01) \end{gathered}$	$\begin{aligned} & 0.031 \\ & (1.01)+ \end{aligned}$	$\begin{aligned} & 0.019 \\ & (1.70) \end{aligned}$	$\begin{gathered} 0.012 \\ (0.50) \end{gathered}$	$\begin{aligned} & 0.189 \\ & (2.91) \times * \end{aligned}$	$\begin{aligned} & 0.024_{3} \\ & (1.93) \div \end{aligned}$	03	0.53		
3. High School Graduate	7.995 (0.411)	$\begin{aligned} & -0.276 \\ & (1.94) \div \end{aligned}$	$\begin{gathered} 0.210 \\ \langle 0.56) \end{gathered}$	$\begin{aligned} & 0.030 \\ & (2.47) * \end{aligned}$	$\begin{aligned} & -0.0060 \\ & (0.67) \end{aligned}$	$\begin{gathered} 0.033 \\ (1.90) \cdots \end{gathered}$	$\begin{aligned} & 0.143 \\ & (2.35) * \end{aligned}$	$\begin{aligned} & 0.020 \\ & (1.95) * \end{aligned}$	05	0.17		
4. 1?-11\% Years of Schooling	$\begin{gathered} 6.061 \\ (0.402) \end{gathered}$	$\begin{aligned} & -0.346 \\ & (2.06) * \end{aligned}$	$\begin{gathered} \mathbf{0 . 3 0 . 3 0 0} \\ (0.70) \end{gathered}$	$\begin{array}{r} 0.027 \\ (1.59) \end{array}$	$\begin{array}{r} 0.012 \\ (0.93) \end{array}$	$\begin{gathered} 0.024 \\ (1.2 .1) \end{gathered}$	$\begin{aligned} & 0.243 \\ & (3.17) * * \end{aligned}$	$\begin{aligned} & 0.042 \\ & (3.21) * * \end{aligned}$	05	7.64		
5. 7-s Years of Schooling	$\begin{gathered} \left(\begin{array}{r} .713 \\ (0.671) \end{array}\right. \end{gathered}$	$\begin{aligned} & -0.171 \\ & (0.67) \end{aligned}$	$\begin{gathered} 0.034 \\ \{0.06\} \end{gathered}$	$\begin{gathered} 0.022 \\ (1.00) \end{gathered}$	$\begin{aligned} & 0.0042 \\ & (0.21) \end{aligned}$	$\begin{gathered} 0.041 \\ (1.59) \end{gathered}$	$\begin{gathered} 0.3144 \\ (3.30) \end{gathered}$	$\begin{gathered} 0.043 \\ (2.46) \end{gathered}$	05	7.24	0.71	
5. 1-s years of schooling	$\begin{gathered} 5.453 \\ (0.040) \end{gathered}$	$\begin{aligned} & -0.612 \\ & (1.83) \end{aligned}$	$\begin{aligned} & 0.058 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.0069 \\ & (0.20) \end{aligned}$	$\begin{gathered} 0.020 \\ (0.96) \end{gathered}$	$\begin{aligned} & -0.020 \\ & (0.45) \end{aligned}$	$\begin{gathered} 0.259 \\ (1.62) \end{gathered}$	$\begin{gathered} 0.033 \\ (1.46) \end{gathered}$	67	0.97		
7. No Fdimal Schooling	Not Com	uted.										

for Altarnate Modal Two, Composite Score, Grade 8.
constraint whatsoever on quality of instructional progran. If true, this is a most important finding.

There is one characteristic of American schooils which would seem to support such a conclusion, although the evidencre of its truth has itself never been established. This is the fact that Aserican public schcol systems, especiaily those within the same state, tend to use highly similar configurations of physical facilities. Farther work on this point would be useful.

Geographical Differences in the Relationships

In the 1958 New York sample of schools it was found that achievement performance levels were wuch more regularly related to school inputs in urban and large school districts than in village and rural school districts. In the present study there is much less difference between these types of school districts.

