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Abstract: The meshless method does not need the mesh cells to divide the computational domain, but 
use the 'clouds of points' to replace the function of mesh cells. For this reason, the meshfree method 
can bring the advantage of flexible point distribution to divide the computational domain. In the 
present paper, an efficient and accurate 3D least square meshless algorithm is shown to solve the 
Euler equations based on the AUSM+-up and MUSCL scheme. The explicit three-stage Strong 
Stability Preserving (SSP) Runge-Kutta method is chosen to advance the time evolution. The spatial 
derivatives are fitted by the least square method based on the cloud of point. The explicit expressions 
of the spatial derivatives are given in the present work. In order to investigate the robustness and 
accuracy of the present 3D meshless method, both transonic flow and supersonic flow are simulated. 
The results obtained show a good agreement with the exact solution or the experiment results. 

Introduction 

With the development of computer technology, Computational Fluid Dynamic (CFD) is playing an 
more and more important role in the practical engineering applications. In most of these applications, 
the geometrical configurations are very complex. It is difficult to use the conventional CFD methods, 
such as Finite volume method, Finite difference method and Finite element method to solve these 
problems. Especially for the complex unsteady flows with moving boundary, sometimes it is even 
impossible to achieve for these methods. The main reason is the grid generation, which is one of the 
major challenges in solving either Euler or Navier-Stokes equations over the complex geometrical 
configurations.  

The meshless (‘meshfree’, ‘gridless’, or ‘gridfree’) method was first formally proposed by Lucy 
[1], which was successfully applied in the field of astrophysics. The meshless method only needs the 
nodes information, which can be called ‘cloud of points’, and does not require that the nodes be 
connected to form a mesh cell as is necessary in conventional mesh-based method. So the meshless 
method can bring the advantage of flexible point distribution. The most notable work for introducing 
the meshfree method into the Computational Fluid Dynamics (CFD) field was done first by Batina in 
1992 [2], who developed an explicit least square meshfree algorithm based on the minimal surface 
approximation and used this kind of meshfree method to solve the compressible flows with shocks. 
From then on, a lot of meaningful work was done for meshless method in CFD (Morinishi[3], Cai et 
al[4], Katz[5], Chen and Shu[6]). 

In the present paper, an efficient and accurate 3D least square meshless algorithm is shown to 
solve the Euler equations. The convection fluxes are calculated by the AUSM+-up scheme. And the 
Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL)-type approach with Van 
Albada limiter is used to achieve a high order scheme. The spatial derivatives is fitted by the least 
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square method based on the cloud of point. The explicit expressions of the spatial derivatives are 
given in the present work. Some classical test cases are calculated to verify the robustness and 
accuracy of the present 3D meshless method. The simulation results show a good agreement with the 
experiment results and other numerical simulation results. Overall, simulation results demonstrate the 
validity and practicality of the present 3D method. 

 Governing equations and numerical algorithm 

The three-dimensional, compressible Euler equations to be solved in the present paper can be 
expressed in the following form: 
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In equation 2, u,v and w represent velocity components in the x, y and z directions. ρ, e and p are the 
density, total energy and pressure, respectively. The total energy can be calculated by : 
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Assuming that the fluid, air, is prefect gas, then the pressure can be calculated by the perfect gas 
equation of state 

2 2 2( 1) ( )
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Where denotes the ratio of specific heats of fluid and typically taken as 1.4 for air. 

Numerical Algorithm 

Spatial discretization. The least square meshless method only requires the information of the 
surrounding points at any given point, which is called “clouds of points”, to solve the spatial 
derivatives. Fig. 1 shows the illustration of cloud of points and fluxes split.  

 
Fig. 1. The illustration of cloud of points and fluxes split. 
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The spatial derivatives of point i is calculated by the weighted least square method, which is based 
on Taylor formulation in the present paper. Assuming that arbitrary function ( , , )x y z represented by 

“cloud of point” 
iC , and can be written as: 
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The spatial derivatives are determined by using a weighted least square approximation: 
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Where ij j i     , ij j ix x x   , ij j iy y y   ,
 ij j iz z z   and 2 2 2 1/21/ ( z )ij ij ij ijw x y    . 

The solution of this minimization problem leads to a matrix equation according to the principle of the 
least square scheme: 
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The solution of the derivatives can be simply written as the following linear approximation when 
solving the above equation explicitly:  
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Where the coefficients
ij ,

ij and 
ij  are defined as the following form: 
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Finally, a semi-discrete form of the 3D Euler equations can be written as follows: 
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Inviscid fluxes discretization. According to the work done by Sridar and Balakrishnan[7], a 
fictitious interface J is built at the midpoint of ray ij, as shown in Fig. 1. The AUSM+-up scheme is 
used to compute the inviscid fluxes as the following form: 
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More details can be found in the work done by Liou[8] and Cai[4]. 
Higher-order interpolation. In order to achieve a high order scheme, the Monotonic 

Upstream-Centered Scheme for Conservation Laws (MUSCL) reconstruction approach with Van 
Albada limiter is adopted to interpolate the primary variables onto the two sides of the fictitious 
interface in the present work. The MUSCL reconstruction scheme with a Van Albada limiter can be 
described as follows: 
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Where is a very small positive number for preventing null division, and 1210  is used in this study. 
The parameter 1/3k   is set in the present work. 