New York education personnel carefully distinguished key geographical characteristics of the school districts in the 1965 sample mainly on the basis of population density and location relative to standard metropolitan statistical areas. By density the districts were sinply divided into two groups--urban and rural. But population density is not the only important geographical consideration for schools. In his work concerning teacher quality in a sample of Indiana schools, Richard Turner has shown that the quality of professional opportunities available for teachers ${ }^{2}$ husbands, as well as the availability of cultural attractions in general are most important to successful teacher recruitment. Uhile there are numberous exceptions, it might be hypothesized that metropolitan areas would be more likely to have these desirable characteristics than more isolated village and rural areas. A somewhat less strong alternative hypothesis is that the quality of cultural and professional opportunities acrose vallage and rural sciooi districts is much more uneven. Such a phenomenon could explain the author's earlier finding where the performance of the village and rural school districts was highly randor. Perhaps additional exflanatory variables representing professional opportunities and cultural attractions were necessary to explain the performance of these schools.

The primary explanatory model was fitted to the various combinations possibie of rural and urban districts according to location within and outside of standard metropoititan statistical districts. (Sish's). The only conclusions possible from the resultant findings are that locational differences are not important in general but that location inside the SMSA seems to be somentat more related to predictability than urbanness per se. The urtan-rural and SHSA findings are presented in Tables 20-23. Further breakdowns, such as urban districts within and outside SHSA's and rural districts outside SHSA's displayed relationships in which the model's predictive power was minimal.

Insofar as the differences between districts located inside and outside of SMSA's are meaningful (and with no concomitant differences according to the rural-urban breakown) the findings support the hypothesis discussed above based on Turner's work.
Fitted Multipla Reginession Equations,
Urban Schocl Diotricto, Grado 5. Urban Schocl Districto, Grado 5.

[^10]"suorzenbl Lofsemasioy pozars
Rural School Districts, Grade 5.

Father Education Level	Intercept	Mother Education Level	Teacher Certification Level.	Teacher Degree Status	Teacher Expar:fence	Avarage Teninhar Salayy	Pupil- Teacher Ratio	Adminis. trativo Expanditura pex Iupil	N	m	7	R^{2}
1. 4 or More Years of College	$\begin{gathered} 6.223 \\ (0.408) \end{gathered}$	$\begin{aligned} & -0.247 \\ & (1.22) \end{aligned}$	$\begin{gathered} 0.212 \\ (0.40) \end{gathered}$	$\begin{array}{r} 0.695 \\ (1.18) \end{array}$	$\begin{aligned} & 0.00086 \\ & (0.03) \end{aligned}$	$\begin{aligned} & -0.025 \\ & (1.60) \end{aligned}$	$\begin{aligned} & \sim 0.032 \\ & (1.07) \end{aligned}$	$\begin{aligned} & 0.360 \\ & (2.99) * * \end{aligned}$	46	6.26	0.43	. 34
2. 1-3 Years of College	$\begin{gathered} 5.981 \\ (0.305) \end{gathered}$	$\begin{aligned} & -0.386 \\ & (1.94)+ \end{aligned}$	$\begin{array}{r} 0.120 \\ (0.27) \end{array}$	$\begin{array}{r} 0.162 \\ (0.32) \end{array}$	$\begin{array}{r} 0.012 \\ (0.47) \end{array}$	$\begin{aligned} & -0.0038 \\ & (0.30) \end{aligned}$	$\begin{aligned} & -0.0071 \\ & (0.28) \end{aligned}$	$\begin{gathered} 0.081 \\ (0.05) \end{gathered}$	46	5.94	0.38	. 14
3. High School Graduate	$\begin{gathered} 3.985 \\ (0.31 .7) \end{gathered}$	$\begin{aligned} & -0.189 \\ & (1.23) \end{aligned}$	$\begin{gathered} 0.799 \\ (2.49) * \end{gathered}$	$\begin{gathered} 0.147 \\ (0.46) \end{gathered}$	$\begin{aligned} & -0.0016 \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (1.98)+ \end{aligned}$	$\begin{aligned} & -0.0072 \\ & (0.5 \mathrm{I}) \end{aligned}$	$\begin{gathered} 0.165 \\ (2.39) * \end{gathered}$	47	5.51	0.33	
4. 10-11+ Years of Schooling	$\begin{gathered} 4.708 \\ (0.357) \end{gathered}$	$\begin{aligned} & -0.320 \\ & (1.93)+4 \end{aligned}$	$\begin{gathered} 0.172 \\ (0.55) \end{gathered}$	$\begin{aligned} & -0.039 \\ & (0.11) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.60) \end{gathered}$	$\begin{aligned} & 0.0015 \\ & (0.13) \end{aligned}$	$\begin{gathered} 0.015 \\ (0.93) \end{gathered}$	$\begin{gathered} 0.057 \\ (0.74) \end{gathered}$	47	5.23	0.36	. 17
:5. 7-9 Years of Schooling	$\begin{gathered} 4.705 \\ (0.372) \end{gathered}$	$\begin{aligned} & -0.255 \\ & (1.43) \end{aligned}$	$\begin{array}{r} 0.126 \\ (0.43) \end{array}$	$\begin{gathered} 0.328 \\ (0.95) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.66) \end{gathered}$	$\begin{aligned} & -0.0051 \\ & (0.30) \end{aligned}$	$\begin{aligned} & -0.0055 \\ & (0.35) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.44) \end{aligned}$	47	4.91	0.37	. 15
6. 1-6 Years of Schooling	$\begin{gathered} 2.258 \\ (0.642) \end{gathered}$	$\begin{aligned} & -0.297 \\ & (0.95) \end{aligned}$	$\begin{aligned} & 0.708 \\ & (1.14) \end{aligned}$	$\begin{array}{r} 0.970 \\ (1.21) \end{array}$	$\begin{aligned} & 0.0062 \\ & (0.16) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (1.10) \end{aligned}$	$\begin{array}{r} 0.022 \\ (0.48) \end{array}$	$\begin{array}{r} 0.045 \\ (0.30) \end{array}$	37	4.55	0.63	. 10
7. No Formal Schooling	Niot comp	tod.			,							

Notes: See page 34.

Very little fork has ibeen done in the past on the important question concerning the consequences of aggregating public school data into school districts. A number of studies have used the school building as the primary unit of observation; among them, those by Katzmen, Project Talent, and the Zqual Opportunity Survey. The author's prior Net York work utilized the school district as the observation. zonsiderable importance rides on the effects of doing this. If there is substantial within-district variation in school inputs and outputs the use of school district averages may not be mearingful.

The Hey Yorix State Basic Education Data System celizects information concerning teacher cinaracteristics, number of classrocms, and the like by school building as mell as by school district. Unfortunately, we fotes in sumarizing these data that some of the data were incompletaly fieted in by respondents and therefore untrustworthy. This was especially true data concerning physical variabies. Nevertheless, with considerable effiort, we sumarized rost, of the school variables wheh rere present in the BEDS data, taking special pains io note the muber and nature of missing observations for each variable. This sumary gielded essentially cumpiete information for a number of variables mainly having tc do with teacher charactieristics. This was fortunate since teacher charactevistics comprise the aspect of school inputs which are probably most suspect concerning non-random uithin-district variations, the supposed mechanism boing the transfering of teachers to schools vith better motivated pupils. We decided that three important teacher characteristics would be enough to test for significant between-school differences: Begree lerel, average salary, and ;umber years of experience In light of the subsequent finding of importance for the certification variable it was probably a mistake to omit that variable, although certification had scmewnat more missing observations than did the three variables used. One other variable available by school building was pupil socio-economic level. Hithout a variable describing the sociceconomic "climate" of the school building no meaningful analysis could be made since it iz mostly on the basis of such "climate" differences that we suspect other non-random differences in teacher chazacterisifics to obtain.