 Temporal discretization. In the present paper, an explicit three-stage Strong Stability Preserving 

(SSP) Runge-Kutta method is chosen to advance the time evolution.Assuming that the variable n

iQ is 

known at time nt , the solution is advanced over a time step t  from n

iQ to 1n

iQ  at time 1nt  by the 

following process: 
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Where t  represents the time step. In order to accelerate convergence, the local time step and implicit 
residual smoothing technology is used in the present paper.  

Numerical simulation results and analysis 

 Supersonic flow around sphere. The point distribution around sphere is shown in Fig. 2. Total 
386188 points are placed on the computational domain. The radius of the sphere is 1r  and the flow 
Mach number is 3.0Ma  . A bow shock will appear in front of the sphere when the supersonic flow 
past over the sphere. Billig [9] gives the formula of the distance from the bow shock to the 3D sphere 
stagnation point according to a lot of theoretical derivation and analysis of experiment data: 

2

3.24
0.143exp( )

r Ma




                                                                                                                                   
 (12) 

So the analytical distance in the condition of 3.0Ma  and 1r  is 0.205  . The numerical 
simulation result using the present 3D meshless method is 0.212  . The relative error is only 
3.41%. 

                 
                    Fig. 2. Point distribution                 Fig.3. The bow shock shape comparison 
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Billig believed that the detached bow shock shape can be described by a hyperbolic equation. 
Fig. 3 shows the density contours on the plane of z=0, and the black dashed line is the theoretical 
curve of the detached bow shock given by Billig. The detached bow shock is clearly captured by the 
present 3D meshless method, and the calculated shock shape and position agree well with the 
theoretical curve. 

           
(a) pressure contours                 (b) density contours 

Fig. 4. Color contours of the supersonic flow around sphere 
 

The color contours of the flow field are shown in Fig. 4.The Convergence history is given in Fig. 
5(a). Generally, the convergent results are obtained after 2000 iterations. 

 

          
(a) For sphere case                     (b) For  ONERA M6 wing case 

Fig.5. Convergence history  
 

Transonic flow around ONERA M6 wing. The second test case is the transonic flow over the 
ONERA M6 wing with the Mach number and angle of attack of 0.8395Ma   and 3.06  , the 

sideslip angle is 0. A series of the complex flow phenomena, such as the   wave, will appear in the 
flow field when the transonic flow past the wing, even though the geometry configuration is not 
complex. The point distribution is shown in Fig. 6 and total 435918 points is placed on the 
computational domain. 
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(a) all domain           (b) surface of the wing 

Fig. 6. The point distribution of the computational domain 
 

The pressure contours of the wing surface are shown in Fig. 7(a), which gives the information that 
the   wave is clearly captured. The Mach number contours in different sections are shown in 
Fig.7(b). The convergence of the CL and CD are shown in Fig.8 and the convergence of the residual 
is shown in Fig. 5(b). And the convergent results are obtained after 2000 iterations. 

 

     
(a) pressure contours(  wave)       (b) Mach number contours in different sections 

Fig. 7. Pressure contours and Mach contours 
 

    
(a) CL                      (b) CD 

Fig. 8 The convergence of CL and CD 
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In order to further confirm the accuracy and effectiveness of the present 3D meshless algorithm, 
the pressure coefficient at different place along the spanwise direction are compared with the 
experimental data [10], as shown in Fig. 9. It can be seen from the Figures that most of the simulated 
results are in good agreement with the experimental data. Only the results in the local area with the 
shock discontinuity is slightly different from the experimental data. The main reason maybe that the 
experiment data is obtained with the viscous flow, but the present numerical method is for Euler 
equations and does not consider the viscous effect. Overall, simulation results demonstrate that the 
proposed meshfless numerical algorithm is accurate and capable of simulating 3D flows. 

 

   
     (a) 0.20                                        (b) 0.44                                           (c) 0.65   

   
     (d) 0.80                                         (e) 0.90                                              (f) 0.95      

Fig. 9. The pressure coefficient at different place along the spanwise direction 

 Conclusion 

The present paper presents a 3D explicit meshless method for solving the compressible Euler 
equations. The AUSM+-up scheme with MUSCL approach is used to calculate the convection fluxes. 
Some standard test cases are simulated to verify the robustness and accuracy of the present 3D 
meshless method. The simulation results obtained by the present 3D meshless method are compared 
with the exact results and the experimental results. The good agreement with the reference data 
validates the accuracy and efficiency of the proposed 3D least square meshless method. 
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