Two questions aice of interest. First, are within-district differenc in socio-economic and teacher characteristics relatively large, and second, if large, then are they random or do they vary in some important uay? To investigate these questions elght populations were compared: Five individual city school districts (Albany, Binghamton, Schenectady, Syracuse, and Miagara Falis), all schools in districts with six schools or more, schools in iistricts with five schools or less, and all schools. This was done for grade five only where there are approximately three times as many school buildings as are present in grade eight. In many junior-high schools there is already much amalgamation of pupils coming from very different elementary schools (at least, hypothesized as such) and therefore grade five schools are more proper subjects for this kind of analysis.

One can investigate the first question rith analysis of variance techniques or simply by comparing the standard deviations of the five
School population
All Schools
Schools in Districts With Six or
More Schools
Schools in Districts With Five or
Lesa Schools
Albany
Binghamton
Schenectady
Syracuse
viagra Falls
p

Table 25
Anelysis of Variance Results
Compering Veriation in Five Kay Variables Hithin and Betroen Sciocol Districts, All School Districts and School Dietricts Yith Feur or fore Schools

Tariable
F-2atios

$$
\begin{array}{cc}
\text { A11 (79) } & 24 \text { School Districts } \\
\text { School oistrict } & \text { With } 4 \text { or Hore Schools } \\
F F=78,194 & \quad E=23,178
\end{array}
$$

Composite AchievementPerformance Grade 5		
Father Education Level, Pupils in Grade 5	1.87*	3.35**
Teacher Degree Status	4.25**	6.32**
Years of Teacher Experience	1.19	2.46**
Tescher Salary	2.49**	3.75**

* Significant at the 1.0 percent level.
** Sigaificant at the 0.1 percent level.
variables being used (achievament parfosmance, plus the four given above) for the eight popalations just described. The srapdara deviations are presented in Table 24. Greater within-district differances apparently exist in larger districts in achievament performance, but not in the other variables (the exception is finghanton). There is a bit more variation in large districts in the average father education variable also, althougt not nearly so mech a3 that displayed by composite scores. The same is true th theacher experience levels. Variation in teacher salaries and Cegree levels is appreciably less in tise five large districts than in the larger groups. There is no differance in teacher degree variation between many-school and few-school districts however.

Analysis of variance is a more rigorcus say to compare within and between district variation. F-ratios for five variables for all school districts (with no missing observations) and for school districts with four or more grade schools are given in Table 25. All of the ratios except that for teacher experience in all districts are significant at the one percent level. The ratios for all districts are not completely meaningful hosever, since 44 dictricts had only one elementary school. The more meaningfui ratios are these presented in the second colum of the table for school districts unich have four or more schools. With the exceprion of teacher experience, F-ratios for those districts are all highly significant.

These relationships suggest that betseen-district differences in school inputs are considerably were important than witinin-district differences. This is especially so with degrea level; less true with the other two teacher variables.

Having established this much, next we wish to ask wether the within-district variations are systematic in some meaningrul way. This rian be checked two tays: tiving mitiple regression expianatory withindistrict models, and simply by consuiting simple - coefficients of correlation. The most important hypothesis to test in doing this is whether variations in teacher characteristics (by school building) are related to socio-economic levels of schools, or to differences in pupil performance. Positive relationships would indicate teacher transfer patterns asty from low SE buildings. In particular, we shocid investigate whether average achievement performance is related to teacher characteristics then allowance is not made for differences in socioeconomic level (which is of course bhat we have in a zero order correlation coefficient). If no or little relationship exists between these two variables and teacher characteristics, the district is assigning teachers more or less at random; if the relationship is negative the district is probabiy assigning better teachers to deal ofth children from relatively disadvantaged backgrounds.*
*This argument of course assumes that (relatively large) betreenschool differences in socio-economic level of pupils is a much more important factor in determining achievement outcomes than (relatively smail) between-school differences in teacher skills. Most readers shorld find this assumption plausible.

Siple Corielation Coeñiicients 3eteeen Average Composite Score and Father Zducation Level and Turee Teacher Variables Taken by School Building, Five Large School Districts, School Districts Hith Six or Hoze Schools, School Districts Hith Five or Less Schools, and $a 11$ School Districts.

School pistrict Population

Correlation Coefficients	
Years	
Teacher Teacher \quad Teacher	
Degzee Level Zoperieace	Salary

All School Districts

Composite Score	-.02	$.19 \star$.03
Father Education	-.08	$-.25 *$.01

-School Districts uith Six or Hore Schcols

Composite Score
Father Iducation

School Districts Hith Five or Less Schools

Composite Score Father Education

Albany

Composite Score Father Education
-.cs
$-.07$
-. 02
-. 01
.09
.26*
$-.06$
$-.27 *$
-.43*
.22*

$$
\begin{array}{rrr}
-.14 & .13 & .11 \\
.69 & -.15 & -.14
\end{array}
$$

Correlation Coefficients Years
 Teacher Teacher Degrea Level Experience Salary

Schenectady
Treposite score
$-.63$
$-.01$
$-.01$
Fativer Etiscation
.16
.11
.18

Syraituse

Composite Score
Father Education
$-.13 \quad .12 \quad .15$
$.19-.18 \quad-.26$

Egpected Sions: For positive relationships the proper sign for score is positive and education negative.

* \equiv Significantly different from zero at the 5 pezcent level of confidence.

Teo of the five large ciing distzicts have teacher characteristics distributed somavhat contrary to the socio-economic 1 evel of school builidings (See Table 26). The other threa have teacher characteristics which vary weakly according to avazage education level of fathers (no correlation coefficient in the five large districts is significantly different from zero at the 5% level of signiffeance), although there is no consistent relationship at all jetreen teacher characteristics and achievement performance. An interesting compariscn is that between schools in large and small districts. The latter would in fact shos relatively more variation between districts and the former varlation within diatricts. The differences in the correlation coefficients between the two groups of districts is striking sith the relationships for the swall districts being wuch stronger. To sumarize, withindistrict non-randoa relationships betseen teacher and school socioeconomic characteristics seem to be veakly present in some districts and completely aosent in others.

Regression Findings by School 3uilding

As indicated above, we constiveted a simple model to test for within district relationships betreen the three teacher characteristics and average father education level which were nat of the effects of the other variables. The fitted ragression equations appear in Tables 27 and 23. Two equations were fitted, the difference being the exclusion of the mother education variable. The reason for this is that log levels of statistical sigiisificance for the three teacher variables could possibly be caused by a high amount of colinearity with the education variable.

The fitted regressions for the school building data demonstrate as a general finding that relationships between performance and teacher characteristics is markedly less in the five large individual districts than for all schools considered together. This is even more true shen the wother occupation variable is omitted from the model. This finding reinforces the findings shown in the analysis of variance and correlation analyses above. In four of the individual districts only one variable is significantly related to performance while in the fifth (Niagara Falls) none is. Significance levels are never very high. then all schools are considered, on the other hand, significance ievels for tro of the variables are quite high. It should be noted, horsever, that the significance levels of the too significant teacher variables are somentat greater for the schools from districts having six or more schools than those in districts having five or less. From this it would appear that it cannot be concluded that within-distrist differences are unimportant.

To conclude with respect to within-district variations, it would seem that Turner's general finding concerning district variations is supported to a sufficient enough extent to allow us to conclude that studies of school districts, such as the author's first New York study, are meaningful enough to be taken seriously, at least, by policy makers. There are enough aggregation errors present howaver that we should also conclude that such studies are less important in attempting to construct accurate educational production functions in the engineering

Fitted Regression Ecuations in School Building, Wother Education Vaziable Included

School Population	Intercept	Hother Education Level	Teacier Degrea Status	Avezage Teacher Salary	Teacher 3xperience	N
611 Schools	$\begin{gathered} 0.083 \\ (0.620) \end{gathered}$	$\begin{aligned} & -0.393 \\ & (7.74) \star * \end{aligned}$	$\begin{aligned} & 0.377 \\ & (5.4 .5) \div t \end{aligned}$	$\begin{aligned} & 0.00745 \\ & (8.37) \star * \end{aligned}$	$\begin{aligned} & -0.0993 \\ & (0.95) \end{aligned}$	273
Schools in Districts Hith 6 or Hiore Schools	$\begin{gathered} 0.277 \\ (0.585) \end{gathered}$	$\begin{aligned} & -0.503 \\ & (9.49) \star k \end{aligned}$	$\begin{gathered} 3.386 \\ (4.57)=2 \end{gathered}$	$\begin{gathered} 0.05058 \\ (8.97) * * \end{gathered}$	$\begin{aligned} & -0.603 \\ & (2.75) \star * \end{aligned}$	144
Schools in Districts Hith 5 or Less Schools	$\begin{gathered} 1.130 \\ (0.558) \end{gathered}$	$\begin{aligned} & -0.131 \\ & (1.70) \div \end{aligned}$	$\begin{gathered} c .258 \\ (2.53) * \end{gathered}$	$\begin{gathered} 0.000<1 \\ (5.4 \div 7) \star * \end{gathered}$	$\begin{aligned} & -0.0340 \\ & (0.25) \end{aligned}$	129
Albany	$\begin{gathered} \cap .534 \\ (0.371) \end{gathered}$	$\begin{aligned} & -1.000 \\ & (9.69) * * \end{aligned}$	$\begin{aligned} & 1.121 \\ & (2.75) * * \end{aligned}$	$\begin{aligned} & 0.00020 \\ & (0.61) \end{aligned}$	$\begin{aligned} & -0.055 \\ & (2.26) * \end{aligned}$	18
Binghamton	$\begin{aligned} & -0.357 \\ & (0.535) \end{aligned}$	$\begin{aligned} & -0.232 \\ & (0.77) \end{aligned}$	$\begin{gathered} 0.950 \\ (1.63) \div \end{gathered}$	$\begin{aligned} & 0.00027 \\ & (0.62) \end{aligned}$	$\begin{aligned} & -0.039 \\ & (0.58) \end{aligned}$	13
Hiagara Falls	$\begin{gathered} 0.672 \\ (0.514) \end{gathered}$	$\begin{aligned} & -0.710 \\ & (0.99) \end{aligned}$	$\begin{aligned} & 0.3014 \\ & (1.45) \end{aligned}$	$\begin{aligned} & -0.210 \\ & (1.69) \end{aligned}$	$\begin{aligned} & -0.342 \\ & (1.76) \div \end{aligned}$	20
Schenactady	$\begin{gathered} 0.55 \% \\ (0.445) \end{gathered}$	$\begin{aligned} & -0.800 \\ & (4.79) \star * \end{aligned}$	$\begin{aligned} & 0.040 \\ & (2.05) * \end{aligned}$	$\begin{aligned} & 0.00024 \\ & (0.73) \end{aligned}$	$\begin{aligned} & -0.055 \\ & (1.69) \end{aligned}$	12
Syracuse	$\begin{aligned} & -0.216 \\ & (0.400) \end{aligned}$	$\begin{aligned} & -0.734 \\ & (8.75) \star * \end{aligned}$	$\begin{array}{r} e .471 \\ (1.44) \end{array}$	$\begin{aligned} & 0.00071 \\ & (2.15) * \end{aligned}$	$\begin{aligned} & -0.061 \\ & (1.39) \end{aligned}$	29

Hotes: See page 34.

Table 24
Fitted Fegression 3quations iy School
Building, Hother Zducation Vaziasle Excluded

School Population	Intercept	Teache: Degrea Status	Average Teacher Salary	Teacher 3xperience	H
all Schools	$\begin{gathered} 0.187 \\ (0.585) \end{gathered}$	$\begin{aligned} & 0.235 \\ & (3.21) * * \end{aligned}$	$\begin{gathered} 0.00052 \\ (9.30) \star t \end{gathered}$	$\begin{aligned} & -0.0159 \\ & (1.56) \end{aligned}$	273
Schools in Distificts Hith 6 or More Schools	$\begin{aligned} & -0.330 \\ & (0.749) \end{aligned}$	$\begin{gathered} 0.203 \\ (1.90) \div- \end{gathered}$	$\begin{gathered} 0.00059 \\ (7.13) * * \end{gathered}$	$\begin{aligned} & -0.0169 \\ & (1.19) \end{aligned}$	144
Schools in Districts Fith $50=$ Less Schools	$\begin{gathered} 0.998 \\ (0.552) \end{gathered}$	$\begin{aligned} & 0.210 \\ & (2 . e \mathrm{C}) \star \end{aligned}$	$\begin{aligned} & 0.09045 \\ & (0.44) * * \end{aligned}$	$\begin{aligned} & -0.0145 \\ & (1.02) \end{aligned}$	129
Albany	$\begin{aligned} & -0.508 \\ & (1.025) \end{aligned}$	$\begin{aligned} & -0.273 \\ & (0.25) \end{aligned}$	$\begin{aligned} & 0.0010 \\ & (1.19) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (0.85) \end{aligned}$	12
3i.nghanton	$\begin{aligned} & -0.713 \\ & (0.523) \end{aligned}$	$\begin{gathered} 1.114_{4} \\ (2.31) \star \end{gathered}$	$\begin{aligned} & 0.00012 \\ & (0.32) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.34) \end{aligned}$	13
Fiagaza Falls	$\begin{aligned} & -0.705 \\ & (0.502) \end{aligned}$	$\begin{aligned} & -0.700 \\ & (1.06) \end{aligned}$	$\begin{gathered} 0.0015 \\ (2.73) \star t \end{gathered}$	$\begin{aligned} & -0.225 \\ & (2.86) \star * \end{aligned}$	20
ischenactady	$\begin{aligned} & -0.745 \\ & (0.712) \end{aligned}$	$\begin{gathered} 0.312 \\ (1.23) \end{gathered}$	$\begin{aligned} & 0.00026 \\ & (0.53) \end{aligned}$	$\begin{aligned} & -0.087 \\ & (1.69) \end{aligned}$	18
Syracuse	$\begin{aligned} & -0.994 \\ & (0.803) \end{aligned}$	$\begin{gathered} 0.040 \\ (0.05) \end{gathered}$	$\begin{aligned} & 0.00084 \\ & (1.26) \end{aligned}$	$\begin{aligned} & -0.029 \\ & (0.33) \end{aligned}$	29

ilotes: See page 34.
sease. The only way to do this prope:-ly is to gather data in units oroper to each variable. Since important policy relejant variables iw re relayant units of cbservation going from the schocl sistrict level to the classroos and individusl pupil, treating these observational units properiy is a design frobier difficult to overcome.

Central Findings of the Study Sumarized

The main findings of this investigation can be presented rather briefly. First, relationships in ssaller school districts were shosn to be scmeshat less unpreditable than those in the 1958 study. Indeed, no urban-non-urban differences were discovered at all in these districts a finding distinctly different than that in the earlier study. Some differences zese noted according to location inside of Standard Metropolitan Statistical Areas howeyen, and this fits rather well into some hypothesized relationships based on work of Richari Turner.

Taking both Nes York studies together, the strongest and most consistiently important school input seens to be resources put into central adainistration. In light of the deep preoccupation with the infortance of the classrcom teacher which pervades American education, this finding is of considerable importance. Two other relatiouships sere similar in joth studies. Average levels of parenc education and/or occupation sers again shown to be highly related to pupil performance. This is certainly to be expected of course, and any other consistent finding sould render the explanatory model saspect. Secondly, the 1905 data again show the assential unimportance (at least apparently) of class size to educational outcomes within the range of experience represented in these New Yor"̈ schools. The impilications of this finding should be obvious to all, alehough it nould be extremely dangerous to carry tinem too far. Ifore specifically, extrapolation of this finding beyond the range of class sizes found in these Nev Yosk school districts would be foolhardy indeed.

Some other findings from the azilier study were not very well raplicated, however. The most notable of these was the relationship between teacher salary and pupil performance. Value of school district-owned property per pupil was also found to be unrelated to achievement perfozmance in the present study, whereas it had often been positively associated to performance ia the earlier one.

It might be possible, Einally, to dras a general conclusion from both New York studies: it seems obvious that both school and cemmunity inputs are important to the success of pubifc education.

Practical Implications to Policy Makezs

What practical implications of this leind of analysis are possible? Perhaps two types can be listed. The first is descriptive. Many of the findings presented above can be interpreted merely as being descriptive of schools when certain sets of influences are held constant. Surely more information is alyays valuable to the decision waker concerning the effectiveness of aspects of his organization.

Sacondiy, the Eindings maty be moae dizectily applicable. Henty Levin has argued that findings from data generated by the Coleman Report suggest ratiar insistently that school leaders should ain policy totards acquiring teachers vith improved verbal achievement rather than the moze traditional oojactiyes of greater expezience, more advanced degrees, and the like.t Levin even makes some quantitative statemants in ehich the claim is made that money spent on teacher experience is on the order of five to ten times less effective than money spent on acquiring teachers with better verjal ability. Such a finding should be at least highily suggestive to policy makers. The findings in the present study suould seze to suggest in similar fasioion that preparation in the teacher's subject area is important uhile degrees per se are not, and that resources devoted to supervision are inportant. These supervision relationsilips are not inconsistant ofith findings in some siork being done by the author at the RAFD Corporation shich suggest that effective in-sezvice training of teachers with respect to instructional problens actually faced in their vorif situations is highly important to instructional success.

The author feels that investigations of this nature, especially with respect to elementary puilic education, are relevant and revealing enough to justify considerably more effort in the area in the future, bhether or not economists ever succeed in constructing actual "engineering" production functions for schools.

[^11]
[^0]: *A number of hypotheses are possible concerning why the village and rural districts exhibited such random behavior. Since there were only 12 rural and 15 village districts in the sample, their small number might provide part of the explanation. This is especially true were each group to be treated separately. Also these districts are oidespread geographically and often in non-competing teacher market areas. It is feasible, also, that the smallest districts are shaped much more by personality attitudes of individual administrators and teachers.

[^1]: $$
 \begin{array}{cc}
 1.70 & 42.90 \\
 \text { Categories } & \text { Pe: } \\
 \text { (} 10-50
 \end{array}
 $$

 $$
 \begin{aligned}
 & 1000 \\
 & \text { Pupils }
 \end{aligned}
 $$

 $$
 0.46 \quad 4.66
 $$

 | 70.16 | 20.92 | 35.02 | 5.07 |
 | :---: | :---: | :---: | :---: |
 | $\$$ | $\$$ | $\$$ | Standard
 Grades |
 | $\left(100^{\prime} \mathrm{s}\right)$ | $\left(100^{\prime} \mathrm{s}\right)$ | | |

 12.00
 $\$$ level, and $* *$ indicates significance at the one percent leval.
 $b_{\text {Corrected }}$ for degrees of freedom iost.

 For the school districts represented in the "all pupils" grouping. General description of the tables is to be found on page 34.

[^2]: *Richaïd L. Turner, Differential Association of Zlementary Teacher Characteristics with School System Types, Final Report, Project 2579, U.S. Office of Education, (Septenbe:, 1968).

 NAilliam S. Vincent, Bernaird H. Mcizenna, and Austin D. Stanson, "The Question of Class Size," Reseazch Bulletin, Institute of Administrative Research, Teachers Colleme, Columola University, 1, No. 1, (October, 1950).

[^3]: *The trorks cited above by Katzman and Turner both found this phenomenon.

[^4]: Notes: See page 34.

[^5]: Notes: See page 34.

[^6]: Notes: See page 34.

[^7]: Notes: See page 34.

[^8]: Notes: See page 34.

[^9]: While qciuco
 of educational phenomena，these occupation results sould strata．Further notes：see p． 34.

[^10]: Notes: See page 34.

[^11]: *Henry M. Levin, "A Cost-Rffectíveness Analysis of Teacher Selection," Journal of Human Resouzces, Vol. 5, No. 1 (Hinter, 197C), Pp. 2li-33.

